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ABSTRACT 21 

This paper presents an innovative approach, STREAM - SaTellite based Runoff Evaluation And 22 

Mapping - to derive daily river discharge and runoff estimates from satellite soil moisture, 23 

precipitation and total water storage anomalies observations. Within a very simple model structure, 24 

precipitation and soil moisture data are used to estimate the quick-flow river discharge component 25 

while the total water storage anomalies are used for obtaining its complementary part, i.e., the slow-26 

flow river discharge component. The two are then summed up to obtain river discharge estimates. 27 

The method is tested over the Mississippi river basin for the period 2003-2016 by using Tropical 28 

Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) precipitation 29 

data, European Space Agency Climate Change Initiative (ESA CCI) soil moisture data and Gravity 30 

Recovery and Climate Experiment (GRACE) total water storage data. Despite the model simplicity, 31 

relatively high-performance scores are obtained in river discharge estimates, with a Kling-Gupta 32 

efficiency index greater than 0.64 both at the basin outlet and over several inner stations used for 33 

model calibration highlighting the high information content of satellite observations on surface 34 

processes. Potentially useful for multiple operational and scientific applications, from flood warning 35 

systems to the understanding of water cycle, the added-value of the STREAM approach is twofold: 36 

1) a simple modelling framework, potentially suitable for global runoff monitoring, at daily time scale 37 

when forced with satellite observations only, 2) increased knowledge on the natural processes, human 38 

activities and on their interactions on the land. 39 

 40 

Key words: satellite products, soil moisture, water storage variations, conceptual hydrological 41 

modelling, rainfall-runoff modelling, Mississippi. 42 
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1. INTRODUCTION 43 

Spatial and temporal continuous river discharge monitoring is paramount for improving the 44 

understanding of the hydrological cycle, for planning human activities related to water use as well as 45 

to prevent or mitigate the losses due to extreme flood events. To accomplish these tasks, runoff and 46 

river discharge data, which represents the aggregated signal of runoff (Fekete et al., 2012), should be 47 

available at adequate spatial and temporal resolution. For water resources management and drought 48 

monitoring monthly time series over basin area larger than 10’000 km2 are sufficient whereas 49 

observations up to grid scale of few km and daily or sub-daily time step are required for flood 50 

prediction. The accurate spatio-temporally continuous runoff and river discharge estimation at finer 51 

spatial or temporal resolution is still a big challenge for hydrologists.  52 

Traditional in situ observations of river discharge, even if generally characterized by high temporal 53 

resolution (up to sub-hourly time step), typically offer little information on the spatial distribution of 54 

runoff within a watershed. Moreover, river discharge observation networks suffer from many 55 

limitations such as low station density and often incomplete temporal coverage, substantial delay in 56 

data access and large decline in monitoring capacity (Vörösmarty et al., 2002). Paradoxically, this 57 

latter issue is exacerbated in developing nations (Crochemore et al., 2020), where the knowledge of 58 

the terrestrial water dynamics deserves greater attention due to huge damages to settlements and 59 

especially the loss of human lives that occurs regularly.  60 

This precarious situation has led to growing interest in finding alternative solutions, i.e., model-based 61 

or observation-based approaches, for runoff and river discharge monitoring. Model-based 62 

approaches, based on the mathematical description of the main hydrological processes (e.g., water 63 

balance models, WBMs, global hydrological models, GHMs, e.g., Döll et al., 2003 or, increasing in 64 

complexity, land surface models, LSM, e.g., Balsamo et al., 2009; Schellekens et al., 2017), are able 65 

to provide comprehensive information on a large number of relevant variables of the hydrological 66 

cycle including runoff and river discharge at very high temporal and spatial resolution (up to hourly 67 
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sampling and 0.05° grid scale). However, the values of modelled water balance components rely on 68 

a massive parameterization of the soil, vegetation and land parameters, which is not always realistic, 69 

and are strongly dependent on the GHM or LSM models used, analysis periods (Wisser et al., 2010) 70 

and climate forcings selected (e.g Haddeland et al., 2012; Gudmundsson et al., 2012a, b; Prudhomme 71 

et al., 2014; Müller Schmied et al., 2016).  72 

Alternatively, the observation-based approaches exploit machine learning techniques and a 73 

considerable amount of data to describe the physics of the system (Solomatine and Ostfeld, 2008) 74 

with only a limited number of assumptions. Besides being simpler than model-based approaches, 75 

these approaches still present some limitations. For example, they rely on a considerable amount of 76 

data describing the modelled system’s physics and the spatial/temporal extent and the uncertainty of 77 

the resulting dataset is determined by both the spatial and temporal coverage and the accuracy of the 78 

forcing data (e.g., see E-RUN dataset, Gudmundsson and Seneviratne, 2016; GRUN dataset, Ghiggi 79 

et al., 2019; FLO1K dataset, Barbarossa et al., 2018). Additional limitations stem from the employed 80 

method to estimate runoff. Indeed, random forests such as employed in Gudmundsson and 81 

Seneviratne (2016) like other machine learning techniques, are powerful tools for data driven 82 

modeling, but they are prone to overfitting, implying that noise in the data can obscure possible 83 

signals (Hastie et al., 2009). Moreover, the influence of land parameters on continental-scale runoff 84 

dynamics is not considered as the underlying hypothesis is that the hydrological response of a basin 85 

exclusively depends on present and past atmospheric forcing. It is easy to understand that this 86 

assumption will only be valid in certain circumstances and might lead to problems, e.g., over complex 87 

terrain (Orth and Seneviratne, 2015) or in cases of human river flow regulation (Ghiggi et al., 2019). 88 

Remote sensing can provide estimates of nearly all the climate variables of the global hydrological 89 

cycle including soil moisture (e.g., Wagner et al., 2007; Seneviratne et al., 2010), precipitation 90 

(Huffman et al., 2014) and total terrestrial water storage (e.g., Houborg et al., 2012; Landerer and 91 

Swenson, 2012; Famiglietti and Rodell, 2013). It has undeniably changed and improved dramatically 92 

the ability to monitor the global water cycle and, hence, runoff. By taking advantage of satellite 93 
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information, some studies tried to develop methodologies able to optimally produce multivariable 94 

datasets from the fusion of in situ and satellite-based observations (e.g., Rodell et al., 2015; Zhang et 95 

al., 2018; Pellet et al., 2019). Other studies exploited satellite observations of hydrological variables, 96 

e.g., precipitation (Hong et al, 2007), soil moisture (Massari et al., 2014), and geodetic variables (e.g., 97 

Sneeuw et al., 2014; Tourian et al., 2018) to monitor single components of the water cycle in an 98 

independent way. 99 

Although the majority of these studies provide runoff and river discharge data at basin scale and 100 

monthly time step, they deserve to be recalled here as important for the purpose of the present study. 101 

In particular, Hong et al. (2007) presented a first attempt to obtain an approximate but quasi-global 102 

annual streamflow dataset by incorporating satellite precipitation data in a relatively simple rainfall-103 

runoff simulation approach. Driven by the multiyear (1998-2006) Tropical Rainfall Measuring 104 

Mission Multi-satellite Precipitation Analysis, runoff was independently computed for each global 105 

land surface grid cell through the Natural Resources Conservation Service (NRCS) runoff curve 106 

number (CN) method (NRCS, 1986) and subsequently routed to the watershed outlet to predict 107 

streamflow. The results, compared to the in situ observed river discharge data, demonstrated the 108 

potential of using satellite precipitation data for diagnosing river discharge values both at global scale 109 

and for medium to large river basins. If, on the one hand, the work of Hong et al. (2007) can be 110 

considered as a pioneer study, on the other hand it presents a serious drawback within the NRCS-CN 111 

method that lacks a realistic definition of the soil moisture conditions of the catchment before flood 112 

events. This aspect is not negligible as it is well established that soil moisture is paramount in the 113 

partitioning of precipitation into surface runoff and infiltration inside a catchment (Brocca et al., 114 

2008). In particular, for the same rainfall amount but different values of initial soil moisture 115 

conditions, different flooding effects can occur (see e.g. Crow et al., 2005; Brocca et al., 2008; Berthet 116 

et al., 2009; Merz and Bloschl, 2009; Tramblay et al., 2010). On this line following Brocca et al. 117 

