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ABSTRACT 22 

This paper presents an innovative approach, STREAM - SaTellite based Runoff Evaluation And 23 

Mapping - to derive daily river discharge and runoff estimates from satellite soil moisture, 24 

precipitation and terrestrial water storage anomalies observations. Within a very simple model 25 

structure, the first two variables (precipitation and soil moisture) are used to estimate the quick-flow 26 

river discharge component while the terrestrial water storage anomalies are used for obtaining its 27 

complementary part, i.e., the slow-flow river discharge component. The two are then summed up to 28 

obtain river discharge and runoff estimates. 29 

The method is tested over the Mississippi river basin for the period 2003-2016 by using Tropical 30 

Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) rainfall data, 31 

European Space Agency Climate Change Initiative (ESA CCI) soil moisture data and Gravity 32 

Recovery and Climate Experiment (GRACE) terrestrial water storage data. Despite the model 33 

simplicity, relatively high-performance scores are obtained in river discharge simulations, with a 34 

Kling-Gupta efficiency index greater than 0.65 both at the outlet and over several inner stations used 35 

for model calibration highlighting the high information content of satellite observations on surface 36 

processes. Potentially useful for multiple operational and scientific applications (from flood warning 37 

systems to the understanding of water cycle), the added-value of the STREAM approach is twofold: 38 

1) a simple modelling framework, potentially suitable for global runoff monitoring, at daily time scale 39 

when forced with satellite observations only, 2) increased knowledge on the natural processes, human 40 

activities and on their interactions on the land. 41 

 42 

Key words: satellite products, soil moisture, water storage variations, data-driven hydrological 43 

modelling, rainfall-runoff modelling, Mississippi. 44 
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1. INTRODUCTION 45 

Spatial and temporal continuous river discharge monitoring is paramount for improving the 46 

understanding of the hydrological cycle, for planning human activities related to water use as well as 47 

to prevent/mitigate the losses due to extreme flood events. To accomplish these tasks, runoff and river 48 

discharge data, which represents the aggregated signal of runoff (Fekete et al., 2012), should be 49 

available at adequate spatial/temporal resolution, i.e., at basin scale (basin area larger than 10’000 50 

km2) and at monthly time step for water resources management and drought monitoring up to grid 51 

scale (few km)/(sub-) daily time step for flood prediction. The accurate continuous (in space and 52 

time) runoff and river discharge estimation at finer spatial/temporal resolution is still a big challenge 53 

for hydrologists.  54 

Traditional in situ observations of river discharge, even if generally characterized by high temporal 55 

resolution (up to sub-hourly time step), typically offer little information on the spatial distribution of 56 

runoff within a watershed. Moreover, river discharge observation networks suffer from many 57 

limitations such as low station density and often incomplete temporal coverage, substantial delay in 58 

data access and large decline in monitoring capacity (Vörösmarty et al. 2002). Paradoxically, this 59 

latter issue is exacerbated in developing nations (Crochemore et al, 2020), where the knowledge of 60 

the terrestrial water dynamics deserves greater attention due to huge damages to settlements and 61 

especially the loss of human lives that occurs regularly.  62 

This precarious situation has led to growing interest in finding alternative solutions, i.e., model-based 63 

or observation-based approaches, for runoff and river discharge monitoring. Model-based 64 

approaches, based on the mathematical description of the main hydrological processes (e.g., water 65 

balance models, WBMs, global hydrological models, GHMs, e.g., Döll et al., 2003 or, increasing in 66 

complexity, land surface models, LSM, e.g., Balsamo et al., 2009; Schellekens et al., 2017), are able 67 

to provide comprehensive information on a large number of relevant variables of the hydrological 68 

cycle including runoff and river discharge at very high temporal and spatial resolution (up to hourly 69 
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sampling and 0.05° grid scale). However, the values of simulated water balance components rely on 70 

a massive parameterization of the soil, vegetation and land parameters, which is not always realistic, 71 

and are strongly dependent on the GHM/ LSM models used, analysis periods (Wisser et al., 2010) 72 

and climate forcings selected (e.g Haddeland et al., 2012; Gudmundsson et al., 2012a, b; Prudhomme 73 

et al., 2014; Müller Schmied et al., 2016).  74 

Alternatively, the observation-based approaches exploit machine learning techniques and a 75 

considerable amount of data to describe the physics of the system (i.e. hydraulic and/or hydrologic 76 

phenomena, Solomatine and Ostfeld, 2008) with only a limited number of assumptions. Besides being 77 

simpler than model-based approaches, these approaches still present some limitations. At first, as they 78 

rely on a considerable amount of data describing the modelled system’s physics, the spatial/temporal 79 

extent and the uncertainty of the resulting dataset is determined by the spatial/temporal coverage and 80 

the accuracy of the forcing data (e.g., see E-RUN dataset, Gudmundsson and Seneviratne, 2016; 81 

GRUN dataset, Ghiggi et al., 2019; FLO1K dataset, Barbarossa et al., 2018). Additional limitations 82 

stem from the employed method to estimate runoff. Indeed, random forests such as employed in 83 

Gudmundsson and Seneviratne, 2016, like other machine learning techniques, are powerful tools for 84 

data driven modeling, but they are prone to overfitting, implying that noise in the data can obscure 85 

possible signals (Hastie et al., 2009). Moreover, the influence of land parameters on continental-scale 86 

runoff dynamics is not taken into account as the underlying hypothesis is that the hydrological 87 

response of a basin exclusively depend on present and past atmospheric forcing. It is easy to 88 

understand that this assumption will only be valid in certain circumstances and might lead to 89 

problems, e.g., over complex terrain (Orth and Seneviratne, 2015) or in cases of human river flow 90 

regulation (Ghiggi et al., 2019). 91 

Remote sensing can provide estimates of nearly all the climate variables of the global hydrological 92 

cycle including soil moisture (e.g., Wagner et al., 2007; Seneviratne et al., 2010), precipitation 93 

(Huffman et al., 2014) and total terrestrial water storage (e.g., Houborg et al., 2012; Landerer and 94 

Swenson, 2012; Famiglietti and Rodell, 2013). It has undeniably changed and improved dramatically 95 
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the ability to monitor the global water cycle and, hence, runoff. By taking advantage of satellite 96 

information, some studies tried to develop methodologies able to optimally produce multivariable 97 

datasets from the fusion of in situ and satellite-based observations (e.g., Rodell et al., 2015; Zhang et 98 

al., 2018; Pellet et al., 2019). Other studies exploited satellite observations of hydrological variables, 99 

e.g., precipitation (Hong et al, 2007), soil moisture (Massari et al., 2014), and geodetic variables (e.g., 100 

