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ABSTRACT

This paper presents an innovative approach, STRE/AATellite based Runoff Evaluatiddnd
Mapping - to derive daily river discharge and runoff estimates from satellite soil moisture,
precipitation and terrestrial water storageoraalies observations. Within a very simple model
structure, the first two variables (precipitation and soil moisture) are used to estimate tHéoguick
river discharge component while the terrestrial water storage anomalies are used for obtaining its
comrplementary part, i.e., the sleflow river discharge component. The two are then summed up to
obtain river discharge and runoff estimates.

The method is tested over the Mississippi river basin for the periodZIIB by usingTropical
Rainfall Measuring Mission (TRMM) Mulisatellite Precipitation Analysis (TMPAjrecipitation

data European Space Agency Climate Change Initiative (ESA CCI) soil moisture data and Gravity
Recovery and Climate Experiment (GRACE) terrestrial waterage data. Despite the model
simplicity, relatively high-performancescores are obtained in river discharge simulations, with a
Kling-Gupta efficiency index greater than 0.65 both abtlteetand over several inner stations used

for model calibration highlighting the high information content of satellite observations on surface
processes. Potentially useful for multiple operational and scientific applications (from flood warning
systems to thenderstanding of water cycle), the addedlie of the STREAM approach is twofold:

1) a simple modelling frameworfotentially suitable for global runoff monitorinat daily time scale

when forced with satellite observations only, 2) incrd&sewledgeon the natural processes, human

activities and on their interactions on the land.

Key words: satellite productssoil moisture, water storage variatiorynceptualhydrological

modelling rainfallrunoff modelling, Mississippi.
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1. INTRODUCTION

Spatial and émporal continuous river discharge monitoring is paramount for improving the
understanding of the hydrological cycle, for planning human activities related to water use as well as
to prevent/mitigate the losses due to extreme floedtsv To accomplish ése taskgunoff and river
discharge data, which represents the aggregated signal of rke&té¢ et al., 2032 should be
available at adequate spatial/temporal resolution, i . e., at
km?) and atmonthly time s¢p for water resources management and drought monitoring up to grid
scale (few km)/(sud) daily time step for flood predictiolhe acurate continuous (in space and
time) runoff and river dischargestimationat finer spatial/temporal resolution is stlbig challenge

for hydrologists.

Traditional in situ observations of river discharge, even if generally characterized by high temporal
resolution (up to subourly time step), typically offer little information on the spatial distribution of
runoff within a watershed. Moreover, river discharge observation networks suffer from many

limitations such as low station density and often incomplete temporal coverage, substantial delay in

data access and large decline in monitoring capa¥iiydsmarty et al. 2002 Paradoxically, this

latter issue is exacerbateddrvelopingnations Crochemore et al, 2020where the knowledge of

the terrestrial water dynamics deserves greater attention due to huge damages to settlements and
especially the loss of huméimes that occurgegularly

This precarious situation has led to growing interest in finding alternative solutions, i.e;baseel

or observatiorbased approaches, for runoff and river discharge monitoring. Maded
approaches, based on the mathematicatrg®ion ofthe main hydrological processes (e.g., water
balance models, WBMs, global hydrological models, GHMs, Bdll.et al., 2003or, increasing in

complexity, land surface models, LSM, eBalsamo et al., 200%chellekens et al., 20}, Areable

to provide comprehensive information on a large number of relevant variables of the hydrological

cycle including runoff and river discharge at very high temporal and spatial resolution (up to hourly



69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

sampling and®.05° grid scale). However, the valugfssimulated water balance components rely on
a massive parameterization of the soil, vegetation and land paramétietsis not always realistic
and are strongly dependent on the GHM/ LSM models used, analysis p&tiisdsr(et al., 2070

and climatdorcings selected (eldaddeland et al., 201&Budmundsson et al., 2012afAyudhomme

et al., 2014Mdller Schmied et al., 2016

Alternativdy, the observatiohased approachesxploit machine learningtechniques anda
considerablemount of datdo de<ribe the physicsof the systeni.e. hydraulic and/or hydrologic

phenomengSolomatine and Ostfeld, 200&ith only a limited number of assumptions. Besideisig

simpler than moddbased approaches, these approaches still present some limitatiorsd, a¢ finey
rely on a considerable amount of data describi
extent and the uncertainty of the resulting dataset is determined by the spatial/temporal coverage and

the accuracy of the forcing data (e.gee ERUN datasetGudmundsson and Seneviratne, 2016

GRUN datasetGhiggi et al., 2019FLO1K datasetBarbarossa et al., 201LAdditional limitations

stem from the employed method to estimate runoff. Indeed, random forests such as employed in

Gudmundsso and Seneviratne, 201lke other machine learning techniques, are powerful tools for

data driven modeling, but they are prone to overfitting, implying that noise in the data can obscure
possible signalsHastie et al., 2009Moreover, the influence d¢dind parameters on continentzlale

runoff dynamics is not taken into account as tinelerlying hypothesis is thathe hydrological
response of a basin exclusivaligpend on present and past atmospheric forcing. It is easy to
understand that this assunggti will only be valid in certain circumstances and might lead to

problems e.g, over complex terraindrth and Seneviratne, 2016r in cases of human river flow

regulation Ghiggi et al., 201
Remote sensinganprovide estimates of nearly all the clate variables of the global hydrological

cycle including soil moisture (e.gWagner et al., 20Q7Seneviratne et al., 20),0precipitation

(Huffman et al., 201¢and total terrestrial water storage (eldpuborg et al., 2012 anderer and

Swenson, 203 ZFamiglietti and Rodell, 2033It hasundeniably changed and improved dramatically
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the ability to monitor the global water cycle aménce runoff. By taking advantage of satellite
information, some studies tried to develop methogiel® able to optimally producaultivariable

datasets from the fusion f situand satellitebased observations (e.Rodell et al., 2015Zhang et

al., 2018 Pellet et al., 2019 Other studiesxploitedsatellite observations of hydrological variables

e.g., precipitatioifHong et al, 200)/ soil moisturg Massari et al., 20)4andgeodetic variablege.g.,

Sneeuw at. al., 2014 ourian et al., 201)8to monitor single components of the water cycle in an

independent way.

