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Chapter 1

Download

1.1 Introduction

1.1.1 Binaries

The easiest way to install ISSM is to download the pre-compiled binaries. No need to compile the
code, just open the compressed �le.

1.1.2 Source Code

If you would like to install ISSM from source, you will need to download the source code �rst. The
source code of ISSM (see License below) is available from an SVN repository. In order to fetch a version
of the code, users will need to install SVN on their machine (It is usually installed by default on most
platforms). Once SVN has been installed, ISSM can be downloaded by the following command:

$ svn --username anon --password anon checkout http://issm.ess.uci.edu/svn/issm/issm/trunk

This command will download the lastest version of ISSM from the repository, onto the current local
directory. Users are free to choose whichever location they want.

If you downloaded the source code, you need to compile and install ISSM. Compilation of the ISSM
source code is theoretically possible on any platform. It has been succesfully carried out on Linux
(RedHat and ubuntu), Windows (9 and 10) and macOS (from snow-leopard to Sierra). Here are some
instructions to compile and install ISSM from the source code:

• Linux/Mac

• Windows (under developement)

• Installation with AD capability (under developement)

• Installation with Solid Earth capability (under developement)

Compilation is a more involved process, which is not recommended for beginners or casual users.

1.1.3 Become an ISSM developer !

anon users have read-only access. Users willing to actively participate in the development of ISSM can
contact us.

16

http://issm.jpl.nasa.gov/download/binaries/
http://subversion.tigris.org/
http://subversion.tigris.org/
http://subversion.tigris.org/
http://issm.jpl.nasa.gov/download/unix
http://issm.jpl.nasa.gov/download/windows
http://issm.jpl.nasa.gov/download/autodiff
http://issm.jpl.nasa.gov/download/se
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1.1.4 License

Copyright (c) 2008-2020, California Institute of Technology.
All rights reserved. Based on Government Sponsored Research under contracts NAS7-1407 and/or
NAS7-03001.

Redistribution and use in source and binary forms, with or without modi�cation, are permitted pro-
vided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and
the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

3. Neither the name of the California Institute of Technology (Caltech), its operating division the
Jet Propulsion Laboratory (JPL), the National Aeronautics and Space Administration (NASA),
nor the names of its contributors may be used to endorse or promote products derived from this
software without speci�c prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTIC-
ULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE CALIFORNIA INSTITUTE
OF TECHNOLOGY BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EX-
EMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PRO-
CUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABIL-
ITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

1.2 Binaries

The binaries can be downloaded on the ISSM website.

This is the easiest way to install ISSM: no need to compile the code, just unzip the compressed �le!
You will then need to add ISSM tools to either MATLAB or Python.

1.3 Source installation of ISSM on UN*X systems

1.3.1 Environment variables

The compilation of ISSM requires several environment variables. Add the following lines in your shell
con�guration �le,

• ~/.bashrc or ~/.zshrc

export ISSM_DIR=<ISSMPATH>

source $ISSM_DIR/etc/environment.sh
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• ~/.cshrc

setenv ISSM_DIR <ISSMPATH>

source $ISSM_DIR/etc/environment.csh

where <ISSMPATH> is the path to the ISSM parent directory (ex: /home/<user>/svn/issm/trunk).

1.3.2 macOS

In order to install ISSM on macOS, your system must have Xcode, which can be installed from the
Mac App Store. You also need the Command Line Tools, which can be installed using

xcode-select --install

Unfortunately Xcode doesn't contain a Fortran compiler, which is required for some packages of PETSc.
Therefore you will have to install one. GFortran Binaries are available on the GCCWiki at the following
address: http://gcc.gnu.org/wiki/GFortranBinaries

1.3.3 External packages installation

All ISSM external packages are located in the directory externalpackages of the trunk. Several
packages may be installed depending on what users want to do. The following packages and installation
scripts are recommended for a standard installation of ISSM on Linux,

autotools install-debian-linux.sh

cmake install.sh

petsc install-3.12-linux.sh

triangle install-linux.sh

chaco install.sh

m1qn3 install.sh

semic install.sh

On macOS, the installation scripts are nearly the same,

autotools install.sh

cmake install.sh

petsc install-3.12-mac.sh

triangle install-mac.sh

chaco install.sh

m1qn3 install.sh

semic install.sh

For each library, di�erent installation scripts may exist depending on the version to be installed and
the machine operating system. Users should use the installation script that is the closest to their
environment. For example:

$ cd $ISSM_DIR/externalpackages/autotools

$ ./install.sh
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There is no guarantee the compilation will work on all systems. Some tweaking of the installation script
may be involved. Especially, the con�guration part of the install. (See compilation troubleshooting)

Note: after the installation of each package, one should source the environment:

$ source $ISSM_DIR/etc/environment.sh

ISSM comes with two interfaces: MATLAB (preferred) or Python (not fully supported). To run ISSM
with a Python interface, you will need python version 2.7 with the following packages: numpy, scipy
and matplotlib.

1.3.4 NumPy/Scipy (python interface only, skip if you are using MATLAB)

If you want to use the Python interface instead of the MATLAB interface, check that your python
installation has NumPy and SciPy. If it does not, you can follow these instructions (there are many
ways to install these packages, what follows is a suggestion).

1.3.4.1 macOS

If NumPy and SciPy are not already installed (they should be with the default installation of Python),
one can use pip:

First, we need to install pip if it has not been installed already,

sudo easy_install pip

Then, we can install NumPy, SciPy, and other libs with,

python -m pip install --user numpy scipy matplotlib nose

1.3.4.2 Linux

First, make sure that you have Python and pip installed,

sudo apt-get install python python-pip

Then, use pip to install NumPy, SciPy, and other dependencies,

python -m pip install --user numpy scipy matplotlib nose

1.3.5 ISSM compilation

ISSM relies on autotools to make source-code packages portable to many Unix-like systems. The last
step consists in generating the Make�les needed to compile ISSM. First, ISSM must be recon�gured:

$ cd $ISSM_DIR

$ autoreconf -ivf
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ISSM can then be con�gured. You need to create a con�guration �le called configure.sh and placed
in $ISSM_DIR. Here is an example of con�guration script for a macOS machine with the MATLAB inter-
face (you will need to change the path to MATLAB.We are using /Applications/MATLAB_R2015b.app/
as an example).

./configure \

--prefix=$ISSM_DIR \

--with-matlab-dir="/Applications/MATLAB_R2015b.app/" \

--with-triangle-dir="$ISSM_DIR/externalpackages/triangle/install" \

--with-mpi-include="$ISSM_DIR/externalpackages/petsc/install/include" \

--with-mpi-libflags="-L$ISSM_DIR/externalpackages/petsc/install/lib/ -lmpi -lmpicxx -lmpifort" \

--with-petsc-dir="$ISSM_DIR/externalpackages/petsc/install" \

--with-metis-dir="$ISSM_DIR/externalpackages/petsc/install" \

--with-blas-lapack-dir="$ISSM_DIR/externalpackages/petsc/install" \

--with-scalapack-dir="$ISSM_DIR/externalpackages/petsc/install/" \

--with-mumps-dir="$ISSM_DIR/externalpackages/petsc/install/" \

--with-m1qn3-dir="$ISSM_DIR/externalpackages/m1qn3/install" \

--with-numthreads=2

For the Python interface, it should look like:

./configure \

--prefix="$ISSM_DIR" \

--with-triangle-dir="$ISSM_DIR/externalpackages/triangle/install" \

--with-python-dir="/usr/" \

--with-python-numpy-dir="$HOME/.local/usr/lib/python2.7/dist-packages/numpy" \

--with-mpi-include="$ISSM_DIR/externalpackages/petsc/install/include" \

--with-mpi-libflags="-L$ISSM_DIR/externalpackages/petsc/install/lib -lmpi -lmpicxx -lmpifort" \

--with-petsc-dir="$ISSM_DIR/externalpackages/petsc/install" \

--with-scalapack-dir="$ISSM_DIR/externalpackages/petsc/install/" \

--with-mumps-dir="$ISSM_DIR/externalpackages/petsc/install/" \

--with-blas-lapack-dir="$ISSM_DIR/externalpackages/petsc/install" \

--with-metis-dir="$ISSM_DIR/externalpackages/petsc/install/" \

--with-m1qn3-dir="$ISSM_DIR/externalpackages/m1qn3/install" \

--with-numthreads=2

If you get the following error: ld: library not found for -lflapack, remove the line --with-blas-lapack-dir
(generally on macOS).

For most platforms, you might need to make some adjustments to the con�guration options mentioned
above. Some other examples are provided here.

If the con�guration went without any error, ISSM can now be compiled:

$ cd $ISSM_DIR

$ make

$ make install

ISSM installation is done!
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1.4 Source installation of ISSM on Windows (under develope-
ment)

1.4.1 Win10

Be sure to use an account name that does not have spaces in it, as this could be an issue with Cygwin.

1.4.2 Development Environment

Before you can begin to build ISSM you will need to con�gure your development environment. This
will require you install the following:

1. MATLAB

2. Cygwin

3. Visual Studio

1.4.2.1 Installing MATLAB

Installing MATLAB is fairly straightforward. However, it can be bene�cial to install in a directory
chain that contains no spaces.

Keep in mind that you can use older versions of MATLAB, but we have only tested using R2015a and
R2016a.

1.4.2.2 Cygwin

You will need Cygwin installed on your Windows platform to manage the compilation. Cygwin emu-
lates unix behaviour on windows machines. The compilation will still be carried out by the windows
SDK compiler, but the environment driving the compilation will be the unix-like Cygwin. When you
download Cygwin, make sure that you install it in the C:\Cygwin directory.

You will �nd the Cygwin setup executable on the www.cygwin.com webpage. Here is a link to it:
http://cygwin.com/setup. Download this �le to C:\Cygwin and be sure to reuse it when you want to
update your current Cygwin installation. Do not download setup.exe twice!

You will need the following packages downloaded to carry out the compilation of ISSM successfully, so
be sure to include them in your Cygwin install:

• subversion

• vim (or any other editor)

• patch

• make: The GNU version of the 'make' utility

• python: Python language interpreter

• unzip

Don't worry if you forget any packages, as you can always close Cygwin and run the installer again if
you �nd that you need to install other packages.
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1.4.3 Visual Studio

Technically, you should be able to compile ISSM with any compiler set. However, MATLAB only
o�cially supports Microsoft's compilers. As such, you will need to install Microsoft's Visual Studio in
order to continue through this guide.

Most versions of Visual Studio will probably work, but we recommend installing the newest community
version, which can be found here: https://www.visualstudio.com/. As of June 2016, the version is
14.0 a.k.a Community 2015.

Keep in mind that Visual Studio is a integrated development environment (IDE) that is used to develop
for various environments and in di�erent languages. As such, the default installation will not su�ce.

You need to make sure that you select C++ as a language and the Windows 10 Software Development
Kit (SDK).

Follow Figure 1 if you need help selecting the Visual Studio optional packages:

Figure 1.1: Figure 1

1.4.4 Building ISSM

1.4.4.1 Downloading ISSM

Download issm into your Cygwin home directory (note: this is di�erent from your Windows home
directory).

In Cygwin, run the following commands:

mkdir issm && cd issm

svn co --username anon --password anon http://issm.ess.uci.edu/svn/issm/issm/trunk

Once �nished, it is now time to set important environment variables. You can do this by setting and
exporting the environment variables at the Cygwin command line, or by modifying your '.bashrc',
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or whatever appropriate shell you are using. (Note: if you export from the command line, then you
will have to do this every time you start a new session). In either case, the following lines should be
executed or added to your speci�c rc �le:

export ISSM_DIR="$HOME/issm/trunk"

export MATLAB_DIR='/cygdrive/c/Program\ Files\ \(x86\)/MATLAB/R2016a'

The above lines assume that you have installed and downloaded both MATLAB and ISSM into the
default locations detailed earlier. If you have deviated from these instructions then simply modify the
paths to their appropriate locations.

Finally, you need to source two scripts. This can be accomplished by executing the following commands:

source $ISSM_DIR/etc/environment.sh

source $ISSM_DIR/externalpackages/windows/configs/sdk10.0-win64.sh

Again, this assumes that you have installed everything in the default locations. If you did not, then
you will have to modify 'sdk10.0-win64.sh' to re�ect the di�erent directories.

1.4.4.2 Checking Your Build Environment

Before trying to compile the externalpackages, you need to be sure that the Microsoft Visual Studio
compiler 'cl.exe' is working. To make sure, create a simple hello world example:

hello.cpp

#include <iostream>

int main(){

std::cout << "Hello World!\n";

return 0;

}

Try to compile it by doing: cl hello.cpp

If this does not work, do not go any further! Unfortunately, this is a complicated build as compared
to other platforms, so any number of things can go wrong. Make sure the following things are correct:

1. Your environment variables are set correctly.

2. You sourced the two scripts in the right order.

3. Cygwin, MATLAB, Visual Studio are installed in the default directories of you modi�ed the
appropriate variables/scripts to re�ect these di�erences

4. Visual Studio was installed with C++ support and with SDK 10.0.10240

If everything is correct, but you sill cannot get the hello world example to work, then please contact
us on our forum or by email and we'll be happy to help!
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1.4.4.3 Installing External Packages

Now you can start installing the following external packages. This is done by changing directory into
the appropriate directory within 'externalpackages' and running the appropriate scripts.

• For autotools, use install-win.sh

• For Petsc, use install-3.6-win10.sh

• For metis, use install-4.0-win10.sh

• For triangle, use install-win10.sh

1.4.4.4 Building ISSM

Once these externalpackages have been compiled, you can prepare the build system:

$ cd $ISSM_DIR

$ autoreconf -ivf

ISSM can then be con�gured. Here is an example of con�guration script for windows 10:

./configure --prefix=$ISSM_DIR \

--with-vendor=MSVC-Win64 \

--with-cxxoptflags='' \

--disable-static \

--enable-standalone-libraries \

--with-fortran=no \

--without-Gia \

--without-Love \

--without-kriging \

--without-kml \

--with-matlab-dir=$MATLAB_DIR \

--with-triangle-dir="$ISSM_DIR/externalpackages/triangle/install" \

--with-petsc-dir="$ISSM_DIR/externalpackages/petsc/install" \

--with-metis-dir=$ISSM_DIR/externalpackages/metis/install \

--with-blas-lapack-dir=$ISSM_DIR/externalpackages/petsc/install/lib/ \

--with-mpi-libdir="$ISSM_DIR/externalpackages/petsc/install/lib" \

--with-mpi-libflags="-Wl,libpetsc.lib" \

--with-mpi-include="$ISSM_DIR/externalpackages/petsc/install/include/petsc/mpiuni"

The con�guration �le must be placed in $ISSM_DIR and named configure.sh.

Finally, you can con�gure, make and make install:

./configure.sh

make

make install

That should complete the installation!
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1.4.5 How to Setup a Cron Job

Download exim and cron from cygwin setup. Run exim-config (don't forget to launch your cygwin
terminal as Administrator). If asked for a daemon name, type ntsec. Also, if cron complains about
sendmail, symlink /usr/lib/sendmail to /usr/sbin/sendmail. Then link /usr/sbin/sendmail to
/usr/bin/exim. Alternatively, if you have an smtp server, you can download and con�gure ssmtp.
Run ssmtp-config as Administrator and link /usr/sbin/sendmail to /usr/bin/ssmtp. After the
email has been con�gured, run cron-config as Administrator.

1.5 Source installation of ISSM with AD capability (under de-
velopement)

Automatic Di�erentiation is only supported for Linux and Mac. Please follow the steps of a regular
installation �rst and make sure it is working before adding AD.

1.5.1 External packages installation

The following additional external packages need to be installed:

• adjoinablempi

• adolc

Note: after the installation of each package, one should source the environment:

$ source $ISSM_DIR/etc/environment.sh

1.5.2 ISSM compilation

The con�guration script of ISSM needs to include the following additional options:

--with-adolc-dir=$ISSM_DIR/externalpackages/adolc/install \

--with-ampi-dir=$ISSM_DIR/externalpackages/adjoinablempi/install \

As of today, AD is not supported with PETSc, but you will need some of PETSc's packages to solve
linear systems so you should take out the --with-petsc-dir line of the con�guration script but keep
the other PETSc related lines such as MUMPS or scalapack. You will also need to deactivate the
kriging capability of ISSM with the --without-kriging option. Here is an example of con�guration
script:

./configure \

--prefix=$ISSM_DIR \

--disable-static \

--without-kriging \

--without-kml \

--without-Gia \

--without-Love \

--with-matlab-dir="/Applications/MATLAB_R2015b.app/" \

--with-triangle-dir="$ISSM_DIR/externalpackages/triangle/install" \
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--with-mpi-include="$ISSM_DIR/externalpackages/petsc/install/include" \

--with-mpi-libflags="-L$ISSM_DIR/externalpackages/petsc/install/lib/ -lmpi -lmpicxx -lmpifort" \

--with-metis-dir="$ISSM_DIR/externalpackages/petsc/install" \

--with-blas-lapack-dir="$ISSM_DIR/externalpackages/petsc/install" \

--with-scalapack-dir="$ISSM_DIR/externalpackages/petsc/install/" \

--with-mumps-dir="$ISSM_DIR/externalpackages/petsc/install/" \

--with-adolc-dir=$ISSM_DIR/externalpackages/adolc/install \

--with-ampi-dir=$ISSM_DIR/externalpackages/adjoinablempi/install \

--with-numthreads=2

You can now recon�gure and recompile ISSM, it is now fully adjoinable.
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Getting started

2.1 Loading ISSM tools

By default MATLAB and Python cannot locate ISSM functions and external packages. Therefore you
must execute the addpath command within MATLAB to change the so-called matlabpath appropri-
ately (and sys.path.append in Python).

2.1.1 MATLAB

NOTE: There does not currently exist a method for starting MATLAB from the GUI with ISSM
loaded.

You will need to

source $ISSM_DIR/etc/environment.sh

before starting MATLAB from the command line. As noted in our compilation instructions, it may
be easiest to simply add this to your shell con�guration �le,

• ~/.bashrc or ~/.zshrc

export ISSM_DIR=<ISSMPATH>

source $ISSM_DIR/etc/environment.sh

• ~/.cshrc

setenv ISSM_DIR <ISSMPATH>

source $ISSM_DIR/etc/environment.csh

where <ISSMPATH> is the path to the ISSM parent directory (ex: /home/<user>/svn/issm/trunk).

Once MATLAB is started, you must tell it where to �nd ISSM's executables and libraries with,

addpath <ISSMPATH>/bin/ <ISSMPATH>/lib/

27



CHAPTER 2. GETTING STARTED 28

again, where <ISSMPATH> is the path to the ISSM parent directory.

You can verify that ISSM works by executing

issmversion

You should get a message similar to,

Ice Sheet System Model (ISSM) Version 4.4

(website: http://issm.jpl.nasa.gov contact:issm@jpl.nasa.gov)

Build date: Wed Sep 18 14:00:06 PDT 2013

Copyright (c) 2009-2013 California Institute of Technology

to get started type: issmdoc

You can avoid having to run the addpath command every time MATLAB is started by creating an
alias for MATLAB in your shell con�guration �le,

alias matlab='matlab -r "addpath $ISSM_DIR/bin $ISSM_DIR/lib"'

2.1.2 Python

In Python, you can add ISSM's function to the current path with the following command:

import sys

sys.path.append('/usr/local/issm/trunk/bin/')

sys.path.append('/usr/local/issm/trunk/lib/')

You can verify that ISSM works by executing

from issmversion import issmversion

You should get a message similar to this:

Ice Sheet System Model (ISSM) Version 4.4

(website: http://issm.jpl.nasa.gov contact:issm@jpl.nasa.gov)

Build date: Wed Sep 18 14:00:06 PDT 2013

Copyright (c) 2009-2013 California Institute of Technology

2.1.3 Developers

Developers use the MATLAB and Python scripts in $ISSM_DIR/src/m instead of $ISSM_DIR/bin. The
path needs to be di�erent.

In MATLAB:

addpath /usr/local/issm/trunk/src/m/dev

devpath;
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or,

matlab -nodesktop -nosplash -r "addpath $ISSM_DIR/src/m/dev; devpath;"

In Python:

export PYTHONSTARTUP=$ISSM_DIR/src/m/dev/devpath.py

or for IPython users:

ipython -i $ISSM_DIR/src/m/dev/devpath.py

In the con�guration script ($ISSM_DIR/configure.sh), the following option should be added to pre-
vent MATLAB and Python scripts from being added to $ISSM_DIR/bin

--enable-development

2.2 Model class

2.2.1 MATLAB's model object

All the data belonging to a model (geometry, node coordinates, results, etc.) is held in the same
MATLAB/Python object model. To create a new model, one can type the following command in
MATLAB's Command window:

>> md=model;

This will create a new model named "md" whose class is "model". The information contained in the
model "md" are grouped by class, that contain �elds related to a particular aspect of the model (e.g.
mesh, material properties, friction, stressbalance solution, results of the runs, etc.) When one creates
a new model, all these �elds are empty or NaN (not a number), but "md" is ready to be used as a
model. The list of these classes is displayed when typing:

>> md

md =

mesh: [1x1 mesh2d] -- mesh properties

mask: [1x1 mask] -- defines grounded and floating elements

geometry: [1x1 geometry] -- surface elevation, bedrock topography, ice thickness,...

constants: [1x1 constants] -- physical constants

smb: [1x1 SMBforcing] -- surface mass balance

basalforcings: [1x1 basalforcings] -- bed forcings

materials: [1x1 matice] -- material properties

damage: [1x1 damage] -- parameters for damage evolution solution

friction: [1x1 friction] -- basal friction/drag properties

flowequation: [1x1 flowequation] -- flow equations

timestepping: [1x1 timestepping] -- time stepping for transient models

initialization: [1x1 initialization] -- initial guess/state

rifts: [1x1 rifts] -- rifts properties

slr: [1x1 slr] -- slr forcings
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debug: [1x1 debug] -- debugging tools (valgrind, gprof)

verbose: [1x1 verbose] -- verbosity level in solve

settings: [1x1 issmsettings] -- settings properties

toolkits: [1x1 toolkits] -- PETSc options for each solution

cluster: [1x1 generic] -- cluster parameters (number of cpus...)

balancethickness: [1x1 balancethickness] -- parameters for balancethickness solution

stressbalance: [1x1 stressbalance] -- parameters for stressbalance solution

groundingline: [1x1 groundingline] -- parameters for groundingline solution

hydrology: [1x1 hydrologyshreve] -- parameters for hydrology solution

masstransport: [1x1 masstransport] -- parameters for masstransport solution

thermal: [1x1 thermal] -- parameters for thermal solution

steadystate: [1x1 steadystate] -- parameters for steadystate solution

transient: [1x1 transient] -- parameters for transient solution

levelset: [1x1 levelset] -- parameters for moving boundaries (level-set method)

calving: [1x1 calving] -- parameters for calving

gia: [1x1 giaivins] -- parameters for gia solution

esa: [1x1 esa] -- parameters for elastic adjustment solution

love: [1x1 fourierlove] -- parameters for love solution

autodiff: [1x1 autodiff] -- automatic differentiation parameters

inversion: [1x1 inversion] -- parameters for inverse methods

qmu: [1x1 qmu] -- dakota properties

amr: [1x1 amr] -- adaptive mesh refinement properties

outputdefinition: [1x1 outputdefinition] -- output definition

results: [1x1 struct] -- model results

radaroverlay: [1x1 radaroverlay] -- radar image for plot overlay

miscellaneous: [1x1 miscellaneous] -- miscellaneous fields

2.2.2 Saving/loading a model

One can save the model with all its �elds so that the saved �le contains all the information in the
model, type the following command:

>> save squaremodel md

This will create a �le squaremodel.mat made from the model md. To load this �le, type:

>> loadmodel squaremodel

the loaded model will be named md.

2.3 Square ice shelf tutorial

This is an example of velocity computation in steady state for a square ice shelf. First thing, go to the
trunk/ and launch MATLAB. Then go to examples/SquareIceshelf/:

$ cd $ISSM_DIR

$ matlab

>> cd examples/SquareIceShelf/

Then, at the MATLAB prompt, you can create an empty model structure by typing:
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>> md=model;

Create a mesh of the domain outline with a resolution of 50,000 meters:

>> md=triangle(md,'DomainOutline.exp',50000);

De�ne the glacier system as an ice shelf (no island):

>> md=setmask(md,'all','');

Parameterize the model with the �le Square.par:

>> md=parameterize(md,'Square.par');

De�ne all elements as SSA:

>> md=setflowequation(md,'SSA','all');

Compute the velocity �eld of the ice shelf:

>> md=solve(md,'Stressbalance');

Visualize the velocity:

>> plotmodel(md,'data',md.results.StressbalanceSolution.Vel);
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Tutorials

3.1 Dataset download

To run the tutorials, you will need to download the following datasets and put them in trunk/examples/Data:

• Square ice shelf dataset

• SeaRISE Antarctica v0.75

• SeaRISE Greenland dev1.2

• MEaSUREs Antarctic velocities

• Pine Island ice thickness cross overs (dakota)

• Jason Box's SMB data

• Jakobshavn Isbrae bed map (we only need grids/Jakobshavn_2008_2011_Composite_XYZGrid.txt)

• GRACE and supporting datasets for SESAW tutorials

3.2 Mesh adaptation

3.2.1 Goals

In this tutorial, we show how to use the di�erent meshers of ISSM:

• Learn how to use the di�erent meshers of ISSM:

� squaremesh for square domains (ISMIP)

� roundmesh for round domain (EISMINT)

� triangle (from J. Shewchuk)

� bamg (adapted from F. Hecht)

• Use anisotropic mesh adaptation to optimize the mesh resolution spatially

Go to trunk/examples/Mesh/ to do this tutorial.
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3.2.2 Squaremesh

squaremesh generates structured uniform meshes for rectangular domains.

3.2.2.1 Usage

>> md=model;

>> md=squaremesh(md,100,200,15,25);

squaremesh takes the following arguments:

1. model

2. x-length (meters)

3. y-length (meters)

4. number of nodes along the x axis

5. number of nodes along the y axis

3.2.2.2 Example

The previous command creates the mesh shown below:

>> plotmodel(md,'data','mesh');
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3.2.3 Roundmesh

roundmesh generates unstructured uniform meshes for circular domains.

3.2.3.1 Usage

>> md=roundmesh(model,100,10);

roundmesh takes the following arguments:

1. model

2. radius (meters)

3. element size (meters)

3.2.3.2 Example

The previous command creates the mesh shown below:

>> plotmodel(md,'data','mesh');

3.2.4 Triangle

triangle is a very fast algorithm for mesh generation. Developed by J Shewchuk, it generates un-
structured triangular meshes.
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3.2.4.1 Usage

>> md=triangle(model,'Square.exp',.2);

triangle takes the following arguments:

1. model

2. ARGUS �le of the domain outline (.exp extension, see here for more details)

3. average element size (meters)

The previous command creates the following mesh:

>> plotmodel(md,'data','mesh');

You can change the resolution from 0.2 to 0.05 to get a higher resolution.