Sneeuw at. al., 2014; Tourian et al., 2018) to monitor single components of the water cycle in an 101 

independent way. 102 

Although the majority of these studies provide runoff and river discharge data at basin scale and 103 

monthly time step, they deserve to be recalled here as important for the purpose of the present study. 104 

In particular, Hong et al. (2007) presented a first attempt to obtain an approximate but quasi-global 105 

annual streamflow dataset, by incorporating satellite precipitation data in a relatively simple rainfall-106 

runoff simulation approach. Driven by the multiyear (1998-2006) Tropical Rainfall Measuring 107 

Mission Multi-satellite Precipitation Analysis, runoff was independently computed for each global 108 

land surface grid cell through the Natural Resources Conservation Service (NRCS) runoff curve 109 

number (CN) method (NRCS, 1986) and subsequently routed to the watershed outlet to simulate 110 

streamflow. The results, compared to the in situ observed discharge data, demonstrated the potential 111 

of using satellite precipitation data for diagnosing river discharge values both at global scale and for 112 

medium to large river basins. If, on the one hand, the work of Hong et al. (2007) can be considered 113 

as a pioneer study, on the other hand it presents a serious drawback within the NRCS-CN method 114 

that lacks a realistic definition of the soil moisture conditions of the catchment before flood events. 115 

This aspect is not negligible, as it is well established that soil moisture is paramount in the partitioning 116 

of precipitation into surface runoff and infiltration inside a catchment (Brocca et al., 2008). In 117 

particular, for the same rainfall amount but different values of initial soil moisture conditions, 118 

different flooding effects can occur (see e.g. Crow et al., 2005; Brocca et al., 2008; Berthet et al., 119 

2009; Merz and Bloschl, 2009; Tramblay et al., 2010). On this line following Brocca et al. (2009), 120 

Massari et al. (2016) presented a very first attempt to estimate global streamflow data by using 121 
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satellite Soil Moisture Active and Passive (SMAP) and Global Precipitation Measurement (GPM) 122 

products. Although the validation was carried out by routing the monthly surface runoff only in a 123 

single basin in Central Italy, the obtained results suggested to dedicate additional efforts in this 124 

direction.  125 

Among the studies that use satellite observations of hydrological variables for runoff estimation, the 126 

hydro-geodetic approaches are undoubtedly worth mentioning, see e.g., (Sneeuw et al.,2014) for a 127 

comprehensive overview or Lorenz et al. (2014) for an analysis of satellite-based water balance 128 

misclosures with discharge as closure term. In particular, the satellite mission Gravity Recovery And 129 

Climate Experiment (GRACE), which observed the temporal changes in the gravity field, has given 130 

a strong impetus to satellite-driven hydrology research (Tapley et al., 2019). Since temporal gravity 131 

field variations over the continents imply water storage change, GRACE was the first remote sensing 132 

system to provide observational access to deeper groundwater storage. The relation between GRACE 133 

groundwater storage change and runoff was characterized by Riegger and Tourian (2014), which even 134 

allowed the quantification of absolute drainable water storage over the Amazon (Tourian et al., 2018). 135 

In essence the storage-runoff relation describes the gravity-driven drainage of a basin and, hence, the 136 

slow-flow processes. Due to GRACE’s spatial-temporal resolution, runoff and river discharge are 137 

generally available for large basins (>160’000 km2) and at monthly time step.  138 

Based on the above discussion, it is clear that each approach presents strengths and limitations that 139 

enable or hamper the runoff and river discharge monitoring at finer spatial and temporal resolutions. 140 

In this context, this study presents an attempt to find an alternative method to derive daily river 141 

discharge and runoff estimates at ¼ degree spatial resolution exploiting satellite observations and the 142 

knowledge of the key mechanisms and processes that act in the formation of runoff, i.e., the role of 143 

soil moisture in determining the response of a catchment to precipitation. For that, soil moisture, 144 

precipitation and terrestrial water storage anomalies (TWSA) observations are used as input into a 145 

simple modelling framework named STREAM (SaTellite based Runoff Evaluation And Mapping). 146 

Unlike classical land surface models, STREAM exploits the knowledge of the system states (i.e., soil 147 
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moisture and TWSA) to derive river discharge and runoff, and thus it 1) skips the modelling of the 148 

evapotranspiration fluxes which are known to be a non-negligible source of uncertainty (Long et al. 149 

2014), 2) limits the uncertainty associated with the over-parameterization of soil and land parameters 150 

and 3) implicitly takes into account processes, mainly human-driven (e.g., irrigation, change in the 151 

land use), that might have a large impact on the hydrological cycle and hence on runoff. 152 

The detailed description of the STREAM model is given in section 4. The collected datasets and the 153 

experimental design for the Mississippi River Basin (section 2) are described in sections 3 and 5, 154 

respectively. Results, discussion and conclusions are drawn in section 6, 7 and 8, respectively.  155 

2. STUDY AREA 156 

The STREAM model presented here has been tested and validated over the Mississippi River basin. 157 

With a drainage area of about 3.3 million km2, the Mississippi River basin is the fourth largest 158 

watershed in the world, bordered to the West by the crest of the Rocky Mountains and to the East by 159 

the crest of the Appalachian Mountains. According to the Köppen climate classification, the climate 160 

is subtropical humid over the southern part of the basin, continental humid with hot summer over the 161 

central part, continental humid with warm summer over the eastern and norther parts, whereas a 162 

semiarid cold climate affects the western part. The average annual air temperature across the 163 

watershed ranges from 4°C in the West to 6°C in the East. On average, the watershed receives about 164 

900 mm/year of precipitation (77% as rainfall and 23% as snowfall), more concentrated in the eastern 165 

and southern portions of the basin with respect to its northern and western part (Vose et al., 2014). 166 

The river flow has a clear natural seasonality mainly controlled by spring snowmelt in the 167 

mountainous areas of the basins and by heavy rainfall exceeding the soil moisture storage capacity in 168 

the central and southern part of the basin (Berghuijs et al., 2016), but it is also heavily regulated by 169 

the presence of about 1000 large dams (Global Reservoir and Dam Database GRanD, Lehner et al., 170 