Although the majority of thesstudies provide runoff and river discharge data at basin scale and
monthly time step, they deserve to be recalled here as important for the purpose of the present study.
In particular,Hong et al. (2007presented a first attempt to obtain an approximategbasiglobal

annual streamflow dataset, by incorporating satellite precipitation data in a relatively simple rainfall
runoff simulation approach. Driven by the multiyear (1:2986) Tropical Rainfall Measuring
Mission Multi-satellite Precipitation Anakis, runoff was independently computed for each global

land surface griccell through the Natural Resources Conservation Service (NRCS) runoff curve

number (CN) methodNRCS, 198% and subsequently routed to the watershed outlet to simulate

streamflow. Theesults, compared to the in situ observed discharge data, demonstrated the potential
of using satellite precipitation data for diagnosing river discharge values both at global scale and for
medium to large river basins. If, on the one hand, the woHonfj et al. (2007¢an be considered

as a pioneer study, on the other hand it presents a serious drawback within th€ NR@2hod

that lacks a realistic definition of the soil moisture conditions of the catchment before flood events.
This aspect is not négible, as it is well established that soil moistisparamounin the partitioning

of precipitation into surface runoff and infiltration inside a catchm&nbdca et al., 2008 In
particular, forthe samerainfall amount butdifferent values of ritial soil moisture conditions,

different flooding effectscan occur(see e.gCrow et al., 2005Brocca et al., 20Q08erthet et al.,

2009 Merz and Bloschl, 20Q9ramblay et al., 2070 On this line followingBrocca et al. (2009),

Massari et al. (2016presented a very first attempt to estimate global streamflow data by using
5
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satellite Soil Moisture Active and Passive (SMAIntekhabiet al.., 201pand Global Precipitation

Measurement (GPMHuffman et al., 201Pproducts. Although the validation wasrigad out by

routing the monthly surface runoff only in a single basin in Central Italy, the obtained results
suggested to dedicate additional efforts in this direction.
Among the studies that use satellite observations of hydrological variables fdrastimgtion, the

hydro-geodetic approachese undoubtedly worth mentioningee e.g.{Sneeuw et aR014 for a

comprehensive overviewr Lorenz et al.(2014 for an analysis of satellitbased water balance

misclosures with discharge as closure tempadrticular the satellite missiorGravity Recovery And

Climate Experiment (GRACEWhich observethe temporal changes in the gravity fiefdsgiven

a strong impetus to satellittiven hydrology researciTépley et al., 2019 Since temporal gravity

field variationsover the continentisnply water storage change, GRACE was the first remote sensing
system to provide observational access to deeper groundwater storage. The relation between GRACE

groundwater storage change and runoff was characteriZRigger and Tourian (2014yhich even

allowed the quantification of absolute drainable water storage over the Amiamoiaf et al., 2018

In essence the storagenoff relation describes the grawvitlyiven drainage of a basin and, hence, the
slow-flow processesDu e t o Gdpaiid@t&niparal resolution, runoff and river discharge are
generallyavailablef or | ar ge b a $)iamdat monthly 6ne&t€p0 0 k m

Based orthe above discussioit is clear that each approach presents strergytilimitations that
enableor hamper the runoff and river discharge monitoring at finer spmtiddlemporal resolutions.

In this context, this study presents an attempt to find an alternative method to derive daily river
discharge and runoff estimates/atiegreespatial resolution exploiting satellite observations and the
knowledge of the key mechanisms and processes that act in the formation of runoff, i.e., the role of
soil moisture in determining the responseaafatchment to precipitation. For that, soil ntoig,
precipitation and terrestrial water storage anomalies (TWSA) observations are used as input into a
simple modelling framework named STREAML.3 (SaTellite based Runoff EvaluatioAnd

Mapping version 1.3 Unlike classical land surface models, STRE&kploits the knowledge of the
6
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system states (i.espil moistureand TWSA) to derive river discharge and runaffd thus it 1) skips
the modelling of the evapotranspiration fluxes which are known to be -aegigible source of
uncertainty Long et al.2014), 2) limits the uncertainty associated with therparameterization of
soil and land parameters and 3) implicitly takes into account processes, mainly-dnivearn(e.g.,
irrigation, change in the land us#atmight have a large impact on the hgidgical cycle and hence
on runoff.

The detailed desigtion of the STREAMv1.3modelis given in section 4. The collected datasets and
the experimental desigor the Mississippi River Basin (section&) described in sections 3 and 5,

respectively. Results, discussion and conclusions are drawn in section 6, 7 and 8, respectively.

2. STUDY AREA

The STREAM v1.3model presented here has been tested and validated over the Mississippi River
basin. With a draiage area of about 3.3 million km2, the Mississippi River basin is the fourth largest
watershed in the world, bordered to the West by the crest of the Rocky Mountains and to the East by
the crest of the Appalachian Mountains. According to the Kdppen eliotassification, the climate

is subtropical humid over the southern part of the basin, continental humid with hot summer over the
central part, continental humid with warm summer over the eastern and nqrénesy, whereas a
semiarid cold climate affectthe western part. The average annual air temperature across the
watershed ranges from 4°C in the West to 6°C in the Bastverage, the watershed receives about
900 mml/year of precipitation (77% as rainfall and 23% as snowfall), more concentrateedsténe

and southern portions of the basin with respect to its northern and westeiviogaret al., 2014

The river flow has a clear natural seasonality mainly controlled by spring snowmelt (coming from
the Missouri and the Upper Mississippi, the eastind the upper part of the basin, respectigarer

2008 and by heavy precipitation exceeding the soil moisture storage capacity (mostly occurring in
the eastern and southern part of the basin, Berghuijs et al., 2016). The basin is also heavéd regula

by the presence of large daif@lobal Reservoir and Dam Database GRab&hner et al., 2091
7



F72 most of them located on the Missouri rivewer the Great Plaindn particular, the river reach

173 between Garrison and Gavins Point dams is the portion dfligsouri river where the large main

174 channel dams have the greatest impact on river discharge providing a substantial reduction in the
175 annual peak floods, an increase on low flows and a reduction on the overall variability-ahmied

176 discharges(Alexarder et al., 201 The annual average of Mississippi river discharge at the

177 Vi cksburg outl et s e Yst(se® Table 13. Gieeq tha Variety of clin@t@da&d 0 m
178 topography across the Mississippi River basin, it is a good candidate to tesitabdity of the

179 STREAM vl1.3model for river discharge and runoff simulation.
180 3. DATASETS

181 The datasets used in this study inclidsitu observationssatellite products and model outputhie
182 first two datasets have been used as input data 8TtREAM v1.3 model. Conversely, theodel
183 outputsare used as a benchmark to validate the performance STREAM v1.3model.

184 3.1In situ Observations

185 In situobservations comprise air temperattié gnd river discharge data.

186 For "X e data the Clima Prediction Center (CPC) Global Temperature data developed by the
187 American National Oceanic and Atmospheric Administration (NOAA) using the optimal

188 interpolation of qualitycontrolled gauge records of the Global Telecommunication System (GTS)

189 network Ean et al., 2008 have been used. The dataset, downloadable at

190 (https://psl.noaa.gov/data/gridded/data.cpc.globaltemp).htisil available on a global regular

191 0.5%0.5° grid, andorovides daily maximum’Y 4 and minimum {Y g} air temperature data from
192 1979 to present. The daily average air temperature data have been generated as theymgardof
193 Y g of each day.