(2009), Massari et al. (2016) presented a very first attempt to estimate global streamflow data by 118 

using satellite Soil Moisture Active and Passive (SMAP, Entekhabi et al., 2010) and Global 119 
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Precipitation Measurement (GPM, Huffman et al., 2019) products. Although the validation was 120 

carried out by routing the monthly surface runoff only in a single basin in Central Italy, the obtained 121 

results suggested to dedicate additional efforts in this direction.  122 

Among the studies that use satellite observations of hydrological variables for runoff estimation, the 123 

hydro-geodetic approaches are undoubtedly worth mentioning, see e.g., Sneeuw et al. (2014) for a 124 

comprehensive overview or Lorenz et al. (2014) for an analysis of satellite-based water balance 125 

misclosures with discharge as closure term. In particular, the satellite mission Gravity Recovery And 126 

Climate Experiment (GRACE), which observed the temporal changes in the gravity field, has given 127 

a strong impetus to satellite-driven hydrology research (Tapley et al., 2019). Since temporal gravity 128 

field variations over the continents imply water storage change, GRACE was the first remote sensing 129 

system to provide observational access to deeper groundwater storage. GRACE and its successor 130 

mission GRACE-FO provide monthly snapshots of the Earth's gravity field. The temporal variation 131 

is therefore relative to the temporally mean gravity field and, hence, the time variations of water 132 

storage are fundamentally relative to the mean storage. This relative water storage variation is termed 133 

Total Water Storage Anomaly (TSWA). 134 

The relation between GRACE-derived TWSA and runoff was characterized by Riegger and Tourian 135 

(2014), which even allowed the quantification of absolute drainable water storage over the Amazon 136 

(Tourian et al., 2018). In essence, the storage-runoff relation describes the gravity-driven drainage of 137 

a basin and, hence, the slow-flow processes. Due to GRACE’s spatial-temporal resolution, runoff and 138 

river discharge are generally available for large basins (>160’000 km2) and at monthly time step.  139 

Based on the above discussion, it is clear that each approach presents strengths and limitations that 140 

enable or hamper the runoff and river discharge monitoring at finer spatial and temporal resolutions. 141 

In this context, this study presents an attempt to find an alternative method to derive daily river 142 

discharge and runoff estimates at 0.25° degree spatial resolution exploiting satellite observations and 143 

the knowledge of the key mechanisms and processes that act in the formation of runoff, i.e., the role 144 

of soil moisture in determining the response of a catchment to precipitation. For that, soil moisture, 145 
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precipitation and TWSA observations are used as input into a simple modelling framework named 146 

STREAM v1.3 (SaTellite based Runoff Evaluation And Mapping, version 1.3, hereafter referred to 147 

as STREAM). Unlike classical LSMs, STREAM exploits the knowledge of the system states (i.e., 148 

soil moisture and TWSA) to derive river discharge and runoff, and thus it 1) skips the modelling of 149 

the evapotranspiration fluxes which are known to be a non-negligible source of uncertainty (Long et 150 

al. 2014), 2) limits the uncertainty associated with the over-parameterization of soil and land 151 

parameters and 3) implicitly takes into account processes, mainly human-driven (e.g., irrigation, 152 

change in the land use), that might have a large impact on the hydrological cycle and hence on runoff. 153 

The detailed description of the STREAM model is given in paragraph 4. The collected datasets and 154 

the experimental design for the Mississippi River Basin (paragraph 2) are described in paragraph 3 155 

and 5, respectively. Results, discussion and conclusions are drawn in paragraph 6, 7 and 8, 156 

respectively.  157 

2. STUDY AREA 158 

The STREAM model presented here has been tested and validated over the Mississippi River basin 159 

(Figure 1a). With a drainage area of about 3.3 million km2, the Mississippi River basin is the fourth 160 

largest watershed in the world, bordered to the West by the crest of the Rocky Mountains and to the 161 

East by the crest of the Appalachian Mountains. According to the Köppen climate classification, the 162 

climate is subtropical humid over the southern part of the basin, continental humid with hot summer 163 

over the central part, continental humid with warm summer over the eastern and northern parts, 164 

whereas a semiarid cold climate affects the western part. The average annual air temperature across 165 

the watershed ranges from 4°C in the West to 6°C in the East. On average, the watershed receives 166 

about 900 mm/year of precipitation (77% as rainfall and 23% as snowfall), more concentrated in the 167 

eastern and southern portions of the basin with respect to its northern and western part (Vose et al., 168 

2014). 169 
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The river flow has a clear natural seasonality mainly controlled by spring snowmelt (coming from 170 

the Missouri and the Upper Mississippi, the eastern and the upper part of the basin, respectively, Dyer 171 

2008) and by heavy precipitation exceeding the soil moisture storage capacity (mostly occurring in 172 

the eastern and southern part of the basin, Berghuijs et al., 2016). The basin is also heavily regulated 173 

by the presence of large dams (Global Reservoir and Dam Database GRanD, Lehner et al., 2011) 174 

most of them located on the Missouri river, over the Great Plains. In particular, the river reach 175 

between Garrison and Gavins Point dams is the portion of the Missouri river where the large main-176 

channel dams have the greatest impact on river discharge providing a substantial reduction in the 177 

annual peak floods, an increase on low flows and a reduction on the overall variability of intra-annual 178 

discharges (Alexander et al., 2012). The annual average of Mississippi river discharge at Vicksburg, 179 

the outlet river cross-section of the basin, is equal to 17’500 m3/s (see Table 1). Given the variety of 180 

climate and topography across the Mississippi River basin, it is a good candidate to test the suitability 181 

of the STREAM model for river discharge and runoff simulation. 182 

3. DATASETS 183 

The datasets used in this study include in situ observations, satellite products and runoff verification 184 

data. The first two datasets are used as input data to the STREAM model. Conversely, the runoff 185 

verification data are used as a benchmark to validate the performance of the STREAM model in 186 

simulating the runoff. 187 

3.1 In situ Observations 188 

In situ observations comprise air temperature and river discharge data.  189 

For air temperature data the Climate Prediction Center (CPC) Global Temperature data developed by 190 

the American National Oceanic and Atmospheric Administration (NOAA) using the optimal 191 

interpolation of quality-controlled gauge records of the Global Telecommunication System (GTS) 192 

network (Fan et al., 2008) have been used. The dataset is available on a global regular 0.5°×0.5° grid 193 

and provides daily maximum (𝑇max) and minimum (𝑇min) air temperature data from 1979 to present 194 
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(2022). The daily average air temperature data have been generated as the mean of 𝑇max and 𝑇min of 195 

each day. 196 

Daily river discharge data over the study basin have been taken from the Global Runoff Data Center 197 

(GRDC, https://www.bafg.de/GRDC/EN/Home/homepage_node.html). In particular, 11 gauging 198 

stations located along the main river network of the Mississippi River basin have been selected to 199 

represent the spatial distribution of river discharge over the basin. The location of these gauging 200 

stations along with relevant characteristics (e.g., the upstream basin area, the mean annual river 201 

discharge and the presence of upstream dams) are summarized in Table 1. Mean annual river 202 

discharge ranges from 141 to 17’500 m3/s, and 3 of 11 gages are located downstream of big dams 203 

(Lehner et al., 2011). In particular, gages 1, 2 and 5 are located downstream of Garrison (the fifth-204 

largest earthen dam in the world), Gavins Point and Kanopolis dams, respectively (see Figure 1a and 205 

Table 1). The related reservoirs have a maximum storage of 29383×109 m3, 0.607×109 m3, and 206 

1.058×109 m3, respectively.  207 

3.2 Satellite Products 208 

Satellite products include observations of precipitation, soil moisture and TWSA.  209 

The satellite precipitation dataset used in this study is the Multi-satellite Precipitation Analysis 3B42 210 

Version 7 (her after referred to as TMPA) estimate produced by the National Aeronautics and Space 211 

Administration (NASA) as the 0.25°×0.25° quasi-global (50°S-50°N) gridded dataset. The TMPA is 212 

a gauged-corrected satellite product, with a latency period of two months, available at 3h sampling 213 

interval from 1998 to present. Major details about the 𝑃 dataset, downloadable from 214 

http://pmm.nasa.gov/data-access/downloads/trmm, can be found in Huffman et al. (2007). 215 

Soil moisture data have been taken from the European Space Agency Climate Change Initiative (ESA 216 

CCI) Soil Moisture project (https://esa-soilmoisture-cci.org/) that provides a surface soil moisture 217 

product (referred to first 2–3 cm of soil) continuously updated in terms of spatial-temporal coverage, 218 

sensors and retrieval algorithms (Dorigo et al., 2017). In this study, the daily combined ESA CCI soil 219 

https://www.bafg.de/GRDC/EN/Home/homepage_node.html
http://pmm.nasa.gov/data-access/downloads/trmm
https://esa-soilmoisture-cci.org/
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moisture product v4.2 is used. It is available at global scale with a grid spacing of 0.25°, for the period 220 