2011) spread-out across the basin. The annual average of Mississippi river discharge at the Vicksburg 171 

outlet section is equal to 17’500 m3/s (see Table 1). Given the variety of climate and topography 172 
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across the Mississippi River basin, it is a good candidate to test the suitability of the STREAM model 173 

for river discharge and runoff simulation. 174 

3. DATASETS 175 

The datasets used in this study include in situ observations, satellite products and model outputs. The 176 

first two datasets have been used as input data to the STREAM model. Conversely, the model outputs 177 

are used as a benchmark to validate the performance of the STREAM model. 178 

3.1 In situ Observations 179 

In situ observations comprise air temperature (𝑇air) and river discharge data (𝑄).  180 

For 𝑇air data the Climate Prediction Center (CPC) Global Temperature data developed by the 181 

American National Oceanic and Atmospheric Administration (NOAA) using the optimal 182 

interpolation of quality-controlled gauge records of the Global Telecommunication System (GTS) 183 

network (Fan et al., 2008) have been used. The dataset, downloadable at 184 

(https://psl.noaa.gov/data/gridded/data.cpc.globaltemp.html) is available on a global regular 185 

0.5°×0.5° grid, and provides daily maximum (𝑇max) and minimum (𝑇min) air temperature data from 186 

1979 to present. The daily average air temperature data have been generated as the mean of 𝑇max and 187 

𝑇min of each day. 188 

Daily 𝑄 data over the study basins have been taken from the Global Runoff Data Center (GRDC, 189 

https://www.bafg.de/GRDC/EN/Home/homepage_node.html). In particular, 11 gauging stations 190 

located along the main river network of the Mississippi River basin have been selected to represent 191 

the spatial distribution of runoff over the basin. The location of these gauging stations along with 192 

relevant characteristics (e.g., the upstream basin area, the mean annual river discharge and the 193 

presence of upstream dams) are summarized in Table 1. As it can be noted, mean annual river 194 

discharge ranges from 141 to 17’500 m3/s, and 3 out 11 sections are located downstream big dams 195 

(Lehner et al., 2011).  196 

https://doi.org/10.5194/gmd-2020-399
Preprint. Discussion started: 25 January 2021
c© Author(s) 2021. CC BY 4.0 License.



9 

 

3.2 Satellite Products 197 

Satellite products include observations of precipitation (𝑃), soil moisture and TWSA.  198 

The satellite 𝑃 dataset used in this study is the Multi-satellite Precipitation Analysis 3B42 Version 7 199 

(TMPA 3B42 V7) estimate produced by the National Aeronautics and Space Administration (NASA) 200 

as the 0.25°×0.25° quasi-global (50°N-S) gridded dataset. The TMPA 3B42 V7 is a gauged-corrected 201 

satellite product, with a latency period of two months after the end of the month of record, available 202 

at 3h sampling interval from 1998 to present (2020). Major details about the 𝑃 dataset, downloadable 203 

from http://pmm.nasa.gov/data-access/downloads/trmm, can be found in Huffman et al. (2007). 204 

Soil moisture data have been taken from the European Space Agency Climate Change Initiative (ESA 205 

CCI) Soil Moisture project (https://esa-soilmoisture-cci.org/) that provides a product continuously 206 

updated in term of spatial-temporal coverage, sensors and retrieval algorithms (Dorigo et al., 2017). 207 

In this study, the daily combined ESA CCI SOIL MOISTURE product v4.2 is used, that is available 208 

at global scale with a grid spacing of 0.25°, for the period 1978-2016. 209 

TWSA have been obtained from the Gravity Recovery And Climate Experiment (GRACE) satellite 210 

mission. Here we employ the NASA Goddard Space Flight Center (GSFC) global mascon model, 211 

i.e., Release v02.4, (Luthcke et al. 2013). It has been produced based on the mass concentration 212 

(mascon) approach. The model provides surface mass densities on a monthly basis. Each monthly 213 

solution represents the average of surface mass densities within the month, referenced at the middle 214 

of the corresponding month. The model has been developed directly from GRACE level-1b K-Band 215 

Ranging (KBR) data. It is computed and delivered as surface mass densities per patch over blocks of 216 

approximately 1°×1° or about 12’000 km2. Although the mascon size is smaller than the inherent 217 

spatial resolution of GRACE, the model exhibits a relatively high spatial resolution. This is attributed 218 

to a statistically optimal Wiener filtering, which uses signal and noise covariance matrices. The 219 

coloured (frequency-dependent) noise characteristic of KBR data was taken in to account when 220 

compiling the model, which has allowed for a reliable computation of these noise and signal 221 
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covariance matrices. They play a crucial role when filtering and allow to achieve a higher spatial 222 

resolution compared to commonly applied GRACE filtering methods such as Gaussian smoothing 223 

and/or destriping filters. GRACE data are available for the period 01 January 2003 to 15 July 2016.  224 

3.3 Model Outputs 225 

To establish the quality of the STREAM model in runoff simulation, monthly runoff (𝑅) data obtained 226 

from the Global Runoff Reconstruction (GRUN_v1, https://doi.org/10.3929/ethz-b-000324386) have 227 

been used for comparison. The GRUN dataset (Ghiggi et al., 2019) is a global monthly 𝑅 dataset 228 

derived through the use of a machine learning algorithm trained with in situ 𝑄 observations of 229 

relatively small catchments (<2500 km2) and gridded precipitation and temperature derived from the 230 

Global Soil Wetness Project Phase 3 (GSWP3) dataset, (Kim et al., 2017). The dataset covers the 231 

period from 1902 to 2014 and it is provided on a 0.5° ×0.5° regular grid. 232 

4. METHOD 233 

4.1 STREAM Model: the Concept  234 

The concept behind the STREAM model is that river discharge is a combination of hydrological 235 

responses operating at diverse time scales (Blöschl et al., 2013; Rakovec et al., 2016). In particular, 236 

river discharge can be considered made up of a slow-flow component, produced as outflow of the 237 

groundwater storage and of a quick-flow component, i.e. mainly related to the surface and subsurface 238 

runoff components (Hu and Li, 2018). 239 

While the high spatial and temporal (i.e., intermittence) variability of rainfall and the highly changing 240 

land cover spatial distribution significantly impact the variability of the quick-flow component (with 241 

scales ranging from hours to days and meters to kilometres depending on the basin size), slow-flow 242 

river discharge reacts to precipitation inputs more slowly (i.e., months) as water infiltrates, is stored, 243 

mixed and is eventually released in times spanning from weeks to months. Therefore, the two 244 

components can be estimated by relying upon two different approaches that involve different types 245 
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of observations. Based on that, within the STREAM model, satellite soil moisture, precipitation and 246 