3.2.5 Bamg

BAMG stands for Bidimensional Anisotropic Mesh Generator. It has been developed by Frederic Hecht,
and was released in 2006 after more than 10 years of development. It is now part of FreeFEM++.
The algorithm that is available on ISSM is inspired from this original software but has been entirely
rewritten.
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3.2.5.1 Usage

>> md=bamg(model,...);

bamg takes as it's �rst argument a model, and then pairs of options

1. model

2. pairs of options (type help bamg to get a full list of options)

3.2.5.2 Uniform mesh

To create a non-uniform mesh, use the following options:

1. 'domain' followed by the domain name

2. 'hmax' followed by the size (meters) of each triangle

>> md=bamg(model,'domain','Square.exp','hmax',.05);

The previous command will create the following mesh (use plotmodel(md,'data','mesh') to visualize
the mesh):

Note that the nodes are not as randomly distributed as triangle. The strength of BAMG is not for
uniform meshes but for automatic mesh adaptation based on a metric.
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3.2.5.3 Non-Uniform mesh

To create a non-uniform mesh, use the following options:

1. 'domain' followed by the domain name

2. 'hvertices' followed by the element size for each vertex of the domain outline

In our example, Square.exp has 4 vertices. If we want a resolution of 0.2, except in the vicinity of the
third node, we use the following commands:

>> md=model;

>> hvertices=[0.2;0.2;0.005;0.2];

>> md=bamg(md,'domain','Square.exp','hvertices',hvertices);

Use the plotmodel(md,'data','mesh') command to visualize the newly de�ned mesh:

3.2.5.4 Mesh adaptation

We can use observations to generate a mesh that is adapted to the solution we are trying to model.
Given a solution �eld, bamg will calculate a metric based on the �eld's Hessian matrix (second deriva-
tive) to generate an anisotropic mesh that minimize the interpolation error (assuming that linear �nite
elements are used).

For a �rst example, we are going to use the observations given by the function shock.m. It generates
a discontinuity that requires the mesh to be highly re�ned along a circle.
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First, we generate a simple uniform mesh. We interpolate the observations on the vertices of this mesh:

>> md=bamg(model,'domain','Square.exp','hmax',.05);

>> vel=shock(md.mesh.x,md.mesh.y);

>> plotmodel(md,'data',vel,'edgecolor','w');
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With a simple uniform mesh, the discontinuity is not captured. It is best to start with a �ner mesh,
which captures the discontinuity rather well, and interpolate the observations on this �ner mesh to
adapt the mesh anisotropically.

>> md=bamg(model,'domain','Square.exp','hmax',.005);

>> vel=shock(md.mesh.x,md.mesh.y);

Now, we call bamg a second time to adapt the mesh according the vel. We do not reinitialize md

and call bamg again without specifying the 'domain', as a �rst mesh already exists in the model. We
provide the following options:

1. 'field' followed by vel, the �eld we want to adapt the mesh to

2. 'err' the allowed interpolation error (Here, the �eld must be captured within 0.05)

3. 'hmin' minimum edge length

4. 'hmax' maximum edge length

>> md=bamg(md,'field',vel,'err',0.05,'hmin',0.005,'hmax',0.3);

>> vel=shock(md.mesh.x,md.mesh.y);

>> plotmodel(md,'data',vel,'edgecolor','w');
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You can change the option 'err' to 0.03, to see the e�ect of 'err'. The ratio between two consecutive
edges can be controled by the option 'gradation'.

>> md=bamg(model,'domain','Square.exp','hmax',.005);

>> vel=shock(md.mesh.x,md.mesh.y);

>> md=bamg(md,'field',vel,'err',0.03,'hmin',0.005,'hmax',0.3,'gradation',3);

>> vel=shock(md.mesh.x,md.mesh.y);

>> plotmodel(md,'data',vel,'edgecolor','w');
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We can also force the triangles to be equilateral by using the 'anisomax' option, which speci�es the
maximum level of anisotry (between 0 and 1, 1 being fully isotropic).

>> md=bamg(model,'domain','Square.exp','hmax',.005);

>> vel=shock(md.mesh.x,md.mesh.y);

>> md=bamg(md,'field',vel,'err',0.03,'hmin',0.005,'hmax',0.3,'gradation',1.3,'anisomax',1);

>> vel=shock(md.mesh.x,md.mesh.y);

>> plotmodel(md,'data',vel,'edgecolor','w');
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You can also try to re�ne a mesh using the function circles.m, which is provided in the same directory.

3.2.5.5 Mesh re�nement in a speci�c region

It is sometimes necessary to specify a mesh resolution for an area of interest. We will use the same
example as before. The �rst step consists of creating an ARGUS �le that de�nes the region where we
want to re�ne the mesh.

We �rst plot vel and we call the function exptool to create a �le refinement.exp that de�nes this
region. Select add a contour (closed). Draw a contour over a given region, hit enter when you are
done, and then select quit. You should now see the refinement.exp �le in the current directory.

>> plotmodel(md,'data',vel,'edgecolor','w');

>> exptool('refinement.exp')
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Now, we are going to create a vector that speci�es, for each vertex of the existing mesh, the resolution
of the adapted mesh. We use NaN for the vertices we do not want to change. So in this example, this
will be a vector of NaN, except for the vertices in refinement.exp, where we want a resolution of 0.02:

>> h=NaN*ones(md.mesh.numberofvertices,1);

>> in=ContourToNodes(md.mesh.x,md.mesh.y,'refinement.exp',1);

>> h(find(in))=0.02;

>> plotmodel(md,'data',in,'edgecolor','w');

You will see that all the vertices that are in refinement.exp have a value of 1 (they are inside the
contour), and the others are 0.
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Now, we call bamg a third time, with the speci�ed resolution for the vertices that are in refinement.exp:

>> vel=shock(md.mesh.x,md.mesh.y);

>> md=bamg(md,'field',vel,'err',0.03,'hmin',0.005,'hmax',0.3,'hVertices',h);

>> vel=shock(md.mesh.x,md.mesh.y);

>> plotmodel(md,'data',vel,'edgecolor','w');
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3.2.5.6 Another example

If you would like to try another example, you can use the function circles.m instead of shock.m. It
is also a 1x1 square but with a pattern that inclused �ve circles.

3.3 Inverse method

3.3.1 Goals

• Learn how to use the model to invert for ice rigidity (B) and basal friction from surface velocities

• Being able to choose the right cost functions, with the right weights

• Understand the limitations of inversions

3.3.2 Introduction

Several model input parameters, such as the ice rigidity B (md.materials.rheology_B) and basal
fricion α (md.friction.coefficient), are di�cult to measure remotely and are critical controls on
ice dynamics.

To get a good guess of what these parameters are, we use inversions. Inversions consist in inferring
unknown parameters using additional observations. Here, we use surface velocities to infer our unknown
input parameters, by minimizing the mis�t between the observed and modeled velocities.
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For example, our cost function could be:

J (v) =

∫
S

1

2

((
vx − vobsx

)2
+
(
vy − vobsy

)2)
dS (3.1)

And so we would optimize our unknown model input to minimize the cost function J .

Inversions where �rst introduced to glaciology by MacAyeal [1993] for an SSA model, and extended
since to 3d models for other model parameters.

To illustrate this method, we are going to perform a twin experiment. We give ourselves a rigidity
�eld (B) and use the modeled velocities as synthetic observation in a second run, where we start from
another initial rigidity �eld, and see if we can recover the rigidity �eld that was used to generate the
observations.

3.3.3 Hands on 1 (ice rigidity, B)

3.3.3.1 Setp 1: Generating Observations

First, go to trunk/examples/Inversion/ and start MATLAB. We will start by creating a new model
and generate our synthetic observations. Open the runme.m and ensure that step=1 at the top of the
�le. Execute this �rst step:

>> runme

You will see on the left our prescribed rigidity, B, and to the right the calculated velocities. We choose
a pattern with 2 distinct values for B for the upper left region, and sti�er ice for the lower right, with
a sharp transition.
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In the next step, we our going to change the rigidity to something uniform, use our previously calculated
velocities (from step 1) as observations, and see if we can recover that initial pattern that was used to
generate the observations.

3.3.3.2 Step 2: Initial guess and initial velocity

We now change the rigidity, B, and make it uniform. The results of the previous step are taken as
observations (but we will only use them in step 3). Open runme.m and set step=2. Save the �le and
execute step 2 in MATLAB as above.
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We now see that the left panel is constant, and the velocity is symetrical. This is our initial guess for
B and our initial modeled velocity. In the next step, we are going to tune B, so that the modeled
velocity is as close as possible to the velocity of step 1.

3.3.3.3 Step 3: inverting for B

We perform here the inversion of B. Open runme.m and set the step as step=3.
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The general pattern is right (sti�er ice in the lower right), but it is noisy. Inverse problems are ill-
posed: a solution might not exist, might not be unique, and might not depend continuously on input
data. One of the consequences is that the inferred pattern for B is not smooth, and these wiggles
or not physical. Adding regularization that penalizes wiggles in the control parameter stabilizes the
inversion.

3.3.3.4 Step 4: Adding regularization

Here, we would like to add a term of regularzation to our cost function:

J (B) =

∫
S

w1
1

2

((
vx − vobsx

)2
+
(
vy − vobsy

)2)
dS +

∫
b

w2
1

2
‖∇B‖2db (3.2)

The second term, known as Tikhonov regularization, penalizes strong gradients in B. Since the in-
version tries to minimize our cost function J , the optimization algorithm will try to also reduce the
second term.

w1 and w2 are the weights associated to each component of the cost function. To have more regular-
ization, one should increase w2 (or decrease w1), and vice versa.

Set step=4 in the runme.m �le and execute it. Your results should now look like this:
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We successfully reconstructed the pattern of ice rigidity, but we could not capture the sharp transition
between high and low rigidity because of the regularization that we had to introduce to stabilize the
inversion.

3.3.4 Hands on 2 (friction)

We would like to do the same twin experiment here, but invert for basal friction of a grounded glacier.
Here, you are going to make modi�cations to the runme.m script.

3.3.4.1 Changes to step 1

1. The mask is now all grounded

2. Increase bed (md.geometry.base) and surface elevation (md.geometry.surface) by 100 meters

3. B (md.materials.rheology_B) is now uniform = 1.8x108

4. Friction coe�cient: 50, and 10 for 600,000<x<400,000

5. change the plotmodel command and plot md.friction.coefficient instead, between 0 and
100.

After running step 1 again, you should get the following �gure.

UCIrvine - Jet Propulsion Laboratory ISSM Documentation December 14, 2020



CHAPTER 3. TUTORIALS 51

If you don't, then double check your changes before looking at the solutions below. We are modeling
here a glacier �owing over a region where there is a lot of sliding. We want to see if the inversion can
reconstruct this region of low friction.

3.3.4.2 Solutions to step 1

%Generate observations

md = model;

md = triangle(md,'DomainOutline.exp',100000);

%CHANGES START

md = setmask(md,'','');

%CHANGES END

md = parameterize(md,'Square.par');

%CHANGES START

md.geometry.base=md.geometry.base+100;

md.geometry.surface=md.geometry.surface+100;

md.materials.rheology_B(:)=1.8e8;

md.friction.coefficient(:)=50;

pos=find(md.mesh.x>400e3 & md.mesh.x<600e3);

md.friction.coefficient(pos)=10;

%CHANGES END
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md = setflowequation(md,'SSA','all');

md.cluster = generic('np',2);

md = solve(md,'Stressbalance');

%CHANGES START

plotmodel(md,'axis#all','tight','data',md.friction.coefficient,'caxis',[0 100],'title','"True" coef',...

'data',md.results.StressbalanceSolution.Vel,'title','"observed velocities"')

%CHANGES END

save model1 md

3.3.4.3 Changes to step 2

For step 2, we now want to set our new �rst guess for the basal friction to a uniform value.

1. set the friction (md.friction.coefficient) to a uniform value of 50

2. change the plotmodel command and plot md.friction.coefficient instead, between 0 and
100.

After running step 2, you should get the following �gure:

if you don't... double check your changes. As you can see, the velocity does not show any fast �owing
ice stream in the center of the domain, as expected since the friction is uniform.

UCIrvine - Jet Propulsion Laboratory ISSM Documentation December 14, 2020



CHAPTER 3. TUTORIALS 53

3.3.4.4 Changes to step 3

We now want to invert for basal friction and see if we can reconstruct the zone of sliding. We need to
change what we are inverting for, and change the optimization parameters:

• We now invert for 'FrictionCoefficient'

• Do we keep the same cost function? yes for now...

• We want the parameter to be between 1 and 100

After running step 3, you should get the following �gure:

if you don't, the solutions are below. As you can see, we get more sliding close to the front, but the rest
of the domain is unchanged. And that's because when we look at the velocity (right), it does capture
the fast spot close to the front, so in terms of cost function, the inversion did a great job in matching
the observation. But if we look at the log of the velocity (we are adding one to avoid log(0)):

plotmodel(md,'data',md.inversion.vel_obs+1,'data',md.results.StressbalanceSolution.Vel+1,'log#all',10,'caxis#all',[1 400])
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we clearly see the zone of fast sliding in the observations but not in the results from the inversion.
So we need to change the cost function to add this information, we not only want the square of the
di�erence between modeled and observed velocities to be minimized, we also want their logs to be
minimized.

3.3.4.5 Solutions to step 3

...

md.inversion.control_parameters = {'FrictionCoefficient'};

...

md.inversion.min_parameters = 1*ones(md.mesh.numberofvertices,1);

md.inversion.max_parameters = 100*ones(md.mesh.numberofvertices,1);

...

3.3.4.6 Changing the cost function

We want the cost function to include an additional term:

J (v) =

∫
S

w1
1

2

((
vx − vobsx

)2
+
(
vy − vobsy

)2)
dS +

∫
S

w2

(
log

(
‖v‖+ ε

‖vobs‖+ ε

))2

dS (3.3)

This page lists all the cost function available. We want here the cost function to include the absolute
and relative mis�ts. Typing in MATLAB md.inversion will give you the numbers associated to these
cost function: [101,103]. We also need to determine the weights associated to each cost function: w1
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and w2. As a rule of thumb, it is generally preferable if the two components have the same order of
magnitude at the end of the optimization. You can try with w1 = w2 = 1 and run the inversion, look
at their contribution at the end of the inversion and increase (or decrease) w1. You need to change
the following in step 3:

1. We now want the cost functions 101 and 103

2. the coe�cients applied to each component of the cost functions has 2 columns (since there are 2
components)

3. We want to increase w1 to 3000

You should get the following results:

The solutions are below if you don't have the same �gure. We now successfully reconstructed the zone
of sliding! But again, the pattern is a little bit noisy, and we are going to add regularization.

3.3.4.7 Solutions to step 3b

md.inversion.cost_functions = [101 103];

md.inversion.cost_functions_coefficients = ones(md.mesh.numberofvertices,2);

md.inversion.cost_functions_coefficients(:,1)=3000;

md.inversion.cost_functions_coefficients(:,2)=1;
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3.3.4.8 Adding regularization

We want the cost function to include a regularization term:

J =

∫
S

w1
1

2

((
vx − vobsx

)2
+
(
vy − vobsy

)2)
dS +

∫
S

w2

(
log

(
‖v‖+ ε

‖vobs‖+ ε

))2

dS +

∫
B

w3
1

2
‖∇α‖2dB

(3.4)
You need to change the following in step 3:

1. We now want the cost functions 101, 103 and 501

2. the coe�cients applied to each component of the cost functions has 3 columns (since there are 3
components)

3. We want to set w3 to 0.01

You should get the following results:

The zone of sliding is captured and the inferred friction is smooth!

3.3.4.9 Solutions to step 3c

md.inversion.cost_functions = [101 103 501];

md.inversion.cost_functions_coefficients = ones(md.mesh.numberofvertices,3);
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md.inversion.cost_functions_coefficients(:,1)=3000;

md.inversion.cost_functions_coefficients(:,2)=1;

md.inversion.cost_functions_coefficients(:,3)=0.01;

3.4 ISMIP test

3.4.1 Goals

• Test the ISSM skills that you have gained so far

• Create ISSM models by Following the given keyword instructions

• Run tests from the Ice Sheet Model Intercomparison Project (ISMIP - Tests A and F)

Go to trunk/examples/ISMIP/ to do this tutorial.

3.4.2 Introduction / How To

The runme.m �le and *par �les give a layout of the simulation that has to be modi�ed.

• Each code line that has to be typed in is preceded by \%->. Type the appropriate code below
this symbol.

• Keywords introduced by # should be typed in MATLAB to get more information, if necessary

• The runme.m and *.par �les each have a corresponding Cheaty* �le that should be referenced
if stuck.

3.4.3 Test A

In Test A, we will generate a Square ice sheet �owing over a bumpy bed:

• Sinusoidal bedrock

• Ice frozen on the bed

• Periodic boundary conditions
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3.4.4 Simulation File Layout and Organization

The simulation �le runme.m is organized into di�erent steps, each with the same structure:

• Model loading

• Performing an action

• Model saving

The step speci�er steps is de�ned at the top of the runme.m �le.

3.4.5 Mesh

In place of loading a preceding model we initialize one. The action here is the generation of a mesh. To
do this initialize md as a new model (#help model) and generate a squaremesh (#help squaremesh)

with the following parameters. Afterward, plot the mesh and save the model.

• Mesh size: 80,000 meters

• Nodes in each direction: 20
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Load the preceding step (#help loadmodel). Path is given by the organizer with the name of the
given step. Set the mask (#help setmask). Note that all MISMIP nodes are grounded. Plot the
given mask (md.mask) to locate the �eld. Save the model.

• Mesh size: 80,000 meters

• Nodes in each direction: 20

• All grounded: default
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3.4.6 Parameterization

Load the preceding step. Next parameterize the model (#help parameterize). You will need to �ll-
up the parameter �le (given by the name ParamFile variable). Save the given model. It is important
to note that the values are not important as we are dealing with a no-sliding �ux. The values will be
overridden by the basal boundary conditions. Take care of the size of the parameters.

• Mesh size: 80,000 meters

• Nodes in each direction:20

• All grounded: default

• Ice-�ow parameter: B=6.8067 x 10^7 Pa s^1/n

• Glen's exponent: n=3
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3.4.7 Extrusion

Load Parameterization model. The action here is to extrude the preceding mesh. Next vertically
extrude the preceding mesh (#help extrude) with only 5 layers exponent 1. Plot the 3D geometry
and save the model.

• Mesh size: 80,000 meters

• Nodes in each direction: 20

• All grounded: default

• Ice-�ow paramter: B=6.8067 x 10^7 Pa s^1/n

• Glen's exponent: n=3

• 5 layer extrusion

UCIrvine - Jet Propulsion Laboratory ISSM Documentation December 14, 2020



CHAPTER 3. TUTORIALS 62

3.4.8 Flow Equation

Load the Extrusionmodel and set the approximation for the �ow computation (#help setflowequation).
We will be using the Higher Order Model (HO). Save the model.

• Mesh size: 80,000 meters

• Nodes in each direction: 20

• All grounded: default

• Ice-�ow parameter: B=6.8067 x 10^7 Pa s^1/n

• Glen's exponent: n=3

• 5 layers extrusion

• Flow model: HO

3.4.9 Boundary Conditions

Load the SetFlow model. Dirichlet boundary condition are known as SPC's, where ice is frozen to the
base with no velocity. SPC's are initialized at NaN one value per vertex. Extract the nodenumbers
at the base (#md.mesh.vertexonbase) and set the sliding to zero on the bed (Vx and Vy). Periodic
boundaries have to be �xed on the sides. Create tabs with the side of the domain for x, and create maxX
(#help find). This command give subsets of matrices based on boolean operations. Now create minX.
For y, max X and min X should be excluded. Now create min Y. Set the node that should be paired
together (#md.stressbalance.vertex_pairing). If we are dealing with IsmipF the solution is in
masstransport. Save the given model. (#md.masstransport.vertex_pairing=md.stressbalance.vertex_pairing).

• Mesh size: 80,000 meters

• Nodes in each direction: 20
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• All grounded: default

• Ice-�ow parameter: B=6.8067 x 10^6 Pa s^1/n

• Glen's exponent: n=3

• 5 layer extrusion

• Flow model: HO

3.4.10 Solve Model

Load the BoundaryConditionsmodel. Set the cluster (#md.cluster) with generic parameters (#help generic).
Set only the name and number of processes. Set which control message you want to see (#help verbose.)

Solve (#help solve). We are solving a StressBalance. Save the model, and plot the surface velocities.

• Mesh size: 80,000 meters

• Nodes in each direction: 20

• All grounded: default

• Ice-�ow parameter: B=6.8067 x 10^7 Pa s^1/n

• Glen's exponent: n=3

• 5 layers extrusion

• Flow model: HO
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3.4.11 Test F

Square ice sheet �owing over a bump.

• Gaussian bumped bedrock

• Ice frozen or sliding on the bed

• Periodic boundary conditions

• Transient model until steady-state

3.4.12 Actual Work and Results

Load the preceding model under the path given by the organizer with the name of the given step. Set
the cluster with generic parameters. Set only the name and number of the process. Set which control
message you want to see. Set the transient model to ignore the thermal model (#md.transient).
De�ne the timestepping scheme. Everything here should be provided in years (#md.timestepping).
Give the length of the time step (4 years). Give the final_time (20*4 years time_steps). Now
solve, we are solving for TransientSolution. Lastly plot the surface velocities. *Note: if using the
cheatsheet �le make sure you change line 8 to say "CheatyIsmipF.par". Here is the upper surface
velocity:

Side view:
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Top view:

3.5 Modeling Pine Island Glacier

3.5.1 Goals

• Model Pine Island Glacier

• Follow an example of how to create a mesh and set up the �oating ice shelf of a real-world glacier

• Use observational data to parameterize the model

• Learn how to use inversions to infer basal friction and plot the results
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3.5.2 Introduction

In this example, the main goal is to parameterize and model a real glacier. In order to build an
operational simulation of Pine Island Glacier, we will follow these steps:

• De�ne the model region

• Create a mesh

• Apply masks

• Parameterize the model

• Invert friction coe�cient

• Plot results

• Run higher-order simulation

Files needed for this tutorial can be found in trunk/examples/Pig/. The runme.m �le contains the
structure of the simulation, while the .par �le includes most parameters needed for the model set-up.
The .exp �les are shape �les that de�ne geometric boundaries of the simulation.

Observed datasets needed for the parameterization also need to be downloaded.

3.5.3 Setting-up domain outline

We �rst draw the domain outline of Pine Island Glacier based on observed velocity map. First, run
PigRegion.m in MATLAB. It produces a �gure with the observed velocities:

UCIrvine - Jet Propulsion Laboratory ISSM Documentation December 14, 2020

https://issm.jpl.nasa.gov/documentation/tutorials/datasets/


CHAPTER 3. TUTORIALS 67

You can then use the exptool to draw the model domain:

>> exptool('PigDomain.exp')

Note: if you have not downloaded the datasets, you will get the following error:

Could not open ../Data/Antarctica_ice_velocity.nc."

If this occurs, go into the Data directory and run the script to download the datasets. You will not be
able to proceed until you do so.

This example shows you how to create your own model boundary, but for the rest of the tutorial, we
will be using the provided domain outline, which is ModelDomain.bkp. Change this �le into an .exp

�le to will erase your contour:

>>!mv ModelDomain.bkp ModelDomain.exp

3.5.4 Mesh

The �rst step is to create the mesh of the model domain.
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In the runme.m �le, the mesh is generated in a multi-step process. Open the runme.m �le and make
sure that the variable step, at the top of the �le, is set to step=1. In the code, you will see that in
step 1 the following actions are implemented:

• a uniform mesh is created

• the mesh is then re�ned using anisotropic mesh re�nement. We use the surface velocity as a
metric

• Set the mesh parameters

• Plot the model and load the velocities from http://nsidc.org/data/nsidc-0484.html

• Get the necessary data to build up the velocity grid

• Get velocities (note: You can use ncdisp('file') to see an ncdump)

• Interpolate the velocities onto a coarse mesh. Adapt the mesh to minimize error in velocity
interpolation

• Plot the mesh

• Save the model

Execute the runme.m �le to perform step 1. You should see the following �gure:
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3.5.5 Mask

The second step of the runme.m creates the masks required to specify where there is ice in the domain,
and where the ice is grounded.

First, we specify where the ice is grounded and �oating in the domain:

• The �eld md.mask.ocean_levelset contains this information

� Ice is grounded if md.mask.ocean_levelset is positive

� Ice is �oating if md.mask.ocean_levelset is negative

� The grounding line lies where md.mask.ocean_levelset equals zero

Then we specify where ice is present:

• The �eld md.mask.ice_levelset contains this information

� Ice is present if md.mask.ice_levelset is negative

� There is no ice if md.mask.ice_levelset is positiive

� The ice front lies where md.mask.ice_levelset equals zero

Open runme.m and set step=2. Now, execute the runme.m �le to run step 2.

After executing step 2, you should see the following �gure that represents the mask:
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3.5.6 Parameterization

Parameterization of models is usually done through a di�erent �le (Pig.par). Parameters which are
unlikely to change for a given set of experiments are set there to lighten the runme.m �le. In this
example we use SeaRISE data to parameterize the following model �elds:

• Geometry

• Initialization parameters

• Material parameters

• Forcings

• Friction coe�cient

• Boundary conditions

Some parameters are adjusted in runme.m, as they are likely to be changed during the simulation. This
is the case for the stress balance equation that is set-up using setflowequation

Now, change the runme.m �le as before, and run step 3 to perform the Parameterization.

3.5.7 Inversion of basal friction

The friction coe�cient is inferred from the surface velocity using the following friction law:

τb = −β2Nr‖vb‖s−1vb (3.5)

• τb : Basal drag

• N : E�ective pressure

• vb: Basal velocity (equal surface in SSA approximation)

• r: Exponent (equals q/p of the parameter �le)

• s: Exponent (equals 1/p of the parameter �le)

The procedure for the inversion is as follows:

• Velocity is computed from the SSA approximation

• Mis�t of the cost function is computed

• Friction coe�cient is modi�ed following the gradient of the cost function

All the parameters that can be adjusted for the inversion are in md.inversion.

Run step 4 and look at the results, they should be similat to the �gure below:
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3.5.8 Plot results

Plotting ability are mainly based on plotmodel for simple graphs. However, you can also use or create
your own routines.

Change the step to 5 and run the simulation; it should create the following �gure:
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3.5.9 Higher Order (HO) Ice Flow Model

The last step of this tutorial is to run a forward model of Pine Island Glacier with the Higher-Order
stress balance approximation.

The following steps need to be performed in step 7 of the runme.m �le:

• Load the previous step

� Model to load is Control_drag

• Disable the inversion process

� Change iscontrol to zero the inversion �ag (md.inversion)

• Extrude the mesh

� help extrude

� Keep the number of layers low to avoid long computational time

• Change the stress balance approximation

� Use the function setflowequation

• Solve

� We are still solving for a StressBalanceSolution
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• Save the model as in the preceding steps

If you need help, the solution is provided below.