1978 to present. 221 

TWSA have been obtained from the Gravity Recovery And Climate Experiment (GRACE) satellite 222 

mission. Here we employ the NASA Goddard Space Flight Center (GSFC) global mascon model, 223 

i.e., Release v02.4, (Luthcke et al. 2013). It has been produced based on the mass concentration 224 

(mascon) approach. The model provides surface mass densities on a monthly basis. Each monthly 225 

solution represents the average of surface mass densities within the month, referenced at the middle 226 

of the corresponding month. The model has been developed directly from GRACE level-1b K-Band 227 

Ranging (KBR) data. It is computed and delivered as surface mass densities per patch over blocks of 228 

approximately 1°×1° or about 12’000 km2. Although the mascon size is smaller than the inherent 229 

spatial resolution of GRACE of about 2.5°×2.5° or 64’000 km2 (Vishwakarma et al., 2018), the model 230 

exhibits a relatively high spatial resolution. This is attributed to a statistically optimal Wiener 231 

filtering, which uses signal and noise full covariance matrices. This allows the filter to fine tune the 232 

smoothing in line with the signal-to-noise ratio in different areas. That is, the less smoothing, the 233 

higher signal-to-noise ratio in a particular area and vice versa. This ensures that the filtering is 234 

minimal and aggressive smoothing is avoided when unnecessary. Further details of such a filter can 235 

be found in Klees et al. (2008). Importantly, the coloured noise characteristic of KBR data was taken 236 

in to account when compiling the GRACE model, which has allowed for a reliable computation of 237 

the aforementioned noise full covariance matrices. The coloured noise characteristic of KBR data 238 

was taken into account when compiling the model, which has allowed for a reliable computation of 239 

these noise and signal covariance matrices. They play a crucial role when filtering and allow a higher 240 

spatial resolution compared to commonly applied GRACE filtering methods such as Gaussian 241 

smoothing and/or destriping filters. The GRACE data used here are available from January 2003 to 242 

July 2016, which suffices to demonstrate the STREAM capabilities. With its successor mission 243 

GRACE Follow-On (GRACE-FO), launched early 2018, the time series of time-variable gravity has 244 

reached a nearly uninterrupted time span of about 20 years, thus allowing a continued and operational 245 
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use of STREAM. The existing interruptions, short ones due to mission operations or technical 246 

failures, but also the one-year gap between GRACE and GRACE-FO can be dealt with in various 247 

ways, e.g. by data driven gap filling (Yi and Sneeuw, 2021). 248 

3.3 Runoff Verification Data 249 

To establish the quality of the STREAM model in runoff simulation, monthly runoff data obtained 250 

from the Global Runoff Reconstruction (GRUN_v1, https://doi.org/10.3929/ethz-b-000324386) have 251 

been used for comparison. The GRUN dataset (Ghiggi et al., 2019) is a global monthly runoff dataset 252 

derived through the use of a machine learning algorithm trained with in situ river discharge 253 

observations of relatively small catchments (<2500 km2) and gridded precipitation and temperature 254 

derived from the Global Soil Wetness Project Phase 3 (GSWP3) dataset (Kim et al., 2017). The 255 

dataset covers the period from 1902 to 2014 and it is provided on a 0.5° ×0.5° regular grid. 256 

4. METHOD 257 

4.1 STREAM Model: the Concept 258 

The STREAM model conceives river discharge as a combination of hydrological responses operating 259 

at diverse time scales (Blöschl et al., 2013; Rakovec et al., 2016). In particular, river discharge can 260 

be considered made up of a slow-flow component, produced as outflow of the groundwater storage 261 

and of a quick-flow component, i.e. mainly related to the surface and shallow-subsurface runoff 262 

components (Hu and Li, 2018).  263 

While the high spatial and temporal variability of precipitation and the highly changing land cover 264 

spatial distribution significantly impact the variability of the quick-flow river discharge component 265 

(with scales ranging from hours to days and metres to kilometres depending on the basin size), slow-266 

flow river discharge reacts to precipitation inputs more slowly as water infiltrates, is stored, mixed 267 

and is eventually released in times spanning from weeks to months. Therefore, the two components 268 

can be estimated by relying upon two different approaches that involve different types of 269 

observations. Based on that, within the STREAM model, satellite soil moisture, precipitation and 270 

https://doi.org/10.3929/ethz-b-000324386
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TWSA will be used for deriving river discharge and runoff estimates. The first two variables are used 271 

as proxy of the quick-flow river discharge component while TWSA is exploited for obtaining its 272 

complementary part, i.e., the slow-flow river discharge component. Firstly, we exploit the role of the 273 

soil moisture in determining the response of the catchment to the precipitation inputs, which have 274 

been soundly demonstrated in more than ten years of literature studies (see e.g., Brocca et al., 2017 275 

for a comprehensive discussion on the topic). Secondly, we consider the important role of total water 276 

storage in determining the slow-flow river discharge component as modelled in several hydrological 277 

models (e.g., Sneeuw et al., 2014). 278 

It is worth noting that modeling the quick-flow and slow-flow river discharge components 279 

independently has been largely applied and tested in recent and past studies, e.g., for the estimation 280 

of the flow duration curve (see e.g, Botter et al., 2007a, b; Yokoo and Sivapalan 2011; Muneepeerakul 281 

et al., 2010; Ghotbi et al., 2020).  282 

4.2 STREAM Model 283 

The STREAM model is a semi-distributed conceptual hydrological model that uses gridded satellite-284 

derived inputs of precipitation, soil moisture, TWSA and air temperature to estimate daily values of 285 

gridded runoff and river discharge time series at select basin outlets.  286 

To set up the model, the catchment is divided into b sub-catchments, each one representing either a 287 

tributary draining area with outlet along the main channel or an area draining directly into the main 288 

channel (see Figure 2). Each sub-catchment, assumed homogeneous, is further divided into an array 289 

𝑁𝑏 of individual cells assumed as the unit basis for the runoff generation. Note that the number 𝑁𝑏 290 

differs for each sub-catchment as, for a fixed cell grid size, it varies with the sub-catchment area. 291 

Once estimated at cell scale and aggregated at the sub-basin scale (see paragraph 4.2.1 for details), 292 

the runoff is routed at each sub-catchment outlet (see paragraph 4.2.2) and then transferred through 293 

the channels and the rivers for the computation of the river discharge at intermediate outlets or at the 294 

outlet of the entire basin (see paragraph 4.2.3). 295 
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Based on that, hereinafter we refer to river discharge, 𝑄, to indicate the amount of water passing a 296 

particular point of a river (in m3 s−1) whereas runoff, 𝑅, is regarded as the depth of water produced 297 

from a drainage area during a particular time interval (in mm). The difference between the two 298 

quantities is related to the routing processes that allow to transform the runoff into river discharge. 299 

4.2.1 Runoff generation at cell scale 300 

The soil zone of each cell i of the basin is divided into two layers, the upper and lower soil storages 301 

allowing to model the related runoff responses, 𝑅𝑞,𝑖 [mm] and 𝑅𝑠,𝑖 [mm], as illustrated in Figure 2b. 302 

The upper cell storage receives inputs from precipitation (𝑃𝑖), released through a snow module 303 

(Cislaghi et al., 2020) as rainfall (ri) or stored as snow water equivalent (SWEi) within the snowpack 304 

and on the glaciers. In particular, according to Cislaghi et al. (2020), SWEi is modelled by using as 305 

input air temperature (𝑇air, i) and a degree-day coefficient, 𝐶m, to be estimated by calibration.  306 

Once precipitation is partitioned by the snow model, the rainfall output ri contributes to 𝑅𝑞,𝑖 while the 307 

SWEi (like other fluxes contributing to modify the soil water content into Su) is neglected as already 308 

considered in the satellite TWSA. Therefore, the first key point of the STREAM model is that the 309 

water content in the upper storage of soil zone, Su (Figure 2b), is directly provided by the satellite 310 

soil moisture observations and the loss processes like percolation or evaporation do not need to be 311 

explicitly modelled to estimate the evolution in time of soil moisture. Consequently, for each cell 𝑖, 312 