TWSA will be used for deriving river discharge and runoff estimates. The first two variables are used 247 

as proxy of the quick-flow river discharge component while TWSA is exploited for obtaining its 248 

complementary part, i.e., the slow-flow river discharge component. Firstly, we exploit the role of the 249 

soil moisture in determining the response of the catchment to the precipitation inputs, which have 250 

been soundly demonstrated in more than ten years of literature studies (see e.g., Brocca et al., 2017 251 

for a comprehensive discussion on the topic). Secondly, we consider the important role of terrestrial 252 

water storage in determining the slow-flow river discharge component as modelled in several 253 

hydrological models (e.g., Sneeuw et al., 2014). 254 

It is worth noting that this modus operandi, i.e. to model the quick-flow and slow-flow discharge 255 

component separately exploring their process controls independently, has been largely applied and 256 

tested in recent and past studies, e.g., for the estimation of the flow duration curve (see e.g, Botter et 257 

al., 2007a, b; Yokoo and Sivapalan 2011; Muneepeerakul et al., 2010; Ghotbi et al., 2020).  258 

4.2 STREAM Model: the Laws  259 

The STREAM model is a conceptual hydrological model that, by using as input observation of 𝑃, 260 

soil moisture, TWSA and 𝑇air data, simulates continuous 𝑅 and 𝑄 time series.  261 

The model entails three main components (Figure 1): 1) a snow module to separate precipitation into 262 

snowfall and rainfall, 2) a soil module to simulate the evolution in time 𝑡 of the quick and slow runoff 263 

responses, 𝑄𝑓𝑢 [mm] and 𝑄𝑠𝑙 [mm], and 3) a routing module that transfers these components through 264 

the basins and the rivers for the simulation of the quick-flow river discharge, QF [m3/s], and the slow-265 

flow river discharge, SF [m3/s] components. 266 

The soil module is composed of two storages, Su and Sl as illustrated in Figure 1. The upper storage 267 

receives inputs from 𝑃, released through a snow module (Cislaghi et al., 2020) as rainfall (r) or stored 268 

as snow water equivalent (SWE) within the snowpack and on the glaciers. In particular, according to 269 
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Cislaghi et al. (2020), SWE is modelled by using as input 𝑇air and a degree-day coefficient, 𝐶m, to be 270 

estimated by calibration.  271 

Once separated, r input contributes to the quick runoff response while the SWE (like other fluxes 272 

contributing to modify the soil water content into Su) is neglected as already considered in the satellite 273 

TWSA. Therefore, the first key point of the STREAM model is that the water content in the upper 274 

storage is directly provided by the satellite soil moisture observations and the loss processes like 275 

infiltration or evaporation do not need to be explicitly modelled to simulate the evolution in time t of 276 

soil moisture. Consequently, the quick runoff response, 𝑄𝑓𝑢 from the first storage can be computed 277 

through equation (1) as follows:  278 

𝑄𝑓𝑢(𝑡) = 𝑟(𝑡) 𝑆𝑊𝐼(𝑡, 𝑇)𝛼         (1) 279 

where: 280 

- 𝑆𝑊𝐼 is the Soil Water Index (Wagner et al., 1999), i.e., the root-zone soil moisture product referred 281 

to the first layer of the model, derived by the surface satellite soil moisture product, , by applying 282 

the exponential filtering approach in its recursive formulation (Albergel et al., 2009): 283 

𝑆𝑊𝐼 𝑛 = 𝑆𝑊𝐼𝑛−1 + 𝐾 𝑛((𝑡𝑛) − 𝑆𝑊𝐼𝑛−1)       (2) 284 

with the gain 𝐾 𝑛 at the time 𝑡𝑛 given by: 285 

𝐾 𝑛 =
𝐾𝑛−1

𝐾𝑛−1+𝑒
(

𝑡𝑛−𝑡𝑛−1
𝑇

)
          (3) 286 

- 𝑇 [days] is a parameter, named characteristic time length, that characterizes the temporal variation 287 

of soil moisture within the root-zone profile and the gain 𝐾𝑛 ranges between 0 and 1; 288 

- 𝛼[-] is a coefficient linked to the non-linearity of the infiltration process and it takes into account 289 

the characteristics of the soil; 290 

- for the initialization of the filter 𝐾1 = 1 and 𝑆𝑊𝐼 1 = (𝑡1). 291 
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The second key point of STREAM approach concerns the estimation of the slow runoff response, 𝑄𝑠𝑙, 292 

from the second storage. The hypothesis here, shared also with other studies (e.g., Rakovec et al., 2016), 293 

is that the dynamic of the slow runoff component can be represented by the monthly TWSA data. 294 

Indeed, the time scale of slow runoff response is typically in the range of seasons to years and it is 295 

almost independent upon the water that is contained in that upper storage. For that, the slow runoff 296 

response 𝑄𝑠𝑙, from the second storage, can be computed through equation (4) as follows: 297 

𝑄𝑠𝑙(𝑡) =  𝛽 (𝑇𝑊𝑆𝐴∗(𝑡))𝑚         (4) 298 

where: 299 

- 𝑇𝑊𝑆𝐴∗ [-] is the TWSA estimated by GRACE normalized by its minimum and maximum values. 300 

The assumption behind this equation is that TWSA can be assumed as a proxy of the evolution in 301 

time, 𝑡, of the 𝑆𝑙, i.e., the storage of the lower storage. 302 

- 𝛽 [mm h-1] and 𝑚 [-] are two parameters describing the nonlinearity between slow runoff 303 

component and 𝑇𝑊𝑆𝐴∗. 304 

Note that, being based on a conceptual framework, we assume that soil moisture acts both on the 305 

generation of the quick flow part (mainly) and is partly responsible of the slow flow contribution 306 

indirectly via TWSA observations (indeed TWSA already contains the soil moisture signal in 307 

themselves). 308 

The STREAM model runs in a semi-distributed version in which the catchment is divided into s 309 

elements, each one representing either a subcatchment with outlet along the main channel or an area 310 

draining directly into the main channel. Each element is assumed homogeneous and hence constitutes 311 

a lumped system. 312 

The routing module (controlled by a 𝛾 parameter) conveys the 𝑄𝑓𝑢 and 𝑄𝑠𝑙 response components at 313 

each element outlet (subcatchments and directly draining areas, Brocca et al., 2011) and successively 314 

at the catchment outlet of the basin. Specifically, the quick component 𝑄𝑓𝑢 is routed to the element 315 
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outlet by the Geomorphological Instantaneous Unit Hydro-graph (GIUH, Gupta et al., 1980) for 316 

subcatchments or through a linear reservoir approach (Nash, 1957) for directly draining areas; the 317 