194 Daily 0 data over the study basins have been taken frenGthbal Runoff Data Center (GRDC,

195 https://www.bafg.de/GRDC/EN/Home/homepage node)htrn particular, 11 gauging stations

196 located along the main river networktbe Mississippi Riverbasin have been selected to represent
8
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the spatial distribution of runoff over the basin. The location of these gauging stations along with

relevant characteristics (e.g., the upstream basin area, the mean annual river discharge and the

presence of upstreadams) are summarized in TableAk it can be noted, mean annual river

di scharge ranges from 141 to 176500 m3/s, and

(Lehner et al., 20D1In particular, Garrison (the fiftkargest earthen dam in the fd), Gavins Point

and Kanopolis dams located downstream section 1, 2 and 5 respectively (see Figure 3 and Table 1),

are three |l arge dams wi t K¥mia0.607a1d m¥ramdnl.058x1®mia g e
respectively.

3.2 SatelliteProducts

Satellie products include observationspsécipitation(D), soil moistureand TWSA.

The satellite) dataset used in this study is Melti-satellite Precipitation Analysi3B42 Version 7
(TMPA 3B42 V7)estimategproducedy the National Aeronautics and Space Administration (NASA)
as the 0.25°x0.25° quagiobal (50°NS) gridded dataset. The TMPA 3B42 l¢7a gaugedorrected
satellite product, with a latency period of two months after the end of the month of eailable

at 3h sampling interval from 1998 to prese&ti40. Major details about thé dataset, downloadable

from http://pmm.nasa.gov/datccess/downloads/trmman be found ituffman et al. (R07)

Soil moisturedata have been taken from the European Space Agency Climate Change Initiative (ESA

CCI) Soil Moisture projectHhttps://esesoilmoisturecci.org) that provides aurface soil moisture

product(referred tofirst 2-3 centimeters of sq@ilcontinuously updated in term of spatiamporal
coverage, sensors and retrieval algorithiarigo et al., 201) In this study, the daily combined
ESA CClsoil moistureproduct v4.2 is used, that isalable at global scale with a grid spacing of
0.25°, for the period 1978016.

TWSA have been obtained from the Gravity Recovery And Climate Experiment (GRACE) satellite
mission.Herewe employ the NASA Goddard Space Flight Celi@8FC) global mascon model,

i.e., Release v02.4L¢thcke et al. 2013 It has been produced based on the mass concentration

of

out 11 section

296383110
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(mascon)approach. The model provides surface mass densities on a monthly basis. Each monthly
solution represents the average wfface mass densities within the maréferenced at the middle

of the corresponding month. The model has been developed directly from GRAGEH&«8and
Ranging (KBR) data. It is computed and delivered as surface mass densities per patch ovefr blocks o
approximately 1x1° or aboutl 2 6 &ré?.0Although the mascon size is smaller than the inherent
spatial resolution of GRACEh& modekxhibitsarelativelyhigh spatial resolutiorThis is attributed

to a statistically optimal Wiener filtering, whialses signal and noise full covariance matrices. This
allows the filter to fine tune the smoothing in line with the sigonaloise ratio in different areas.

That is, the less smoothing, the higher sigonaioise ratio in a particular area and vice veldas

ensures that the filtering is minimal and aggressive smoothing is avoided when unnecessary. Further
details ofsuch a filter can be found iklees et. al(2008. Importantly, the coloured (frequency
dependent) noise characteristic of KBR data wasntékeéo account when compiling the GRACE
model, which has allowed for a reliable computation of the aforementioned noise full covariance
matrices The coloured (frequencgependent) noiseharacteristic 0KBR datawas taken into
accountwhen compiling tb mode] whichhas allowed for a reliable computation of these noise and
signal covariance matriceShey play a crucial role when filtering and allow to achieve a higher
spatial resolution compared to commonly applied GRACE filtering methods such asaGauss
smoothing and/or destriping filters. GRACE data are available for the period 01 January 2003 to 15
July 2016.

3.3 Model Outputs

To establish thguality of the STREAM v1.3model in runoff simulation, monthly runoffyj data

obtained from the Global woff Reconstruction (GRUN_v1https://doi.org/10.3929/etHz

00032438% have been used for comparisdie GRUN datasetGhiggi et al., 201pis a global
monthly'Y dataset derived through theeusf a machinéearningalgorithm trained with in sitd

observations of relatively small catchments (<2&08) and gridded precipitation and temperature

10
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derived from the Global Soil Wetness Project Phase 3 (GSWP3) dd{aseet( al., 2017) The

dataset covers the period from 1902 to 2014ikiscprovided on a 0% T Oregslar grid.
4. METHOD

4.1 STREAM Model: the Concept

The concept behind tI®TREAMv1.3model is that river discharge is a combination of hydrological

responses operating @iverse time scale®(6schl et al., 2013; Rakovec et al., 2D1& particular,

river discharge can be considered made up sibaflow componentproduced as outflow of the
groundwatestorageand of aquickflow component.e. mainly related to theurface and subsurface

runoff component¢Hu and Li, 2018

While the high spatial and temporal (i.e., intermittence) variabilitpretipitationand the highly
changing land cover spatial distribution significantly impact the variability of chiekflow
componenfwith scales ranging from hours to days and meters to kilometres depending on the basin
size), slowflow river dischargereacts to precipitation inputs more slowly (i.e., months) as water
infiltrates, is stored, mixed and is eventualgleased in times spanning from weeks to months.
Therefore, the two components can dstimatedby relying upon two different approaches that
involve different types of observations. Based on that, withiSTHREAM v1.3model, satellitesoil
moisture precipitationand TWSA will be used for deriving river discharge and runoff estimates. The
first two variables are used as proxy of theckflow river discharge component while TWSA is
exploited for obtaining its complementary part, i.e. dloe+flow river dischargeeomponent. Firstly,

we exploit the role of the soil moisture in determining the response of the catchment to the
precipitation inputs, which have been soundly demonstrated in more than ten years of literature

studies (see e.gBrocca et al.2017 for a comprehensive discussion on the topic). Secondly, we

consider the important role of terrestrial water storage in determining thélglowiver discharge

component as modelled in several hydrological models @&ngeuw et al., 20]4

11
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It is worth noting that thisnodus operandlii.e. to model theyuick-flow and slowflow discharge
component separately exploring their process controls independently, has been largely applied and
tested in recent and past studies, e.g., for the estimation ddwhddration curve (see e.Bptter et

al., 2007a, bYokoo and Sivapalan 2018uneepeerakul et al., 201Ghotbi et al., 2020

4.2 STREAM Model: theLaws

The STREAM v1.3modelis a conceptual hydrological model that, by using as input observation of
0, soil moisture TWSA and’Y s¥=data, simulates continuoi$and0 time series.