𝑅𝑞,𝑖 can be computed following the formulation proposed by Georgakakos and Baumer (1996), as in 313 

equation (1): 314 

𝑅𝑞,𝑖 (𝑡) = 𝑟𝑖(𝑡) 𝑆𝑊𝐼𝑖(𝑡, 𝑇)𝛼         (1) 315 

where: 316 

- t [days] represents the time;  317 

- 𝑟𝑖 [mm] is the rainfall, obtained as an output from the snow module;  318 
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- 𝑆𝑊𝐼𝑖 [-] is the Soil Water Index (Wagner et al., 1999), i.e., the root-zone soil moisture product 319 

referred to the first layer of the model (representative of the first 5–30 cm of soil), derived by the 320 

surface satellite soil moisture product, 𝑖, by applying the exponential filtering approach in its 321 

recursive formulation (Albergel et al., 2009): 322 

𝑆𝑊𝐼 𝑖,𝑛 = 𝑆𝑊𝐼𝑖,𝑛−1 + 𝐾 𝑛(𝑖(𝑡𝑛) − 𝑆𝑊𝐼𝑖,𝑛−1)       (2) 323 

with the gain 𝐾 𝑛 at the time 𝑡𝑛 given by: 324 

𝐾 𝑛 =
𝐾𝑛−1

𝐾𝑛−1+𝑒
(

𝑡𝑛−𝑡𝑛−1
𝑇

)
          (3) 325 

- 𝑇 [days] is a parameter, named characteristic time length, that characterizes the temporal variation 326 

of soil moisture within the root-zone profile and the gain 𝐾𝑛 ranges between 0 and 1; 327 

- 𝛼[-] is a coefficient linked to the non-linearity of the infiltration process and it considers the 328 

characteristics of the soil; 329 

- for the initialization of the filter 𝐾1 = 1 and 𝑆𝑊𝐼 1 = (𝑡1). 330 

The second key point of STREAM model concerns the estimation of 𝑅𝑠,𝑖, i.e., the slow-runoff response 331 

related to the lower storage of the soil zone. The hypothesis here, shared also with other studies (e.g., 332 

Rakovec et al., 2016), is that the dynamic of 𝑅𝑠 can be represented by the monthly TWSA data. Indeed, 333 

the time scale of 𝑅𝑠 is typically in the range of seasons to years and it can be assumed almost 334 

independent of the water that is contained in the upper storage. For that, for each cell 𝑖, 𝑅𝑠,𝑖 can be 335 

computed following the formulation proposed by Famiglietti and Wood (1994), through equation (4) 336 

as follows: 337 

𝑅𝑠,𝑖(𝑡) =  𝛽 (𝑇𝑊𝑆𝐴𝑖
∗(𝑡))𝑚         (4) 338 

where: 339 
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- 𝑇𝑊𝑆𝐴𝑖
∗ [-] is the TWSA estimated by GRACE over the cell 𝑖 normalized by its minimum and 340 

maximum values. The assumption behind this equation is that TWSA can be assumed as a proxy 341 

of the evolution in time of the 𝑆𝑙, i.e., the water amount in the lower storage of the soil zone. 342 

- 𝛽 [mm h-1] and 𝑚 [-] are two parameters describing the nonlinearity between lower storage runoff 343 

component and 𝑇𝑊𝑆𝐴∗. 344 

Note that we made the hypothesis that soil moisture and TWSA observations are independent 345 

(whereas in reality soil moisture can be responsible both for the generation of 𝑅𝑞 (mainly) and for the 346 

𝑅𝑠 contribution) given the different temporal (and spatial) scales at which the upper and lower runoff 347 

responses act.  348 

By neglecting any lateral flow, the runoff responses at cell scale are averaged at sub-catchment scale 349 

to obtain b runoff responses, one for each sub-catchment. Specifically, by considering 𝑁𝑏 cells for 350 

each sub-catchment, the following equation are used: 351 

𝑅𝑞,𝑏(𝑡) =
∑ 𝑅𝑞,𝑖(𝑡)

𝑁𝑏
𝑖=1

𝑁𝑏
          (5) 352 

𝑅𝑠,𝑏(𝑡) =
∑ 𝑅𝑠,𝑖 (𝑡)

𝑁𝑏
𝑖=1

𝑁𝑏
          (6) 353 

4.2.2 Sub-catchment river discharge calculation 354 

For each sub-catchment b, the runoff component 𝑅𝑞,𝑏 is routed to its outlet by the Geomorphological 355 

Instantaneous Unit Hydro-graph (GIUH, Gupta et al., 1980) for tributary draining areas or through a 356 

linear reservoir approach (Nash, 1957) for directly draining areas. The 𝑅𝑠,𝑏 runoff component is 357 

transferred to the sub-catchment outlet by a linear reservoir approach. These processes are controlled 358 

by a parameter lag time, L [days], evaluated as (Corradini et al., 2002):  359 

𝐿 = 𝛾1.19 𝐴𝑏
0.33          (7) 360 

where 𝐴𝑏 [km2] is the sub-catchment area and 𝛾 [-] is a parameter to be calibrated. 361 
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By routing the 𝑅𝑞,𝑏 and 𝑅𝑠,𝑏 components the quick-flow, 𝑄𝑞,𝑏 [m3/s], and the slow-flow, 𝑄𝑠,𝑏 [m3/s] 362 

river discharge components at each sub-catchment outlet are obtained (see Figure 2c). 363 

4.2.3 River discharge routing through river networks 364 

A diffusive linear approach (controlled by the parameters C [km h-1] and D [km2 h-1], i.e., Celerity 365 

and Diffusivity, Troutman and Karlinger, 1985) is applied to route the two river discharge 366 

components, 𝑄𝑞,𝑏  and 𝑄𝑠,𝑏 trough the river network from the sub-catchment outlet to intermediate 367 

outlets along the river or to the outlet of the entire basin (Brocca et al., 2011). In this way the quick-368 

flow, 𝑄𝑞 [m3/s], and the slow-flow, 𝑄𝑠 [m3/s] river discharge components at the catchment outlet are 369 

obtained (see Figure 2d).  370 

4.3 STREAM Parameters 371 

The STREAM model uses 8 calibration parameters for each sub-catchment b into which the entire 372 

basin is divided. Among these parameters, 5 control the runoff generation process (𝜶, 𝑇, 𝛽 , 𝑚, 𝐶M) 373 

and 3 the routing component and therefore the streamflow dynamics (𝜸, C and D). The parameter 374 

values determined within the feasible parameter space (See Table Appendix A for more details), are 375 

calibrated by maximizing the Kling-Gupta Efficiency index (𝑲𝑮𝑬, Gupta et al., 2009; Kling et al., 376 

2012, see paragraph 5.1 for more details) between observed and modelled river discharge. For model 377 

calibration, a standard gradient-based automatic optimisation method (Bober 2013) was used. 378 

5. EXPERIMENTAL DESIGN 379 

5.1 Modelling Setup for Mississippi River Basin  380 

The modelling setup is carried out in three steps (Figure 3): 381 

1. Sub-catchment delineation. The TopoToolbox (https://topotoolbox.wordpress.com/), a tool 382 

developed in Matlab by Schwanghart et al. (2010), and the SHuttle Elevation Derivatives at multiple 383 

Scales (HydroSHED, https://www.hydrosheds.org/) DEM of the basin at the 3′′ resolution (nearly 90 384 

m at the equator) have been used to derive flow directions, to extract the stream network and to 385 
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delineate the drainage basins over the Mississippi River basin. In particular, by considering only 386 

rivers with order greater than 3 (according to the Horton-Strahler rules, Horton, 1945; Strahler, 1952), 387 

the Mississippi watershed has been divided into 53 sub-catchments as illustrated in Figure 1a. Blue 388 

lines in the figure illustrate the river network pathway connecting the sub-catchments, red dots 389 

indicate the location of the 11 river discharge gauging stations selected for the study area. 390 

It has to be specified that the step of sub-basin delineation could be accomplished through tools 391 

different from the TopoToolbox. For instance, it could be used the free Qgis software downloadable 392 

at https://www.qgis.org/it/site/forusers/download.html, following the instruction to perform the 393 

hydrological analysis as in 394 

https://docs.qgis.org/3.16/en/docs/training_manual/processing/hydro.html?highlight=hydrological%395 

20analysis. 396 

2. Extraction of input data. Precipitation, air temperature, soil moisture and TWSA datasets data have 397 

to be extracted for each sub-catchment of the study area. If characterized by different spatial/temporal 398 

resolution, these datasets need to be resampled over a common spatial grid/temporal time step prior 399 

to be used as input into the model.  400 

To run the STREAM model over the Mississippi river basin, input data have been resampled over the 401 

precipitation spatial grid at 0.25° resolution through a bilinear interpolation. Concerning the temporal 402 

scale, air temperature, soil moisture and precipitation data are available at daily time step, while 403 

monthly TWSA data have been linearly interpolated at daily time step. For each of the 53 Mississippi 404 

sub-catchment, the resampled precipitation, soil moisture, air temperature and TWSA data have been 405 

extracted (see Figure 1b and1c).  406 

3. STREAM model calibration. In situ river discharge data are used as reference data for the 407 

calibration of STREAM model. For Mississippi, the STREAM model has been calibrated at five 408 

gauging stations, i.e., the stations 4, 6, 9, 11 and 10. This allowed to identify five sets of STREAM 409 

parameters attributed to each catchment according to the river network pathway illustrated in Figure 410 