𝑄𝑠𝑙 slow component is transferred to the outlet section by a linear reservoir approach. Finally, a 318 

diffusive linear approach (controlled by the parameters C and D, i.e., Celerity and Diffusivity, 319 

Troutman and Karlinger, 1985) is applied to route the quick and slow runoff components at the outlet 320 

section of the catchment (Brocca et al., 2011). In the first case we obtain the quick-flow river discharge 321 

component, QF [m3/s], and in the second case the slow-flow river discharge component, SF [m3/s] 322 

(see Figure 1). 323 

4.3 STREAM Parameters 324 

The STREAM model uses 8 parameters of which 5 are used in the soil module (𝛼, T [days], β [mm 325 

h-1], m, Cm) and 3 in the routing module (𝛾, C [km h-1] and D [km2 h-1]). These parameters are 326 

calibrated by maximizing the Kling-Gupta Efficiency index (KGE, Gupta et al., 2009; Kling et al., 327 

2012, see paragraph 5.1 for more details) between observed and simulated river discharge. 328 

5. EXPERIMENTAL DESIGN 329 

5.1 Modelling Setup for Mississippi River Basin  330 

The modelling setup is carried out in four steps (Figure 2): 331 

1. Input data collection. Two different groups of data have to be collected to setup the model, i.e., 332 

topographic information and hydrological variables. Concerning the topographic information, the 333 

SHuttle Elevation Derivatives at multiple Scales (HydroSHED, https://www.hydrosheds.org/) DEM 334 

of the basin at the 3′′ resolution (nearly 90 m at the equator) as well as the location of the gauging 335 

stations where the model should be calibrated/validated, are collected. Concerning the hydrological 336 

variables, gridded precipitation, 𝑇air, soil moisture and TWSA are collected. In addition, in situ Q 337 

time series for the sections where the model should be calibrated/validated as well as modelled runoff 338 

datasets are required. 339 
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2. Sub-basin delineation. STREAM model is run in the semi-distributed version over the Mississippi 340 

River basin. The TopoToolbox (https://topotoolbox.wordpress.com/), a tool developed in Matlab by 341 

Schwanghart et al. (2010), and the DEM of the basin have been used to derive flow directions, to 342 

extract the stream network and to delineate the drainage basins over the Mississippi River basin. In 343 

particular, by considering only rivers with Horton-Strahler order greater than 3, the Mississippi 344 

watershed has been divided into 53 sub-basins as illustrated in Figure 3. Red dots in the figure indicate 345 

the location of the 11 discharge gauging stations selected for the study area. 346 

3. Extraction of input data. Precipitation, 𝑇air, soil moisture and TWSA datasets data have to be 347 

extracted for teach sub-basin of the study area. If characterized by different spatial resolution, these 348 

datasets need to be resampled over a common spatial grid prior to be used as input into the model.  349 

To run the STREAM model over the Mississippi river basin, input data have been resampled over the 350 

precipitation spatial grid at 0.25° resolution through a bilinear interpolation. For each of the 53 351 

Mississippi subbasins, the resampled precipitation, soil moisture, 𝑇air and TWSA data have been 352 

extracted.  353 

4. STREAM model calibration. In situ river discharge data are used as reference data for the 354 

calibration of STREAM model. For Mississippi, the STREAM model has been calibrated over five 355 

sections as illustrated in Figure 3: the inner sections 4, 6, 9, 11 and the outlet section 10, are used to 356 

calibrate the model and all sub-basins contributing to the respective sections are highlighted with the 357 

same colour. This means that, for example, the sub-basins labelled as 1, 2, 5 to 15, 17, 22, 23, and 30 358 

contribute to section 4, sub-basins 31, 37, 38 and 41 contribute to section 6 and so on. Consequently, 359 

the sub-basins highlighted with the same colour are assigned the same model parameters, i.e. the 360 

parameters that allow to reproduce the river discharge data observed at the related outlet section. 361 

Once calibrated, the STREAM model has been run to provide continuous daily Q and R time series, 362 

at the outlet section of each subbasin and over each grid pixel, respectively. By considering the 363 

spatial/temporal availability of both in situ and satellite observations, the entire analysis period covers 364 

the maximum common observation period, i.e., from 01 January 2003 to 15 July 2016 at daily time 365 
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scale. To establish the goodness-of-fit of the model, the simulated river discharge and runoff 366 

timeseries are compared against in situ river discharge and modelled runoff data. 367 

5.2 Model Evaluation Criteria and Performance Metrics 368 

The model has been run over a 13.5-year period split into two sub periods: the first 8 years, from 369 

January 2003 to December 2010, have been used to calibrate the model successively validated over 370 

the remaining 5.5 years (January 2011 - July 2016). 371 

In particular, three different validation schemes have been adopted to assess the robustness of the 372 

STREAM model: 373 

1. Internal validation aimed to test the plausibility of both the model structure and the parameter 374 

set in providing reliable estimates of the hydrological variables against which the model is 375 

calibrated. For this purpose, a comparison between observed and simulated river discharge 376 

time series on the sections used for model calibration has been carried out for both the 377 

calibration and validation sub periods. 378 

2. Cross-validation testing the goodness of the model structure and the calibrated model 379 

parameters to predict hydrological variables at locations not considered in the calibration 380 

phase. In this respect, the cross-validation has been carried out by comparing observed and 381 

simulated river discharge time series in gauged basins not considered during the calibration 382 

phase; 383 

3. External validation aimed to test the capability of the model “to get the right answers for the 384 

right reasons” (Kirchner 2006). In this respect, the capability of the model to reproduce 385 

variables (e.g., fluxes or state variables) other than discharge and not considered in the 386 

calibration phase, should be tested. As runoff is a secondary product of the STREAM model, 387 

obtained indirectly from the calibration of the river discharge (basin-integrated runoff), the 388 

comparison in terms of runoff can be considered as a further external validation of the model. 389 

Runoff, differently from discharge, cannot be directly measured. It is generally modelled 390 

through land surface or hydrological models. Its validation requires a comparison against 391 

https://doi.org/10.5194/gmd-2020-399
Preprint. Discussion started: 25 January 2021
c© Author(s) 2021. CC BY 4.0 License.