The model entailthreemain componentéFigure 1) 1) a snow module teeparate precipitation into
snowfall and rainfall?) a soil module to simulate the evolutiortime 6 of thequickand slow runoff
responsed) "Qfmm] andd i [tnm], and3) a routing module that transfers these components through
the basins and the rivers for the simulation ofthiekflow river dischargeQF [m?s], and theslow

flow river dischargeSF[m?3/s] components.

The soil module is composed two storagesSuandSl as illustrated in Figure 1. The upptorage
receives inputs from, released through a snow modulis{aghi et al., 2020as rainfall ) or stored

as snowwater equivalent§WH within the snowpack and on the glaciers. In particular, according to

Cislaghi et al. (2020 5WEis modelled by using as inp{ gand a degreday coefficientg; , to be

estimated by calibrationVe have to acknowledge that, ewlioughthis rain/snow differentiation

methodworks quite efficientlyat a large grid size like the one used in the study (25 x 25tken)

topographic complexity of higher elevations can be lost. A different differentiation scheme based

e.d., on the weiulb temperature like in IMERGAang et al., 201:QArabzadeh and Behrangi, 2021 {Formanato; Sottolineato

{Formattato: Sottolineato

would be preferable but is out of the purpose study.

Once separated,input contributes to thquick runoff response while th8 WE(like other fluxes
contributing to modifythe soil water content in®y is neglected as alreadgnsideredn the satellite
TWSA. Therefore, the first key point of tI8#TREAM v1.3 model is that the water content in the

upperstorageis directly provided by the satellisoil moistureobservatios and the loss processes

12



296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

like infiltration or evaporation do not need to be explicitly modelled to simulate the evolution in time
t of soil moisture Consequently, theuick runoff responsep) "Qdrom the firststoragecan be
computedfollowing the formulation proposed by Georgakakos and Baumer (1996), as in equation
(1):

0Qd 10 Yoory (1)
where:

- "Yw ®the Soil Water Index{agner et al., 1999i.e, the rootzone soil moisture product referred
to the firg layer of the mode{representative of the first30 centimeters of soijlderived by the
surface satellite soil moisture produgt, by applying theexponential filteringapproach in its

recursive formulationAlbergel et al., 2000

YOO YOO 0 g0 Yn'O (2)

with the gainb  at the timed given by:

I @)

- "Y[days] is a parameter, named characteristic time length, that characterizes the temporal variation
of soil moisturewithin the rootzone profile and the gain ranges between 0 and 1;

- | [] is acoefficient linked to the nefinearity of the infiltration process and it takes into account
the characteristics of the soil;

- for the initialization of the filted  pand™Yw™O go .

The second key point @TREAM v1.3 modelconcerns the estimation of the slow runoff response,

0 i, trom the secondtorage The hypothesis here, shared also with other studiesRakpyec et al.,

2016, is that the dynamic of the slow runoff component can be represented by the monthly TWSA

data. Indeed, the time scale of slow runoff response is typically in the range of seasons to years and it

can be assumeadmost independent upon the wateat is catained in that uppestorage For that, the

13
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slow runoff responsé i, drom the secondtorage can be computetbllowing the formulation

proposed byamiglietti and Wood (1994)hrough equation (4) as follows:

Oi & T "Y®O'Yoo (4)

where:
“Yw "Y{-] is the TWSA estimated by GRACE normalized by its minimum and maximum values.
The assumption behind this equation is that TWSA can be assumed as a proxy of the evolution in
time, ohof the"Ygi.e., the storage of the lowstorage
T [mm h' anda [-] are two parameters describing the nonlinearity between slow runoff
component andY® Y0
Note that we made the hypothesis that soil moisture and TWSA observations are independent
(whereas in the reality soil moisture daaresponsible both for the generation of the quick flow part
(mainly) and for the slow flow contribution) given the different temporal (and spatial) scales at which

the quick and slow runoff responses act.

The STREAM v1.3model runs in a sendistributedversion in which the catchment is divided into
selements, each one representing either a subcatchment with outlet along the main channel or an area
draining directly into the main channel. Each element is assumed homogeneous and hence constitutes

a lumpa system.

The routing module (controlled by aparameter) conveys tlie"Qand0 i ré@sponse components at
each element outlet (subcatchments and directly draining 8reasa et al., 20)1and successively

at the catchment outlet of the basin. Specificallygiek component "Qés routed to the element
outlet by the Geomorphological Instantaneous Unit Hygtaph (GIUH,Gupta et al., 1980for
subcatchments or through a linear resgrapproachNash, 195y for directly draining areas; the

0 i slow component is transferred to the outlet section by a linear reservoir approach. Finally, a
diffusive linear approach (controlled by the parametérand D, i.e., Celerity and Diffusivity

14
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Troutman and Karlinger, 198% applied to route thguickand slow runoff components at the outlet

section of the catchmerBiocca et al., 20)1In the first case we obtain thaickflow river discharge
componentQF [m?¥s], andin the second casée slowflow river discharge componerF[m?3/s]
(see Figure 1)

4.3 STREAM Parameters

The STREAM v1.3 model uses 8 parameters of which 5 are used in the soil mpdule T [ days] ,
[mm h1], m, Cm) and 3 in the routing module, € [km h'] and D [kn? h1]). The parameter values,
determined within the feasible parameter space (See Table Appendix A for more datails),

calibrated by maximizing the Klin@GuptaEfficiency index (KGE,Gupta et al., 200Kling et al.,

2012 see paragraph 5.1 for morealks) between observed and simulated river disch&@emodel

calibration, a standard gradidmised automatic optimisation meth@blber 2013 was used.