1a. This means that, for example, to the sub-catchments labelled as 1, 2, 5 to 15, 17, 22, 23, and 30 411 

https://www.qgis.org/it/site/forusers/download.html
https://docs.qgis.org/3.16/en/docs/training_manual/processing/hydro.html?highlight=hydrological%20analysis
https://docs.qgis.org/3.16/en/docs/training_manual/processing/hydro.html?highlight=hydrological%20analysis
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contributing to the gauging station 4 are attributed the parameter set obtained by calibrating the model 412 

against river discharge data observed at station 4; to the sub-catchments 31, 37, 38 and 41 contributing 413 

to gauging station 6 are attributed the parameter set obtained by calibrating the model with respect to 414 

gauging station 6 and so on. Consequently, the sub-catchments highlighted with the same colour in 415 

Figure 1a are assigned the same model parameters, i.e. the parameters that allow to reproduce the 416 

river discharge data observed at the related gage. 417 

Once calibrated, the STREAM model has been run to provide continuous daily runoff and river 418 

discharge time series, over each grid pixel and at the outlet section of each sub-catchment, 419 

respectively. By considering the spatial/temporal availability of both in situ and satellite observations, 420 

the entire analysis period covers the maximum common observation period, i.e., from January 2003 421 

to July 2016 at daily time scale. To establish the goodness-of-fit of the model, the modelled river 422 

discharge and runoff timeseries are compared against in situ river discharge and modelled runoff data. 423 

5.2 Model Evaluation Criteria and Performance Metrics 424 

The model has been run over a 13.5-year period split into two sub periods: the first 8 years, from 425 

January 2003 to December 2010, are used to calibrate the model. The model is validated, as described 426 

below over the remaining 5.5 years (January 2011 - July 2016). 427 

In particular, three different validation schemes have been adopted to assess the robustness of the 428 

STREAM model: 429 

1. internal validation aimed to test the plausibility of both the model structure and the parameter set 430 

in providing reliable estimates of the hydrological variables against which the model is calibrated. 431 

For this purpose, a comparison between observed and modelled river discharge time series on the 432 

gauging stations used for model calibration has been carried out for both the calibration and 433 

validation sub periods; 434 

2. cross-validation testing the goodness of the model structure and the calibrated model parameters 435 

to predict hydrological variables at locations not considered in the calibration phase. In this 436 
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respect, the cross-validation has been carried out by comparing observed and modelled river 437 

discharge time series in gauging stations not considered during the calibration phase; 438 

3. external validation aimed to test the capability of the model “to get the right answers for the right 439 

reasons” (Kirchner 2006). The rationale behind this concept is that the hydrological models are 440 

today highly performing and able to reproduce a lot of hydrological variables. For that, the model 441 

performances should not only be evaluated against observed river discharge, but complementary 442 

datasets representing internal hydrologic states and fluxes (e.g., soil moisture, evapotranspiration, 443 

runoff etc) should be considered. As runoff is a secondary product of the STREAM model, 444 

obtained indirectly from the calibration of the river discharge (basin-integrated runoff), the 445 

comparison in terms of runoff can be considered as a further external validation of the model. 446 

Runoff, differently from river discharge, cannot be directly measured. It is generally modelled 447 

through land surface or hydrological models. Its validation requires a comparison against 448 

modelled data that, however, suffer from uncertainties (Beck et al., 2017). Based on that, in this 449 

study the GRUN runoff dataset described in the paragraph 3.3 has been used for a qualitative 450 

comparison.  451 

5.3 Performance Metrics 452 

To measure the goodness-of-fit between modelled and observed river discharge data three 453 

performance scores have been used:  454 

● the root mean square error relative to the mean, 𝑅𝑅𝑀𝑆𝐸: 455 

𝑅𝑅𝑀𝑆𝐸 =
√

1

𝑛
 ∑ (𝑄𝑚𝑜𝑑𝑗−𝑄𝑜𝑏𝑠𝑗

)𝑛
𝑗=1

2

1

𝑛
∑ (𝑄𝑜𝑏𝑠𝑗

)𝑛
𝑗=1

        (8) 456 

where 𝑄𝑜𝑏𝑠 and 𝑄𝑚𝑜𝑑 are the observed and modelled river discharge time series of length n. 𝑅𝑅𝑀𝑆𝐸 457 

values range from 0 to +∞, the lower the 𝑅𝑅𝑀𝑆𝐸 , the better the agreement between observed and 458 

modelled data. 459 

● the Pearson correlation coefficient, 𝑟ℎ𝑜, measuring the linear relationship between two variables: 460 
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𝑟ℎ𝑜 =
 ∑ (𝑄𝑚𝑜𝑑𝑗−𝑄𝑚𝑜𝑑̅̅ ̅̅ ̅̅ ̅̅ )𝑛

𝑗=1 (𝑄𝑜𝑏𝑠𝑗−𝑄𝑜𝑏𝑠̅̅ ̅̅ ̅̅ ̅)

√∑ (𝑄𝑚𝑜𝑑𝑖−𝑄𝑚𝑜𝑑̅̅ ̅̅ ̅̅ ̅̅ )2𝑛
𝑗=1 (𝑄𝑜𝑏𝑠𝑗−𝑄𝑜𝑏𝑠̅̅ ̅̅ ̅̅ ̅)2

       (9) 461 

where 𝑄𝑜𝑏𝑠
̅̅ ̅̅ ̅̅  and 𝑄𝑚𝑜𝑑

̅̅ ̅̅ ̅̅ ̅ represent the mean values of 𝑄𝑜𝑏𝑠 and 𝑄𝑚𝑜𝑑, respectively. The values of 𝑟ℎ𝑜 462 

range between −1 and 1; higher values of R indicate a better agreement between observed and 463 

modelled data. 464 

● the Kling-Gupta efficiency index (𝐾𝐺𝐸, Gupta et al., 2009), which provides direct assessment of 465 

four aspects of river discharge time series, namely shape, timing, water balance and variability. 466 

It is defined as follows: 467 

𝐾𝐺𝐸 =  1 −  √(𝑟ℎ𝑜 − 1)2 + (𝛿 − 1)2 + (𝜀 − 1)2      (10) 468 

where 𝛿 is the relative variability and 𝜀 the bias normalized by the standard deviation between 469 

observed and modelled river discharge. The 𝐾𝐺𝐸 values range between -∞ and 1; the higher the 𝐾𝐺𝐸 470 

the better is the agreement between observed and modelled data. Simulations characterized by values 471 

of 𝐾𝐺𝐸 in the range -0.41 and 1 can be assumed as reliable; values of 𝐾𝐺𝐸 greater than 0.5 have been 472 

assumed good with respect to their ability to reproduce observed time series (Thiemig et al., 2013). 473 

5.4 STREAM sensitivity analysis  474 

To investigate how the variation of the STREAM parameters influences the variation of the STREAM 475 

model outputs, a global sensitivity analysis has been carried out. Specifically, the Variance-Based 476 

sensitivity analysis (VBSA, Sobol 1993) implemented into the Sensitivity Analysis For Everybody 477 

toolbox (SAFE, Pianosi et al., 2015, https://www.safetoolbox.info/) has been applied. VBSA relies 478 

on the variance decomposition and consists of assessing the contributions to the variance of the model 479 

output from variations in the parameters. In this study, we use as sensitivity index the first-order (main 480 

effect) index, which measures the variance contribution from variations in an individual input factor 481 

alone (i.e., excluding interactions with other factors) and the total sensitivity indices, which measure 482 

the total contribution of a single input factor or a group of inputs including interactions with all other 483 

inputs. The following steps were carried out to execute the VBSA. Firstly, the locality-sensitive 484 

https://www.safetoolbox.info/
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hashing (LSH) technique was used to generate 15000 samples from the model parameter space (see 485 