Step 7 provides a comparison of the shelfy-stream and higher-order approximations. The following
�gure should be created if you run step 7:

3.5.10 Solutions for step 6

if step==6

md = loadmodel('./Models/PIG_Control_drag');

md.inversion.iscontrol=0;

disp(' Extruding mesh')

number_of_layers=3;

md=extrude(md,number_of_layers,1);

disp(' Using HO Ice Flow Model')

md=setflowequation(md, 'HO', 'all');
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md=solve(md,'Stressbalance');

save ./Models/PIG_ModelHO md;

end

3.6 Pine Island Glacier, melting experiment

3.6.1 Goals

This example is adapted from the results presented in Seroussi et al. [2014b]. We model the impact of
di�erent external forcings on the dynamic evolution of Pine Island Glacier. The main objectives are
to:

• Run transient simulations (10 years) of a real glacier

• Change external forcings

• Compare the impact of changes on glacier dynamics and volume

Files needed to run this tutorial are located in trunk/examples/PigSensitivity/. This tutorial relies
on the Pine Island tutorial, so make sure to complete it �rst.

3.6.2 Evolution over 10 years

We �rst run a simulation of Pine Island Glacier over a 10 year period, starting from the Pig tutorial.

In the runme.m �le, several parameters are adjusted before running the transient model. Open runme.m

and make sure that the variable step, at the top of the �le, is set to step=1. In the code, you will see
that in step 1 the following actions are implemented:

• Load model from the Pig tutorial

• Apply some basal melting rate

� On grounded ice: md.basalforcings.groundedice_melting_rate

� On �oating ice: md.basalforcings.floatingice_melting_rate

• Specify time step length and run duration in md.timestepping

• Disable inverse method in md.inversion.iscontrol = 0

• Indicate what components of the transient to activate

� md.transient.ismasstransport

� md.transient.isstressbalance

� md.transient.isthermal

� md.transient.isgroundingline

� md.transient.ismovingfront

• Request additional outputs

• Solve transient solution

UCIrvine - Jet Propulsion Laboratory ISSM Documentation December 14, 2020

http://issm.jpl.nasa.gov/documentation/tutorials/pig/


CHAPTER 3. TUTORIALS 75

Execute runme to perform step 1. The following �gure shows the evolution of the ice velocity and
grounding line positions at the beginning and at the end of the simulation.

3.6.3 Increased basal melting rate

In this second step, we increase the basal melting rate under the �oating portion of the domain from
25 to 60 m/yr. The other parameters remain the same as in the previous step.

Open runme.m and change the step at the top of the �le to step=2, then run the simulation. The
following �gure shows the evolution of ice velocity and grounding line evolution for the increased
melting scenario:
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3.6.4 Retreat of ice front position

In this third step, we would like to test the sensitivity of Pig to calving events and retreat the position
of the ice front. We �rst need to create a new contour of the region to be removed from the domain.
Use exptool to create a new RetreatFront.exp contour that include the portion of �oating ice that
should calve o�.

Then extract the domain from the initial model, exluding the RetreatFront.exp area using the
extrude routine.

>> md2=modelextract(md,~RetreatFront.exp)md2=modelextract(md,~RetreatFront.exp)

As this operation changes the model domain, some parameters and boundary conditions have the be
adjusted or rede�ned.

The boundary conditions are reset with SetMarineIceSheetBC and the model can then be solved.

Open runme.m and change the step at the top of the �le to step=3, then run the simulation. The
following �gure shows the evolution of ice velocity and grounding line evolution with the new ice front:
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3.6.5 Change in surface mass balance

In this last step, we change the surface mass balance, while the other parameters remain similar to the
previous simulations.

Open runme.m and implement the changes needed to investigate the impact of the surface mass balance,
similar to what was done with the other external forcings in the previous steps. These changes are:

• Load model from the Pig tutorial

• Change the surface mass balance

• Verify the ocean-induced melting rate

� On grounded ice: md.basalforcings.groundedice_melting_rate

� On �oating ice: md.basalforcings.floatingice_melting_rate

• Specify time step length and run duration in md.timestepping

• Disable inverse method in md.inversion.iscontrol

• Indicate what components of the transient to activate
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� md.transient.ismasstransport

� md.transient.isstressbalance

� md.transient.isthermal

� md.transient.isgroundingline

� md.transient.ismovingfront

• Request additional outputs

• Solve transient solution

Don't forget to change step at the top of the runme.m.

Below is the solution to make this change:

if step==4

%Load model

md = loadmodel('./Models/PIG_Transient');

%Change external forcing basal melting rate and surface mass balance)

md.basalforcings.groundedice_melting_rate=zeros(md.mesh.numberofvertices,1);

md.basalforcings.floatingice_melting_rate=25*ones(md.mesh.numberofvertices,1);

md.smb.mass_balance=2*md.smb.mass_balance;

%Define time steps and time span of the simulation

md.timestepping.time_step=0.1;

md.timestepping.final_time=10;

%Request additional outputs

md.transient.requested_outputs={'default','IceVolume','IceVolumeAboveFloatation'};

%Solve

md=solve(md,'Transient');

%Save model

save ./Models/PIG_SMB md;

end

Here is an example of velocity change and grounding line evolution when the surface mass balance is
doubled:
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3.6.6 Evolution of the ice volume above �oatation

In the previous steps, we investigated the impact of changes in external forcings on ice �ow dynam-
ics (grounding line evolution and glacier acceleration). We can also see how these changes impact
the glacier volume and its contribution to sea level rise. To do so, we use the additional output
IceVolumeAboveFloatation requested in the transient simulation. The following �gure shows the
evolution of the volume (in Gt/yr) above �oatation for the four scenarios performed previously.
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3.7 Uncertainty quanti�cation (requires Dakota)

3.7.1 Goals

• Use ISSM to assess how errors in model inputs propagate through a 2D SSA steady state ice
�ow model

• Use ISSM to assess how ice �ow model diagnostics (e.g. velocity, mass �ux, volume) can be
a�ected by perturbations to input in other parts of the model domain

• Become familiar with the uncertainty quanti�cation (DAKOTA-based) tools available in ISSM

Go to trunk/examples/UncertaintyQuantification/ to do this tutorial.

3.7.2 Introduction

This experiment will use the model of Pine Island Glacier that was saved in the previous PIG tutorial.
It aims to use the ISSM-DAKOTA integrated model system to (1) quantify the uncertainties of model
output in response to errors in model input and (2) quantify sensitivities of model output to spatial
perturbations in model input.
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• Our model inputs: ice thickness, ice rigidity, and basal friction.

• Our model outputs: mass �ux at 13 �ux gates across PIG.

Our Uncertainty Quanti�cation (UQ) methods are based on the Design Analysis Kit for Optimization
and Terascale Applications (DAKOTA) software [Eldred et al., 2008], which is embedded in ISSM.
The following diagram illustrates the relationship between ISSM and DAKOTA. The ISSM mesh must
be partitioned (i.e. vertices can be grouped together so that DAKOTA varies them together - this is
helpful when you want to vary equal areas over the unstructured mesh). To partition the mesh, you
can do so linearly (one partition per vertex), or you can use an external package software like Chaco to
weight vertices and create the partitions you desire. DAKOTA is resposible for varying the provided
inputs in the user-de�ned way (uniform, normal, etc.) for each mesh partition and then launching an
ISSM run with the perturbed forcing. DAKOTA is also responsible for creating statistics for output,
which are also user de�ned. Output diagnostics include ice mass �ux through de�ned gates and scalar
output (e.g. Ice Volume, Total SMB, etc.).

Tutorial steps to be taken:

• Begin by loading results from the examples/Pig tutorial (the end of basal friction inversion)

• Load ice thickness cross-over errors from IceBridge 2009 WAIS campaign

• Run sampling analysis using ice thickness cross-over and mass �ux diagnostics

• Run sensitivity analysis using ice thickness, ice rigidity, and basal friction as inputs and mass
�ux diagnostics

• Plot results: partition, sampling, and sensitivities

Samping Analysis: Quantify the uncertainties of model output (diagnostics like mass �ux, Ice Volume,
Max Velocity) in response to errors in model input. The �gure below illustrates an example of Sampling
errors in ice thickness. The result for each gate, is a histogram of Mass Flux (one value per each model
run, or sample). Below is the resulting histogram for mass �ux gate 2.

Sensitivity Analysis: Quantify sensitivities of model output to small spatial perturbations in model
input. The �gure below illustrates how this is accomplished. One by one, partition input is changed
by a small percentage, and a model run is launched. For this speci�c run, changes in model diagnostics
(output) are assessed by DAKOTA. This is done for each partition, such that the number of model
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runs is equal to the number of mesh partitions. In the end, every diagnostic is associated with a
sensitivity value at every partition. In this way, we can make a map of sensitivities for each diagnostic.
Sensitivities can also be ranked, for each diangistic, in importance. One such example of DAKOTA
output is the 'importance factor', or sensitivities scaled by error margins [Larour et al., 2012b, a],
illustrated below as UQ sensitivity analysis output for mass �ux gate 2.

For maniscript examples of these studies, see Larour et al. [2012b, a]; Schlegel et al. [2013, 2015].

3.7.3 Flux Gates

Flux gates are ARGUS (*.exp) �les found in ./MassFluxes. The gates are positioned across PIG at
the inset of tributary glaciers.

Mass �uxes will be computed in (Gt/yr) for all of these gates (using the depth-average ice velocity, ice
thickness, and ice density)

Run step 1 of the runme.m to plot the gates overlayed over the PIG surface velocities.
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3.7.4 Loading Cross-Over Errors

For ice thickness errors we will use McCords cross-over errors from CReSIS. First you will load errors.
Some of these errors are too large, too small, or need to be interpolated onto a larger domain (you
will �lter these out). Load cross overs '../Data/CrossOvers2009.mat'. Interpolate cross over errors
over our mesh vertices. Avoid NaN values. Filter out unrealistic error ranges. Avoid large unrealistic
values. Transform into absolute errors and setup a minimum error everywhere.

Run Step 2 in the runme.m to load the crossover errors.

3.7.5 Sampling Analysis

In order to accomplish the sampling step, we must �rst partition the mesh into equal area partitions.
We'll start with 50. You can try and play with the package for partitioning ('chaco' or 'linear'), the
number of partitions, and weighting ('on' or 'o�').

• See lines 69-73 in the runme.m �le

• Run step 3

To plot the corresponding partition over a plot of the mesh:

• See lines 243-253, Step 5.

Note that after using Chaco, your partitions may look di�erent from those illustrated here, because
there is a randomness to the Chaco algorithm, and results di�er on di�erent computer systems.
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Second, we must de�ne our UQ input. Here, we will sample ice thickness (H), so we must de�ne errors
on each partition for H with a corresponding PDF (Probability Density Function). Here we calculate
the crossover errors on each partition. In this example, we will sample a normal error distribution
around every partition. To do so, we need to specify to DAKOTA that we want a normal sampling,
and we must provide the standard deviation of error at every partition. Because crossover errors
represent the full range of thickness errors, we assume this represents a 6-sigma normally distributed
spread. Therefore, we set the standard deviation equal to the crossover error at a particular location,
divided by 6:

• See lines 75-81

Third, we must set up the desired diagnostics, or output responses. In this case, we choose ice mass
�ux at 13 �ux gates around the domain:

• See lines 83-109

For all responses, we specify a string identi�er and the desired output con�dence intervals. We also
need to specify an *.exp �le to de�ne each �ux gate, and directory where to �nd the latter.

• See lines 111-125

Finally, we need to designate a sampling strategy. Options include 'nond_samp' for sampling or
'nond_l' for local reliability method/sensitivity analysis, following DAKOTA guidelines. Because
this step is a sampling exercise, we choose 'nond_samp'. We set the number of samples (30 for now)
and also choose which sampling algorithm (e.g. 'lhs' or 'random') DAKOTA will use.

In addition, we setup persistent parameters, this includes parallel concurrency, verbosity, and data
backup.

• See lines 134-139

We also have to tighten the solver tolerance (in order to avoid spurious sensitivities to develop) before
solving.

• See lines 141

Because the ISSM-DAKATA framework now runs in parallel, our implementation requires that DAKOTA
runs with a master/slave con�guration. This means that at least 2 cpu's are needed to run the UQ,
such that:

md.cluster.np=md.qmu.params.processors_per_evaluation*N

where N is an integer which represents the number of parallel DAKOTA threads that will run at once.
In this example, we run with 4 processors. One DAKOTA thread will run on 3 processors (slave),
while 1 processor (always) serves as the master.

• See lines 152-153

Don't forget to deactivate inversion (iscontrol=0), and to activate UQ run (isdakota=1).

• See lines 156

Note that results will be in md.results.dakota and md.qmu.results.

To initiate the UQ sampling, run step 3 in the runme.m �le.
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3.7.6 Sensitivity Analysis

Next we quantify importance factors (sensitivities scaled by error margins) for model inputs: ice
thickness (H), basal friction (α), and ice rigidity (B). We specify a 5% error margin on all inputs.
For partitions, we choose 10 partitions, and setup for model diagnostics is the same as for sampling
analysis.

• To add model inputs, and specify a 5% purterbation range:

� See lines 175-179

• To specify new sensitivity method, tell DAKOTA to use local reliability or 'nond_l':

� See lines 213-215

We specify the same parallel cpu con�guration, and we solve the same way as in step 3. Note this
time, we turn DAKOTA verbosity on as an example.

• See lines 228-238

Run step 4 to launch the sensitivity runs.

3.7.7 Plot Results

Plot Sampling Results: In order to plot the results, we extract the results for one of the mass �ux gates,
and display a histogram of the sampling results for that particular gate. ISSM has a plotting function
for this, 'plot_hist_norm'. Note that ISSM mass �ux results are in mass �ux in m3 water equiv/s.
Here we convert to Gt/yr before we plot. Remember that your results may look di�erent because
of the randomness that is introduced into the partitions and algorithms; results may be di�erent on
di�erent computer systems.

• runme.m step 6 will plot the relative frequency histogram for mass �ux gate 1.

• See lines 254-272

Plot Sensitivity Results:

• To retrieve sensitivities for each model input:

� See lines 285-287

• To plot sensitivities:

� See lines 289-296

• To retrieve importance factors for each model input:

� See lines 299-301
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• To plot the importance factors:

� See lines 303-310

• Run step 7, this step will result in two images. The �rst is the sensitivities (S), and the second
in the importance factors (If, sensitivities scaled by input errors).

3.7.8 Additional Exercises

• Add diagnostic IceVolume or MaxVelocity

• Sample with a uniform distribution (See help uniform_uncertain)

• Sample additional variables (i.e. friction coe�cient, ice rheology)

• Try qmu on a di�erent solution type

• Change number of partitions. Note: for sensitivity this could take a while!

3.8 Jakobshavn Isbræ

3.8.1 Goals

• Construct a 2-dimensional model of Jakobshavn-Isbrae, West Greenland

• Follow a simple tutorial exercise: create and parametrize an ISSM model

• Use ISSM to invert for a basal friction parameter on a real-world domain

Change into trunk/examples/Jakobshavn/ to do this tutorial.
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3.8.2 Introduction

In this tutorial, we construct a 2-dimensional model of Jakobshavn-Isbrae, West Greenland, and use
it to invert for the basal friction parameter.

3.8.2.1 Download

For this tutorial, we will use a dataset from the SeaRISE Initiative: Greenland_5km_v1.2.nc. This
data should be saved in the examples/Data directory (see dataset download).

3.8.3 runme �le

The runme.m �le in trunk/examples/Jakobshavn/ is a list of commands to be run in sequence at the
MATLAB command prompt. The tutorial is decomposed into 4 steps:

1. Mesh generation (anisotropic adaptation)

2. Model parameterization (using the SeaRISE dataset)

3. Launch of the inversion for basal friction

4. Plotting of the results

We will follow these steps one by one by changing the selected step at the top in runme.m.

3.8.4 Step 1: Mesh generation

Open runme.m and make sure that the �rst step is activated:

steps = [1];

In the �rst step, we create a triangle mesh with 2,000 meter resolution using the domain outline �le
Domain.exp. We then interpolate the observed velocity data onto the newly-created mesh. We use
these observations to re�ne the mesh accordingly using bamg. In regions of fast �ow we apply 1,200 m
resolution, and in slow �owing areas we increase the resolution to up to 15 km:

md=bamg(md,'hmin',1200,'hmax',15000,'field',vel,'err',5);

Go to trunk/ and launch MATLAB and then go to examples/Jakobshavn/.

$ cd $ISSM_DIR

$ matlab

>> cd examples/Jakobshavn/

Then execute the �rst step:

>> runme

Step 1: Mesh creation

Anisotropic mesh adaptation

WARNING: mesh present but no geometry found. Reconstructing...

new number of triangles = 3017
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3.8.5 Step 2: Model parameterization

In this step parameterize the model. We set for example the geometry and ice material parameters.
We use the setmask command to de�ne grounded and �oating areas. All ice is considered grounded
for now. Type help setmask to display documentation on how to use this command. The model
is then parameterized using the Jks.par �le. We soften the glacier's shear margins by reducing the
model's ice hardness, B, in the area outlined by WeakB.exp to a factor 0.3.

Open runme.m and make sure that the second step is activated: steps = [2];

>> runme

Step 2: Parameterization

Loading SeaRISE data from NetCDF

Interpolating thicknesses

Interpolating bedrock topography

Constructing surface elevation

Interpolating velocities

Interpolating temperatures

Interpolating surface mass balance

Construct basal friction parameters

Construct ice rheological properties

Set other boundary conditions

boundary conditions for stressbalance model: spc set as observed velocities

no smb.precipitation specified: values set as zero

no basalforcings.melting_rate specified: values set as zero

no balancethickness.thickening_rate specified: values set as zero

3.8.6 Step 3: Control method

In the parameterization step, we applied a uniform friction coe�cient of 30. Here, we use the basal
friction coe�cient as a control so that the modelled surface velocities match the observed ones. The
mismatch between observation and modelled surface velocities is quanti�ed by the value of a cost
function. The type of cost function determines to a large degree the result of the inversion process.
Di�erent cost functions are available, type md.inversion to see a list of available cost functions:

Available cost functions:

101: SurfaceAbsVelMisfit

102: SurfaceRelVelMisfit

103: SurfaceLogVelMisfit

104: SurfaceLogVxVyMisfit

105: SurfaceAverageVelMisfit

201: ThicknessAbsMisfit

501: DragCoefficientAbsGradient

502: RheologyBbarAbsGradient

503: ThicknessAbsGradient

Inverting for basal drag, we can use the cost functions that start with a 1. The cost functions can be
combined and weighted individually:

%Cost functions

md.inversion.cost_functions=[101 103];

md.inversion.cost_functions_coefficients=ones(md.mesh.numberofvertices,2);

md.inversion.cost_functions_coefficients(:,1)=40;

md.inversion.cost_functions_coefficients(:,2)=1;
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Our cost function is thus the sum of �SurfaceAbsVelMis�t�, the absolute of the velocity mis�t, and
�SurfaceLogVelMis�t�, the logarithm of the velocity mis�t. We weigh the �rst cost function 40 times
more than the latter one.

Open runme.m and make sure that the third step is activated: steps = [3];

>> runme

Step 3: Control method friction

checking model consistency

marshalling file Jakobshavn.bin

uploading input file and queueing script

launching solution sequence on remote cluster

Launching solution sequence

call computational core:

preparing initial solution

control method step 1/20

....

3.8.7 Step 4: Display results

Here, we display the results. Open runme.m and make sure that step number 4 is activated. Your
results should look like this:
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3.9 Modeling the Greenland ice sheet

3.9.1 Goals

• Learn how to set up a coarse continental-scale Greenland model

• Follow an example to initialize a continental domain, with a given ARGUS (*.exp) �le and to
parameterize with the SeaRISE netcdf dataset

• Become familiar with how to set up and force transient input in ISSM

• Plot results of forward simulation experiments

Go to trunk/examples/Greenland/ to do this tutorial.

3.9.2 Introduction

In this tutorial, you will learn how to set up a continental Greenland model using the SeaRISE ice
sheet model input dataset [Nowicki et al., 2013]. In addition, you will gain experience in interpolation
of datasets on to your continental ice sheet mesh and in setting up a transient forcing in ISSM. Finally,
you will run a transient solution, resulting in a forward historical simulation of the Greenland Ice Sheet.
Note that the model we set up here is coarse and is not recommended for use in a publication. A good
use for this example it is use it as a starting point to learn how to use ISSM. You may wish to improve
the model provided here by increasing the resolution of the ice sheet domain outline, increasing the
mesh resolution, and choosing your own/improved datasets for model parameterization.

Tutorial steps to be taken:

• Mesh Greenland with given *.exp �le

• Adapt mesh using SeaRISE velocity data

• Parameterize (similar to the PIG model), except that all domain boundaries are on the ice front
and do not have to be constrained

• Stress Balance: run inverse method to control drag

• Transient: Run a 20-year forward run

� Use an appropriate time step for your resolution

� Force SeaRISE surface mass balance for 10 years

� For the next 10 years, simulate a warming scenario: decrease the surface mass balance
linearly, reaching a decrease of 1.0 m/y by year 20

• Plot transient results

• Run an example exercise, forcing your Greenland model with historical SMB through time

3.9.3 Mesh

In Step 1, we create a mesh using the triangle method (lines 10-11). This creates a new model named
md and meshes the model domain, de�ned by an outline �le 'DomainOutline.exp', at a resolution of
20,000 meters. Next, we adapt the mesh based on SeaRISE velocities, where the minimum resolution
will be 5 km in locations where the velocity gradient is large and 40 km where the velocity gradient is
small. The velicity data we will use resides in '../Data/Greenland_5km_dev1.2.nc' (line 5). Step 1
consists of the following steps:
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• Fill the variable vel with the interpolated velocities (Hint: you need x and y velocities plus nc�le
x and y coordinates)

• Mesh adapt your Greenland model (bamg)

� Use variable vel

� Set hmax=400000 and hmin=5000

• Convert x, y coordinates to lat/long and then save your model to a �le

Review the code used to create a continental Greenland mesh (lines 8-30) in the readme.m �le. After
creating the mesh and saving the model, the code uses plotmodel to plot a mesh visualization.

Execute step 1 in the runme.m �le. After doing so, you should see the �gure below:

3.9.4 Parameterization

Call the setmask function with empty arguments, to denote that all ice is grounded. Then parameterize
your mesh with �le Greenland.par. Next, set your �ow equation to SSA for all. Read through the
parameter �le ./Greenland.par, which is similar to your PIG .par �le, but for Greenland. Here,
we are parameterizing a full continental domain, so all points along the domain boundary will be
considered ice front. As a result, these boundaries do not need to be constrained, therefore the single
point constraints variables will all be set to NaN.

Run step 2. This will save your parameterized model. Now, plot the new model thickness and velocity.
For example:
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>> plotmodel(md,'data',md.geometry.thickness)

>> plotmodel(md,'data',md.initialization.vel,'caxis',[1e-1 1e4],'log',10)
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3.9.5 Stress Balance

Use control methods to inversely solve for Greenland FrictionCoe�cient (Step 3, lines 44-81). Note:
Remember that md.inversion can be called for help!

• Set three di�erent cost functions

� Absolute value of surface velocity

� Log of surface velocity

� Drag coe�cient gradient

• Set cost functions coe�cients to 350, 0.6, and 2*10^-6

• Set gradient scaling to 50

• Specify max inversion parameter = 200, min inversion parameter = 1

• Solve a 30-step Stress Balance model in 2D, SSA

• Copy result Friction Coe�cient to model (md) value

• Save your model

Review step 3 in the runme.m to verify that the parameters have been set properly. Run step 3 in the
runme.m to perform the steps above.
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3.9.6 Transient

You are now ready to run a transient! In Step 4, we will simulate a simple constant warming trend
over Greeland by forcing a temporal decrease in md.smb.mass_balance.

Specify a transient forcing by adding a time value to the end (in the end+1 position) of the column of
forcing variable values. For example, let SMB be the initial values of surface mass balance. To impose
the forcing such that before time 10, surface mass balance is set to the column vector smb, and after
time 20, it is set to smb-1 we use the following code:

• >> md.smb.mass_balance = [ smb smb-1]

>> md.smb.mass_balance = [ md.smb.mass_balance; ...

[10 20]]

By default, ISSM will linearly interpolate surface mass balance between time 10 and time 20 in this
example. Prior to �rst and after last imposed time, forcing values remain constant. In order to turn
interpolation o� (i.e. use a step function), you would set md.timestepping.interp_forcings=0. If
this values is set to 0, then your surface mass balance will change at the speci�ed time, and will remain
constant until a new value (column vector with time in the last row) is speci�ed.

Steps to set up your transient:

• Set control md.inversion.iscontrol back to 0

• Interpolate surface mass balance from SeaRISE dataset, converting from water to ice equivalent

• Impose SeaRISE surface mass balance for 10 years then linearly decrease to 1 m/yr by year 20

• Set time step to 0.2 and output frequency to 1 (every time step will be output in results)

• Ask your model to save IceVolume, TotalSmb, and SmbMassBalance transient output

• Solve a 20 year Transient in 2D, SSA

• Save your model

• Review lines 83-112 in runme.m

In Step 5, we give you an example of how to plot the transient results (lines 114-145). To see how the
transient results are stored in your model, type md.results.TransientSolution.

Now, run steps 4 and 5 to launch your transient and plot results.
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3.9.7 Exercise

Now, let's run our transient with historical mass balance! Use Jason Box's surface mass balance (SMB)
time series as forcing [Box et al., 2013; Box , 2013; Box and Colgan, 2013].1

First, format the SMB provided. In Step 6 of the runme.m �le, we extract the SMB timeseries from
the netcdf �le, and create a timeseries plot (lines 147-175). Execute step 6. This will result in the
�gure below:

In Step 7, we will relax the model towards equilibrium with the mean SMB forcing. An example
of a 20 year relaxation to the time series mean is shown in runme.m, step 7. Run step 7, which

UCIrvine - Jet Propulsion Laboratory ISSM Documentation December 14, 2020



CHAPTER 3. TUTORIALS 96

will assign the mean SMB to md.smb.mass_balance and run a transient model for 20 years, with a
timestep of 0.2 years, saving the results every timestep. Step 7 will save the results in the Model
"Greenland.HistoricTransient."

To plot the relaxed version of the model that you just created, change step 5 to load the model
"Greenland.HistoricTransient" rather than "Greenland.Transient," and run step 5 again.

To reach equilibrium, the model should run on the order of 1000 years. Since, 1000 years might take
quite a long time to run on a personal computer, you may want to try running for 200 years instead.

To accomplish this extended relaxation, alter step 7 to run for the extended time period (200 years in-
stead of 20 years). In the last line of this step, save your model as ./Models/Greenland.HistoricTransient_200yr
instead of ./Models/Greenland.HistoricTransient, to avoid overwriting the old model. Then, run
step 7 again. This run of 200 years will take longer than your orginal 20 year run.