5. EXPERIMENTAL DESIGN

5.1 Modelling Setup for Mississippi River Basin

The modelling setup is carrienit infeurthreesteps (Figure):

12. Subbasin delineationSTREAM v1.3 model is run in the sendistributed version over the

Mississippi River basin. The TopoToolbdxtps://topotoolbox.wordpress.cop tool developed in
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Matlab by Schwanghart et al. (2010and theSHuttle Elevation Derivatives at multiple Scales

(HydroSHED, https://www.hydrosheds.org)EM of the basin at the agssolution (nearly 90 m at

the equatorpEM-efthe-basifhavebeen used to derive flow directions, to extract the stream network
and to delineate the drainage basins over the Mississippi Risir. I particular, by considering

only rivers with ordegreaterthan 3(according to thélortonStrahlerrules,Horton, 1945 Strahler,

1952, the Mississippi watershed has been divided intsgbasins as illustrated in Figuge Red
dots in the figue indicate the location of the 11 dischaggeiging stations selected for the study area.
It has to be specified that tietep ofsubbasin delineatiorcould beaccomplishedhroughtools
different fromthe TopoToolbox. For instance, it could be usedftee Qgis software downloadable

at https://www.qgis.org/it/site/forusers/download.htnfbllowing the instruction to perform the

hydrological analysis as in

https://docs.qgis.org/3.16/en/docs/training_manual/processing/hydro.html?highlight=hydrological%

20analysis

32. Extraction of input dataPrecipitation,”X g goil moisture and TWSA datasets data have to be
extracted for each seimsin of the study area. If characterized by different spiatigboral
resolution, these datasets need to be resampled over a common spétahgoidl time steprior

to be used as input into the model.

To run theSTREAM v1.3 model over the Mississippi river basin, input data have been resampled
over the precipitation spatial grid at 0.25° resolution through a bilinear interpol@tanerning the
temporal sca, "X g gpil moisture and precipitation data are available at daily time step, while monthly
TWSA data have been linearly interpolated at daily time skep. each of the 53 Mississippi
subbasins, the resampled precipitation, soil moistiregnd TWS\ data have been extracted.

43. STREAM model calibratiorin situ river discharge data are used as reference data for the
calibration ofSTREAM v1.3 model.For Mississippi, th& TREAM v1.3model has been calibrated
over five sections as illustrated in Big3: the inner sections 4, 6, 9, 11 and the outlet section 10, are

used to calibrate the model and all adsins contributing to the respective sections are highlighted
16


https://www.qgis.org/it/site/forusers/download.html
https://docs.qgis.org/3.16/en/docs/training_manual/processing/hydro.html?highlight=hydrological%20analysis
https://docs.qgis.org/3.16/en/docs/training_manual/processing/hydro.html?highlight=hydrological%20analysis

393 with the same colour. This means that, for example, théasins labelled as 1, 8,to 15, 17, 22,

394 23, and 30 contribute to section 4, swdsins 31, 37, 38 and 41 contribute to section 6 and so on.
395 Consequently, the stmsins highlighted with the same colour are assigned the same model
396 parameters, i.e. the parameters that allowpooduce the river discharge data observed at the related
397 outlet section.

398 Oncecalibrated the STREAM v1.3 model has been run to provide continuous daily Q and R time
399 series, at theutletsection of each subbasin and over each grid pixel, respectively. By considering
400 the spatial/temporal availability of both situ and satellite observations, the entire analysis period
401 covers the maximum common observation period, i.e., from 01 Jani@8y®05 July 2016 at daily

402 time scaleTo establish the goodneegfit of the model, he simulated river discharge and runoff
403 timeseries are compared against in situ river discharge and modelled runoff data

404 5.2 ModelEvaluation Criteria and Performance Metrics

405 The model has been run over &8tyear period split into two sub periods: the first 8 years, from

406 January 2003 to December 2010, have been used to calibrate the model successively validated over
407 the remaining 5.5 years (January 20Tily 2016).

408 In particular, three different validation schemes have been adopted to assess the robustness of the

409 STREAMvl1.3model:

410 1. Internal validation aimed to test the plausibility of both the model structure and the parameter
411 set in providing reliable estimates diet hydrological variables against which the model is

412 calibrated. For this purpose, a comparison between observed and simulated river discharge
413 time series on the sections used for model calibration has been carried out for both the
414 calibration and validadin sub periods.

415 2. Crossvalidation testing the goodness of the model structure and the calibrated model
416 parameters to predict hydrological variables at locations not considered in the calibration
417 phase. In this respect, the crasdidation has been carrienit by comparing observed and

17
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simulated river discharge time series in gauged bamihconsiderediuring the calibration
phase;
3. External validation aimed to test the capability of the méideget the right answers for the

right reasoné Kifchner 200§. The rationale behind this concept is that the hydrological

models are today highly performing and able to reproduce a lot of hydrological variables. For

that, the model performances should not only be evaluated against observed streamflow, but

complemerdry datasets representing internal hydrologic states and flewessoil moisture,

evapotranspiration, runoff etc) should be considerdd-thisrespect,-the-capability-of-the

considered-in-thecalibration-phasesheuld-be-teAgcunoff is a secondary product of the

STREAM v1.3model, obtained indirectly from the calibration of the river discharge (basin
integrated runoff), the comparison in terms of runoff can be considered as a further external
validation of the model. Runoff, differently from discharge, cannot be directlgurealt is
generally modelled through land surface or hydrological modtsisialidation requires a
comparison against modelled data that, however, suffer from uncertaiig@sdt al., 2017

Based on that, in this study the GRUN runoff dataset estin the sectio3.3 has been

used for a qualitative comparison.

5.3 PerformanceM etrics

To measure the goodnestfit between simulated and observed river discharge data three
performance scores have been used:

0 the relative root mean square erroRNRSE:
. -B
YYD "Y‘O—_B (5)

where0 and0  are the observed and simulated discharge time series of ken@®RMSE

valuessr ange f r pthe bwerthe BRMSB thebetter the agreemebetween observed and

simulated data.
18
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0 the Pearson correlation coefficieR, measures the linear relationshgiween two variables:

Y (6)

wherel and0  represent the mean valuesiof and0 , respectivelyThe valuesf Rrange
between 1 and 1; higher values of R indicate a better agreement between observed and simulated
data.
o} the Kling-Gupta efficiency index (K&, Gupta et al., 2009whichprovides direct assessment

of four aspects of discharge time series, namely shape, timing, water balance and variability. It

is defined as follows:

0 "00 p Y op 1 p - P @)

where R is the correlation coefficieht,the relative variability and the bias normalized by the
standard deviation between observed and simulated discharge. The KGE values range-between
and 1;the higher the KGE, the better the agreement between observed and simulated data.
Simulations characterized by valuesKGE in the range0.41 and 1 can be assumed as reliable;
valuesof KGE greater than 0.5 have been assumed good with respect to their ability to reproduce

obsewed time seriesTthiemig et al., 2013

6. RESULTS

The testing and validation of tf#TREAM v1.3 model is presented and discussed in this section
according to the scheme illustrated in section 5.2.

6.1 Internal Validation

The performance of tHeTREAMv1.3model over the calibrated river sections is illustrated in Figure
4 and summarized in Table 2. Figure 4 shows observed and simulated river discharge time series over
the whole study period (20€8016); in Table 2 the performance scores are evaluated wpdoa

the calibration and validation sub periods. It is worth noting that the model accurately esthgdat

observed river discharge datndi s able to give the firight answer 0
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performancesScore valueof KGE and Rover the calibation (validation) period are higher than

0.62 (0.67) and 0.75 (0.7%esp.)for all the sectionsRRMSE is lower than 46% (51%) for all the
sections except for section 9, where it rises up to 71% (77%). The performances remain good even if
they are evalated over the entire study period as indicated by the scores on the top of each plot of
Figure 4.