Table 1A). Previous hydrological studies (e.g., Tang et al., 2007) recommend the LHS sampling 486 

method for its sampling efficiency. Secondly, 15000 STREAM model runs were executed and the 487 

corresponding 𝐾𝐺𝐸 values (11x15000 values, one for each gauging station for each run) were 488 

retained. Thirdly, the parameters and the 15000 𝐾𝐺𝐸 samples were used in the SAFE toolbox to 489 

compute the sensitivity indices.  490 

For major details on the workflow needed to implement the VBSA the reader is referred to Noacco 491 

et al. (2020).  492 

6. RESULTS 493 

The testing and validation of the STREAM model is presented and discussed in this paragraph 494 

according to the scheme illustrated in paragraph 5.2.  495 

6.1 Internal Validation  496 

The performance of the STREAM model over the gauging stations used for calibration is illustrated 497 

in Figure 4 and summarized in Table 2. Figure 4 shows observed and modelled river discharge time 498 

series over the whole study period (2003-2016); in Table 2 the performance scores are evaluated 499 

separately for the calibration and validation sub periods. It is worth noting that the model accurately 500 

predicts the observed river discharge data and is able to give the “right answer” with good modelling 501 

performances. Score values of 𝐾𝐺𝐸 and 𝑟ℎ𝑜 over the calibration period are higher than 0.78 for all 502 

the calibrated gauging stations; 𝑅𝑅𝑀𝑆𝐸 is lower than 45% for all the calibrated gauging stations 503 

except for station 9, where it rises up to 66%. The performances remain good even if they are 504 

evaluated over the validation period or the entire study period as indicated by the scores on the top of 505 

each plot of Figure 4. 506 

6.2 Cross-validation 507 

The cross-validation has been carried out over the six gauging stations illustrated in Figure 5 not used 508 

in the calibration step. The performance scores on the top of each plot refer to the entire study periods; 509 
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the scores split for calibration and validation periods are reported in Table 2. For some river discharge 510 

gauging stations the performance is quite low (see, e.g., gauging station 1, 2 and 5) whereas for others 511 

the model is able to estimate river discharge data quite accurately (e.g., 7 and 8). In particular, for the 512 

gauging stations 1 and 2 even if 𝐾𝐺𝐸 reaches values equal to 0.39 and 0.46 for the whole period, 513 

respectively, there is not a good agreement between observed and modelled river discharge and the 514 

𝑟ℎ𝑜 score is lower than 0.56 for both the stations. The worst performance is obtained over the gauging 515 

station 5, with negative 𝐾𝐺𝐸 and low 𝑟ℎ𝑜 values. These results are certainly influenced by the 516 

presence of large dams located upstream to these stations (i.e., Garrison, Gavins Point and Kanopolis 517 

dams, see Table 1) which have a strong impact on river discharge: the model, not having a specific 518 

module for modelling reservoirs, is not able to accurately reproduce the dynamics of river discharge 519 

over regulated river stations. Positive 𝐾𝐺𝐸 values are obtained over the gauging stations 3, 7 and 8. 520 

In particular, over the gauging station 3 the STREAM model overestimates the observed river 521 

discharge due the presence of large dams along the Missouri river, over the Great Plains region. This 522 

area is well known from other large-scale hydrological models (e. g., ParFlow-CLM and WRF-523 

Hydro) to be an area with very low performances in terms of river discharge modelling (O'Neill et 524 

al., 2020, Tijerina et al., 2021).  525 

Over the gauging station 7, located over the Rock river, a relatively small tributary of the Mississippi 526 

river (see Table 1), the STREAM model overestimation has to be attributed to: 1) the different 527 

characteristics of the Rock river basin with respect to the entire basin closed to station 6 where the 528 

model has been calibrated (see Figure 1a); 2) the small size of the Rock river basin (23’000 km2 , if 529 

compared with GRACE resolution, 160’000 km2) for which the model accuracy is expect to be lower. 530 

Conversely, the performances over the gauging station 8, whose parameters have been set equal to 531 

the ones of gauging station 10, are quite high (𝐾𝐺𝐸 equal to 0.71, 0.81 and 0.78 for the entire, the 532 

calibration and the validation period, respectively; 𝑟ℎ𝑜 equal to 0.82, 0.84 and 0.83 for the entire, 533 

calibration and validation periods, respectively). This outcome demonstrates that under some 534 
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circumstances, the STREAM model can be used to estimate river discharge in basins not calibrated 535 

over, especially those without upstream dams and with comparable size and land cover. 536 

On overall, the cross-validation results suggest that the performances of STREAM model, as any 537 

hydrological model calibrated against observed data, decrease over the gauging stations not used for 538 

the calibration raising doubts about the robustness of model parameters and whether it is actually 539 

possible to transfer model parameters from one river section to another with different inter-basin 540 

characteristics. A more in-depth investigation about the model calibration procedure, with special 541 

focus on the regionalization of the model parameters, should be carried out but this topic is beyond 542 

the scope of the manuscript.  543 

6.3 External Validation 544 

For the external validation, the monthly runoff time series provided by the GRUN datasets have been 545 

compared against the ones computed by the STREAM model. For that, STREAM daily runoff time 546 

series have been aggregated at monthly scale and re-gridded at the same spatial resolution of the 547 

GRUN dataset (0.5°). The comparison is illustrated in Figure 6 for the common period 2003–2014. 548 

Although the two datasets consider different precipitation inputs, the two models agree in identifying 549 

two distinct zones in terms of runoff, i.e., the western dry and the eastern wet area. These two distinct 550 

zones can be clearly identified also in the GSWP3 and TMPA 3B42 V7 precipitation maps (see Figure 551 

S1) used as input in GRUN and STREAM, respectively, stressing that STREAM runoff output is 552 

correctly driven by the input data. However, likely due to the calibration procedure, the STREAM 553 

runoff map appears patchier with respect to GRUN and discontinuities along the sub-basin boundaries 554 

(identified in Figure 1a) can be noted. This should be ascribed to the automatic calibration procedure 555 

of the model that, differently from other calibration techniques (e. g., regionalization procedures), 556 

does not consider the basin physical attributes like soil, vegetation, and geological properties that 557 

govern spatial dynamics of hydrological processes. This calibration procedure can generate sharp 558 

discontinuities even for neighbouring sub-catchments individually calibrated. It leads to 559 
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discontinuities in model parameter values and consequently in the modelled hydrological variable 560 

(runoff).  561 

6.4 Sensitivity analysis results 562 

The results of the VBSA, are illustrated in Figure 7a in terms of main effect indices and in Figure 7b 563 

in terms of total effect. Specifically, the figure refers to Vicksburg station but similar results have 564 

been obtained for all the 11 gauging stations in the Mississippi basin. By looking at Figure 7, we 565 

observe that the model parameters most influencing the model response are 𝛽  and 𝑚, i.e., the two 566 

parameters controlling the slow-flow runoff response of the lower soil storage. In particular, the total 567 

effect sensitivity index of these two parameters is higher than the main effect sensitivity index. This 568 

means that these two parameters have an effect on the model output not only through their individual 569 

variations but also through interactions with other parameters. Instead, the other five parameters (𝛼 , 570 

T, 𝛾, C, D and 𝐶m) have low main and total effect indices, and consequently, these parameters have 571 

a small effect, both direct and through interactions, on model response. Among these, only the 572 

 parameter shows a slightly high main and total effect sensitivity indices.  573 

This outcome is very important as it allows to clearly distinguish model parameters which values 574 

should be carefully determined when calibrating the model (𝛽  and 𝑚 and partially 𝛼 ) from the least 575 

sensitive (T, 𝛾, C, D and 𝐶m) which values could be set values within the model parameters’ range of 576 

variability and then excluded during the calibration phase. 577 

7. DISCUSSION 578 

In the previous sections, the ability of the STREAM model to estimate river discharge and runoff 579 

time series has been presented. In particular, Figures 4, 5 and 6 demonstrate that satellite observations 580 

of precipitation, soil moisture and total water storage anomalies can provide accurate daily river 581 

discharge estimates for near-natural large basins (absence of upstream dams), and for basins with 582 

draining area greater than 160’000 km2 (see paragraph 6.2), i.e., at spatial/temporal resolution greater 583 
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than the ones of the TWSA input data (monthly, 160’000 km2). This is an important result of the 584 

study as it demonstrates, on one hand, that the model structure is appropriate with respect to the data 585 

used as input and, on the other hand, the great value of information contained into TWSA data that, 586 

even if characterized by limited spatial/temporal resolution, can be used to estimate runoff and river 587 

discharge at basin scale. This finding has been also confirmed by a preliminary sensitivity analysis in 588 

which the STREAM model has been run with different hydrological inputs of precipitation, soil 589 

moisture and total water storage anomaly (not shown here for brevity). In particular, by running the 590 

STREAM model with different input configurations (e.g., by using TMPA 3B42 V7 or CPC data for 591 

precipitation, ESA CCI or Advanced SCATterometer (ASCAT) data for soil moisture, TWSA or ESA 592 