17 

 

modelled data that, however, suffer from uncertainties (Beck et al., 2017). Based on that, in 392 

this study the GRUN runoff dataset described in the section 3.3 has been used for a qualitative 393 

comparison.  394 

5.3 Performance Metrics 395 

To measure the goodness-of-fit between simulated and observed river discharge data three 396 

performance scores have been used:  397 

● the relative root mean square error, RRMSE: 398 

𝑅𝑅𝑀𝑆𝐸 =
√

1

𝑛
 ∑ (𝑄𝑠𝑖𝑚𝑖−𝑄𝑜𝑏𝑠𝑖

)𝑛
𝑖=1

2

1

𝑛
∑ (𝑄𝑜𝑏𝑠𝑖

)𝑛
𝑖=1

        (5) 399 

where 𝑄𝑜𝑏𝑠 and 𝑄𝑠𝑖𝑚 are the observed and simulated discharge time series of length n. RRMSE 400 

values range from 0 to +∞, the lower the RRMSE, the better the agreement between observed and 401 

simulated data. 402 

●  the Pearson correlation coefficient, R, measures the linear relationship between two variables: 403 

𝑅 =
 ∑ (𝑄𝑠𝑖𝑚𝑖−𝑄𝑠𝑖𝑚𝑖̅̅ ̅̅ ̅̅ ̅̅ ̅)𝑛

𝑖=1 (𝑄𝑜𝑏𝑠𝑖−𝑄𝑜𝑏𝑠𝑖̅̅ ̅̅ ̅̅ ̅̅ )

√∑ (𝑄𝑠𝑖𝑚𝑖−𝑄𝑠𝑖𝑚𝑖̅̅ ̅̅ ̅̅ ̅̅ ̅)2𝑛
𝑖=1 (𝑄𝑜𝑏𝑠𝑖−𝑄𝑜𝑏𝑠𝑖̅̅ ̅̅ ̅̅ ̅̅ )2

        (6) 404 

where 𝑄𝑜𝑏𝑠
̅̅ ̅̅ ̅̅  and 𝑄𝑠𝑖𝑚

̅̅ ̅̅ ̅̅  represent the mean values of 𝑄𝑜𝑏𝑠 and 𝑄𝑠𝑖𝑚, respectively. The values of R range 405 

between −1 and 1; higher values of R indicate a better agreement between observed and simulated 406 

data. 407 

●  the Kling-Gupta efficiency index (KGE, Gupta et al., 2009), which provides direct assessment 408 

of four aspects of discharge time series, namely shape, timing, water balance and variability. It 409 

is defined as follows: 410 

𝐾𝐺𝐸 =  1 −  √(𝑅 − 1)2 + (𝛿 − 1)2 + (𝜀 − 1)2      (7) 411 

where R is the correlation coefficient, 𝛿 the relative variability and 𝜀 the bias normalized by the 412 

standard deviation between observed and simulated discharge. The KGE values range between -∞ 413 

and 1; the higher the KGE, the better the agreement between observed and simulated data. 414 

Simulations characterized by values of KGE in the range -0.41 and 1 can be assumed as reliable; 415 
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values of KGE greater than 0.5 have been assumed good with respect to their ability to reproduce 416 

observed time series (Thiemig et al., 2013). 417 

6. RESULTS 418 

The testing and validation of the STREAM model is presented and discussed in this section according 419 

to the scheme illustrated in section 5.2.  420 

6.1 Internal Validation  421 

The performance of the STREAM model over the calibrated river sections is illustrated in Figure 4 422 

and summarized in Table 2. Figure 4 shows observed and simulated river discharge time series over 423 

the whole study period (2003-2016); in Table 2 the performance scores are evaluated separately for 424 

the calibration and validation sub periods. It is worth noting that the model accurately simulates the 425 

observed river discharge data and is able to give the “right answer” with good modelling 426 

performances. Score values of KGE and R over the calibration (validation) period are higher than 427 

0.62 (0.67) and 0.75 (0.75) (resp.) for all the sections; RRMSE is lower than 46% (51%) for all the 428 

sections except for section 9, where it rises up to 71% (77%). The performances remain good even if 429 

they are evaluated over the entire study period as indicated by the scores on the top of each plot of 430 

Figure 4. 431 

6.2 Cross-validation 432 

The cross-validation has been carried out over the six river sections illustrated in Figure 5 not used 433 

in the calibration step. The performance scores on the top of each plot refer to the entire study periods; 434 

the scores split for calibration and validation periods are reported in Table 2. For some river sections 435 

the performance is quite low (see, e.g., river section 1, 2 and 5) whereas for others the model is able 436 

to simulate the observed discharge data quite accurately (e.g., 7 and 8). In particular, for river sections 437 

1, 2 even if KGE reaches values equal to 0.35 and 0.40 (for the whole period), respectively, there is 438 

not a good agreement between observed and simulated river discharge and the R score is lower than 439 

0.55 for both river sections. The worst performance is obtained over section 5, with negative KGE 440 
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and low R (high RRSME). These results are certainly influenced by the presence of dams located 441 

upstream to these river sections (see Table 1): the model, not having a specific module for modelling 442 

reservoirs, is not able to accurately reproduce the dynamics of river discharge over regulated river 443 

sections. Better performances are obtained over river sections 3 (slightly influenced by the presence 444 

of dams in section 1 and 2), 7 and 8. In particular, over river section 7, the STREAM model 445 

overestimates the observed river discharge highlighting that the model parameters estimated for river 446 

section 6 are not suitable to accurately reproduce river discharge for river section 7 (see Figure 3 and 447 