When you are done with step 7, complete step 8 on your own as an exercise. Fill in the required code
to plot the results in step 8. Follow the comments, write the code to load the historic transient model,
and create line plots of relaxation run (use Step 5 as a reference). Then, save surface mass balance
by looping through 200 years (i.e. 1000 steps). Plot the surface mass balance time series in the �rst
subplot. Title this plot "Mean Surface Mass Balance".

Next, save velocity by looping through 1000 steps. Plot velocity time series in a second subplot. Title
this plot "Mean Velocity".

Lastly, save Ice Volume by looping through 1000 steps. Plot volume time series in a third subplot.
Title this plot "Ice Volume" and add an x label of "years". The resulting plot should look like this:
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In Step 9, we will use the 200 year relaxed ice sheet as a starting condition for a historic transient run.
To do so we need to save the 200 year resulting geometry and velocities into the model state. To load
your past results see lines 254-259.

Next, we load the Box time series saved earlier in mat �le, smbbox.mat, and then (lines 261-300):

• Interpolate every month of Box SMB onto the ISSM grid: insert a column for each month

• Add a �nal row indicating that the value should be set in the middle of each month

• Solve at a monthly time step and save monthly results

Run step 9, which will excute your historical transient forward simulation, monthly from 2003-2012.

Then, run step 10 to plot a time series of total surface mass balance, max velocity, and ice volume.
See Lines 305-329.
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1 The year 1840-2012 Greenland near surface air temperature (T) and land ice SMB reconstruction after Box
[2013] is calibrated to RACMO2 output [van Meijgaard et al., 2008; Ettema et al., 2009; van den Broeke et al.,
2009; van Angelen et al., 2011]. The calibration for T and SMB components is based on the 53 year overlap
period 1960-2012. The calibration for snow accumulation rate is shorter because ice core data availability drops
after 1999. Calibration is made using linear regression coe�cients for 5 km grid cells that match the average
of the reconstruction to RACMO2.

The RACMO2 data are resampled and reprojected from the native 0.1 deg (∼10 km) grid to a 5 km grid
better resolving areas where sharp gradients occur, especially near the ice margin where mass �uxes are largest.
Several re�nements are made to the Box [2013] temperature (T) and SMB reconstruction. Multiple station
records now contribute to the near surface air temperature for each given year, month and grid cell in the
domain while in Box [2013], data from the single highest correlating station yielded the reconstructed value.
The estimation of values is made for a domain that includes land, sea, and ice. Box [2013] reconstructed T
over only ice. A physically-based meltwater retention scheme [Pfe�er et al., 1990, 1991] replaces the simpler
approach used by Box [2013]. The RACMO2 data have a higher native resolution of 11 km as compared to
the 24 km Polar MM5 data used by Box [2013] for air temperatures. The revised surface mass balance data
end two years later in year 2012. The annual accumulation rates from ice cores are dispersed into a monthly
temporal resolution by weighting the monthly fraction of the annual total for each grid cell in the domain
evaluated using a 1960-2012 RACMO2 data.

3.9.8 Additional Exercises

• Increase SMB instead of decrease over time

• Create an instantaneous step in SMB forcing at 10 years instead of a steady change over time

• Create a more advanced SMB forcing, like cyclic steps or a curve
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• Force SMB to change only in certain areas of the ice sheet

• Add more melt in the ablation zone, but more snow in the upper elevations

• Force another �eld transiently (e.g. friction coe�cient)

• Run the Box time series yearly or for a longer subset of time. This could take a while!

3.10 Modeling the Greenland ice sheet using IceBridge data

3.10.1 Goals

• Follow an example of how to improve a coarse Greenland model by adding higher resolution Operation
Icebridge (OIB) data

• Learn how to use the ISSM meshing tools to re�ne the Jakobshavn Isbræ (JI) basin

• Learn how to insert higher resolution bedrock and surface elevation data from the OIB campaign into
the model within the JI basin

Go to trunk/examples/IceBridge/ to do this tutorial.

3.10.2 Introduction

Tutorial steps to be taken:

• Re�ne the Greenland mesh using given JI outline.

• Parameterize the model, and include the high-resolution OIB bedrock and surface data.

• Plot the ice base and surface data.

• Stress Balance: run 2 inverse method runs to solve for control drag (20 steps recommended).

• Transient: launch 20 year runs, with coarse and re�ned bedrock and surface elevation data.

• Plot the transient results.

3.10.3 Mesh

We modify the experiment from the Greenland SeaRISE tutorial, and improve from there. Run the �rst step
in runme.m �le to mesh the Greenland domain (similar to the previous tutorial), and plot the model. Note
that the code in step 1 is interrupted after making the default mesh. Plot the model:

>> plotmodel (md,'data','mesh');
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Now, we want to re�ne the mesh in JI area. An outline of this area Jak_outline.exp can be found in the
current directory. Use the exptool command to view this outline:

>> exptool('Jak_outline.exp');

Next, we modify the bamg command by imposing a 3 km resolution within the JI area using hmaxVertices.
Note that, to implement the changes noted above you must deactivate the �rst occurance of the bamg command
in step 1, as well as the return command. Do this by commenting out these lines, and running step 1 again.
Plot the results.
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Use Matlab's zoom tool in the �gure to make a close-up of the JI domain.

3.10.4 Parameterization

We want to include high-resolution bedrock and surface elevation data acquired in the OIB mission. The data
is accessible at: http://data.cresis.ku.edu/data/grids/Jakobshavn_2008_2011_Composite_XYZGrid.txt

Save the �le in the ../Data/ directory.
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To do this, the bedrock data is read, transformed into a usable grid, and interpolated to the mesh in the
parameter �le Greenland.par:

%Reading IceBridge data for Jakobshavn

disp(' reading IceBridge Jakobshavn bedrock');

fid = fopen('../Data/Jakobshavn_2008_2011_Composite_XYZGrid.txt');

titles = fgets(fid);

data = fscanf(fid,'%g,%g,%g,%g,%g',[5 266400])';

fclose(fid);

[xi,yi]= ll2xy(md.mesh.lat,md.mesh.long,+1,45,70);

bed = flipud(reshape(data(:,5),[360 740])); bed(find(bed&=& -9999))=NaN;

bedy = flipud(reshape(data(:,1),[360 740]));

bedx = flipud(reshape(data(:,2),[360 740]));

%Insert Icebridge bed and recalculate thickness

bed_jks=InterpFromGridToMesh(bedx(1,:)',bedy(:,1),bed,xi,yi,NaN);

in=ContourToMesh(md.mesh.elements,md.mesh.x,md.mesh.y,\ldots

'Jak_grounded.exp','node',1);

bed_jks(~in)=NaN;

pos=find(~isnan(bed_jks));

md.geometry.base(pos)=bed_jks(pos);

Modify the Greenland.par �le such that the surface elevation data is also included for the JI area.

UCIrvine - Jet Propulsion Laboratory ISSM Documentation December 14, 2020



CHAPTER 3. TUTORIALS 103

Solution:

%Reading IceBridge data for Jakobshavn

disp(' reading IceBridge Jakobshavn bedrock');

fid = fopen('../Data/Jakobshavn_2008_2011_Composite_XYZGrid.txt');

titles = fgets(fid);

data = fscanf(fid,'%g,%g,%g,%g,%g',[5 266400])';

fclose(fid);

[xi,yi]= ll2xy(md.mesh.lat,md.mesh.long,+1,45,70);

bed = flipud(reshape(data(:,5),[360 740])); bed(find(bed&=& -9999))=NaN;

surf = flipud(reshape(data(:,4),[360 740])); surf(find(surf&=& -9999))=NaN;

bedy = flipud(reshape(data(:,1),[360 740]));

bedx = flipud(reshape(data(:,2),[360 740]));

%Insert Icebridge bed and recalculate thickness

bed_jks=InterpFromGridToMesh(bedx(1,:)',bedy(:,1),bed,xi,yi,NaN);

surf_jks=InterpFromGridToMesh(bedx(1,:)',bedy(:,1),surf,xi,yi,NaN);

in=ContourToMesh(md.mesh.elements,md.mesh.x,md.mesh.y,\ldots

'Jak_grounded.exp','node',1);

bed_jks(~in)=NaN;

surf_jks(~in)=NaN;

pos=find(~isnan(bed_jks));

md.geometry.base(pos)=bed_jks(pos);

md.geometry.surface(pos)=surf_jks(pos);

md.geometry.thickness=md.geometry.surface-md.geometry.base;

Next, let's plot the surface elevation, the ice thickness, and base:

Figure 3.1: plotmodel(md,'data',md.geometry.surface)
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Figure 3.2: plotmodel(md,'data',md.geometry.thickness)

Figure 3.3: plotmodel(md,'data',md.geometry.base)

To plot the di�erence in the ice base topography between SeaRISE and OIB datasets do (1) modify the parame-
terization step in your runme.m �le by commenting out all the above lines which insert the OIB data, and change
the name the model is saved under from Greenland.Parameterization2 to Greenland.Parameterization and
run step 2 again. A di�erence in the �elds can be plotted using:

>> md2=loadmodel('Models/Greenland.Parameterization2')

>> md=loadmodel('Models/Greenland.Parameterization')

>> plotmodel(md,'data',md2.geometry.base-md.geometry.base)

Zoom to the JI basin for better visibility.
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3.10.5 Stress Balance

We now use inverse control methods to solve for Greenland friction coe�cient. The velocity map below contains
some gaps. Exclude the gaps from the inversion by creating a new *.exp �le that outlines all the gaps in velocity
data using the exptool:

>> exptool('data_gaps.exp')

Exclude these data gaps in the inversion by giving them zero weight during the inversion process:

in=ContourToMesh(md.mesh.elements,md.mesh.x,md.mesh.y, 'data_gaps.exp','node',1);

md.inversion.cost_functions_coefficients(find(in),1)=0.0;

md.inversion.cost_functions_coefficients(find(in),2)=0.0;

Launch the stressbalance simulation, and plot velocity and basal friction coe�cient. A logarithmic plot scale
reveals more highlights of the velocity �eld structure:

>> plotmodel(md,'data',md.results.StressbalanceSolution.Vel,'log',10,'caxis',[0.5 5000]);

>> plotmodel(md,'data',md.results.StressbalanceSolution.FrictionCoefficient);

They should look like this:
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Even at this coarse resolution we can identify the high friction values inland and lower values towards the
coast, which may be related to the basal thermal regime of the ice sheet.

3.10.6 Transient

Finally, do a transient run (step 4) for 20 years, and decrease the surface mass balance linearly by 1 m w.e./yr
over the last 10 years (ncdata='../Data/Greenland_5km_dev1.2.nc';).

%Set surface mass balance

x1 = ncread(ncdata,'x1');

y1 = ncread(ncdata,'y1');

smb = ncread(ncdata,'smb');

smb = InterpFromGridToMesh(x1,y1,smb',md.mesh.x,md.mesh.y,0)*1000/md.materials.rho_ice;

smb = [smb smb smb-1.0];

md.smb.mass_balance = [smb;1 10 20];

Your results will be located in md.results.TransientSolution. Plot your results using step 5. First, plot the
initial plan view of velocity, surface mass balance, thickness, and surface. They should look like this:
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You can plot time series of surface mass balance, mean velocity and ice volume:
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3.10.7 Results

Well done! Here are some suggestions on what to explore further:

• How would you make a plot of time series of results from the SeaRISE and IceBridge experiments?

• How would you make a plot of the di�erence between �nal and initial ice thickness?

3.11 Subglacial Channel Formation from a Single Moulin (SHAKTI)

3.11.1 Goals

• Learn to set up a subglacial hydrology simulation using the SHAKTI model (Subglacial Hydrology and
Kinetic, Transient Interactions, Sommers et al. [2018]),

• Run a test with steady input into a single moulin to see an e�cient drainage pathway develop from the
moulin to the out�ow, and obtain the corresponding e�ective pressure, hydraulic head, and basal water
�ux distributions.

Go to trunk/examples/shakti/ to do this tutorial.

3.11.2 Introduction

The runme.m �le and moulin.par go through the steps and basic structure to set up and run a subglacial
hydrology model with steady input into a single moulin at the center of a 1 km square, tilted slab of ice. These
�les can be altered to create simulations on di�erent domains and geometries, with di�erent meltwater inputs
(distributed or into moulins, steady or time-varying). The runme.m script is set up as three distinct steps,
saving the model at each stage:

1. Mesh generation

2. Parameterization

3. Hydrology solution

3.11.3 Mesh Generation

Run step 1 in runme.m to generate an unstructured mesh on a 1 km square with typical element edge
length of 20 m. This mesh shown here has 4,032 elements and 2,096 vertices. To plot your mesh, use
plotmodel(md,'data','mesh')
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3.11.4 Parameterization

Run step 2 in runme.m to de�ne the model parameters. First we call on standard parameters de�ned in the
moulin.par �le (bed and ice geometry, sliding velocity, material properties, etc.). Then we de�ne hydrology-
speci�c parameters for the SHAKTI model (initial hydraulic head, Reynolds number, subglacial gap height,
boundary conditions, etc.).

The model domain is set up as a 500 m thick slab of ice, with bed and surface slope of 0.02. We begin by
assuming the hydraulic head is such that the water pressure is equal to 50% of the ice overburden pressure,
Re=1,000 everywhere, and the initial gap height is 0.01 m. The out�ow boundary (x=0 m) is set to atmospheric
pressure (h = zb) with a "Type 1" (Dirichlet) condition. We set the distributed input from the englacial system
to the subglacial system as zero (for this example, we will de�ne the moulin input in the next step).

To look at the bed topography, ice surface, initial head, and initial gap height, you can plot them in Matlab:

plotmodel(md,...

'data',md.geometry.base,'title','Bed Elevation [m]',...

'data',md.geometry.surface,'title','Surface Elevation [m]',...

'data',md.hydrology.head,'title','Initial Head [m]',...

'data',md.hydrology.gap_height,'title','Initial Gap Height [m]')

3.11.5 Hydrology solution

In step 3, we specify which machine we want to run the model on, including number of processors to be used,
de�ne the model time step, �nal time, and prescribe the moulin inputs. In this example, we put a steady
moulin input of 4 m3 s−1 at the center of the domain (x=500 m, y=500 m). We also impose a no-�ux "Type
2" (Neumann) boundary condition at all boundaries (except the out�ow, where we have our Dirichlet condition
de�ned already in step 2).

Now that the set up is complete, we can run the model! md=solve(md,'Transient');

The �nal steady con�gurations for e�ective pressure, hydraulic head, basal water �ux, and gap height can be
visualized by plotting:

plotmodel(md,'data',md.results.TransientSolution(end).EffectivePressure,'title','Effective Pressure [Pa]',...

'data',md.results.TransientSolution(end).HydrologyHead,'title','Head [m]',...

'data',md.results.TransientSolution(end).HydrologyBasalFlux,'title','Basal Water Flux [m^2 s^{-1}]',...

'data',md.results.TransientSolution(end).HydrologyGapHeight,'title','Gap Height [m]')
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You can see that a distinct pathway has formed from the moulin at the center to the out�ow at the left.
Hydraulic head (related to water pressure) is highest directly around the moulin, and the head is lower in the
channel than in the areas above and below it in the y-direction.

To watch the evolution through time in an animation, use the command:

plotmodel(md,'data','transient_movie')

You will be prompted to select which parameter to animate, and can watch an e�cient subglacial channel
emerge from the moulin to the out�ow!

3.12 Adaptive Mesh Re�nement (AMR)

3.12.1 Goals

In this tutorial, we show how to use the mesher BAMG to run a simulation with AMR:

• Learn how to set up the AMR properties and a re�nement criterion;

• Run a transient simulation with AMR using the MISMIP3d setup to track the grounding line migration.

Go to trunk/examples/AMR/ to do this tutorial.

3.12.2 Introduction

The runme.m �le and mismip.par go through the steps and basic structure to set up and run the MISMIP3d
experiment with adaptive mesh re�nement to track the grounding line positions. The runme.m script is set up
as three distinct steps, saving the model at each stage:

1. Mesh generation

2. Parameterization

3. Transient solution with AMR

3.12.3 Mesh Generation

Run step 1 in runme.m to generate an unstructured coarse mesh on a 800 x 50 km domain with typical element
edge length of 10,000 m (10 km). This coarse mesh shown here has 820 elements and 496 vertices. To plot
your coarse mesh, use plotmodel(md,'data','mesh','fontsize',12);
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3.12.4 Parameterization

Run step 2 in runme.m to de�ne the model parameters. First we call on standard parameters de�ned in the
mismip.par �le (bed and ice geometry, sliding velocity, material properties, etc.). Then we de�ne AMR-speci�c
parameters to run an AMR transient simulation (resolution at the grounding line, distance to the grounding
line used as criterion, ratio between two consecutive edges, etc.).

The MISMIP3d domain is initally set up as a 100 m thick slab of ice. The MISMIP3d bed is de�ned as
r = −100− x/1000 (in [m], negative if below sea level). The surface mass balance is constant over the domain
and equal to 0.5 m/yr. A Weertman-type fricion law is applied on the grounded ice. The basal friction
coe�cient is uniform over the domain and equal to 107 Pam−1/3s1/3. The ice viscosity parameter, B (= A1/n

is equal to 2.15 × 108 Pa s−1/3.

To look at the initial ice surface, you can plot it in Matlab:

plotmodel(md,'data',md.geometry.surface,'title','Initial Surface Elevation [m]','fontsize',12);

3.12.5 Transient solution with AMR

In step 3, we specify which machine we want to run the model on, including number of processors to be used,
de�ne the model time step, �nal time, and prescribe the AMR frequency, i.e, how often the mesh needs to be
updated. In this example, we run 500 yr forward in time to track the grounding line movement as soon as
the initial thin ice slab starts to grounded on the bedrock. The ice starts to grounded in x=0, the boundary
of the ice divide (vx=0 at x=0). We set the AMR frequency equal to 1, what means that the mesh is update
(re�ned/coarsen) very time step). In this example, a time step equal to 1 yr is imposed. The SSA equations
are used as the �ow model.

Now that the set up is complete, we can run the model! md=solve(md,'Transient');

The solutions at the end of transient simulation (t=500 yr) can be visualized by plotting. Here, we plot the
ice surface near the ice divide boundary (x=0 to x=250 km):

finalstep=length(md.results.TransientSolution);

plotmodel(md,'data',md.results.TransientSolution(finalstep).Surface,'title','Surface Elevation

[m]','amr',finalstep,'xlim',[0 250000],'fontsize',12);

UCIrvine - Jet Propulsion Laboratory ISSM Documentation December 14, 2020



CHAPTER 3. TUTORIALS 112

Here, we are plotting the mask grounded level set, which indicates if the ice is grounded (positive) or �oating
(negative). The value 0 indicates the position of the grounding line:

finalstep=length(md.results.TransientSolution);

plotmodel(md,'data',md.results.TransientSolution(finalstep).MaskGroundediceLevelset,...

'title','Mask Grounded [m]','amr',finalstep,'xlim',[0 250000],'caxis',[-150 100],'fontsize',12);

You can see the grounding line position is about x=170 km at the end of this example. To visualize the
adaptive meshes, you can plot them at any saved time specifying the corresponding step:

>> plotmodel(md,'data','mesh','amr',1,'xlim',[0 250000],'title','t=1 yr','fontsize',12,...

'data','mesh','amr',16,'xlim',[0 250000],'title','t=150 yr','fontsize',12,...

'data','mesh','amr',31,'xlim',[0 250000],'title','t=300 yr','fontsize',12,...

'data','mesh','amr',51,'xlim',[0 250000],'title','t=500 yr','fontsize',12);
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To watch the evolution through time in an animation, we print the results and the respective meshes in
.VTK-type �le format, see the folder trunk/examples/AMR/. These �les can be seen using the ParaView
(https://www.paraview.org/).

In ParaView, you will select which result to animate, and can watch the mesh tracking the grounding line
movement as soon as the ice starts to grounded on the bedrock. The result and the mesh can be simultaneously
displayed using selecting Surface With Edges in the box next to the �eld/result box selection.
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Capabilities

4.1 Mesh generation

4.1.1 ARGUS �le format

To mesh the domain, one needs a �le containing all the coordinates of the domain outline in an ARGUS format.
These �les have a *.exp extension. Here is an example of such a �le for a square glacier:

## Name:DomainOutline

## Icon:0

# Points Count Value

5 1.000000

# X pos Y pos

0 0

1000000 0

1000000 1000000

0 1000000

0 0

The ARGUS format is used extensively by ISSM. One can use exptool to generate and manage ARGUS �les.

4.1.2 triangle

triangle is a wrapper of triangle developed by Jonathan Shewchuk [Shewchuk , 1996]. It generates unstructured
isotropic meshes:

>> md=triangle(md,'DomainOutline.exp',5000);

The �rst argument is the model you are working on, the second argument is the �le from ARGUS containing
the domain outline, and the last argument is the density of the mesh (the mean distance between two nodes).
To see what the mesh looks like, one can type:

>> plotmodel(md,'data','mesh');
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Figure 4.1: Mesh

ISSM includes a mesh adaptation capability embedded in the code, inspired by BAMG developed by Frederic
Hecht [Hecht , 2006], and YAMS developped by Pascal Frey [Frey , 2001].

4.1.3 Bamg

4.1.3.1 Domain

To mesh the domain, you need a �le containing all the coordinates of the domain outline in an ARGUS format.
Assuming that this �le is DomainOutline.exp

>> md=bamg(md,'DomainOutline.exp');

4.1.3.2 hmin/hmax

The minimum and maximum edge lengths can be speci�ed by 'hmin' and 'hmax' options:

>> md=bamg(md,'DomainOutline.exp','hmax',1000);

4.1.3.3 hVertices

One can speci�ed the edge length of domain outline vertices. NaN is used if not required.

>> h=[1000 100 100 100];

>> md=bamg(md,'DomainOutline.exp','hmax',1000,'hVertices',h);

4.1.3.4 �eld/err

The option 'field' can be used with the option 'err' to generate a mesh adapted to the �eld given as input
for the error given as input:

>> md=bamg(md,'field',md.inversion.vel_obs,'err',1.5);

Several �elds can also be used:

>> md=bamg(md,'field',[md.inversion.vel_obs md.geometry.thickness],'err',[1.5 20]);
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4.1.3.5 gradation

The ratio of the lengths of two adjacent edges is controlled by the option 'gradation':

>> md=bamg(md,'field',md.inversion.vel_obs,'err',1.5,'gradation',3);

4.1.3.6 anisomax

The factor of anisotropy (ratio between the lengths of two edges belonging to the same triangle) can be changed
by the option 'aniso'. A factor of anisotropy equal to 1 will result in an isotropic mesh generation.

>> md=bamg(md,'field',md.vel_obs,'err',1.5,'anisomax',1);

Note: users using intel compilers (icc, icpc) shoud use the �ag -fp-model precise to disable optimizations
that are not value-safe on �oating-point data. This will prevent bamg from being compiler dependent (see
here).

4.1.4 Extrusion (3D)

One can extrude the mesh, in order to use a 3 dimensional model (Pattyn's higher order model and Full Stokes
model). This step is not mandatory. If the user wants to keep a 2D model, skip this section. To extrude the
mesh, type the following command:

>> md=extrude(md,8,3);

The �rst argument is the model, as usual. The second argument is the number of horizontal layers. A high
number of layers gives a better precision for the simulations but creates more elements, which requires a longer
computational time. Usually a number between 7 and 10 is a good balance. The third argument is called the
extrusion exponent. Interesting things are usually happening near the bedrock and therefore users might want
to re�ne the lower layers more than the upper ones. An extrusion exponent of 1 will create a mesh with layers
equally distributed vertically. The higher the extrusion exponent, the more re�ned the base. An extrusion
exponent of 3 or 4 is generally enough.

Figure 4.2: Extruded mesh
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4.2 Stress balance

4.2.1 Physical basis

4.2.1.1 Conservation of linear momentum

The conservation of momentum reads:

ρ
Dv

Dt
= ∇ · σ + ρb (4.1)

where:

• ρ is the ice density
• v is the velocity vector

• σ is the Cauchy stress tensor

• b is a body force

Now if we assume that:

• The ice motion is a Stokes �ow (acceleration negligible)

• The only body force is due to gravity (Coriolis e�ect negligible)

The equation of momentum conservation is reduced to:

∇ · σ + ρg = 0 (4.2)

4.2.1.2 Conservation of angular momentum

For a non-polar material body, the balance of angular momentum imposes the stress tensor to be symmetrical:

σ = σT (4.3)

4.2.1.3 Ice constitutive equations

Ice is treated as a purely viscous incompressible material Cu�ey and Paterson [2010]. Its constitutive equation
therefore only involves the deviatoric stress and the strain rate tensor:

σ′ = 2µε̇ (4.4)

where:

• σ′ is the deviatoric stress tensor (σ′ = σ + pI)

• µ is the ice e�ective viscosity

• ε̇ is the strain rate tensor

Ice is a non-Newtonian �uid, its viscosity follows the generalized Glen's �ow law Glen [1955]:

µ =
B

2 ε̇
n−1
n

e

(4.5)

where:

• B is the ice hardness or rigidity

• n is Glen's �ow law exponent, generally taken as equal to 3

• ε̇e is the e�ective strain rate

The e�ective strain rate is de�ned as:

ε̇e =

√
1

2

∑
i,j

ε̇2
ij =

1√
2
‖ε̇‖F (4.6)

where ‖ · ‖F is the Frobenius norm.
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4.2.1.4 Full-Stokes (FS) �eld equations

Without any further approximation, the previous system of equations are called the Full-Stokes model.

4.2.1.5 Higher-Order (HO) �eld equations

We make two assumptions:

1. Bridging e�ects are neglected

2. Horizontal gradient of vertical velocities are neglected compared to vertical gradients of horizontal ve-
locities

With these two assumptions, the Full-Stokes equations are reduced to a system of 2 equations with 2 unknowns
Blatter [1995]; Pattyn [2003]:

∇ · (2µε̇HO1) = ρg
∂s

∂x

∇ · (2µε̇HO2) = ρg
∂s

∂y

(4.7)

With

ε̇HO1 =



2
∂vx
∂x

+
∂vy
∂y

1

2

(
∂vx
∂y

+
∂vy
∂x

)
1

2

∂vx
∂z


ε̇HO2 =



1

2

(
∂vx
∂y

+
∂vy
∂x

)
∂vx
∂x

+ 2
∂vy
∂y

1

2

∂vy
∂z


(4.8)

4.2.1.6 Shelfy-Stream Approximation (SSA) �eld equations

We make the following assumption:

1. Vertical shear is negligible

With this assumption, we have a system of 2 equations with 2 unknowns in the horizontal plane [Morland ,
1987; MacAyeal , 1989]:

∇ · (2µ̄Hε̇SSA1)− α2vx = ρgH
∂s

∂x

∇ · (2µ̄Hε̇SSA2)− α2vy = ρgH
∂s

∂y

(4.9)

With

ε̇SSA1 =


2
∂vx
∂x

+
∂vy
∂y

1

2

(
∂vx
∂y

+
∂vy
∂x

)
 ε̇SSA2 =


1

2

(
∂vx
∂y

+
∂vy
∂x

)
∂vx
∂x

+ 2
∂vy
∂y

 (4.10)

where:

• µ̄ is the depth-averaged viscosity

• H is the ice thickness

• α is the basal friction coe�cient
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4.2.1.7 Boundary conditions

At the surface of the ice sheet, Γs, we assume a stress-free boundary condition. A viscous friction law is applied
at the base of the ice sheet, Γb, and water pressure is applied at the ice/water interface Γw. For FS, these
boundary conditions are:

σ · n = 0 on Γs(
σ · n · n + α2v

)
‖ = 0 on Γb

v · n = 0 on Γb

σ · n = ρwgzn on Γw

(4.11)

where

• n is the outward-pointing unit normal vector

• ρw is the water density

• z is the vertical coordinate with respect to sea level

For HO, these boundary conditions become:

ε̇HO1 · n = 0 ε̇HO2 · n = 0 on Γs

2µ ε̇HO1 · n = −α2vx 2µ ε̇HO2 · n = −α2vy on Γb

2µ ε̇HO1 · n = fwnx 2µ ε̇HO2 · n = fwny on Γw

(4.12)

where fw = ρg (s− z) + ρwgmin (z, 0).