6.2 Crossvalidation

The crossvalidation has been carried out over the six river sections illustrated in Figure 5 not used
in the calibration step. The performance scores on the top of each plot refer to the entire study periods;
the scores split for calibration and validation periadsreported in Table Eor some river sections

the performances quite low (see, e.qg., river section 1, 2 and 5) whereas for others the model is able
to simulate the observed discharge data quite accurately (e.g., 7 and 8). In particular, foriownsr sect

1 and2 even if KGE reaches values equal to 0.35 and 0.40 (for the whole period), respectively, there
is not a good agreement between observed and simulated river dischatbe Rratore is lower

than 0.55 for both river sectionShe worstperformanceis obtained over section 5, with negative

KGE and low R (high RRSME). These results are certainly influenced by the preséargeddms

located upstream to these river sectiares,(Garrison, Gavins Point and Kanopaams see Table

1) which haw a strong impact on discharglee model, not having a specific module for modelling
reservoirs, is not able to accurately reproduce the dynamics of river discharge over regulated river
sectionsPositive KGE valuegre obtained over river sections 3,ritl&8. In particularpver section
3theSTREAM v1.3model overestimates the observed river dischdugehe presence lsrgedams

along the Missouri riverver the Great Plainggion This ar& is well known from othdargescale

hydrologicalmodels(e. g, ParFlowCLM and WRFHydro) to be an area with very low perforntas

in terms of river discharge modellin®@'(\eill et al., 2020Tijerina et al., 202)1L

Over sectiory, located over the Rock rivearelatively small tributaryf Mississippi river(see Table
1), the STREAM v1.3modeloverestimabn has to be attributed to: 1) tldéferentcharacteristics of

the Rock river basin with respect the entirebasin closed to sectionwhere the model has been
20
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calibrated(seeFigure 3; 2) thesmals i ze of t he Rock 2 ificompared Withs i n
GRACE r esol ut P éonwhichltte cnédel @adzurakyns expect to be lovdemversely,

the performances over river section 8, whose parameters have been set equal to the ones of river
secton 10, are quite high (KGE equal to 0.71, 0.80 and 0.77 for the entire, the calibration and the
validation period, respectively; R equal to 0.83, 0.84 and 0.84 for the entire, calibration and validation

periods, respectively)This outcomelemonstrates #iunder some circumstancése STREAMv1.3

model can be used to estimaitger discharge in basins not calibrated over, especially those without

upstream damandwith comparable size and land cover

Althoughit is expected that the performancesSGIREAM v1.3 model,as any hydrological model
calibrated against observed datandecrease over the gauging sections not used for the calibration
the findings obtained abovaises doubts about the robustness of model parameters and whether it is
actually possible to transfer model parameters from one river section to awdgthedifferent
interbasin characteristicd more indepth investigation about the model calibration proceduitk

special focus on theegionalization othe model parametershauld be carried out but this topic is
beyond the scope of the manuscript

6.3 External Validation

For the external validation, the monthly runoff time series providedds@ RUN datasets have been
compared against the ones computed bySthREAM v1.3modé. For that, STREAM daily runoff
time series have been aggregated at monthly scale-gmidided at the same spatial resolutiorhef
GRUN dataset (0.5°). The comparison is illustrated in Figure 6 for the common peria2Q083
Although the two datasetonsider differerrecipitationinputs, the two modeksgreean identifying
two distinct zonedn terms of runoffi.e., the westerdry and theeasternwet area.This two distinct
zones can be clearly identified also in @@WP3andTMPA 3B42 V7precipitation mapsietshewn
heresee Figure Slused as inpuh GRUN andSTREAM V1.3, respectivelystressing tha8TREAM
runoff output is correctly driven e input data However, ikely due to the calibration procedure,

the STREAM runoff map appeangatchier with respect to GRU&hddiscontinuities along the sub
21
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basin boundaries (identified in FiguB can be noted. This should be ascribed to the automatic
calibration procedure of the model that, differently from other calibration techniques (e. g.,
regionalization procedures), does notsiderthe basin physical attributes like soil, vegetation, and
geological properties that govern spatial dynamics of hydrological processes. This calibration
procedure can generate sharp discontinuities even fghbwiring subcatchments individually
calibrated. It leads to discontinuities in model parameter values and consequentlgimutfaged

hydrological variabl€runoff).

7. DISCUSSION

In the previous sections, the ability of REREAMv1.3model to accuratg simulate river discharge

and runoff time series has been presented. In particular, Figures 4, 5 and 6 dentbassattslite

observations of precipitation, soil moisture and terrestrial water storage anomalies can provide

accuratalaily river dischage estimates for neaiatural large basinssencef upstream damsand

for basins with draini 7 (eeasectom 7),li.e wspatial/tempaah 1606000 km
resolution |l ower than the ones @fThidihaaimfoBtA i nput dat a
result of the study as it demonstra@sone hand, that the model structure is appropriate with respect

to the data used as input and, on the other hand, the great value of information contained into TWSA

data that, even if chareeized by limited spatial/temporal resolution, can be used to simulate runoff

and river discharge at basin scdlbis finding has been also confirmed bpraliminarysensitivity

analysis in whichthe STREAMv1.3 model has been run with different hydrgical inputs of

precipitation, soil moisture and total water storage anomaly (not dhensfor brevity). In particular,

by running the STREAM1.3model with different input configurations (e.g., by usinigPA 3B42

V7 or Climate Prediction Cente€PQ data for precipitation, ESA CCI éxdvanced SCATterometer

(ASCAT) data for soil moistureTWSA or soil moisture data to simulate the sifilaw river

discharge component), we found that STREAM results are more sensitive to soil moisture data rather

than to pecipitation input. In addition, by running STREAM.3 model with soil moisture data as

22
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548

input to simulate the sloMlow river discharge component (i.e. without usifiySA data) we found

a deterioration of the model results.

Hereinafter, the strengths atide main limitations of the STREAML.3 modelare discussed.

Among the strengths of the STREAM v1.3 model it is worth highlighting:

1. Simplicity. The STREAM v1.3 model structure: 1) limits the input data required (only[Formanato; Tipo di carattere: Grassetto

precipitation air temperaturesoil moisture and TWSA data are needed as input; LSM/GHMSs require

many additional inputs such as wind speed, shortwave and longwave radiation, pressure and relative

humidity); 2) limits and simplifies the processes to be modelled for runoff/discharg&somn.