Figure 5). Conversely, the performances over river section 8, whose parameters have been set equal 448 

to the ones of river section 10, are quite high (KGE equal to 0.71, 0.80 and 0.77 for the entire, the 449 

calibration and the validation period, respectively; R equal to 0.83, 0.84 and 0.84 for the entire, 450 

calibration and validation periods, respectively).  451 

This finding, which could be due to different/similar interbasin characteristics, raises doubts about 452 

the robustness of model parameters and whether it is actually possible to transfer model parameters 453 

from one river section to another. A more in-depth investigation about the model calibration 454 

procedure will be carried out in future studies.  455 

6.3 External Validation 456 

For the external validation, the monthly runoff time series provided by the GRUN datasets have been 457 

compared against the ones computed by the STREAM model. For that, STREAM daily runoff time 458 

series have been aggregated at monthly scale and re-gridded at the same spatial resolution of the 459 

GRUN dataset (0.5°). The comparison is illustrated in Figure 6 for the common period 2003–2014. 460 

Although the two datasets consider different rainfall inputs, the two models agree in identifying two 461 

distinct zones, i.e., the western and the eastern area. Likely due to the calibration procedure, the 462 

STREAM runoff map appears patchier with respect to GRUN and discontinuities along the sub-basin 463 

boundaries (identified in Figure 3) can be noted. This should be ascribed to the automatic calibration 464 

procedure of the model that, differently from other calibration techniques (e. g., regionalization 465 

procedures), does not consider the basin physical attributes like soil, vegetation, and geological 466 
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properties that govern spatial dynamics of hydrological processes. This calibration procedure can 467 

generate sharp discontinuities even for neighbouring subcatchments individually calibrated. It leads 468 

to discontinuities in model parameter values and consequently in the simulated hydrological variable 469 

(runoff).  470 

7. DISCUSSION 471 

In the previous sections, the ability of the STREAM model to accurately simulate river discharge and 472 

runoff time series has been presented. In particular, Figures 4, 5 and 6 demonstrate that satellite 473 

observations of precipitation, soil moisture and terrestrial water storage anomalies can provide 474 

accurate daily river discharge estimates for near-natural large basins (absence of upstream dams), and 475 

for basins with draining area lower than 160’000 km2 (see section 7), i.e., at spatial/temporal 476 

resolution lower than the ones of the TWSA input data (monthly, 160’000 km2). This is an important 477 

result of the study as it demonstrates, on one hand, that the model structure is appropriate with respect 478 

to the data used as input and, on the other hand, the great value of information contained into TWSA 479 

data that, even if characterized by limited spatial/temporal resolution, can be used to simulate runoff 480 

and river discharge at basin scale. Hereinafter, the strengths and the main limitations of the STREAM 481 

approach are discussed.  482 

Among the strengths of the STREAM model it is worth highlighting:  483 

1. Remote sensing-based data-driven model. Discharge and runoff estimates are obtained through 484 

a remote sensing-based data-driven model, simpler than classical hydrological models or LSMs. In 485 

particular, discharge and runoff estimates are obtained by exploiting as much as possible satellite 486 

observations and by keeping the modelling component at a minimum. The knowledge of the key 487 

mechanisms and processes that act in the formation of runoff, like the role of the soil moisture in 488 

determining the response of the catchment to precipitation, played a major role in the definition of 489 

the model structure. Being an observational-based approach, the STREAM model presents two main 490 

advantages: 1) possibility to directly ingest observations (soil moisture and terrestrial water storage 491 
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data) into the model structure, allowing to take implicitly into account some processes, mainly 492 

human-driven (e.g., irrigation, change in the land use), which might have a large impact on the 493 

hydrological cycle and hence on total runoff; 2) the independence with respect to existing large scale 494 

hydrological models such as, e.g., the evapotranspiration is not explicitly modelled.  495 

2. Simplicity. The STREAM data-driven structure: 1) limits the input data required (only 496 

precipitation, 𝑇air, soil moisture and TWSA data are needed as input; LSM/GHMs require many 497 

additional inputs such as wind speed, shortwave and longwave radiation, pressure and relative 498 

humidity); 2) limits and simplifies the processes to be modelled for runoff/discharge simulation. 499 

Processes like evapotranspiration, infiltration or percolation, are not modelled therefore avoiding the 500 

need of using sophisticated and highly parameterized equations (e.g., Penman-Monteith for 501 

evapotranspiration, Allen et al.,1998, Richard equation for infiltration, Richard, 1931); 3) limits the 502 

number of parameters (only 8 parameters have to be calibrated) thus simplifying the calibration 503 

procedure and potentially reduce the model uncertainties related to the estimation of parameter 504 

values.  505 

3. Versatility. The STREAM model is a versatile model suitable for daily runoff and discharge 506 

estimation over sub-basins with different physiographic characteristics. The results obtained in this 507 

study clearly indicate the potential of this approach to be extended at the global scale. Moreover, the 508 

model can be easily adapted to ingest input data with spatial/temporal resolution different from the 509 

one tested in this study (0.25°/daily). For instance, satellite missions with higher space/time 510 

resolution, or near real time satellite products could be considered. As an example, the Next 511 

Generation Gravity Mission design studies all encompass double-pair scenarios, which would greatly 512 

improve upon the current spatial resolution of single-pair missions like GRACE and GRACE-FO (> 513 

100’000 km²).  514 

4. Computationally inexpensive. Due to its simplicity and the limited number of parameters to be 515 

calibrated, the computational effort for the STREAM model is very limited. 516 
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 517 

However, some limitations have to be acknowledged for the current version of the STREAM model: 518 

1. Presence of reservoir, diversion, dams or flood plain. As the STREAM model does not explicitly 519 

consider the presence of discontinuity elements along the river network (e. g, reservoir, dam or 520 

floodplain), discharge estimates obtained for sections located downstream of such elements might be 521 

inaccurate (see, e.g., river sections 1 and 2 in Figure 5). 522 

2. Need of in situ data for model calibration and robustness of model parameters. As discussed 523 

in the results section, parameter values of the STREAM model are set through an automatic 524 

calibration procedure aimed at minimizing the differences between simulated and observed river 525 

discharge. The main drawback of this parameterization technique is that the models parameterized 526 

with this technique may exhibit (1) poor predictability of state variables and fluxes at locations and 527 

periods not considered in the calibration, and (2) sharp discontinuities along sub-basin boundaries in 528 

state flux, and parameter fields (e.g., Merz and Blöschl, 2004).  529 

To overcome these issues, several regionalization procedures, as for instance summarized in Cislaghi 530 

et al. (2020), could be conveniently applied to transfer model parameters from hydrologically similar 531 

catchments to a catchment of interest. In particular, the regionalization of model parameters could 532 

allow to: i) estimate discharge and runoff time series over ungauged basins overcoming the need of 533 

discharge data recorded from in–situ networks; ii) estimate the model parameter values through a 534 

physically consistent approach, linking them to the characteristics of the basins; iii) solve the problem 535 

of discontinuities in the model parameters, avoiding to obtain patchy unrealistic runoff maps. 536 