CCI soil moisture data to model the slow-flow river discharge component), we found that STREAM 593 

results are more sensitive to soil moisture data rather than to precipitation input. In addition, by 594 

running STREAM model with soil moisture data as input to model the slow-flow river discharge 595 

component (i.e. without using TWSA data) we found a deterioration of the model results. This 596 

outcome along with the one obtained in the paragraph 6.3, demonstrating the high sensitivity of the 597 

model parameters related to slow-flow river discharge component, confirm the paramount role of 598 

TWSA in estimating river discharge. In this respect, the availability of GRACE data up to July 2016 599 

could represent an issue for the model application beyond that date. However, the GRACE-FO along 600 

with the numerous literature studies devoted to fill the GRACE data gap between GRACE and 601 

GRACE-FO (see e.g., Landerer et al., 2020 or Yi and Sneeuw, 2021), can provide the needed data to 602 

extend the STREAM model application up to present. Further developments in this direction are 603 

expected with the ESA’s Next Generation Gravity Mission (NGGM), a candidate Mission of 604 

Opportunity for ESA–NASA cooperation in the frame of the Mass Change and Geosciences 605 

International Constellation (MAGIC) that will enable long-term monitoring of the temporal variations 606 

of Earth’s gravity field at relatively high temporal (down to 3 days) and increased spatial resolutions 607 

(up to 100 km). This implies also that time series of GRACE and GRACE-FO can be extended 608 

towards a climate series (Massotti et al., 2021). 609 



26 

 

By looking at technical reviews of large-scale hydrological models (e.g., Sood and Smakhtin, 2015, 610 

Kauffeldt et al., 2016), it can be noted there are many established models, similar in objective and 611 

limitations to STREAM model, already existing with support and user base (e.g., among others, 612 

Community Land Model, CLM, Oleson et al., 2013; European Hydrological Predictions for the 613 

Environment, E-HYPE, Lindström et al., 2010; H08, Hanasaki et al., 2008, PCR-GLOBWB, van 614 

Beek and Bierkens, 2008; Water – a Global Assessment and Prognosis WaterGAP, Alcamo et al., 615 

2003; ParFlow–CLM, Maxwell et al., 2015; WRF-Hydro, Gochis et al., 2018; Precipitation-Runoff 616 

Modeling System, PRMS; Markstrom et al., 2015). Some of them, e.g., ParFlow-CLM, WRF-Hydro 617 

or PRMS have been specifically configured across the continental United States and showed good 618 

capability to reproduce observed streamflow data over the Mississippi river basin with performances 619 

decreased throughout the Great Plains (O'Neill et al., 2020, Tijerina et al., 2021) which is consistent 620 

with the results we obtained with the STREAM model. However, with respect to classical 621 

hydrological and land surface models, STREAM is based on a new concept for estimating runoff and 622 

river discharge which relies on the almost exclusive use of satellite observations, and, a simplification 623 

of the processes being modelled. 624 

This approach brings several advantages: 1) satellite data implicitly consider the human impact on 625 

the water cycle observing some processes, such as irrigation application or groundwater withdrawals, 626 

that are affected by large uncertainty in classical hydrological models, 2) the satellite technology 627 

grows quickly and hence it is expected that the spatial/temporal resolution and accuracy of satellite 628 

products will be improved in the near future (e.g., 1 km resolution from new satellite soil moisture 629 

products and the next generation gravity mission); the STREAM model is able to fully exploit such 630 

improvements; 3) STREAM model models only the most important processes affecting the 631 

generation of runoff, and considers only the most important variables as input (precipitation, surface 632 

soil moisture and groundwater storage). In other words, the model does not need to parametrize 633 

processes, such as evapotranspiration and percolation and therefore it is an independent modelling 634 
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approach for simulating runoff and river discharge that can be also exploited for benchmarking and 635 

improving classical land surface and hydrological models. 636 

7.1 Strengths and limitations of STREAM model  637 

Hereinafter, the strengths and the main limitations of the STREAM model are discussed.  638 

Among the strengths of the STREAM model it is worth highlighting:  639 

Simplicity. The STREAM model structure: 1) limits the input data required. Only precipitation, air 640 

temperature, soil moisture and TWSA data are needed as input whereas LSM/GHMs require many 641 

additional inputs such as wind speed, shortwave and longwave radiation, pressure and relative 642 

humidity; 2) limits and simplifies the processes to be modelled for runoff and river discharge 643 

simulation. Processes like evapotranspiration or percolation, are not modelled therefore avoiding the 644 

need of using sophisticated and highly parameterized equations (e.g., Penman-Monteith for 645 

evapotranspiration, Allen et al.,1998); 3) limits the number of parameters (only 8 parameters have to 646 

be calibrated) thus simplifying the calibration procedure and potentially reduces the model 647 

uncertainties related to the estimation of parameter values.  648 

In particular, the STREAM model is even simpler than the classical semi-distributed conceptual 649 

hydrological models available in literature. As an example, for the comparison we could refer to the 650 

Hydrologiska Byråns Vattenbalansavdelning model (HBV, Bergström 1995) or to the Hydrologic 651 

Engineering Center – Hydrologic Modeling System (HEC-HMS, Feldman, 2000). HBV model counts 652 

14 parameters to be calibrated and needs precipitation, air temperature and potential 653 

evapotranspiration as input data. Similar input data are required for HEC-HMS which counts 23 654 

parameters. Both the models, uses conceptual equations to estimate the soil losses and to model the 655 

soil water storage.  656 

Versatility. The STREAM model is a versatile model suitable for daily runoff and river discharge 657 

estimation over sub-basins characterized by different physiographic/climatic characteristics (see e.g., 658 

the outcomes obtained for the gages 9 and 11 located in the driest and wetter part of the Mississippi 659 

basin). This aspect is paramount as it gives an insight about the potential of the model to be extended 660 
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at the global scale. Moreover, the model can be easily adapted to ingest input data with 661 

spatial/temporal resolution different from the one tested in this study (0.25°/daily). For instance, 662 

satellite missions with higher space/time resolution (e.g., GPM Final Run, ASCAT and NGGM-663 

MAGIC) or near-real time products (e.g., GPM Early Run, EUMETSAT H16, GRACE European 664 

Gravity Service for Improved Emergency Management, EGSIEM GRACE data Jäggi et al., 2019) 665 

could be considered.  666 

Additionally, the STREAM model shows highly flexibility as: 1) it can accommodate application 667 

domains comprising single or multiple basins of any size; and 2) the sub-catchment delineation 668 

procedure can be easily adapted to introduce intermediate outlets along the river in correspondence 669 

of gages with available observed river discharge data, useful for model calibration. 670 

Low computational cost. Due to its simplicity and the limited number of parameters to be calibrated, 671 

the computational effort for the STREAM model is very limited (model runs requiring seconds to 672 

minutes). For instance, a run of the STREAM model over the presented case study takes less than 2 673 

seconds on a machine with 16 GB RAM and 4 Core.  674 

However, some limitations have to be acknowledged for the current version of the STREAM model: 675 

Presence of reservoir, diversion, dams or flood plain. As the STREAM model does not explicitly 676 

consider the presence of discontinuity elements along the river network (e. g, reservoir, dam or 677 

floodplain), river discharge estimates obtained for gauging stations located downstream of such 678 

elements might be inaccurate (see, e.g., gauging stations 1 and 2 in Figure 5).  679 

Snow modelling. A potential limitation of the current version of the STREAM model is related to 680 

the rain/snow differentiation, based on the degree-day coefficient. A different scheme based e.g., on 681 

the wet bulb temperature like in IMERG (Wang et al., 2019; Arabzadeh and Behrangi, 2021), could 682 

be investigated in future developments. 683 

Need of in situ data for model calibration and robustness of model parameters. As discussed in 684 

the results paragraph, the parameter values of the STREAM model are set through an automatic 685 

calibration procedure aimed at minimizing the differences between modelled and observed river 686 
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discharge. The main drawbacks of this parameterization technique are a poor predictability of state 687 

variables and fluxes at locations and periods not considered in the calibration, and the presence of 688 

sharp discontinuities along sub-basin boundaries in state flux and parameter fields (e.g., Merz and 689 