Processes like evapotranspiration, infiltration or percolation, are not modelled therefore avoiding the

need of using sophisticated and highly parameterized equations RPemmmarnMonteith for

evapotranspiratiorillen et al.,1998 Richard equadin for infiltration, Richard, 193Y; 3) limits the

[Formattato: Sottolineato

[Formattato: Sottolineato

number of parameters (only 8 parameters have to be calibrated) thus simplifying the calibratior

procedure and potentially reduce the model uncertainties related to the estimation of parameter

values.

2. Versatility. The STREAM v1.3 model is a versatile model suitable for daily runoff and discharg{ Formattato: Tipo di carattere: Grassetto

estimation over subasins with different physiographic characteristics. The results obtained in this

study clearly indicate the potential of this approach textended at the global scale. Moreover, the

model can be easily adapted to ingest input data with spatial/temporal resolution different from the

one tested in this study (0.25°daily). For instance, satellite missions with higher space/time

resolution, ornear real time satellite products could be considered. As an example, the Next

Generation Gravity Mission design studies all encompass dpabiscenarios, which would greatly

improve upon the current spatial resolution of sifgdé@ missions like GRAE and GRACEFO (>

1006000

kmj] ) .

The

STREAM

vy,

3

model

shows

high

subbasin delineation and to introduce additional observational river discharge data to be used for the

model calibration.
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3. Computationally inexpensive.Due to its simplicity and the limited number of parameters to be[Formanato: Tipo di carattere: Grassetto

calibrated, the computational effort for the STREAM v1. 3

However, some limitations have to be acknowledged for the current version of the STREAM v1.3

model:

mod el

1. Presence of reservoir, diversion, dams or flood plailAs the STREAM v1.3 model does not [Formanato: Tipo di carattere: Grassetto

explicitly consider the presence of discontinuity elements along the river network (e. g, reservaoir,

dam or floodplain), discharge estimates obtained for sections located downstream of such elements

might be inaccurate €&, e.q., river sections 1 and 2 in Figure 5).

2. Need of in situ data for model calibration and robustness of model parameterAs discussed. [Formanato: Tipo di carattere: Grassetto

{Formattato: SpazioDopo: 12 pt

in the results section, parameter values of the STREAM v1.3 model are set through an automauc

calibration procedie aimed at minimizing the differences between simulated and observed river

discharge. The main drawback of this parameterization technique is that the models parameterized

with this technique may exhibit (1) poor predictability of state variables anésflaixlocations and

periods not considered in the calibration, and (2) sharp discontinuities alechgsinkboundaries in

state flux, and parameter fields (eferz and Bldschl, 2004 To overcome these issues, several [Formanato; Sottolineato

regionalization procedures, as famstance summarizegh Cislaghi et al. (2020)could be [Formanato: Sottolineato

conveniently applied to transfer model parameters from hydrologically similar catchments to a

catchment of interest. In particular, the regionalization of model parameters could allow to: i) estimate

discharge and runoff time series over ungauged basins overcoming the need of discharge data

recorded from ihsitu networks; ii) estimate the model parameter values through a physically

consistent approach, linking them to the characteristics of the bégirslve the problem of

discontinuities in the model parameters, avoiding to obtain patchy unrealistic runoff maps. As this

aspect requires additional investigations and it is beyond the paper purpose, it will not be tackled

here.
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By looking at technial reviews of largescale hydrological models (e.@&ood and Smakhtin, 2015 [Format[ato: Sottolineato

Kauffeldt et al., 201 it can be noted there are many established models, similar in objective ar{ Formattato: Sottolineato

limitations to STREAM v1.3 model, already existing with support and usereagseamong others,

Community Land Model, CLMQleson et al., 2023European Hydrological Predictions for the | Formattato: Sottolineato

Environment, EHYPE, Lindstrém et al., 201,0H08, Hanasaki et al., 200°CRGLOBWB, van [Formanato: Sottolineato

'| Formattato: Sottolineato

Beek and Bierkens, 2008Vateri a Global Assessment érPrognosis WaterGARAIlcamo et al., "{F @t Sotolineat
ormattato: ottolineato

2003 ParFlovi CLM, Maxwell et al., 2015WRF-Hydro, Gochis et al., 2018 Some of them, e.g., [ Formattato: Sottolineato

[ Formattato: Sottolineato

ParFlowCLM or WRFHydro have been specifically configured across the continental United Stéte[ Formattato

: Sottolineato

o JC G J L

and showed good capability teproduce observed streamflow data over the Mississippi river basin

with performances decreased throughout the Great H@INeill et al., 2020Tijerina et al., 20211

which-is -consstent with the results we obtaingith STREAM v1.3 modeln-particular—asforthe

whereas the

[Formattato: Sottolineato

Formattato: Sottolineato

HoweveOn-the-other-handowever with respect to classical hydrological and land surface mpdels [

the-main-aspeetthat differentia®TREAM v1.3 isbased oshatitisa new concept for estimating

runoff and river dischargsith-respeettpwhich relies on=The twe-main-novelties a(a) thealmost

exclusive use of satellite observations, .affi) a simplification ofthe processeseinghat-are

modelled.

resolution—and-—accuracy of such—observations—Howelkis approachit—bringsalso several

advantages: 1) satellite data implicitly consider the human impabeowvater cycle observing some

processes, such as irrigation application or groundwater withdrawals, that are affected by large

uncertainty in classical hydrological models, 2) the satellite technology grows quickly and hence it is

expected that the sgalitemporal resolution and accuracy of satellite products will be improved in

the near future (e.g., 1 km resolution from new satellite soil moisture products and the next generation

gravity mission); the STREAM v1.3 model is able to fully exploit suchrowements3) -
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In-additien.theSTREAM v1.3 model simulates only the most important processes affecting the

generation of runoff, and considers only the most important variables as input (precipitation, surface

soil moisture and groundwater storage).other words, The model does nateed tosimulate

processes, such as evapotranspiration and infiltratiom-the classical-hydrelogicaland land surface

medelsand.t-Thereforeit haste-be censiderisctan independent modelling approafdr simulating

runoff and river dischargéhat can—TFhe-independence-of-the-different-approaches—nhiglalso

exploited for benchmarking and improving classical land surface and hydrological sgetel
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8. CONCLUSIONS

This study presents a negonceptual hydrologicanode| STREAM v1.3 for runoff and river
discharge estimatiorBy using as input satellite data of precipitation, soil moisture and terrestrial
water storage anomaligbe modehas been able to provide accurate daily river discharge and runoff
estimates at theutletriver section and the inner river sections and ev@.25° 0.25° spatial grid of

the Mississippi river basin. In particular, the model is suitable to reproduce:

1. river discharge time series over the calibrated river section with good performances both in

calibration and validation periods;
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2. riverdischarge time series over river sections not used for calibration and not located downstream
dams or reservoirs;

3. runoff time series with a quite good agreement with respethetoveltestablished GRUN
observationabased dataset used for comparison.