For SSA, these boundary conditions are:

ε̇SSA1 · n = 0 ε̇SSA2 · n = 0 on Γs (4.13)

2µ̄Hε̇SSA1 · n =
(

1
2
ρgH2 − 1

2
ρwgb

2
)
nx

2µ̄Hε̇SSA2 · n =
(

1
2
ρgH2 − 1

2
ρwgb

2
)
ny

on Γw (4.14)

4.2.2 Model parameters

The parameters relevant to the stress balance solution can be displayed by typing:

>> md.stressbalance

• md.stressbalance.restol: mechanical equilibrium residue convergence criterion

• md.stressbalance.reltol: velocity relative convergence criterion, (NaN if not applied)

• md.stressbalance.abstol: velocity absolute convergence criterion, (NaN if not applied)

• md.stressbalance.maxiter: maximum number of nonlinear iterations (default is 100)

• md.stressbalance.viscosity_overshoot: over-shooting constant de�ned as:

µnew = µnew + α
(
µnew − µold

)
(4.15)

• md.stressbalance.spcvx: x-axis velocity constraint (NaN means no constraint)

• md.stressbalance.spcvy: y-axis velocity constraint (NaN means no constraint)

• md.stressbalance.spcvz: z-axis velocity constraint (NaN means no constraint)

• md.stressbalance.rift_penalty_threshold: threshold for instability of mechanical constraints

• md.stressbalance.rift_penalty_lock: number of iterations before rift penalties are locked
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• md.stressbalance.penalty_factor: o�set used by penalties:

κ = 10penalty_factor max
i,j
|Kij | (4.16)

• md.stressbalance.vertex_pairing: pairs of vertices that are penalized

• md.stressbalance.shelf_dampening: use dampening for �oating ice ? Only for Stokes model

• md.stressbalance.referential: local referential

• md.stressbalance.requested_outputs: additional outputs requested

The solution will also use the following model �elds:

• md.flowequations: FS, HO or SSA

• md.materials: material parameters

• md.initialization.vx: x component of velocity (used as an initial guess)

• md.initialization.vy: y component of velocity (used as an initial guess)

• md.initialization.vz: y component of velocity (used as an initial guess)

4.2.3 Running a simulation

To run a simulation, use the following command:

>> md=solve(md,'Stressbalance');

The �rst argument is the model, the second is the nature of the simulation one wants to run.

4.3 Mass transport / Free surface

4.3.1 Physical basis

4.3.1.1 Conservation of mass

The mass transport equation is derived from the depth-integrated form of the mass conservation equation and
reads:

∂H

∂t
= −∇ · (Hv̄) + Ṁs − Ṁb (4.17)

where

• v̄ is the depth-averaged velocity vector

• H is the ice thickness

• Ṁs is the surface accumulation (in m/yr of ice equivalent, positive for accumulation)

• Ṁb is the basal melting (in m/yr of ice equivalent, positive for melting)

For full-Stokes models, free surface equations are solved for the upper surface and the base of �oating ice:

∂s

∂t
+ vx (s)

∂s

∂x
+ vy (s)

∂s

∂y
− vz (s) = Ṁs (4.18)

and
∂b

∂t
+ vx (b)

∂b

∂x
+ vy (b)

∂b

∂y
− vz (b) = Ṁb (4.19)

where

• s is the elevation of the ice upper surface

• b is the elevation of the �oating ice lower surface

• (vx (s) , vy (s) , vz (s)) are the ice velocity components at the upper surface s

• (vx (b) , vy (b) , vz (b)) are the ice velocity components at the base b
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4.3.1.2 Boundary conditions

Ice thickness is imposed at the in�ow boundary:

H = Hobs on Γ− (4.20)

For free surfaces models, both b and s are constrained at the in�ow boundary.

4.3.1.3 Numerical implementation

Mass transport is solved using �nite elements in space, and implicit �nite di�erence in time. To stabilize the
equation, a stabilization term might be added to the left hand side, for example:

∂H

∂t
+∇ · (Hv̄)−∇ · (D∇H) = Ṁs − Ṁb (4.21)

where D is the arti�cial di�usivity. We take

D =
h

2

 |vx| 0

0 |vy|

 . (4.22)

There are other stabilization schemes available in ISSM: (1) Arti�cial Di�usion, (2) Streamline Upwinding, (3)
Discontinuous Galerkin (DG), (4) Flux Corrected Transport (FCT), and (5) Streamline Upwind Petrov-Galerlin
(SUPG). They can used by setting:

>> md.masstransport.stabilization=1;

4.3.2 Model parameters

The parameters relevant to the mass transport solution can be displayed by typing:

>> md.masstransport

• md.masstransport.spcthickness: thickness constraints (NaN means no constraint)

• md.masstransport.hydrostatic_adjustment: adjustment of ice shelves upper and lower surfaces: 'Incremental'
or 'Absolute'

• md.masstransport.stabilization: 0: no stabilization, 1: arti�cial di�usion, 2: streamline upwinding
3: discontinuous Galerkin, 4: �ux corrected transport (FCT), 5: streamline upwind Petrov-Galerkin
(SUPG)

• md.masstransport.penalty_factor: o�set used by penalties

κ = 10penalty_o�set max
i,j
|Kij | (4.23)

• md.masstransport.vertex_pairing: pairs of vertices that are penalized (for periodic boundary condi-
tions only)

The solution will also use the following model �elds:

• md.smb.ablation_rate: surface ablation rate (in meters)

• md.smb.mass_balance: surface mass balance (in meters)

• md.initialization.vx: x component of velocity

• md.initialization.vy: y component of velocity

• md.basalforcings.groundedice_melting_rate: basal melting rate applied on grounded ice (positive if
melting)

• md.basalforcings.floatingice_melting_rate: basal melting rate applied on �oating ice (positive if
melting)

• md.smb.mass_balance: surface mass balance (in meters/year ice equivalent)

• md.timestepping.time_step: length of time steps (in years)
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4.3.3 Running a simulation

To run a simulation, use the following command:

>> md=solve(md,'Masstransport');

The �rst argument is the model, the second is the nature of the simulation one wants to run. This will compute
one time step of the mass transport equation; use the transient solution for multiple time steps.

4.4 Thermal Model

4.4.1 Physical basis

4.4.1.1 Thermal state

The heat transport equation is derived from the balance equation of internal energy E combined with Fourier's
law of heat transfer and reads:

ρ

(
∂E

∂t
+ v · ∇E

)
= −∇ (κ(E)∇E) + Tr (σ · ε̇) (4.24)

where radiative sources have been neglected, and

• v is the velocity vector

• ε̇ is the strain rate tensor

• E is the internal energy density

• κ is the speci�c heat conductivity, which can depend on the heat density

• σ is the Cauchy stress tensor.

For constant heat conductivity and heat capacity ci, the previous equation becomes

ρci

(
∂T

∂t
+ v · ∇T

)
= −ciκ∆T + Tr (σ · ε̇) (4.25)

4.4.1.2 Boundary conditions

Dirichlet boundary conditions should be applied at the ice surface:

T (z = s) = Ts, (4.26)

and Neumann boundary conditions at the ice base:

q(z = b) = −κ(E)∇E = qgeo (4.27)

where

• s is the elevation of the ice upper surface

• b is the elevation of the �oating ice lower surface

When using the enthalpy formulation, the basal boundary condition scheme from Aschwanden et al. [2012],
�gure 5 is used instead of the previous equation.

NOTE: for regional model, make sure to set a Dirichlet condition on the in�ow boundary (throughout the ice
column) to avoid advection of noise.
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4.4.1.3 Numerical implementation

The heat equation is solved using linear �nite elements in space, and implicit �nite di�erence in time (time
stepping should satisfy the CFL condition). To stabilize the equation, we either add an isotropic arti�cial
di�usion to the left hand side:

ρ

(
∂E

∂t
+ v · ∇E

)
+∇ (κ(E)∇E) +∇ (D∇E) = Tr (σ · ε̇) (4.28)

where D is the arti�cial di�usivity. We take

D =
h

2


|vx| 0 0

0 |vy| 0

0 0 |vz|

 (4.29)

or rely on the Streamline upwind/Petrov-Galerkin formulation (SUPG) from Franca et al. [2006].

4.4.2 Model parameters

The parameters relevant to the heat equation solution can be displayed by typing:

>> md.thermal

• md.thermal.spctemperature: temperature constraints (NaN means no constraint)

• md.thermal.stabilization: type of stabilization (0: no stabilization; 1: arti�cial di�usion; 2: Streamline-
Upwind Petrov-Galerkin)

• md.thermal.maxiter: maximum number of iterations for thermal solver

• md.thermal.penalty_lock: stabilize unstable thermal constraints that keep zigzagging after n iteration
(default is 0, no stabilization)

• md.thermal.penalty_threshold: threshold to declare convergence of thermal solution (default is 0)

• md.thermal.penalty_factor: o�set used by penalties(default is 3):

κ = 10penalty_factor max
i,j
|Kij | (4.30)

• md.thermal.isenthalpy: are we using the enthalpy formulation (Aschwanden et al., 2012)? (0: no, 1:
yes)

• md.thermal.isdynamicbasalspc: are we allowing changing basal boundary conditions for transient runs?

• md.thermal.requested_outputs: specify further requested outputs here.

The solution will also use the following model �elds:

• md.initialization.temperature: temperature �eld (in K)

• md.initialization.waterfraction: water fraction in ice (between 0 and 1)

• md.basalforcings.geothermalflux: geothermal heat �ux (in W/m2)

• md.basalforcings.meltingrate: basal melting rate (in m/yr w.e.)

• md.timestepping.time_step: length of time steps (in yrs)

UCIrvine - Jet Propulsion Laboratory ISSM Documentation December 14, 2020



CHAPTER 4. CAPABILITIES 124

4.4.3 Running a simulation

To run a simulation solving only the thermal state, use the following command:

>> md=solve(md,'Thermal');

This will compute one time step only of the thermal equation; use the transient solution for multiple time
steps.

To run a thermal steady-state simulation (i.e. ∂T/∂t = 0), you need to �rst set the time stepping as 0:

>> md.timestepping.time_step = 0

>> md=solve(md,'Thermal');

4.5 Dual continuum Hydrology model

4.5.1 Physical basis

Using the dual continuum porous equivalent approach, the ine�cient and e�cient drainage components are
both modeled as sediment layers with the use of a speci�c activation scheme for the e�cient drainage system.
This approach de�nes in a continuous manner the location where the e�cient drainage system is most likely
to develop.

4.5.1.1 Water Distribution

The model consist of two analyses, one for the Ine�cient Drainage System (IDS) and the other for the E�cient
Drainage System(EDS). Each compute the water head by using a vertically integrated di�usion equation based
on Darcy's law. The two are coupled through a transfer term, which is implicitly computed at the same time
as the water head. In the following equation, the index j (subscript or superscript) may either refer to the IDS
(j = i) or to the EDS (j = e).

Sj
∂hj
∂t
−∇ · (Tj ∇hj) = Qj . (4.31)

where:

• Sj is the storage coe�cient of porous media [SU ]

• hj is the water head of the porous media [m]

• Tj is the transmissivity of porous media [m2 s−1]

• Qj is the water input [ms−1]

Storage coe�cient and transmissivities are the descriptive parameters of the porous layers. They are de�ned
as:

Tj = ejKj (4.32)

and

Sj = ρwωjgej

[
βw −

α

ωj

]
, (4.33)

where

• ej is the thickness of the considered layer [m]

• Kj is the permeability of the porous media [ms−1]

• ρw is the density of fresh water [kgm−3]

• ωj is the porosity of the media [SU ]

• g is the gravitational acceleration [ms−2]

• βw is the compressibility of water [Pa−1]

• α is the compressibility of the solid phase of the porous media [Pa−1]
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4.5.1.2 Speci�cities of the IDS

The main speci�city of the IDS is that it allows us to set up a maximum limit for the water head. This is dealt
with by a penalization method from which the residual is kept, in order to be re-injected into the EDS.

The source term for the IDS is the sum of three possible sources:

• surfacic input given by the melting at the base of the glacier [m]

• local input at a given point representing moulin input [m−3 s−1]

• input due to the transfer between the two layers which is dealt with in an implicit matter (See Layer
Transfer)

4.5.1.3 Speci�cities of the EDS

The model could be run without introducing this layer. In this case, it is possible that the model does not
conserve the mass of water, depending on the setting of the upper limit for the IDS. If the layer is used, it
is usually not active on the whole domain. The initial activation process is driven by the water head in the
IDS and then by the water head in the EDS. More information about the activation process can be found
in de Fleurian et al. [2014]. Improvements from the version presented in de Fleurian et al. [2014] include a
varying thickness for the EDS layer, which allows us to close back the EDS when the water volume becomes
too low and can be evacuated by the IDS only. The thickness evolution is de�ned as follows:

∂ee
∂t

= g
ρweeKe

ρiceLice
(∇he)2 − 2

[
N

Bn

]n
(4.34)

where:

• ρice is the density of the ice [kgm−3]

• Lice is the latent heat of fusion for the ice [J kg−1]

• N is the e�ective pressure [Pa]

• B is the ice hardness or rigidity [Pa s1/n]

• n is Glen's �ow law exponent, generally taken as equal to 3 [SU ]

4.5.2 Transfer equation

The transfer between the two layers is based on the water head di�erence in the two systems. The transfer
term Qt is as follows:

Qt = ϕ(hi − he). (4.35)

where:

• ϕ is the leakage time from one layer to the other [s−1]

The leakage time ϕ is a characteristic time needed for the water to pass from one drainage system to the other.
This corresponds to the crossing of a less permeable layer inbetween the ine�cient and e�cient layers.

4.5.2.1 Boundary conditions

The natural boundary condition is a no �ow condition, which is what is kept on the upstream model boundaries.
The water head is then �xed at the snouts of glaciers.
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4.5.3 Model parameters

The parameters relevant to the hydrology solution can be displayed by typing:

>> md.hydrology

These parameters are of three di�erent types

4.5.3.1 General parameters

• md.hydrology.water_compressibility: compressibility of water [Pa−1]

• md.hydrology.isefficientlayer: do we use an e�cient drainage system (1: true; 0: false)

• md.hydrology.penalty_factor: exponent of the value used in the penalization method (dimensionless)

• md.hydrology.penalty_lock: stabilize unstable constraints that keep zigzagging after n iteration (de-
fault is 0, no stabilization)

• md.hydrology.rel_tol: tolerance of the nonlinear iteration for the transfer between layers (dimension-
less)

• md.hydrology.max_iter: maximum number of nonlinear iteration

• md.hydrology.sedimentlimit_flag: what kind of upper limit is applied for the ine�cient layer

� 0: no limit

� 1: user de�ned: sedimentlimit

� 2: hydrostatic pressure

� 3: normal stress

• md.hydrology.transfer_flag: what kind of transfer method is applied between the layers

� 0: no transfer

� 1: constant leakage factor: leakage_factor

• md.hydrology.leakage_factor: user de�ned leakage factor [m]

• md.hydrology.basal_moulin_input: water �ux at a given point [m3 s-1]

4.5.3.2 IDS parameters

Also called sediment layer

• md.hydrology.spcsediment_head: sediment water head constraints (NaN means no constraint) (m above
MSL)

• md.hydrology.sediment_compressibility: sediment compressibility [Pa−1]

• md.hydrology.sediment_porosity: sediment (dimensionless)

• md.hydrology.sediment_thickness: sediment thickness [m]

• md.hydrology.sediment_transmitivity: sediment transmitivity [m2/s]

4.5.3.3 EDS parameters

Also called EPL layer (Equivalent Porous Layer)

• md.hydrology.spcepl_head: epl water head constraints (NaN means no constraint) [m above MSL]

• md.hydrology.mask_eplactive_node: active (1) or not (0) EPL

• md.hydrology.epl_compressibility: epl compressibility [Pa−1]

• md.hydrology.epl_porosity: epl [dimensionless]

• md.hydrology.epl_initial_thickness: epl initial thickness [m]

• md.hydrology.epl_max_thickness: epl maximal thickness [m]

• md.hydrology.epl_conductivity: epl conductivity [m2/s]
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4.5.4 Running a simulation

To run a transient simulation, use the following command:

>> md=solve(md,'Transient');

The �rst argument is the model, the second is the nature of the simulation one wants to run. The default for
the transient simulation does not include the resolution of the hydrological model. One should introduce the
following lines in the run launchers to enable the hydrology:

• For a standalone hydrology model

>> md.transient=deactivateall(md.transient);

>> md.transient.ishydrology=1;

• To add the hydrology to a transient simulation

>> md.transient.ishydrology=1;

Running a steady state simulation, is done with the following command:

>> md=solve(md,'Hydrology');

4.6 GlaDS Hydrology model

4.6.1 Description

The two-dimensional Glacier Drainage System model (GlaDS, Werder et al. [2013]) couples a distributed water
sheet model � a continuum description of a linked cavity drainage system [Hewitt , 2011] � with a channelized
water �ow model � modeled as R channels [Röthlisberger , 1972; Nye, 1976]. The coupled system collectively
describes the evolution of hydraulic potential φ, water sheet thickness h, and water channel cross-sectional area
S.

4.6.1.1 Sheet model equations

• Mass conservation:

The mass conservation equation describes water storage changes over longer timescales (dictated by cavity
opening due to sliding) as well as shorter timescales (e.g. due to surface melt water input):

ev
ρwg

∂φ

∂t
+
∂h

∂t
−∇ · q −mb = 0, (4.36)

where: ev is the englacial void ratio, ρw is water density (kg m-3), g is gravitational acceleration (kg m-3), φ
is the hydraulic potential (Pa), and h is the sheet thickness (m). The water discharge q (m2 s-1) is given by

q = −ks hαs |∇φ|βs−2∇φ, (4.37)

where ks is the sheet conductivity (m s kg-1), and αs=5/4 and βs=3/2 are two constant exponents. Finally,
the melt source term mb (m s-1) is given by

mb =
G+ |τb · ub|

ρiL
, (4.38)

where G is the geothermal heat �ux (W m-2), |τb · ub| is the frictional heating (W m-2), for basal stress τb
(Pa), ρi is ice density (kg m-3), and L is latent heating (J kg-1).
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• Sheet thickness:

∂h

∂t
= ws − vs. (4.39)

Here, ws is the cavity opening rate due to sliding over bed topography (m s-1), given by

ws (h) =

|ub|
lr

(hr − h) , if h < hr

0, otherwise,

(4.40)

where hr and lr are both constants (m), and ub is the basal sliding velocity vector (provided by the ice �ow
model). The cavity closing rate due to ice creep vs (m s-1), is given by:

vs (h, φ) =
2A

nn
h |N |n−1 N, (4.41)

where A is the basal �ow parameter (Pa-3 s-1), related to the ice hardness by B = A-1/3, n is the Glen �ow
relation exponent, and N = φ0 − φ is the e�ective pressure. The overburden hydraulic potential is given by
φ0 = φm+p, with the ice pressure p = ρigH and elevation potential φm = ρwgb, all of which are given in units
of Pa.

4.6.1.2 Channel model equations

• Channel discharge (along mesh edges):

∂Q

∂s
+

Ξ−Π

L

(
1

ρi
− 1

ρw

)
− vc −mc = 0, (4.42)

where Q is the channel discharge (m3 s-1), which evolves with respect to the horizontal coordinate along the
channel s, Ξ is the channel potential energy dissipated per unit length and time (W m-1), Π is the channel
pressure melting/refreezing (W m-1), vc is the channel closing rate (m2 s-1) and mc is the source term (m2 s-1).
The discharge Q is de�ned as:

Q = − kcSαc

∣∣∣∣∂φ∂s
∣∣∣∣βc−2

︸ ︷︷ ︸
Kc

∂φ

∂s
, (4.43)

where kc is the channel conductivity, and αc=3 and βc=2 are two exponents. The term vc is the closing of the
channels by ice creep, and is given by:

vc (S, φ) =
2A

nn
S |N |n−1 N, (4.44)

where S is the channel cross-sectional area (m2). Finally, mc, the channel source term balancing the �ow of
water out of the adjacent sheet, is:

mc = q · n|∂Ωi1 + q · n|∂Ωi2 . (4.45)

where n is the normal to the channel edge.

• Channel dissipation of potential energy:

Ξ(S, φ) =

∣∣∣∣∣Q∂φ∂s
∣∣∣∣∣+

∣∣∣∣lcqc ∂φ∂s
∣∣∣∣ , (4.46)

where lc is the channel width (m), and qc is the discharge in the sheet (�owing in the direction of the channel;
m2 s-1), given by

qc (h, φ) = − kshαs

∣∣∣∣∂φ∂s
∣∣∣∣βs−2

︸ ︷︷ ︸
Ks

∂φ

∂s
, (4.47)

with ks, αs, and βs as given above.

• Channel melt/refreeze rate:
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Π(S, φ) = −ctcwρw(Q+ flcqc)
∂φ− ∂φm

∂s
, (4.48)

Here, ct is the Clapeyron slope (K Pa-1), cw is the speci�c heat capacity of water (J kg-1 K-1), and f is a switch
parameter that accounts for the fact that the channel area cannot be negative, turning o� the sheet �ow for
refreezing as S → 0, i.e.

f =

{
1, if S > 0 or qc∂(φ− φm)∂s > 0
0, otherwise

(4.49)

• Cross-sectional channel area (de�ned along mesh edges):

∂S

∂t
=

Ξ−Π

ρiL
− vc. (4.50)

4.6.1.3 Boundary conditions

Boundary conditions for the evolution of hydraulic potential φ are applied on the domain boundary ∂Ω, as
either a prescribed pressure or water �ux. The Dirichlet boundary condition is:

φ = φD on ∂ΩD, (4.51)

where φD is a speci�c potential, and the Neumann boundary condition is:

∂φ

∂n
= ΦN on ∂ΩN , (4.52)

corresponding to the speci�c discharge

qN = −kshαs |∇φ|βs−2ΦN . (4.53)

Channels are de�ned only on element edges and are not allowed to cross the domain boundary, so we do not
require �ux conditions. Since the evolution equations for h and S do not contain their spatial derivatives, we
do not require any boundary conditions for their evolution equations.

4.6.2 Model parameters

The parameters relevant to the GlaDS (hydrologyglads) solution can be displayed by typing:

>> md.hydrology

• md.hydrology.pressure_melt_coefficient: Pressure melt coe�cient (ct) [K Pa-1]

• md.hydrology.sheet_conductivity: sheet conductivity (k) [m7/4 kg-1/2]

• md.hydrology.cavity_spacing: cavity spacing (lr) [m]

• md.hydrology.bump_height: typical bump height (hr) [m]

• md.hydrology.ischannels: Do we allow for channels? 1: yes, 0: no

• md.hydrology.channel_conductivity: channel conductivity (kc) [m3/2 kg-1/2]

• md.hydrology.spcphi: Hydraulic potential Dirichlet constraints [Pa]

• md.hydrology.neumannflux: water �ux applied along the model boundary (m2 s-1)

• md.hydrology.moulin_input: moulin input (Qs) [m3 s-1]

• md.hydrology.englacial_void_ratio: englacial void ratio (ev)

• md.hydrology.requested_outputs: additional outputs requested?

• md.hydrology.melt_flag: User speci�ed basal melt? 0: no (default), 1: use md.basalforcings.groundedice_melting_rate
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4.6.3 Running a simulation

To run a transient stand-alone subglacial hydrology simulation, use the following commands:

md.transient=deactivateall(md.transient);

md.transient.ishydrology=1;

%Change hydrology class to GlaDS;

md.hydrology=hydrologyglads();

%Set model parameters here;

md=solve(md,'Transient');

4.7 SHAKTI Hydrology model

4.7.1 Description

SHAKTI (Subglacial Hydrology and Kinetic, Transient Interactions) is a transient subglacial hydrology model
that has �exible geometry and treats the entire domain with one set of governing equations, allowing for any
drainage con�guration to arise, which can include e�cient (channelized) and ine�cient (distributed) features
[Sommers et al., 2018]

4.7.1.1 Equations

The SHAKTI model is based upon governing equations that describe conservation of water mass, evolution
of the system geometry, basal water �ux (approximate momentum equation), and internal melt generation
(approximate energy equation).

• Continuity equation (water mass balance):

∂b

∂t
+
∂be
∂t

+∇ · ~q =
ṁ

ρw
+ ie→b (4.54)

where b is subglacial gap height, be is the volume of water stored englacially per unit area of bed, ~q is basal
water �ux, ṁ is melt rate, and ie→b is the input rate of water from the englacial to subglacial system.

• Basal gap dynamics (subglacial geometry):

∂b

∂t
=
ṁ

ρi
+ βub −A|pi − pw|n−1(pi − pw)b (4.55)

where b is the subglacial gap height, ṁ is melt rate, A is the ice �ow law parameter, n is the �ow law exponent,
pi is the overburden pressure of ice, pw is water pressure, β is a dimensionless parameter governing opening by
sliding, and ub is sliding velocity. According to this equation, the subglacial gap height evolves with time by:
opening by both melt and sliding over bumps on the bed, and closing due to ice creep.

• Basal water �ux (approximate momentum equation):

~q =
−b3g

12ν(1 + ωRe)
∇h (4.56)

where b is subglacial gap height, g is gravitational acceleration, ν is kinematic viscosity of water, ω is a
dimensionless parameter controlling the nonlinear transition from laminar to turbulent �ow (for turbulent
�ow, the �ux becomes proportional to the square root of the head gradient), Re is the Reynolds number, and
h is hydraulic head:

h =
pw
ρwg

+ zb (4.57)
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Equation (3) is a key piece of our model formulation, in that it allows for a spatially and temporally vari-
able hydraulic transmissivity in the system, and facilitates easeful transition between laminar and turbulent
�ow regimes. Most existing models prescribe a hydraulic conductivity and assume the �ow to be turbulent
everywhere. Our momentum equation acts to "unify" di�erent drainage modes in a single model.