Blöschl, 2004). To overcome these issues, several regionalization procedures, as for instance 690 

summarized in Cislaghi et al. (2020), could be conveniently applied to transfer model parameters 691 

from hydrologically similar catchments to a catchment of interest. In particular, the regionalization 692 

of model parameters could allow to, firstly, estimate river discharge and runoff time series over 693 

ungauged basins overcoming the need of river discharge data recorded from in–situ networks, 694 

secondly, estimate the model parameter values through a physically consistent approach, linking them 695 

to the characteristics of the basins and, thirdly, solve the problem of discontinuities in the model 696 

parameters, avoiding to obtain patchy unrealistic runoff maps. As this aspect requires additional 697 

investigations and it is beyond the paper purpose, it will not be tackled here. 698 

8. CONCLUSIONS 699 

This study presents a new conceptual hydrological model, STREAM, for runoff and river discharge 700 

estimation. By using as input satellite data of precipitation, soil moisture and total water storage 701 

anomalies, the model has been able to provide accurate daily river discharge and runoff estimates at 702 

the outlet river section and the inner river sections and over a 0.25°×0.25° spatial grid of the 703 

Mississippi river basin. In particular, the model is suitable to reproduce: 704 

1. river discharge time series over the calibrated river section with good performances both in 705 

calibration and validation periods;  706 

2. river discharge time series over river sections not used for calibration and not located downstream 707 

dams or reservoirs; 708 

3. runoff time series with a quite good agreement with respect to the well-established GRUN 709 

observational-based dataset used for comparison. 710 
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The integration of observations of soil moisture, precipitation and total water storage anomalies is a 711 

first alternative method for river discharge and runoff estimation with respect to classical methods 712 

based on the use of TWSA-only (suitable for river basins larger than 160’000 km², monthly time 713 

scale) or on classical LSMs (Cai et al., 2014).  714 

Moreover, although simple, the model has demonstrated a great potential to be easily applied over 715 

sub-basins with different climatic and topographic characteristics, suggesting also the possibility to 716 

extend its application to other basins. In particular, the analysis over basins with high human impact, 717 

where the knowledge of the hydrological cycle and the river discharge monitoring is very important, 718 

deserves special attention. Indeed, as the STREAM model is directly ingesting observations of soil 719 

moisture and total water storage data, it allows the modeller to neglect processes that are implicitly 720 

accounted for in the input data. Therefore, human-driven processes (e.g., irrigation, land use change), 721 

that are typically very difficult to model due to missing information and might have a large impact 722 

on the hydrological cycle, hence on runoff, could be implicitly modelled. The application of the 723 

STREAM model on a larger number of basins with different climatic- physiographic characteristics 724 

(e.g., including more arid basins, snow-dominated, lots of topography, heavily managed) along with 725 

the results about the sensitivity analysis of the model parameters, will allow to investigate the 726 

possibility to regionalize the model parameters and overcome the limitations of the automatic 727 

calibration procedure highlighted in the discussion paragraph.  728 
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Table 1. Location of river discharge gauging stations over the Mississippi basins and upstream 1041 

contributing area. Bold text is used to indicate gages where the STREAM model has been calibrated.  1042 

# River 
Gage 

name 

Latitud

e 

(°) 

Longitude 

(°) 

Upstream  

area 

 (km2) 

Mean annual 

river 

discharge 

(m3/s) 

Presence 

of dam 

1 Missouri 
Bismarck, 

ND 
-100.82 46.81 481232 633 

Garrison 

dam 

2 Missouri 
Omaha, 

NE 
-95.92 41.26 814371 914 

Gavins 

Point Dam 

3 Missouri 
Kansas 

City, MO 
-94.59 39.11 1229427 1499 --- 

4 Missouri 
Hermann, 

MO 
-91.44 38.71 1330000 2326 --- 

5 Kansas 
Wamego, 

KS 
-96.30 39.20 143054 141 Kanopolis 

6 Mississippi 
Keokuk, 

IA 
-91.37 40.39 282559 1948 --- 

7 Rock 
Near 

Joslin, IL 
-90.18 41.56 23835 199 --- 

8 Mississippi 
Chester, 

IL 
-89.84 37.90 1776221 6018 --- 

9 Arkansas 

Murray 

Dam Near 

Little 

Rock, AR 

-92.36 34.79 408068 1249 --- 

10 Mississippi 
Vicksbur

g, MS 
-90.91 32.32 2866590 17487 --- 

11 Ohio 
Metropoli

s, ILL. 
-88.74 37.15 496134 7931 --- 

 1043 

  1044 
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Table 2. Performance scores obtained over the Mississippi river gauging stations during the 1045 

calibration and validation periods.  1046 

# CALIBRATION PERIOD VALIDATION PERIOD 

SCORE 
𝐾𝐺𝐸  

(-) 

rho 

(-) 

𝑅𝑅𝑀𝑆𝐸  

(%) 

𝐾𝐺𝐸  

(-) 

rho 

(-) 

𝑅𝑅𝑀𝑆𝐸 

(%) 

GAUGING STATIONS USED FOR CALIBRATION 

10 0.78 0.78 30 0.71 0.80 40 

9 0.79 0.80 66 0.21 0.90 112 

6 0.80 0.80 42 0.74 0.81 48 

4 0.78 0.78 45 0.73 0.76 49 

11 0.80 0.81 45 0.72 0.85 51 

GAUGING STATIONS NOT USED FOR CALIBRATION 

1 -3.07 0.09 131 0.43 0.45 93 

2 -0.46 0.50 110 0.44 0.54 86 

3 0.23 0.73 78 0.42 0.72 69 

5 -1.43 0.24 361 -1.23 0.31 355 

7 0.55 0.62 72 0.34 0.64 76 

8 0.81 0.84 35 0.78 0.83 39 

 1047 

 1048 
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 1049 

Figure 1. Mississippi river basin. Figure 1a) illustrates the sub-catchments delineation. The black 1050 

dashed lines and the numbers in the map identify the 53 sub-catchments (tributary and directly 1051 

draining areas) in the Mississippi basin, blue lines represent the mainstem of each sub-catchment. 1052 

Red dots indicate the location of the river discharge gauging stations; different colours identify 1053 

different inner cross-sections (and the related contributing sub- catchments) used for the model 1054 

calibration. Figure 1b) shows the gridded mean daily values of the input data for the period 2003-1055 

2016. Figure 1c) illustrates the input time series over a point located inside the basin.  1056 

 1057 

 1058 

 1059 
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 1060 
 1061 

Figure 2. Configuration of the STREAM model adopted for runoff and river discharge estimation. 1062 

Figure 2a) gives an overview of the needed input data and the variables can be obtained as model 1063 

output. Figure 2b) illustrates the runoff generation at cell scale. Figure 2c) refers to the sub-catchment 1064 

river discharge calculation and Figure 2d) illustrates the river discharge routing through river 1065 

networks. Red arrows indicate input variables; black arrows indicate intermediate output variables; 1066 

blue arrows indicate final output variables. Please refer to text for symbols.  1067 
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 1070 
 1071 

Figure 3. Processing steps of the STREAM model. 1072 
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 1074 

Figure 4. Comparison between observed and modelled river discharge time series over the five 1075 

calibrated sections in the Mississippi river basin. Performance scores at the top of each plot refer to 1076 

the entire study period (2003–2016). 1077 
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  1080 
 1081 

Figure 5. Comparison between observed and modelled river discharge time series over the gauged 1082 

sections not used in the calibration phase. Performance scores at the top of each plot refer to the entire 1083 

study period (2003–2016). 1084 
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 1086 

Figure 6. Mississippi river basin: mean monthly runoff for the period 2003–2014 obtained by 1087 

STREAM and GRUN models. 1088 
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 1090 
 1091 

Figure 7. Main effect a) and total effect b) sensitivity indices calculated using the VBSA method for 1092 

Vicksburg gauging station. The boxes represent the 95% bootstrap confidence intervals and the 1093 

central black lines indicate the bootstrap mean. 1094 
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APPENDIX 1096 

Table 1A. Description of STREAM parameters, belonging module, variability range and unit.  1097 

Parameter Description Module 
Range 

Variability 
Unit 

Cm degree-day coefficient Snow 0.1/24-3 [-] 

α exponent of infiltration Soil 1-30 [-] 

T characteristic time length Soil 0.01-80 [days] 

β 
coefficient relationship slow-flow 

runoff component and TWSA 
Soil 0.1-20 [mm h-1] 

m 

exponent in the relationship between 

slow-flow runoff component and 

TWSA 

Soil 1-15 [-] 

γ parameter of GIUH Routing 0.5-5.5 [-] 

C Celerity Routing 1-60 [km h-1] 

D Diffusivity Routing 1-30 [km2 h-1] 
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 1100 

Figure S1. Mean annual precipitation data over the period 2003-2014 obtained by TMPA 3B42 V7 1101 

and GSWP3 datasets over the Mississippi river basin. 1102 
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