8. CONCLUSIONS 537 

This study presents a new data-driven model, STREAM, for runoff and river discharge estimation. 538 

By using as input satellite data of precipitation, soil moisture and terrestrial water storage anomalies, 539 

the model has been able to provide accurate daily river discharge and runoff estimates at the outlet 540 
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river section and the inner river sections and over a 0.25°×0.25° spatial grid of the Mississippi river 541 

basin. In particular, the model is suitable to reproduce: 542 

1. river discharge time series over the calibrated river section with good performances both in 543 

calibration and validation periods;  544 

2. river discharge time series over river sections not used for calibration and not located downstream 545 

dams or reservoirs; 546 

3. runoff time series with a quite good agreement with respect to the well-established GRUN 547 

observational-based dataset used for comparison. 548 

The integration of observations of soil moisture, precipitation and terrestrial water storage anomalies 549 

is a first alternative method for river discharge and runoff estimation with respect to classical methods 550 

based on the use of TWSA-only (suitable for river basins larger than 160’000 km², monthly time 551 

scale) or on classical LSMs (Cai et al., 2014). 552 

Moreover, although simple, the model has demonstrated a great potential to be easily applied over 553 

subbasins with different climatic and topographic characteristics, suggesting also the possibility to 554 

extend its application to other basins. In particular, the analysis over basins with high human impact, 555 

where the knowledge of the hydrological cycle and the river discharge monitoring is very important, 556 

deserves special attention. Indeed, as the STREAM model is directly ingesting observations of soil 557 

moisture and terrestrial water storage data, it allows the modeller to neglect processes that are 558 

implicitly accounted for in the input data. Therefore, human-driven processes (e.g., irrigation, land 559 

use change), that are typically very difficult to simulate due to missing information and might have a 560 

large impact on the hydrological cycle, hence on total runoff, could be implicitly modelled. The 561 

application of the STREAM model on a larger number of basins is also required to investigate the 562 

possibility to regionalize the model parameters and overcome the limitations of the automatic 563 

calibration procedure highlighted in the discussion section.  564 
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Table 1. Location of gauging stations over the Mississippi basins and upstream contributing area. Red 773 

colored text indicates stations where the STREAM model has been calibrated.  774 

# River 
Station 

name 

Latitude 

(°) 

Longitude 

(°) 

Upstream  

area 

 (km2) 

Mean annual 

river discharge 

(m3/s) 

Presence of 

dam 

1 Missouri 
Bismarck, 

ND 
-100.82 46.81 481’232 633 

Garrison 

dam 

2 Missouri Omaha, NE -95.92 41.26 814’371 914 
Gavins 

Point Dam 

3 Missouri 
Kansas 

City, MO 
-94.59 39.11 1’229’427 1499 --- 

4 Missouri 
Hermann, 

MO 
-91.44 38.71 1’330’000 2326 --- 

5 Kansas 
Wamego, 

KS 
-96.30 39.20 143’054 141 Kanopolis 

6 Mississippi Keokuk, IA -91.37 40.39 282’559 1948 --- 

7 Rock 
Near Joslin, 

IL 
-90.18 41.56 23’835 199 --- 

8 Mississippi Chester, IL -89.84 37.90 1’776’221 6018 --- 

9 Arkansas 

Murray 

Dam Near 

Little Rock, 

AR 

-92.36 34.79 408’068 1249 --- 

10 Mississippi 
Vicksburg, 

MS 
-90.91 32.32 2’866’590 17487 --- 

11 Ohio 
Metropolis, 

ILL. 
-88.74 37.15 496’134 7931 --- 
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Table 2. Performance scores obtained over the Mississippi river sections during the calibration and 777 

validation periods.  778 

# CALIBRATION PERIOD VALIDATION PERIOD 

SCORE 
KGE 

(-) 

R 

(-) 

RRMSE 

(%) 

KGE 

(-) 

R 

(-) 

RRMSE 

(%) 

CALIBRATED SECTIONS 

10 0.78 0.78 30 0.74 0.80 38 

9 0.62 0.75 71 0.67 0.85 77 

6 0.83 0.84 39 0.73 0.84 46 

4 0.77 0.78 46 0.72 0.75 50 

11 0.82 0.82 44 0.70 0.86 51 

SECTIONS NOT USED FOR CALIBRATION 

1 -3.26 0.08 137 0.20 0.44 96 

2 -0.57 0.48 118 0.40 0.53 89 

3 0.16 0.71 83 0.39 0.70 72 

5 -1.49 0.24 368 -1.26 0.31 358 

7 0.53 0.68 71 0.20 0.70 81 

8 0.80 0.84 36 0.77 0.84 39 
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 781 

Figure 1. Configuration of the STREAM model adopted for total runoff estimation. The model 782 

includes three modules, the snow module allowing to separate snowfall from rainfall, the soil module 783 

that simulates the slow and quick runoff components (Qsu and Qfu, respectively) and the routing 784 

module for flood simulation. Red arrows indicate input variables; black arrows indicate intermediate 785 

output variables; blue arrows indicate final output variables. The components Qfu and Qsu are 786 

computed by using satellite P, soil moisture and TWSA data as input to the soil module. Please refer 787 

to text for symbols.   788 
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 790 

 791 
 792 

Figure 2. Processing steps of the STREAM approach. 793 
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 795 

 796 

Figure 3. Mississippi sub-basin delineation. Red dots indicate the location of the discharge gauging 797 

stations; different colours identify different inner sections (and the related contributing sub-basins) 798 

used for the model calibration. 799 
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 801 

Figure 4. Comparison between observed and simulated river discharge time series over the five 802 

calibrated sections over Mississippi river basin. Performance scores at the top of each plot refer to 803 

the entire study period (2003–2016). 804 
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  807 
 808 

Figure 5. Comparison between observed and simulated river discharge time series over the gauged 809 

sections not used in the calibration phase. Performance scores at the top of each plot refer to the entire 810 

study period (2003–2016). 811 
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 813 

Figure 6. Mississippi river basin: mean monthly runoff for the period 2003–2014 obtained by 814 

STREAM and GRUN models. 815 
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