• Internal melt generation (energy balance at the bed):

ṁ =
1

L
(G+ ~ub · ~τb − ρwg~q · ∇h− ctcwρw~q · ∇pw) (4.58)

where L is latent heat of fusion of water, G is geothermal �ux, ub is basal sliding velocity, τb is the stress exerted
by the bed onto the ice, ~q is basal water �ux (discharge), h is hydraulic head, ct is the pressure melt coe�cient
(Clapeyron constant), cw is the heat capacity of water, ρw is density of water, and pw is water pressure. In
words, melt is produced through a combination of geothermal �ux, frictional heat due to sliding, and heat
generated through internal dissipation (where mechanical energy is converted to thermal energy), minus the
heat consumed due to changes in water pressure. We note that this form of the energy equation assumes that
all heat produced is converted locally to melt and is not advected downstream. We assume that the ice and
liquid water are consistently at the pressure melting point temperature. While these assumptions may not be
strictly valid under certain real conditions that may have interesting implications, we leave that discussion for
future work.

Following Werder et al. (2013), the englacial storage volume is a function of water pressure:

be = ev
ρwgh− ρwgzb

ρwg
= ev(h− zb) (4.59)

where ev is the englacial void ratio (zero for no englacial storage).

Equations (1), (2), (3), and (5) are combined to form a nonlinear partial di�erential equation (PDE) in terms
of hydraulic head, h:

∇ ·
[

−b3g
12ν(1 + ωRe)

· ∇h
]

+
∂ev(h− zb)

∂t
= ṁ

[
1

ρw
− 1

ρi

]
+A|pi − pw|n−1(pi − pw)b− βub + ie→b (4.60)

With no englacial storage (ev = 0), Eq. (7) takes the form of an elliptic PDE.

De�ning the hydraulic "transmissivity,"

~K =
−b3g

12ν(1 + ωRe)
(4.61)

Equation (7) can be written more compactly as:

∇ · ( ~K · ∇h) +
∂ev(h− zb)

∂t
= ṁ(

1

ρw
− 1

ρi
) +A|pi − pw|n−1(pi − pw)b− βub + ie→b (4.62)

or simply as:

∇ · ( ~K · ∇h) +
∂ev(h− zb)

∂t
= RHS (4.63)

where the forcing (RHS) is a function of the relevant dependent variables. Within each time step, this nonlinear
PDE is solved using a Picard iteration to establish the head (h) distribution.

4.7.1.2 Boundary conditions

Boundary conditions can be applied as either prescribed head (Dirichlet) conditions or as �ux (Neumann)
conditions. We typically apply a Dirichlet boundary condition of atmospheric pressure at the edge of the ice
sheet, and Neumann boundary conditions (no �ux or prescribed �ux, which can be constant or time-varying)
on the other boundaries of the subglacial drainage domain.
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4.7.2 Model parameters

The parameters relevant to the SHAKTI (hydrologyshakti) solution can be displayed by typing:

>> md.hydrology

• md.hydrology.head subglacial hydrology water head (m)

• md.hydrology.gap_height height of gap separating ice to bed (m)

• md.hydrology.bump_spacing characteristic bedrock bump spacing (m)

• md.hydrology.bump_height characteristic bedrock bump height (m)

• md.hydrology.englacial_input liquid water input from englacial to subglacial system (m/yr)

• md.hydrology.moulin_input liquid water input from moulins (at the vertices) to subglacial system
(m3/s)

• md.hydrology.reynolds Reynolds' number

• md.hydrology.neumannflux water �ux applied along the model boundary (m2/s)

• md.hydrology.spchead water head constraints (NaN means no constraint) (m)

• md.hydrology.relaxation under-relaxation coe�cient for nonlinear iteration

• md.hydrology.storage englacial storage coe�cient (void ratio)

4.7.3 Running a simulation

To run a transient stand-alone subglacial hydrology simulation, use the following commands:

md.transient=deactivateall(md.transient);

md.transient.ishydrology=1;

%Change hydrology class to SHAKTI

md.hydrology=hydrologyshakti();

%Set model paramters here

md=solve(md,'Transient');

4.8 Shreve's Hydrology model

4.8.1 Physical basis

This model is the one described in Le Brocq et al. [2009]. Here we present only the main equations.

4.8.1.1 Water column

The model applied here is the most simplistic form of the water-�lm model, as described by the Weertman
theory [Weertman, 1957]. The model solves for the thickness w of the water-�lm as follows:

∂w

∂t
= S −∇ · uww (4.64)

where:

• S is the source term [ms−1]

• uw is the water velocity vector [ms−1]
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The water velocity vector uw is a depth-averaged two dimensional horizontal vector, which is computed using
a theoretical treatment of laminar �ow between two parallel plates:

uw =
w2

12µ
∇φ (4.65)

• φ is the hydraulic potential [Pa]

• µ is the water viscosity [Pa s]

In this model, the hydraulic potential φ is de�ned following the Shreve approximation [Shreve, 1972], which
hypothesizes a null e�ective pressure. Assuming this null e�ective pressure gives the hydraulic potential
gradient as follows:

∇φ = ρiceg∇s+ (ρw − ρice) g∇h (4.66)

where

• ρice is the density of the ice [kgm−3]

• ρw is the density of fresh water [kgm−3]

• s is the surface elevation [m]

• g is the gravitational acceleration [ms−2]

• h is the bedrock elevation [m]

4.8.1.2 Numerical implementation

To stabilize the equation, arti�cial di�usion might be added to the left hand side:

∂w

∂t
+∇ (D∇w) = S −∇ · uww (4.67)

where D is the arti�cial di�usivity. We take

D =
h

2

 |vx| 0

0 |vy|

 (4.68)

4.8.2 Model parameters

The parameters relevant to the water column solution can be displayed by typing:

>> md.hydrology

• md.hydrology.spcwatercolumn: water thickness constraints (NaN means no constraint) [m]

• md.hydrology.stabilization: arti�cial di�usivity (default is 1).

4.8.3 Running a simulation

To run a simulation, use the following command:

>> md=solve(md,'Hydrology');
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4.9 Damage mechanics

4.9.1 Physical basis

Damage is a state variable introduced to account for the in�uence of fractures on ice �ow, while maintaining
a continuum representation of the ice domain. For purely viscous ice �ow modeling, damage is linked to �ow
enhancement�speci�cally the increase in strain rate�due to a fracture or a multitude of fractures in the ice.

4.9.1.1 Inferring damage from remote sensing data

Remote sensing data can be used to calculate damage from the static stress balance in the ice. At present, this
is only implemented in two dimensions for the SSA approximations to ice �ow. Damage can be inferred in one
of two ways:

• Inverting for damage directly

• Inverting for ice rigidity B and then post-processing to determine damage (and optionally backstress)

Make sure that you are using the matdamageice class for md.materials. You can do that conversion using:

md.materials = matdamageice(md.materials);

4.9.1.2 Inverting for damage directly

For the SSA equations, the damage-dependent ice viscosity (µ) is:

µ =
(1−D)B

2ε̇
n−1
n

e

(4.69)

where:

• D is damage

• B is the ice rigidity

• ε̇e is the e�ective strain rate

• n is the �ow law exponent

Damage can be calculated using an inverse control method in the same manner as an inversion for the ice
rigidity B. Simply specify the following �eld in md.inversion:

• md.inversion.control_parameters=['DamageDbar'] (Python)

• md.inversion.control_parameters={'DamageDbar'} (MATLAB)

The remainder of the inversion procedure is described on the Inverse Methods page. This was the procedure
followed by Borstad et al. [2012] in determining the damage for the Larsen B ice shelf prior to its collapse (see
the ISSM Publications List for a link to the paper).

4.9.1.3 Post-processing to determine damage

Damage can also be calculated from the results of an inverse method solution for ice rigidity B. This procedure
uses the analytical solution for the strain rate of a damaged ice shelf, derived by ?:

ε̇xx = θ

[
1/2ρi (1− ρi/ρw) gH − σb

(1−D)B

]n
(4.70)

where:
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• ε̇xx is the longitudinal strain rate

• θ accounts for the lateral and shear strain rate terms

• ρi and ρw are the densities of ice and seawater, respectively

• g is gravitational acceleration
• H is the ice thickness

• σb is the backstress resisting the �ow
• D is the damage

• B is the ice rigidity

• n is the �ow law exponent

To determine damage, an inverse control method solution for ice rigidity B is �rst carried out. The initial guess
B◦ for the control method (contained in md.materials.rheology_B!) is assumed to be based on a temperature
parameterization, given a reasonable estimate of the depth-averaged temperature of the ice. Damage is then
calculated in locations where the inverse solution for B is less than the ice rigidity appropriate for the local
temperature of the ice. A post-processing function carries out this calculation directly:

>> D=damagefrominversion(md);

Additionally, the scalar backstress can be calculated from the inversion results:

>> backstress=backstressfrominversion(md);

This procedure for calculating damage and backstress was used in ? for the Larsen C ice shelf (see the ISSM
Publications List for a link to the paper).

4.9.2 Damage Evolution (Under Construction)

A di�erential equation describing damage evolution in time�both the advection of damage with ice �ow as well
as the evolution of damage as the stress state changes�is being implemented in ISSM. Check back for updates.

4.10 Transient (time dependent projection)

4.10.1 Physical basis

4.10.1.1 Transient solution

The transient solution is a combination of all the other solutions and modules that allow us to run a model
forward in time (between a start time and a �nal time) using �nite di�erences in time. At each time step of
the simulation the following steps are performed in the order noted below:

• thermal solution

• hydrology solution

• stressbalance solution

• damage evolution model

• masstransport solution

• grounding line migration (and geometry update)

• gia solution

Not all solutions have to be included in the transient runs, and each of these functionalities can be activated
or deactivated prior to launching the simulation.
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4.10.2 Model parameters

The parameters relevant to the transient solution can be displayed by typing:

>> md.transient

• md.transient.ismasstransport: indicates whether a masstransport solution is used in the transient

• md.transient.isstressbalance: indicates whether a stressbalance solution is used in the transient

• md.transient.isthermal: indicates whether a thermal solution is used in the transient

• md.transient.isgroundingline: indicates whether a grounding line migration is used in the transient

• md.transient.isgia: indicates whether a postglacial solution is used in the transient

• md.transient.isdamageevolution: indicates whether damage evolution is used in the transient

• md.transient.islevelset: level set, not implemented yet

• md.transient.ishydrology: indicates whether a hydrology solution is used in the transient

• md.transient.requested_outputs: list of additional outputs requested

The solution will also use �els from the following classes for each of the solution used:

• md.masstransport: for parameters related to the masstransport solution

• md.stressbalance: for parameters related to the stressbalance solution

• md.thermal: for parameters related to the thermal solution

• md.groundingline: for parameters related to grounding line migration

• md.gia: for parameters related to the postglacial solution

• md.damage: for parameters related to damage evolution

• md.hydrology: for parameters related to the hydrology solution

• md.initialization: for initial values of model �elds (velocity, temperature, ...)

• md.timestepping: for parameters related to time stepping (initial time, �nal time, length of time steps,
...)

4.10.2.1 Time stepping

Each solution requested is computed at each time step. The time step has either a �xed duration (speci�ed
by the user before the simulation is launched) or a varying duration based on the CFL (Courantâ��Friedrich-
sâ��Lewy) condition (necessary condition for the stability of certain partial di�erential equations).

The parameters relevant to the time stepping can be displayed by typing:

>> md.timestepping

• md.timestepping.start_time: simulation starting time (year)

• md.timestepping.final_start: �nal time to stop the simulation (year)

• md.timestepping.time_step: length of time steps (year)

• md.timestepping.time_adapt: to indicate if the CFL condition is used to de�ne time step ?

• md.timestepping.cfl_coefficient: coe�cient applied to c� condition

• md.timestepping.interp_forcings: interpolate in time between requested forcing values ? (0 or 1)
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4.10.3 Forcing a transient

To specify a transient forcing, the user must add a time value to the end (i.e. in the end+1 position) of the
variable to be forced. This means that a transient forcing will no longer be a single column of length n. Instead,
it will be a matrix (or a series of columns), and each column will be of length n+1.

For example, let smb be values of surface mass balance. Below, we impose smb at year 10 and then impose a
decrease of 1 m/yr in surface mass balance everywhere at year 20.

>> md.smb.mass_balance = [ smb smb-1];

>> md.smb.mass_balance = [ md.smb.mass_balance; [10 20]];

Prior to �rst and after last imposed time, ISSM will impose constant surface mass balance values. In the
example above, the surface mass balance is assumed constant prior to year 10, and again after year 20. Forcing
values will be equal to smb prior to year 10 and smb-1 after year 20.

Between years 10 and 20, ISSM will treat all forcings according to the value set in the time stepping parameter
interp_forcings.

By default, md.timestepping.interp_forcings = 1. This means that between the user-imposed times, forc-
ings are linearly interpolated. For the example above, the model will linearly increase surface mass balance
from smb to smb-1 between years 10 and 20.

The user must set md.timestepping.interp_forcings = 0 to turn this feature o� and impose a step-wise
forcing. When interp_forcings = 0, the forcing value will change only at the times designated by the user.
After the last user-speci�ed time, the forcing will remain constant. In the example above, the surface mass
balance will be equal to smb up until time 20. At time 20, the surface mass balance will be changed to smb-1,
and will remain at these values until the end of the simulation.

4.10.4 Running a simulation

To run a simulation, use the following command:

>> md=solve(md,'Transient');

The �rst argument to solve is the model, the second is the nature of the simulation one wants to run.

4.11 Grounding Lines

4.11.1 Physical basis

4.11.1.1 Hydrostatic equilibrium

The position of the grounding line is determined by a �oatation criterion: ice is �oating if its thickness, H, is
equal or lower than the �oating height Hf de�ned as:

Hf = −ρw
ρi
r, r < 0 (4.71)

where ρi is the ice density, ρw the ocean density and r the bedrock elevation (negative if below sea level).
Grounding line is therefore located where H = Hf :

H > Hf ice is grounded
H = Hf grounding line position
H < Hf ice is �oating

(4.72)
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Each element of the mesh is either grounded or �oating: �oatation criterion is determined on each vertex of the
triangle and if at least one vertex of the triangle is �oating, the element is considered �oating and no friction
is applied. Otherwise, if the three vertices are grounded, the element is considered grounded. We refer to this
type of grounding line migration as 'SoftMigration'.

Sub-element parameterization can also be used to track the position of the grounding line within an element
and improve accuracy of the results. The �oating condition is a 2D �eld and the grounding line position
is determined by the line where H = Hf , so it is located anywhere within an element. Some elements are
therefore partly grounded and partly �oating. Two di�erent schemes of sub-element parameterizations have
been implemented.

In the �rst case, the basal friction coe�cient C is reduced to match the amount of grounded ice in the element
as proposed by Pattyn et al. [2006] and Gladstone et al. [2010] but for a 2D element:

Cg = C
Ag
A

(4.73)

where Cg is the applied basal friction coe�cient for the element partially grounded, Ag is the area of grounded
ice of this element and A is the total area of the element. We refer to this type of grounding line parameterization
as 'SubelementMigration'.

In the second case, the basal friction computed for partly grounded elements is integrated only on the part
of the element that is grounded. This can be done simply by changing the integration area from the initial
element to the grounded part of the element, over which the basal friction is unchanged. We refer to this type
of grounding line parameterization as 'SubelementMigration2'.

The sub-element parameterizations are described in details in Seroussi et al. [2014a].

4.11.1.2 Contact mechanics

Grounding line migration can be advantageously based on contact mechanics when solving the stress balance
equations with a full-Stokes models [Nowicki and Wingham, 2008; Durand et al., 2009].

This capability is currently under development.

4.11.2 Model parameters

The parameters relevant to the grounding line migration can be displayed by typing:

>> md.groundingline

• md.groundingline.migration: type of grounding line migration: 'SoftMigration','AgressiveMigration','SubelementMigration','SubelementMigration2'
or 'None'

4.11.3 Running a simulation

To compute grounding line migration, the transient solution must be used and all solutions except the grounding
line migration must be deactivated (see Transient solution):

>> md=solve(md,'Transient');

The �rst argument to solve is the model, the second is the nature of the simulation one wants to run.
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4.12 Glacial Isostatic Adjusment (GIA)

4.12.1 Physical basis

The ISSM/GIA model assumes that the ice sheet rests on top of the solid Earth, which is considered to
be a simple two-layered incompressible continuum with upper elastic lithosphere �oating on the viscoelastic
(Maxwell material) mantle half-space. Coordinate transformations allow simple axisymmetric solutions for
the deformation of pre-stressed solid Earth (subject to a normal surface traction of ice/ocean) to retrieve
semi-analytical solutions of vertical displacement at the lithosphere surface.

4.12.2 Vertical surface displacement

Vertical displacement at the lithosphere surface (i.e., ice/ocean-bedrock interface), w(r, t), is the most relevant
�eld variable for GIA assessment. For brevity, hereinafter, this is referred to as the GIA solution. Semi-
analytical GIA solution is given by Ivins and James [1999]:

w(r, t) =

∫ ∞
0

k

[
4µe1α

2kµe1 + ρ1g
Q̂0(k, t)J1(kα)

]
J0(kr) dk, (4.74)

where:

• r is the radial distance from the centre of the cylindrical disc load

• t is the evaluation time

• k is the Hankel transform variable of r (or wavenumber)

• α is the radius of the cylindrical disc load

• µe1 is the shear modulus of elasticity of lithosphere

• ρ1 is the lithosphere density

• g is the vertical component of the gravity vector

• Jv(kr) is the v-th order Bessel function of the �rst kind

• Q̂0(k, t) accounts for the integrated in�uence of ice loading history (cf. Figure 1) at the evaluation time
t. (Note that f̂v(k) is the v-th order Hankel transform of function f(r).)

Figure 4.3: Schematic of evolution of piecewise continuous load height, h0, with J linear segments
(from Ivins and James [1999]). For j-th segment, we can compute mj and bj (cf. Eqs. 3�4) based
on the ice load at time tj−1 and tj . At tj , for example, ice load at the lithosphere surface is given by
ρ0gh0j , where ρ0 is the ice density.

Assuming tJ−1 < t ≤ tJ , the term Q̂0(k, t) can be written as follows

Q̂0(k, t) =

J∑
j=1

jQ̂0(k, t). (4.75)
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For j ≤ (J − 1),

jQ̂0(k, t) =

2∑
p=1

{
mjξp
γ2
p

[
(γptj − 1) eγp(tj−t) − (γptj−1 − 1) eγp(tj−1−t)

]
+
bjξp
γp

[
eγp(tj−t) − eγp(tj−1−t)

]}
,

(4.76)
and for j = J (i.e. the last load segment),

jQ̂0(k, t) =

2∑
p=1

{
mjξp
γ2
p

[
(γpt− 1)− (γptj−1 − 1) eγp(tj−1−t)

]
+
bjξp
γp

[
1− eγp(tj−1−t)

]}
+

(
c2 +

1

4kµe1

)
(mjt+ bj) ,

(4.77)
where:

• mj is the slope of the linear j-th load segment

• bj is the y-intercept of the linear j-th load segment

• γp is the inverse decay time

• ξp is the amplitude factor

For p = 1, 2, the inverse decay times are given by

γp =
d1 ±

√
d2

1 − 4d0

2
, (4.78)

and the amplitude factors by

ξp =
(−1)p

(γ2 − γ1)
[(−c2γp + c1) γp − c0] . (4.79)

Parameters appearing in Eqs. (5) and (6) are de�ned as follows

c0 =
h1

µe2τ
2
m

c′0, c1 =
h1

µe2τm
c′1, c2 =

h1

µe2
c′2, d0 =

1

τ2
m

d′0 and d1 =
1

τm
d′1, (4.80)

where:

• h1 is the lithosphere thickness

• τm = η/µe2 is the Maxwell relaxation time

• η is the e�ective viscosity of mantle

• µe2 is the shear modulus of elasticity of mantle

• parameters with primes, e.g. c′0, are dimensionless (listed in Table 1)

with the following dimensionless parameters:

• d′2 = b′0 + b′1 + b′2 + b′3 + b′4 + b′5 + b′6 + b′7

• d′1 = [b′2 + b′3 + b′4 + 2 (b′5 + b′6 + b′7)] /d′2

• d′0 = (b′5 + b′6 + b′7) /d′2

• c′2 = (a′0 + a′1 + a′2 + a′3) /d′2

• c′1 = [a′1 + 2 (a′2 + a′3)] /d′2

• c′0 = (a′2 + a′3) /d′2

where:

• a′0 = −2k′
{

1 + e2k′ [1 + 2k′ (1 + k′)]
}

• a′1 = 4k′Reµ −R−ρ
{

1 + e2k′ [1 + 2k′ (1 + k′)]
}

• a′2 = −2k′
(
Reµ
)2 [

1− e2k′ − 2k′ e2k′ (1 + k′)
]

• a′3 = ReµR
−
ρ

[
1− e2k′ (1 + 2k′)

]
• b′0 = 4(k′)2Reµ

[
1 + e4k′ + 2 e2k′

(
1 + 2(k′)2

)]
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• b′1 = −2k′R1
ρ

(
1− e4k′ + 4k′ e2k′

)
• b′2 = −8(k′)2

(
Reµ
)2 (

1− e4k′
)

• b′3 = 2k′Reµ

[
R+
ρ

(
1 + e4k′

)
+ 2R−ρ e2k′

(
1 + 2(k′)2

)]
• b′4 = −R1

ρR
−
ρ

(
1− e4k′ + 4k′ e2k′

)
• b′5 = 4(k′)2

(
Reµ
)3 [(

1− e2k′
)2

− 4(k′)2e2k′
]

• b′6 = −2k′
(
Reµ
)2
R2
ρ

(
1− e4k′ − 4k′ e2k′

)
• b′7 = ReµR

1
ρR
−
ρ

(
1− e2k′

)2

The following set of non-dimensionlized parameters are de�ned, as needed to express dimensionless terms listed
in Table 2

k′ = kh1, R
e
µ =

µe1
µe2
, R1

ρ =
gh1ρ1

µe2
, R2

ρ =
gh1ρ2

µe2
, R+

ρ =
gh1 (ρ2 + ρ1)

µe2
, R−ρ =

gh1 (ρ2 − ρ1)

µe2
, (4.81)

where:

• ρ2 is the mantle density

4.12.3 Numerical implementation

In the Cartesian frame of ISSM, we treat the size of ice load as the property of mesh element and compute the
GIA solution at each node of the element [Adhikari et al., 2014]. Individual 2-D (xy-plane) mesh elements are
de�ned as the equivalence of footprint (i.e., projection onto the xy-plane) of cylindrical disc loads, ensuring
that the corresponding element and disc both share the same origin and plan-form area. The height of ice load
is then assigned to each element such that the average normal tractional force on the corresponding area of
bedrock is conserved. At each node within the domain, the �nal GIA solutions are computed by integrating
the solutions due to individual disc loads, de�ned as the property of mesh elements.

4.12.4 Model parameters

The parameters relevant to the GIA solution can be displayed by typing:

>> md.gia

• md.gia.mantle_viscosity: mantle viscosity (in Pa s)

• md.gia.lithosphere_thickness: lithosphere thickness (in km)

• md.gia.cross_section_shape: shape of the cylindrical disc load; 1: square-edged (default) 2: elliptical

The solution will also use the following model �elds:

• md.materials.lithosphere_shear_modulus: shear modulus of lithosphere (in Pa)

• md.materials.lithosphere_density: lithosphere density (in g/cm3)

• md.materials.mantle_shear_modulus: shear modulus of mantle (in Pa)

• md.materials.mantle_density: mantle density (in g/cm3)

• md.timestepping.start_time: GIA evaluation time t (in yr)

• md.timestepping.final_time: tJ(> t) in Figure 1 (in yr).

• md.geometry.thickness: ice loading history in the J × 2 matrix form; the j-th row, for example, should
be de�ned as [h0j , tj ] (cf. Figure 1).
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4.12.5 ISSM Con�guration

To activate the GIA model, add the following in the con�guration script and compile ISSM:

--with-math77-dir="$ISSM_DIR/externalpackages/math77/install"

4.12.6 Running a simulation

To run a simulation, use the following command:

>> md=solve(md,'Gia');

The �rst argument is the model, the second is the nature of the simulation one wants to run.
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Chapter 5

Parameterization of physical processes

5.1 Positive Degree Day (PDD)

5.1.1 Physical basis

5.1.1.1 Positive degree day method

A standard positive degree day (PDD) method is used to compute the surface masse balance (ice ablation and
accumulation) from the temperature and precipitation �elds. The hourly temperatures are assumed to have a
normal distribution, of standard deviation σPDD = 5.5 ◦C, around the monthly mean (Tm). The number of
days for which the temperature is above 0 ◦C in a year is computed as follows:

PDD =
1

σPDD
√

2π

∫ 1year

0

∫ Tm+2.5σPDD

0 ◦C
Texp

[
−(T − Tm)2

2σ2
PDD

]
dT dt (5.1)

The amount of snow and ice that melts is assumed to be proportional to the number of positive degree days.
Snow is melted �rst and the remaining positive degree days are used to melt ice. A dependence to the mean
June/July/August temperature (Tjja) is added to get the ablation rate factor for snow (γsnow) and ice (γice):

γice =


17.22 mm/PDD Tjja ≤ −1 ◦C,

0.0067× (10-Tjja )
3 + 8.3 mm/PDD −1 ◦C < Tjja < 10 ◦C,

8.3 mm/PDD 10 ◦C ≤ Tjja
and

γsnow =


2.65 mm/PDD Tjja ≤ −1 ◦C,

0.15× Tjja+ 2.8 mm/PDD −1 ◦C < Tjja < 10 ◦C,

4.3 mm/PDD 10 ◦C ≤ Tjja

(5.2)

A fraction of the melted snow is refrozen. The amount of superimposed ice for a year is:

superimposed ice =

{
min[Pr + M, 2.2× (Ps - M) - d× ci /L×min(Tsurf , 0 ◦C)] M < Ps ,

min[Pr + M, d × ci /L×min(Tsurf , ◦C)] M > Ps
(5.3)

where:

• Pr is the rainfall in a year

• Ps is the snow fall in a year

• M is the snow melt in a year

• 2.2 is the capillarity factor

• d is the active thermodynamic layer (set to 1 m)
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• ci is the ice speci�c heat capacity (152.5 + 7.122T Jkg−1K−1)

• L is the latent heat fusion (3.35 × 105 Jkg−1)

• Tsurf is the surface temperature

A normal distribution of the hourly temperature is also assumed to compute the amount of snow accumulation
from the precipitation. A lower standard deviation σRS = σPDD − 0.5 is assumed in that case to take into
account the smaller temperature variability during cloudy days. Precipitation is considered to be snow when
the temperature is below 0 ◦C.

accumulation
precipitation

=
ρi

ρwσRS
√

2π

∫ 1year

0

∫ 0 ◦C

Tm−2.5σRS

exp

[
−(T − Tm)2

2σ2
RS

]
dTdt (5.4)

5.1.1.2 Temperature and precipitation forcing (Under development)

If precipitations come from another elevation than the surface elevation of the ice, it can be adjusted to take
into account the elevation deserti�cation e�ect.