The integration of observations of soil moisture, precipitation and terrestrial water storage anomalies

is a first alternative method for river discharge and runoff estimation with respect to classical methods

based on the use of TWS#ly (suitable for rier basindarger thanl 6 06000 k m] , mont hly

scale) or on classical LSME4i et al., 201%

Moreover, although simple, the model has demonstrated a great potential to be easily applied over

subbasins with different climatic and topographic characiesjssuggesting also the possibility to

extendits application to other basins. In particular, the analysis over basins with high human impact,

where the knowledge of the hydrological cycle and the river discharge monitoring is very important,

deserves spial attention. Indeed, as the STREAM.3model is directly ingesting observations of

soil moisture and terrestrial water storage data, it allows the modeller to neglect prttases

implicitly accounted for in the input data. Therefore, hurdemen processege.g., irrigation, land

usechangg, that aretypically very difficult to simulate due to missing informatiandmight have a

large impact on the hydrological cyclleence on total runoff, could be implicitly modelled. The

application of the REAM v1.3 model on a larger number of basinsith different climatie

physiographic characteristics (e.m¢luding more arid basins, snedominated, lots of topography,

heavily managedwill allow to investigate the possibility to regionalize the mop@lameters and

overcome the limitations of the automatic calibration procedure highlighted in the discussion section
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CODE AVAILABILITY

The STREAM model version 1,.3vith a short user manuak freely downloadable in Zenodo

(https://zenodo.org/record/4744981bi: 10.5281/zerdn.4744984). The STREAML.3model code

is distributed through M language files, but it could be run with different interpreters of M language,

like the GNU Octave (freely downloadable hbtgps//www.gnu.org/software/octave/downlgad

DATA AVAILABILITY

All data and codes used in the study are freely available oAlintemperature data are available at

https://psl.maa.gov/data/gridded/data.cpc.globaltemp.hftakt access 25/11/202). In situ river

discharge data have been taken from the Global Runoff Data Center (GRDC,

https://www.bafg.de/GRDC/EMMome/homepage node.htrfiast access 25/11/202). Precipitation

and soil moisture data are available frdntp://pmm.nasa.gov/datccess/downloads/trmmand

https://esasoilmoisturecci.org/ respectively.
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1213 Table 1. Location of gauging stations over the Mississippi basins and upstream contributing area.
1214 Bold text is used tindicate stations where the STREAN.3 model has been calibrated.

. Latitud . Upstream Mean annual | Presence
# River Station e Longoltude area river of dam
name ©) ®) (km?) discharge
(m3/s)
. . Bismarck, A A Garrison
1 Missouri ND -100.82 46.81 48106 7 633 dam
. . Omaha, A 4 Gavins
2 Missouri NE -95.92 41.26 81406 3 914 Point Dam
. . Kansas A
3 Missouri City, MO -94.59 39.11 16229 1499
4| Missouri Hem‘gnn' 29144 | 3871 | 16330 232
5| Kansas Walznsego’ 96.30 | 3920 | 1436 141 Kanopolis
6 | Mississippi Ke‘l’:“k' 9137 | 4039 | 28269 1948
7 Rock Near | 9918 | 41.56 2368 199
Joslin, IL
8 | Mississippi | “"*'" | goga | 3700 [106776| 6018
Murray
9 | Arkansas Damtgear 9236 | 3479 | 4085 C 1249
Rock, AR
10| Mississippi V'gk:/lbs“r 9091 | 3232 |26866| 17487
11|  Ohio Mstrlﬁﬁo" 8874 | 3715 | 496061 7931
1215
1216
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1217 Table 2. Performance scores obtained over the Mississippi river sections during the calibration and
1218 validation periods.

# CALIBRATION PERIOD VALIDATION PERIOD

KGE R RRMSE KGE R RRMSE
() () (%) () () (%)

CALIBRATED SECTIONS

SCORE

10 0.78 0.78 30 0.74 0.80 38
9 0.62 0.75 71 0.67 0.85 77
6 0.83 0.84 39 0.73 0.84 46
4 0.77 0.78 46 0.72 0.75 50
11 0.82 0.82 44 0.70 0.86 51

SECTIONS NOT USED FOR CALIBRATION

1 -3.26 0.08 137 0.20 0.44 96
2 -0.57 0.48 118 0.40 0.53 89
3 0.16 0.71 83 0.39 0.70 72
5 -1.49 0.24 368 -1.26 0.31 358
7 0.53 0.68 71 0.20 0.70 81
8 0.80 0.84 36 0.77 0.84 39
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1229

Precipitation (P)

Air temperature (T,;)
P l

Total river discharge

Terrestrial Water Storage
Anomalies (TWSA)
Soil Moisture (SM)

Snow Module $0i Module Routing Module

Pr (P); Air Temp (Ta) r Qfu GIUH/NASH IUH
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Upper storage
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Figure 1. Configuration of the STREAWNL.3 model adopted for total runoff estimation. The model
includesthreemodulesthe snow module allowing to separate snowfall figmacipitation the soil
module that simulates the slow aqdick runoff components@suand Qfu, respectively) and the
routing module for flood simulatiorRed arrows indicaténput variables; black arrows indicate
intermediateoutputvariables; blue arrows indicate final output variahl@$e component®fu and
Qsuare computed by using satelli soil moistureand TWSA data as input to the soil module.
Please refer to text for symbols.
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1230

L Input data collection 1
— \
Digital Elevation Model Precipitation (TMPA 3B42) Input data
Location of gauging station Air Temperature (in situ) Processing J
Soil Moisture (ESA CCI) steps
Sub-basin N Terrestrial Water Storage Reference data
delineation Anomalies (GRACE) Output data

L Input data extraction for each sub-basin ‘

In situ river

¥ discharge

L STREAM calibration ‘ «— reference
stations

!

STREAM gridded runoff (0.25-
degree) and river discharge at the
outlet of each sub-basin

1231
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1233 Figure 2.Processingtepsof the STREAMv1.3 model
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1237 Figure3. Mississippi sukbasin delineation. Red dots indicate the location of the discharge gauging
1238 stations; different colours identify different inner sections (and the related contrikutigsins)

1239 used for the model calibration.
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1241

1242 Figure 4. Comparison between observed and simulated river discharge time series over the five
1243 calibrated sections over Mississippi river basin. Performance scores at the top of each plot refer to
1244 the entirestudy period (20032016).
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