If the forcing temperatures are provided for a constant altitude, a lapse rate of 6.5◦/km is used to adjust them
to the surface elevation of each step.

5.1.2 Model parameters

The parameters relevant to the positive degree day and δ18O parameterization methods can be displayed by
typing: The lapse rate is computed as an weighted mean of the present day (rlaps) and LGM (rlapslgm) lapse
rate as

rtlaps = TdiffT ime ∗ rlapslgm+ (1.− TdiffT ime) ∗ rlaps (5.5)

where Tdi�Time is the time interpolation parameter (Tdi�) at the integration time.

The surface temperature (Tsurf) is the yearly average temperature computed from the monthly temperature
tstar. tstar is computed as the present day temperature plus the temperature di�erence, tdiffh, between LGM
and present day.

tstar = tdiffh+ TemperaturesPresentday[imonth]− rtlaps×max st, sealev × 0.001; (5.6)

st is the di�erence between the surface elevation and the elevation from temperature source

st = (s− s0t)/1000 (5.7)

and tdi�h is the weighted mean between the present day and lgm temperature

tdiffh = TdiffT ime× (TemperaturesLgm[imonth]− TemperaturesPresentday[imonth]) (5.8)

>> md.smb

• isdelta18o: is temperature and precipitation delta18o parametrization activated (0 or 1, default is 0)

• desfac: deserti�cation elevation factor (between 0 and 1, default is 0.5) (m)

• s0p: should be set to elevation from precipitation source (between 0 and a few 1000s m, default is 0)
(m)

• s0t: should be set to elevation from temperature source (between 0 and a few 1000s m, default is 0) [m]

• rlaps: present day lapse rate (degree/km)

• rlapslgm: LGM lapse rate (degree/km)

• Pfac: time interpolation parameter for precipitation, 1D (year)

• Tdiff: time interpolation parameter for temperature, 1D (year)
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• sealev: sea level (m)

• monthlytemperatures: monthly surface temperatures (K), required if pdd is activated and delta18o not
activated

• precipitation: surface precipitation (m/yr water eq)

• temperatures_presentday: monthly present day surface temperatures (K), required if pdd is activated
and delta18o activated

• temperatures_lgm: monthly LGM surface temperatures (K), required if pdd is activated and delta18o
activated

• precipitations_presentday: monthly surface precipitation (m/yr water eq), required if pdd is activated
and delta18o activated

• delta18o: delta18o, required if pdd is activated and delta18o activated

• delta18o_surface: surface elevation of the delta18o site, required if pdd is activated and delta18o
activated

5.1.3 Running a simulation

To turn this module on in a simulation, use the following command:

>> md.smb=SMBpdd();

5.2 Other surface mass balance models (SMB)

5.2.1 SMB (default)

The default surface mass balance model applies the surface mass balance that's provided by the model without
any modi�cations. This model can be selected by typing:

>> md.smb = SMB();

One can display the following �elds by typing:

>> md.smb

• md.smb.mass_balance: surface mass balance (in m/yr ice equivalent)

5.2.2 SMB components

The SMBcomponents model computes surface mass balance using the component parameters provided. The
components expected are: accumulation, runo�, and evaporation. All components are typically expected to
be given as positive values. In the model computation of surface mass balance, runo� and evaporation are
considered as mass lost and accumulation is considered as mass gain.

The components model can be selected by typing:

>> md.smb = SMBcomponents();

One can display the following �elds by typing:

>> md.smb

• surface forcings parameters (SMB=accumulation-runoff-evaporation):

• md.smb.accumulation: accumulated snow [m/yr ice eq]

• md.smb.runoff : amount of ice melt lost from the ice column [m/yr ice eq]

• md.smb.evaporation : amount of ice lost to evaporative processes [m/yr ice eq]
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5.2.3 SMB melt components

Like the SMBcomponents model, the SMBmeltcomponents model computes surface mass balance using the
component parameters provided by the user. The components expected are: accumulation, evaporation, melt,
and refreeze. All components are typically expected to be given as positive values. In the model computation
of surface mass balance, melt and evaporation are considered as mass lost while accumulation and refreeze are
considered as mass gain.

The melt components model can be selected by typing:

>> md.smb = SMBmeltcomponents();

>> md.smb

• surface forcings parameters with melt (SMB=accumulation-evaporation-melt+refreeze):

• md.smb.accumulation: accumulated snow [m/yr ice eq]

• md.smb.evaporation : amount of ice lost to evaporative processes [m/yr ice eq]

• md.smb.melt : amount of ice melt in ice column [m/yr ice eq]

• md.smb.refreeze : amount of ice melt refrozen in ice column [m/yr ice eq]

5.2.4 SMB gradients method

This surface mass balance model is based on the mass balance gradients method described in Helsen et al.
[2012]. To activate this method, the user must provide a climatology and a reference ice surface pro�le. The
method will evolve the surface mass balance forcing through time, according to deviations of ice surface height.
Required parameters include, at each vertex: (1) a reference surface mass balance �eld; (2) a reference ice
elevation at each vertex; (3) a pre-determined slope of the linear regression between positive surface mass
balance and ice surface height; and (4) a pre-determined slope of the linear regression between negative surface
mass balance and ice surface height. Surface mass balance values are expected in units of millimeters of water
equivalent per year and elevations are expected in meters.

The gradients model can be selected by typing:

>> md.smb = SMBgradients();

>> md.smb

• md.smb.href : reference elevation from which deviation is used to calculate SMB adjustment in smb
gradients method [m]

• md.smb.smbref: reference smb from which deviation is calculated in smb gradients method [mm/yr water
equiv]

• md.smb.b_pos : slope of hs - smb regression line for accumulation regime required if smb gradients is
activated

• md.smb.b_neg : slope of hs - smb regression line for ablation regime required if smb gradients is activated

5.3 Basal friction

5.3.1 Default Friction law

The default friction law is de�ned as [Paterson, 1994] (p 151):

vb ∝ N−qτpb (5.9)

where:
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• vb is the basal velocity magnitude

• τb is the basal stress magnitude
• N is the e�ective pressure

• p and q are friction law exponents

In ISSM, this friction law is implemented in terms of basal stress:

τb = −k2Nr‖vb‖s−1vb (5.10)

where:

• k is a friction coe�cient (variable in space)

• r and s are friction law exponents:

r = q/p s = 1/p (5.11)

This friction law can be selected as follows:

>> md.friction = friction();

One can display the following �elds by typing:

>> md.friction

• md.friction.coefficient: friction coe�cient

• md.friction.p: p exponent

• md.friction.q: q exponent

5.3.2 Weertman Friction law

A Weertman friction law is currently under development. The Weertman friction law reads:

vb = Cτmb (5.12)

• C is a friction coe�cient (variable in space)

• m is a friction law exponent

In ISSM, this friction law is implemented in terms of basal stress:

τb = C−1/m‖vb‖1/m−1vb (5.13)

This friction law can be selected as follows:

>> md.friction = frictionweertman();

One can display the following �elds by typing:

>> md.friction

• md.friction.C: friction coe�cient

• md.friction.m: m exponent
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5.3.3 Thin water layer friction law

The thin water layer friction law is similar to the default friction law except that the e�ective pressure includes
a speci�ed layer of water at the bed:

N = g (ρiH + ρw (b− w)) (5.14)

when the bedrock is below sea level, and:

N = g (ρiH − ρww) (5.15)

when the bedrock is above sea level, with:

• N the e�ective pressure

• ρi the ice density
• ρw the water density

• H and b ice thickness and bed elevation

• w the water thickness at the ice base

This friction law can be selected as follows:

>> md.friction = frictionwaterlayer();

One can display all these �elds by typing:

>> md.friction

• md.friction.coefficient: friction coe�cient

• md.friction.p: p exponent

• md.friction.q: q exponent

• md.friction.water_layer: thin water layer thickness (meters)

5.4 Basal melt parameterizations PICO/PICOP

5.4.1 Physical basis

This model is described in Reese et al. [2018] and Pelle et al. [2019]. It consists in calculating basal melt rates
under ice shelves based only on far �eld ocean temperature and salinity.

5.4.1.1 PICO

PICO is a box model of ocean circulation under ice shelf cavities. each ice shelf is divided in a set of boxes,
and the temperature (Tk) and salinity (Sk) of each box is given by:

q (Tk−1 − Tk)−Akmk
ρi
ρw

L

cp
= 0

q (Sk−1 − Sk)−AkmkSk = 0

(5.16)

where:

• Ak is the surface area of box k
• mk is the melt rate in box k

• q = C (ρ0 − ρ1) is the strength of the overturning circulation
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Figure 5.1: Schematic view of the PICO model (taken from Reese et al. [2018]).

5.4.1.2 PICOP

PICOP is described in Pelle et al. [2019]. The idea is to use PICO to calculate the temperature and salinity
in each box, but instead of using PICO's calculated melt, use these quantities to drive a plume model from
Lazeroms et al. [2018].
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Figure 5.2: Melt calculation in PICOP, adapted from Pelle et al. [2019].

5.4.2 Model parameters

To activate this melt paramterization, you need to use the class basalforcingspico:

>> md.basalforcings = basalforcingspico();

The parameters relevant to the calculation can be displayed by typing:

>> md.basalforcings

• md.basalforcings.num_basins: number of basins the model domain is partitioned into [unitless]

• md.basalforcings.basin_id: basin number assigned to each node [unitless]

• md.basalforcings.maxboxcount: maximum number of boxes initialized under all ice shelves

• md.basalforcings.overturning_coeff: overturning strength [m3/s]

• md.basalforcings.gamma_T: turbulent temperature exchange velocity [m/s]

• md.basalforcings.farocean_temperature: depth averaged ocean temperature in front of the ice shelf
for basin i [K]

• md.basalforcings.farocean_salinity: depth averaged ocean salinity in front of the ice shelf for basin
i [psu]

• md.basalforcings.isplume: boolean to use buoyant plume melt rate parameterization from Lazeroms
et al., 2018 (PICOP, default false)

5.4.3 Example: the Amundsen sea

To set up a model of the Amundsen sea using PICOP, we only need one basin:

>> md.basalforcings = basalforcingspico();

>> md.basalforcings.basin_id = ones(md.mesh.numberofelements,1);

>> md.basalforcings.num_basins = 1;

We generally do not need to have more than 5 boxes per ice shelf:
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>> md.basalforcings.maxboxcount=5;

and �nally, we can prescribe the far �eld ocean properties (they can be time series):

>> md.basalforcings.farocean_temperature = [0.47+273.15]; %0.47C converted to K

>> md.basalforcings.farocean_salinity = [34.73]; %PSU

To activate PICOP instead of PICO:

>> md.basalforcings.isplume = 1;

To run a simulation, use the following command:

>> md=solve(md,'Transient');

5.5 Empirical Scalar Tertiary Anisotropy Regime (ESTAR)

5.5.1 Description

The ESTAR (Empirical Scalar Tertiary Anisotropy Regime) �ow relation [Budd et al., 2013; Graham et al.,
2018] is a generalized constitutive relation for polycrystalline ice in steady-state (tertiary) �ow. It is a scalar
power law formulation based on tertiary creep rates from laboratory experiments of ice deformation under a
variety of simple shear and compression stresses. While mathematically isotropic, the ESTAR �ow relation
describes the deformation of ice with a �ow-compatible induced anisotropy � i.e. ice that has a developed
anisotropic fabric that is a function of the underlying stress regime (i.e. the relative proportion of simple shear
and compression stresses). The origins of ESTAR, including the laboratory experiments than contributed to
its development, its derivation, and underlying assumptions are discussed in Budd et al. [2013] and Graham
et al. [2018].

5.5.1.1 Equations

Ice is treated as a purely viscous incompressible material [Cu�ey and Paterson, 2010], such that its material
constitutive relation can be written:

σ′ = 2µε̇, (5.17)

where:

• σ′ is the deviatoric stress tensor (Pa)
• µ is the ice e�ective viscosity (Pa s)

• ε̇ is the strain rate tensor (s-1)

The ESTAR �ow relation viscosity µ can be written:

µ =
B

2E(λS)
1
3 ε̇

2
3
e

, (5.18)

where:

• B is the ice hardness or rigidity. Note that B = A(T ′)−1/3, where A(T ′) is the temperature-dependent
�ow rate parameter and T ′ is the temperature relative to the pressure dependent melting point of ice.

• E(λS) is an enhancement factor that characterises the relative proportion of simple shear and compression
stresses via the shear fraction λS
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The most notable di�erence between the Glen and ESTAR �ow relations is realized in the form of the enhance-
ment factor, which for the ESTAR �ow relation is E(λS), given by:

E(λS) = EC + (ES − EC)λ2
S . (5.19)

Here, EC and ES are the enhancement factors above the minimum (secondary) deformation rate for isotropic
ice under compression alone or simple shear alone, respectively. Laboratory evidence suggests that a suitable
ratio of EC/ES is 3/8 [?]. The shear fraction λS characterises the contribution of simple shear to the e�ective
stress. The collinear nature of the ESTAR �ow relation allows λS to be expressed equivalently in terms of
stresses and strain rates. The strain rate formulation is more convenient for Stokes �ow modelling, and can be
written

λS =
ε̇′

ε̇e
, (5.20)

where ε̇′ (s-1) is the magnitude of the shear strain rate on the local non-rotating shear plane. The local non-
rotating shear plane contains the velocity vector and the vorticity vector associated solely with deformation,
rather than local rigid body rotation. See Graham et al. [2018] for details.

For comparison with the ESTAR viscosity, the Glen �ow relation viscosity µ can be written:

µ =
B

2E
1
n ε̇

n−1
n

e

, (5.21)

where E is a constant enhancement factor. For the standard Glen �ow relation (the matice class in ISSM),
E = 1; to specify values of E > 1, the matenhancedice class can be used.

5.5.2 Model parameters

The parameters relevant to the ESTAR �ow relation (the matestar class in ISSM) can be displayed by typing:

>> md.materials

• md.materials.rheology_B: temperature-dependent �ow relation parameter

• md.materials.rheology_Ec: compression enhancement factor

• md.materials.rheology_Es: simple shear enhancement factor

• md.materials.rheology_law: law for the temperature dependence of the rheology (None means no
temperature dependence; default is Paterson)

5.5.3 Using the ESTAR �ow relation

The ESTAR �ow relation may be speci�ed by

>> md.materials=matestar();

In this case, values for B, EC , and ES should be explicitly set.

Alternatively, the ESTAR �ow relation may be speci�ed from conversion of a Glen type relation by the following:

>> md.materials=matestar(md.materials);

The argument is the materials class of the model. This will set the same value for B as for the Glen �ow model
default, with ES = 1 and EC = 1.
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5.5.4 Using the enhanced Glen �ow relation

It is possible to use an alternative Glen �ow relation with an explicit enhancement factor, in a similar way to
the ESTAR class, as follows:

>> md.materials=matenhancedice();

in which B and E should be explicitly set, or as

>> md.materials=matenhancedice(md.materials);

in which B is inherited from the default Glen �ow model and E=1.
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Cluster/Cloud computing

6.1 Cluster computing

ISSM can be run in parallel on clusters or on multi-core computers. This subsection shows how to use this
capability.

6.1.1 Setting up the environment to use the parallel mode

We assume users have correctly setup ISSM. Every cluster is di�erent and one might need to create a new
cluster �le in $ISSM_DIR/src/m/classes/clusters/. In most cases, the generic cluster can be used:

>> md.cluster=generic('name',machine_name);

For a local machine, the command oshostname() can be used:

>> md.cluster=generic('name',oshostname());

Many parameters, such as the number of processors, are �elds of md.cluster. Once those parameters are
setup, the solution sequences are called the same way:

md=solve(md,'Stressbalance');

6.1.2 password-less SSH login

In order to facilitate use of clusters that might be protected by passwords, or to avoid having to input password
for each run, one can either set-up a public key authentication or a tunnel between the local host and the cluster.

6.1.2.1 Step 1: simplifying the way you ssh

It is useful to simplify the way you log into your cluster. For example, if your username is myusername and the
complete cluster name is mycluster.ess.uci.edu, you need to log in using this ssh command:

$ssh myusername@mycluster.ess.uci.edu

This can be simpli�ed by adding the following lines to ~/.ssh/config:
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Host mycluster mycluster.ess.uci.edu

HostName mycluster.ess.uci.edu

User myusername

Now, to log into the cluster, you only need to type:

$ssh mycluster

you will obviously need to adapt these lines to your own user name and cluster name.

6.1.2.2 Step 2: creating an SSH public/private key

You need to have a SSH public/private key pair. You can check whether the following �le exists ~/.ssh/id_rsa.pub.
If you do have a public key, you can skip this step and go to the next step. If you do not, you can create a SSH
public/private key pair by typing the following command and following the prompts (no passphrase necessary):

$your_localhost% ssh-keygen -t rsa

Generating public/private rsa key pair.

Enter file in which to save the key (/Users/username/.ssh/id_rsa):RETURN

Enter passphrase (empty for no passphrase):RETURN

Enter same passphrase again:RETURN

Your identification has been saved in /Users/username/.ssh/id_rsa.

Your public key has been saved in /Users/username/.ssh/id_rsa.pub.

Two �les were created: your private key /Users/username/.ssh/id_rsa, and the public key /Users/username/.ssh/id_rsa.pub.
The private key is read-only and only for you, it is used to decrypt all correspondence encrypted with the public
key.

6.1.2.3 Step 3: SSH passthrough

The contents of your RSA public key need to be copied to ~/.ssh/authorized_keys on the system you wish
to SSH to without being prompted for a password:

$your_localhost%scp ~/.ssh/id_rsa.pub username@your_remotehost:~

Now on your remote host, copy the content of id_rsa.pub:

$your_remotehost%cat ~/id_rsa.pub >> ~/.ssh/authorized_keys

$your_remotehost%rm ~/id_rsa.pub

6.1.3 Tunneling

Another possibility is to establish an SSH tunnel between the local host and the cluster. Open a terminal, and
connect to the cluster using ssh, by typing:

$ ssh -L 1025:localhost:22 login@cluster

The port that will be tunneled is the port 1025. To be able to use the tunnel, you will have to change the
port setting in the md.cluster.port from 0 to 1025. Once this is done, solutions can be solved the exact same
way.
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6.2 Cloud computing

ISSM can be deployed on the EC2 Amazon Cloud servers. Images have been created to run ISSM, which
greatly improves the ease of use/installation provided users have an Amazon account.

6.3 Introduction

We rely on the Amazon Elastic Compute Cloud solution (EC2) to run ISSM on the amazon cloud. We provide
everything required in the externalpackages directory and this documentation to run ISSM, provided an
Amazon EC2 account has already been setup by the user. EC2 is the backbone for our cloud computing,
however, it does not provide facilities to deploy an MPI cluster on an instance of the cloud. To deploy such
a cluster, we rely on the third party software, StarCluster. This library is a suite of python scripts which
communicate with the EC2 servers, and automatically setup a cluster, given a con�guration �le, using the EC2
account of the user. Once the cluster is spun-up, it can be used to carry out computations using the ISSM
framework. To facilitate the install of ISSM we provide images (AMI), which can be loaded directly and hence
avoiding the need for extensive installation/compilation. Such images are now private, but could potentially
be made available to the ISSM community of users in the near-future.

6.4 Installation

We assume here that you have setup an EC2 account, and that you have the following: the AWS access key
id, and the AWS secret access key. Nothing else is needed on the EC2 side.

You need to also install StarCluster. First, be sure that you have successfully installed python from the ISSM
externalpackages directory, otherwise, you will get permission issues upon install of the StarCluster package.
Then just run the install.sh script in the StarCluster external package of issm/trunk. This should install
all the scripts necessary to run StarCluster successfully.

6.5 Con�guration

StarCluster needs a con�guration �le, which will be used to store information proper to your EC2 account,
and templates for the clusters you will be spinning up. This �le is well described on the StarCluster website,
found here: StarCluster user manual. For ease of use, we have created an ISSM StarCluster con�guration �le
that you will �nd in the issm-jpl/proj-group/CloudComputing directory. In order to use this con�guration
�le, you should create an alias in your local settings:

alias st='starcluster -c $PATH_TO_CONFIG_FILE '

For the ISSM team, the StarCluster con�guration �le should be replaced by: issm-jpl/proj-group/CloudComputing/starcluster.config

6.5.1 StarCluster con�guration �le for ISSM

Here are some of the sections of the starcluster.config �le, which we explain within the framework of the
ISSM runs:

[aws info]

AWS_ACCESS_KEY_ID = put_you_aws_access_key_id_here

AWS_SECRET_ACCESS_KEY = put_your_aws_secrate_access_key_here

AWS_USER_ID = put_your_ec2_acount_loging_here

AWS_REGION_NAME = us-east-1

AWS_REGION_HOST = ec2.us-east-1.amazonaws.com
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This section holds your settings for the AWS account. You need to provide your access key id and secret access
key, along with the user id for the account. The region name and region hosts determine on which region of
the Amazon EC2 cloud you will be running your cluster. Beware, some of the most powerful machines are
not always available in all regions. Typically, the us-east-1 has the best instance types, the cc2.8xlarge

machine. This is what we will rely on here.

[key issm-jpl]

KEY_LOCATION=~/.ssh/issm-jpl.rsa

This section speci�es the locations where the ssh key for the EC2 account is located. Before you can start
using the EC2 account with StarCluster, StarCluster needs to create this key. Run the following command to
do so:

st createkey issm --outputfile=issm.rsa

Once the key is created, move it to the KEY\_LOCATION speci�ed in the section above. Here, we would move
issm.rsa to the ssh directory in your home. If the key has already been created and you don't have it, just
download it from your EC2 account console or, request it from someone who owns the account and can send
you the rsa key. Do not attempt to destroy the key by running st removekey issm.rsa, as this will also
deactivate all the other users that were using this key.

[cluster issm-jpl]

KEYNAME = issm-jpl

CLUSTER_SIZE = 1

CLUSTER_USER = username

CLUSTER_SHELL = bash

NODE_IMAGE_ID = ami-59106030 root

NODE_INSTANCE_TYPE = cc2.8xlarge

PLUGINS = createusers-jpl, mpich2

#SPOT_BID = 0.27

[plugin createusers-jpl]

setup_class = starcluster.plugins.users.CreateUsers

usernames = username

download_keys = True

[plugin mpich2]

SETUP_CLASS = starcluster.plugins.mpich2.MPICH2Setup

These sections really describe your cluster settings. CLUSTER\_SIZE is the number of instances that will be
launched for the cluster. A special EC2 cluster group will be created, ensuring the all the instances of your
cluster have the best connectivity. The user of the cluster will have a corresponding user name created.

The NODE\_INSTANCE\_TYPE can be found here: EC2 instance types. The most powerful one for the purpose
of running ISSM is the cc2.8xlarge, which can be found on the us-east1 region.

The NODE\_IMAGE\_ID is the image (residing on the EC2 servers) from which the instances will be created.
This image is a template for the cluster you will be launching. Here, we use ISSM images that have been
created speci�cally. Please ask the ISSM team for an image if you don't want to create one from scratch.

SPOT\_BID is a setting that you can activate to make a spot request at a certain price. The EC2 cloud will
provide you instances once the spot price goes below your requested price. This is a way to run low-cost
solutions using the market driven EC2 prices.

The plugin sections ensure that the usernames are created and mpich2 is run as the backbone of the MPI
cluster.
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6.6 Running ISSM with StarCluster

In order to run ISSM on the EC2 cloud, you will need to create an instance of your cluster, by running the
following:

st start -c issm-jpl issm1

This will spin-up an issm-jpl type cluster, named issm1. Once the cluster is created, you can log into it by
doing the following:

st sshmaster issm1 -u username

You can run ISSM locally, or better, rely on the @cloud cluster class already implemented in ISSM. The only
thing to do to run on the issm1 cluster is to activate the @cloud class in ISSM using the 'issm1' name:

md.cluster=cloud('name','issm1','np',num_cpus_requested);

Upon a call to solve, ISSM will be launched on the issm1 cloud instance.

If you wish to receive an e-mail when the run is complete, a .sge_request �le must be created in the home
directory of the issm-jpl image (either locally on the instance after it is started or before the image itself is
created). The .sge_request �le should look like this:

-M your_email_address@your_domain.com

-m e

Once you are done running on the cluster, terminate the cluster by doing:

st terminate issm1
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Chapter 7

Advanced features

7.1 Inverse methods

7.1.1 Introduction

Inversions are used to constrain poorly known model parameters such as basal friction. The method consists
of �nding a set of model inputs that minimizes the cost function J that measures the mis�t between model
and observations. For example, inverse methods are used to infer the basal friction k:

τb = −k2Nr‖v‖s−1vb (7.1)

and/or the depth-averaged ice hardness, B, in Glen's �ow law:

µ =
B

2

(
ε̇

1− 1
n

e

) (7.2)

This section explains how to launch an inverse method and how optimization parameters must be tuned.

7.1.2 Cost functions

7.1.2.1 Absolute mis�t

This is the classic way of calculating a mis�t between a modeled and observed velocity �eld:

J (v) =

∫
S

1

2

((
vx − vobsx

)2

+
(
vy − vobsy

)2
)
dS (7.3)

Where:

• vx is the x component of the glacier modeled velocity

• vy is the y component of the glacier modeled velocity

• vxobs is the x component of the glacier observed velocity

• vyobs is the y component of the glacier observed velocity

7.1.2.2 Relative mis�t

The relative mis�t is de�ned as follows:

J (v) =

∫
S

1

2

((
vx − vobsx

)2
(vobsx + ε)2 +

(
vy − vobsy

)2(
vobsy + ε

)2
)
dS (7.4)

Where:
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• ε is a minimum velocity used to avoid the observed velocity being equal to zero.

7.1.2.3 Logarithmic mis�t

J (v) =

∫
S

(
log
(
‖v‖+ ε

‖vobs‖+ ε

))2

dS (7.5)

Where:

• v is the glacier modeled velocity magnitude

• vobs is the glacier observed velocity magnitude

• ε is a minimum velocity used to avoid the observed velocity being equal to zero.

7.1.2.4 Thickness mis�t

J (H) =

∫
Ω

1

2

(
H −Hobs

)2

dΩ (7.6)

Where:

• H is the ice thickness

• Hobs is the measured ice thickness

7.1.2.5 Drag gradient

J (k) =

∫
B

γ
1

2
‖∇k‖2dB (7.7)

Where:

• γ is a Tikhonov regularization parameter

7.1.2.6 Thickness gradient

J (k) =

∫
Ω

γ
1

2
‖∇H‖2dΩ (7.8)

Where:

• γ is a Tikhonov regularization parameter

7.1.3 Model parameters

The parameters relevant to the stress balance solution can be displayed by typing:

>> md.inversion

• md.inversion.iscontrol: 1 if inversion is activated, 0 for a forward run (default)

• md.inversion.incomplete_adjoint: 1 linear viscosity, 0 non-linear viscosity

• md.inversion.control_parameters: parameters that is inferred (ex: {'FrictionCoefficient'} or
{'MaterialsRheologyBbar'}

• md.inversion.cost_functions: list of individual cost functions that are summed to calculate the �nal
cost function J to be minimized (ex: [101,501])

• md.inversion.cost_functions_coefficients: weight of each individual cost function previously de-
�ned for each vertex (more/no weight can be put on certain regions)
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• md.inversion.min_parameters: minimum value for the inferred parameter

• md.inversion.max_parameters: maximum value for the inferred parameter

• md.inversion.vx_obs: x component of the surface velocity

• md.inversion.vy_obs: y component of the surface velocity

• md.inversion.vel_obs: surface velocity magnitude

• md.inversion.thickness_obs: measured ice thickness

7.1.4 Minimization algorithms

Depending on the class of md.inversion, several optimization algorithm are available:

• Brent search algorithm (md.inversion=inversion(), the default)

• Toolkit for Advanced Optimization (TAO) (md.inversion=taoinversion())

• M1QN3 algorithm (md.inversion=m1qn3inversion())

Each minimizer has its own optimization parameters described below.

7.1.4.1 Brent search minimizers

• md.inversion.nsteps: number of optimization searches (gradient evaluations)

• md.inversion.maxiter_per_step: maximum iterations during each optimization step

• md.inversion.step_threshold: decrease threshold for next step (default is 30%)

• md.inversion.gradient_scaling: scaling factor on gradient direction during optimization, for each
optimization step

α ∈ [0, gradient_scaling] pnew = pold − α ∇pJ /‖∇pJ ‖ (7.9)

7.1.4.2 Toolkit for Advanced Optimization (TAO)

ISSM has an interface to the Toolkit for Advanced Optimization (TAO) [Munson et al., 2012]. Here is a list of
the relevant parameters:

• md.inversion.maxsteps: maximum number of iterations (gradient computation)

• md.inversion.maxiter: maximum number of Function evaluation (forward run)

• md.inversion.algorithm: inimization algorithm. ex: 'tao_blmvm', 'tao_cg', 'tao_lmvm'

• md.inversion.fatol: cost function absolute convergence criterion (de�ned below)

• md.inversion.frtol: cost function relative convergence criterion (de�ned below)

• md.inversion.gatol: gradient absolute convergence criterion (de�ned below)

• md.inversion.grtol: gradient relative convergence criterion (de�ned below)

• md.inversion.gttol: gradient relative convergence criterion 2 (de�ned below)

with the following convergence criteria:

f(X)− f(X∗) < εfatol
|f(X)− f(X∗| / |f(X∗)| < εfrtol
‖g(X)‖ < εgatol
‖g(X)‖/ |f(X)| < εgrtol
‖g(X)‖/‖g(X0)‖ < εgttol

(7.10)

where:

• f(X) is the cost function at X

• g(X) is the cost function gradient with respect to X

• X∗ is the estimated "true" minimum

• X0 is the initial guess
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7.1.4.3 M1QN3

ISSM has an interface to M1QN3 (Inria) [Gilbert and Lemaréchal , 1989]. This interface was largely based on
Nardi et al. [2009]. Here is a list of the relevant parameters:

• md.inversion.maxsteps: maximum number of iterations (gradient computation)

• md.inversion.maxiter: maximum number of Function evaluation (forward run)

• md.inversion.dxmin: convergence criterion: two points less than dxmin from eachother (sup-norm) are
considered identical

• md.inversion.gttol: gradient relative convergence criterion 2 (de�ned below)

7.1.5 Running an inversion

To launch an inversion, run a stress balance solution with md.inversion.iscontrol=1:

>> md=solve(md,'Stressbalance');

7.2 Adaptive Mesh Re�nement (amr)

7.2.1 Adaptive Mesh Re�nement - AMR

The adaptive mesh re�nement (AMR) in ISSM relies on two independent meshers: BAMG and NeoPZ. BAMG
is a bidimensional anisotropic mesh generator developed by Frederic Hecht [Hecht , 2006] and NeoPZ is a �nite
element package developed by Philippe Devloo Philippe Devloo Devloo [1997].

The current AMR is supported for 2D meshes (triangle elements) and for the SSA �ow equations. The features
of each one of these meshers are described below:

7.2.2 AMR using BAMG (default)

BAMG is the default mesher to run a simulation with AMR. AMR is executed specifying the required resolu-
tions at the vertices of the mesh. The following properties can be de�ned by the user:

7.2.2.1 hmin/hmax

The minimum and maximum edge lengths can be speci�ed by 'hmin' and 'hmax' options:

>> md.amr.hmin=500;

>> md.amr.hmax=5000;

7.2.2.2 �eld/err

The option 'field' can be used with the option 'err' to adapt the mesh to the �eld given as input for the
error given as input:

>> md.amr.fieldname='Vel';

>> md.amr.err=3;
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7.2.2.3 gradation

The ratio of the lengths of two adjacent edges is controlled by the option 'gradation':

>> md.amr.gradation=1.5;

7.2.2.4 resolution at the grounding line

One can specify the edge length around the grounding line. The user needs to specify the distance around
the grounding line (the same distance is used updstream and downstream of the grounding line) where the
imposed resolution will be applied.

>> md.amr.groundingline_resolution=500;

>> md.amr.groundingline_distance=10000;

Set 0 in the grounding distance if this re�nement is not required.

7.2.2.5 resolution at the ice front

The ice front is another region where AMR can be applied. For this, the edge length around the ice front
should be speci�ed. As for the grounding line, the user needs to specify the distance around the ice front
(the same distance is used updstream and downstream to the ice front) where the imposed resolution will be
applied.

>> md.amr.icefront_resolution=500;

>> md.amr.icefront_distance=10000;

Set 0 in the ice front distance if this re�nement is not required.

Note: users using intel compilers (icc, icpc) shoud use the �ag -fp-model precise to disable optimizations
that are not value-safe on �oating-point data. This will prevent bamg from being compiler dependent (see
here).

7.2.3 AMR using NeoPZ (requires installation)

The mesh re�nement with NeoPZ is based on levels of re�nement: the inital coarse mesh is re�ned according
to the user requirement and only nested meshes are generated (it means that the initial vertices positions are
kept unchanged during all the AMR simulation). NeoPZ is an external package that needs to be installed
before using in ISSM. Once installed, it is necessary setting NeoPZ as the AMR package:

>> md.amr=amrneopz();

7.2.3.1 level max

Users should de�ne the maximum level of re�nement to be applied.

>> md.amr.level_max=2;

7.2.3.2 gradation

The ratio of the lengths of two adjacent edges is controlled by the option 'gradation':

>> md.amr.gradation=1.5;
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7.2.3.3 distance to the grounding line

User needs to specify the distance around the grounding line (the same distance is used upstream and down-
stream to the grounding line) where the elements will be re�ned according to the maximum level of re�nement:

>> md.amr.groundingline_distance=10000;

Set 0 as the grounding distance if this re�nement is not required.

7.2.3.4 distance to the ice front

If the user wants to re�ne around the ice front, it is necessary to specify the distance in which the elements will
be re�ned according to the maximum level of re�nement (the same distance is used upstream and downstream
to the ice front).

>> md.amr.icefront_distance=10000;

Set 0 in the ice front distance if this re�nement is not required.

7.2.3.5 Running with AMR

To ability the AMR process, one needs to de�ne the AMR frequency in the transient �eld (can be 1 or larger
depending on how often the mesh needs to be updated):

>>md.transient.amr_frequency=1;

7.3 Rifts

ISSM allows for the simulation of rifts. This section explains how to create a model that includes rifts, and
how to control their behavior.

7.3.1 Rifts creation

Rifts can be included right between the phase where the mesh is created, and the phase where the geography
is setup. Rifts that should be included in the model must be present in an ARGUS type �le. Each rift should
be represented by an open loop set of points. In�nite numbers of rifts can be included, provided they do
not intersect with the domain outline, or any other rift. This point is particularly important as there are no
checks on intersections at the meshing phase. For example, a �le including two straight rifts could look like,
Rifts.exp:

## Name:Rift1

## Icon:0

# Points Count Value

2 1.000000

# X pos Y pos

0 0

50000 0

## Name:Rift2

## Icon:0

# Points Count Value

2 1.000000

# X pos Y pos

0 10000

50000 10000
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this �le includes two horizontal rifts of 50 km long, separated by 10 km. In order to create a model with these
rifts, one would do:

>> md=model;

>> md=triangle(md,'DomainOutline.exp','Rifts.exp',4000);

>> md=meshprocessrifts(md);

>> md=setmask(md,'Iceshelves.exp','Islands.exp');

>> etc ...

The rest of the process is similar. This will create a rifts structure in the model md. The rifts structure
holds as many members as there are rifts in Rifts.exp. The key �elds in the rifts structure are the fill and
friction. Fill can be either 1 (for water), 2 (for air) and 3 (for ice). Fill determines the pressure on each �ank
of the rifts that is being applied. Friction is a coe�cient between the shear stress exerted on the rift �anks and
the di�erential tangential velocity between both �anks.

7.3.2 Rift tip re�ning

Rifts in a mesh will not modify the type of meshing occurring during the mesh phase. To impact the mesh,
one can use the riftstiprefine.m routine. This routine will ensure that the rift tips are correctly re�ned, to
take into account the tip stress singularity. Use of this routine is as follows:

>> md=model;

>> md=triangle(md,'DomainOutline.exp','Rifts.exp',4001);

>> md=rifttipsrefine(md,2000,30000);

>> md=meshprocessrifts(md);

>> md=setmask(md,'Iceshelves.exp','Islands.exp');

>> etc ...

the �rst argument is the model, the second argument the tip area resolution, and the third is the size of the
circle around the tips where mesh re�nement should occur.

7.3.3 Rifts in parameter �le

The structure of rifts can be modi�ed in any parameter �le. We do not advise touching anything except the
�ll and friction for each one of the rifts in the structure. For example, inclusion of the following lines in the
parameter �le should be enough:

>> for i=1:md.numrifts,

>> md.rifts.riftstruct(i).fill='Water'; %include water in the rifts

>> md.rifts.riftstruct(i).friction=10^11; %friction parameter sigma=10^11*dv_t

>> end

Of course, di�erent frictions and �ll could be applied, according to the physics being captured.

7.3.4 Solving for rifts

Rifts are only allowed when using MacAyeal type elements, in 2d meshes. For now, 3d meshes are not supported.
Nothing is needed to take rifts into account in the solve phase. A simple:

>> md=solve(md,'Stressbalance');

will su�ce. Bear in mind that rifts are handled using penalty methods to ensure that penetration of rift �anks
does not occur. This can be very computationally expensive, as penalty methods tend to lead to zigzagging
of contact. A stable set of constraints strategy has been implemented, which should guarantee convergence,
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but can be slow. Users should also try to minimize zigzagging by re�ning the mesh where needed. In case
zigzagging becomes too intense, locking of the zigzagging penalties will occur, which ensures convergence, but
which can lead to bad results in a physical sense. Detecting penalty locking should give users an idea on where
to re�ne the mesh.

7.3.5 Rifts plotting

Rifts can be plotted using the following special plots:

>> plotmodel(md,'data','rifts','data','riftpenetration','data','riftvel','data','riftrelvel');

these three plots will give users a view of which parts of the rifts are opening, closing, at which relative speed,
etc ...

7.3.6 Rifts when using Yams mesh adaptation

Rifts can be used in conjunction with the Yams mesh adaptation routine, by adding the Rifts.exp �le de�ning
rift contours to the 'riftoutline' option of yams. For example:

>>md=yams(md,'domainoutline','DomainOutline.exp','riftoutline','Rifts.exp','velocities','vel.mat');

7.3.7 Adding rifts to an existing mesh

In case users want to use an existing mesh, rifts can still be added on. The format for the rifts �le is in this
case slightly di�erent:

## Name:ContourAroundRift1

## Icon:0

# Points Count Value

5 1

# X pos Y pos

-100 -100

50100 -100

50100 +100

-100 +100

-100 -100

## Name:Rift1

## Icon:0

# Points Count Value

2 500

# X pos Y pos

0 0

50000 0

## Name:ContourAroundRift2

## Icon:0

# Points Count Value

5 1

# X pos Y pos

-100 900

50100 900

50100 1100

-100 1100

-100 900
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## Name:Rift2

## Icon:0

# Points Count Value

2 1000

# X pos Y pos

0 10000

50000 10000

The format is made of pairs of rift contours with the corresponding rift pro�le. The rift contour is a closed
contour that envelopes the rift. The rift that follows needs to be completely included in it. The rift density
(here, 500 and 1000 respectively) is very important, as it will decide the density of the mesh around the rift.
Do not specify 1, as this will try to include a rift in the mesh with a 1 m mesh density, which will probably
result in a memory exhaustion problem for the local machine running ISSM.

7.4 Quanti�cations of Margins and Uncertainties with Dakota

7.4.1 Physical basis

The methods for Quanti�cation of Margins and Uncertainties (QMU) are based on the Design Analysis Kit for
Optimization and Terascale Applications (DAKOTA) software [Eldred et al., 2008], which is embedded within
ISSM [Larour et al., 2012a, b]. Available DAKOTA analyses include sensitivity and sampling analyses, which
we respectfully rely on to: 1) understand the sensitivity of model diagnostics to local variations in model �elds
and 2) identify how variations in model �elds impact uncertainty in model diagnostics. Diagnostics of interest
include ice volume, maximum velocity, and mass �ux across user-speci�ed pro�les.

7.4.1.1 Mesh Partitioning

QMU analyses are carried out on partitions of the model domain. Each partition consists of a collection of
vertices. The ISSM partitioner is versatile. For example, the partitioner can assign one vertex for each partition
(linear partitioning); the same number of vertices per partition (un-weighted partitioning); or it can weight
partitions by a speci�ed amount (equal-area by default - to remove area-speci�c dependencies). Advanced
partitioning is accomplished using the CHACO Software for Partitioning Graphs [Hendrickson and Leland ,
1995], prior to setting up the model parameters for QMU analysis.

7.4.1.2 Sensitivity

Sensitivity, or local reliability, analysis computes the local derivative of diagnostics with respect to model
inputs. It is used to assess the spatial distribution of this derivative, for the purpose of spatially ranking the
in�uence of various inputs.

Given a response r that is a function of multiple variables xi in a local reliability analysis Coleman and Steele Jr.
[1999], we have:

r = r(x1, x2, ..., xn) (7.11)

where the sensitivities are de�ned as:

θi =
δr

δxi
(7.12)

If each of the variables is independent, the error propagation equation de�nes the variance of r as:

σ2
r =

n∑
i=1

θ2
i σ

2
i (7.13)

where σi is the standard deviation of xi and σr is the standard deviation of r.
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Importance factors for each xi are determined by dividing the error propagation equation by σr2. Note that
the mean of the response is taken to be the response for the nominal value of each variable xi.

Sensitivities are computed from the function evaluations using �nite di�erences. The �nite di�erence step size
is user-de�ned by a parameter in the ISSM model. This analysis imposes the �nite-di�erence step size as a
small perturbation to xi. The resulting sensitivities quantify how the location of errors impact a speci�ed
model diagnostic (r).

First, DAKOTA calls one ISSM model solve for an un-perturbed control simulation. Then, for every xi, ISSM
perturbs each partition one at a time, and calls an ISSM solve for each. At every partition, p, a resulting
sensitivity, θi(p) is assigned. Each θi (de�ned above) is dependent on how much the outcome diverges from
the control run. The result is a spatial mapping of sensitivities and importance factors of r for every xi. For
Transient solves, sensitivities are determined only at the completion of a forward run.

Method inputs: σi for each xi at every partition and the �nite di�erence step

Method outputs: sensitivities (θi) and importance factors for each xi at every partition

7.4.1.3 Sampling

Sampling analysis quanti�es how input errors propagate through a model to impact a speci�ed diagnostic, r.
It a Monte-Carlo-style method that relies upon repeated execution (samples) of the same model, where input
variables are perturbed by di�erent amounts at each partition for each individual run. Resulting statistics
(mean, standard deviations, cumulative distribution functions) are calculated after the speci�ed number of
samples are run.

For a particular sample, every xi is perturbed by a di�erent amount at each partition. Input values are
perturbed randomly, per partition, within a prescribed range (described by a statistical distribution, e.g.
normal or uniform). Once the variables are perturbed, the ISSM model solve is called.

Distributions: A normal distribution for a particular partition is fully described by an average, µi, and a
standard deviation, σi. By de�nition, normal distributions cluster around µi and decrease towards the tails,
in a Gaussian bell curve ranging from µi ± 3σi. A uniform distribution places greater emphasis on values
closer to the tails, where probability of occurrence is equal for any given value within a speci�ed minimum and
maximum value.

If a user chooses so, any xi can be treated as a scaled value. In this case, the distribution de�nitions are given
in percentages, relative to a µi value of 1.

For example, at the beginning of a particular sample for a scaled xi, DAKOTA chooses a random percentage
perturbation Pi(p) at each partition p. The value of the random percentage will fall within the de�ned error
distribution, and the new value of xi for duration of this sample run is perturbed by xiPi(p). The generation
algorithm for Pi(p) is user-speci�ed (e.g. Monte-Carlo or LHS [Swiler and Wyss, 2004]).

In the case where the user wants to sample n variables at the same time, a Pi(p) is chosen separately for
each xi before a particular sample run. Resulting statistics re�ect the combined e�ects of the errors due to
x1, x2, ..., xn.

For Transient simulations, Pi(p) remains constant for the duration of a particular sample run. Note that
statistics are determined only at the completion of each forward run.

Method inputs: The number of samples to be run and for every xi, a de�nition of error distribution (error
ranges may vary spatially by partition)

Method outputs: For r, mean, standard deviations, and cumulative distribution functions resulting from errors
due to x1, x2, ..., xn

7.4.2 Model parameters

The parameters relevant to uncertainty quanti�cation can be displayed by typing:

>> md.qmu
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• md.qmu.isdakota: 1 to activate qmu analysis, or else 0

• md.qmu.variables: arrays of each variable class

• md.qmu.responses: arrays of each diagnostics class

• md.qmu.numberofresponses: number of responses

• md.qmu.params: array of method-independent parameters

• md.qmu.results: holder class for information from dakota result �les

• md.qmu.partition: user provided, the partition each vertex belongs to

• md.qmu.numberofpartitions: number of partitions

• md.qmu.variabledescriptors: list of user-de�ned descriptors for variables

• md.qmu.responsedescriptors: list of user-de�ned descriptors for diagnostics

• md.qmu.method: array of dakota_method class

• md.qmu.mass_flux_profile_directory: directory for mass �ux pro�les

• md.qmu.mass_flux_profiles: list of mass_flux pro�les

• md.qmu.mass_flux_segments: used by process_qmu_response_data to store processed pro�les

• md.qmu.adjacency: adjacency matrix from connectivity table, partitioner computes it by default

• md.qmu.vertex_weight: weight for each vertex, partitioner sets it from connectivity by default

7.4.3 Building the CHACO and DAKOTA packages

In order to run DAKOTA with ISSM, you must compile and install the external package dakota. In addition,
for complex partitioning (more than one vertex per partition), you must compile and install the external
package CHACO.

In addition, your con�gure script should include the following:

--with-chaco-dir=$ISSM_DIR/externalpackages/chaco/install \

--with-dakota-dir=$ISSM_DIR/externalpackages/dakota/install \

More recent versions of DAKOTA also require the external package boost. If installed, it should also be added
to your con�gure script:

--with-boost-dir=$ISSM_DIR/externalpackages/boost/install/ \

7.4.4 Partitioning a Mesh

To partition your mesh using chaco, use the following commands:

>>md.qmu.numberofpartitions=1000; % Note: chaco can crash if too large

>>md=partitioner(md,'package','chaco','npart',md.qmu.numberofpartitions,'weighting','on');

%weighting on for weighted partitioning (equal-area by default), off for equal vertex partitioning

>>md.qmu.partition=md.qmu.partition-1; %With chaco, partition numbers must be adjusted by 1

OR, for a 1-to-1 mapping of vertices to partitions:

>>md.qmu.numberofpartitions=md.mesh.number_of_vertices;

>>md=partitioner(md,'package','linear');
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7.4.5 Setting up the QMU

7.4.5.1 For sensitivity

>>md.qmu.method=dakota_method('nond_l');

This sets the method to local reliability (sensitivity). Other sensitivity settings:

>>md.qmu.params.fd_gradient_step_size='0.1'; %finite difference step size, 0.001 by

default

7.4.5.2 For sampling

>>md.qmu.method=dakota_method('nond_samp');

>>md.qmu.method(end)=...

dmeth_params_set(md.qmu.method(end),'seed',1234,'samples',500,'sample_type','lhs');

Where 'seed' is used for reproducibility of results and 'samples' is the number of samples requested. Other
sampling settings:

>>md.qmu.params.tabular_graphics_data=true; %Output all the information needed to create

histograms of results

7.4.5.3 Other simple default settings for both sampling and sensitivity

>>md.qmu.params.evaluation_concurrency=1;

>>md.qmu.params.analysis_driver='';

>>md.qmu.params.analysis_components='';

>>md.qmu.params.direct=true;

7.4.6 Setting your QMU variables

Example: Here, the input of interest is md.friction.coe�cient, scaled, with error de�ned as a normal distribution
with a mean of 1 and a standard deviation of 10%.

>>md.qmu.variables.drag_coefficient=normal_uncertain('scaled_FrictionCoefficient',1,0.1);

This sets the standard deviation to a constant value at every partition. After it is initialized as above, the
standard deviation can be set manually, so that it varies spatially by partition:

md.qmu.variables.drag_coefficient.stddev=uncertainty_on_partition;

See also:

>>help normal_uncertain

>>help uniform_uncertain

>>help AreaAverageOntoPartition
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7.4.7 Setting your diagnostics

Example: Here, diagnostics of interest are (1) maximum velocity and (2) mass �ux through two di�erent gates.
Mass �ux gates are de�ned by the ARGUS �les '../Exp/MassFlux1.exp' and '../Exp/MassFlux2.exp'.

%responses

md.qmu.responses.MaxVel=response_function('MaxVel',[],[0.01 0.25 0.5 0.75 0.99]);

md.qmu.responses.MassFlux1=response_function('indexed_MassFlux_1',[],[0.01 0.25 0.5 0.75 0.99]);

md.qmu.responses.MassFlux2=response_function('indexed_MassFlux_2',[],[0.01 0.25 0.5 0.75 0.99]);

%mass flux profiles

md.qmu.mass_flux_profiles={'../Exp/MassFlux1.exp','../Exp/MassFlux2.exp'};

md.qmu.mass_flux_profile_directory=pwd;

For more options see:

>>help response_function

7.4.8 Running a simulation

Note: You must set your stress balance tolerance to 10−5 or smaller in order to avoid the accumulation of
numerical residuals between consecutive samples.

>>md.stressbalance.restol=10^-5;

To initiate the analysis of choice, use the following commands:

>> md.qmu.isdakota=1;

>> md=solve(md,'Masstransport');

The �rst argument is the model, the second is the nature of the simulation one wants to run.
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Plotting

8.1 MATLAB plots

8.1.1 plotmodel

plotmodel takes the model md as �rst argument and then an even number of options (as in the function
setelementstype, or solve). To plot a given �eld, use the option 'data' followed by the �eld one wants to
plot. For the thickness:

>> plotmodel(md,'data',md.geometry.thickness)

You can plot several �elds at the same time but you have to add the argument 'data' before each �eld you
want to plot:

>> plotmodel(md,'data',md.geometry.thickness,'data','mesh','data',[1:md.mesh.numberofelements])

This can work for any �eld of length md.mesh.numberofelements or md.mesh.numberofvertices.
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8.1.2 Options

Options in plotmodel come as pairs: the option name must be followed by its value. For example, if one wants
to remove the color bar, the option name is 'colorbar' and the value 0:

>> plotmodel(md,'data',md.initialization.vel,'colorbar',0)

any options (except 'data') can be followed by '#i' where i is the subplot number, or '#all' if applied to
all plots. Example:

>> plotmodel(md,'data',md.initialization.vel,'data','mesh','view#2',3,'colorbar#all','on','axis#1','off equal')

8.1.2.1 axis

Same as as standard axis MATLAB option

>> plotmodel(md,'data',md.vel,'axis','tight')

8.1.2.2 view

Same as as standard view MATLAB option

>> plotmodel(md,'data',md.vel,'view',2)

8.1.2.3 xlim, ylim, zlim

Same as as standard xlim MATLAB option

>> plotmodel(md,'data',md.vel,'xlim',[10^5 2*10^5])

8.1.2.4 caxis

Same as as standard caxis matlab option (control the extreme values of the colorbar).

>> plotmodel(md,'data',md.vel,'caxis',[0 1000])
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8.1.2.5 colorbar

This option is used to control the colorbar display: 'on' or 'off'.

>> plotmodel(md,'data',md.vel,'colorbar','off')

8.1.2.6 colormap

Same as as standard colormap matlab option (control the extreme values of the colorbar).

>> plotmodel(md,'data',md.vel,'colormap','hsv')

8.1.2.7 log

To get a logarithmic colorbar, use the 'log' option followed by 10 for a decimal logarithm.

>> plotmodel(md,'data',md.vel,'log',10)
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8.1.2.8 contourlevels

Contours of equi-value can be added to the plot by using the 'contourlevels' option. The number of
contours can be chosen by using the 'contourlevels' options. The user can specify a number of levels or a
cell containing the values of color changes (See examples below).

>> plotmodel(md,'data',md.vel,'contourlevels',3)

>> plotmodel(md,'data',md.vel,'contourlevels',{100,200,500,1000,2000,2500})

8.1.2.9 contourticks

If the user does not want to display the contour levels ticks, use the 'contourticks' set as 'off':

>> plotmodel(md,'data',md.vel,'contourlevels',{100,200,500,1000,2000,2500},'contourticks','off')
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8.1.2.10 contouronly

If the user wants to display the contours only, use the 'contouronly' set as 'on'.

>> plotmodel(md,'data','vel','contourlevels',{100,200,500,1000,2000,2500},'contouronly','on')

8.1.2.11 streamlines

Streamlines can be displayed by using the 'streamlines' option followed by a number of streamlines or a cell
containing the coordinates of seed points:

>> plotmodel(md,'data',md.initialization.vel,'streamlines',50)

>> plotmodel(md,'data',md.initialization.vel,'streamlines',{10^6*[-1.45 -0.27],10^6*[-1.6 0]})

Note: streamlines use the velocities that are in md.initialization. Make sure you transfer the calculated
velocities to md.initialization if you want to display the calculated streamlines.

8.1.2.12 edgecolor

The mesh can be superposed to the plot by using the 'edgecolor' option followed by a color.

>> plotmodel(md,'data',md.initialization.vel,'edgecolor','w')
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8.1.2.13 expdisp

Any ARGUS �le can be displayed with the 'expdisp' option followed by the name of the ARGUS �le.

>> plotmodel(md,'data',md.initialization.vel,'expdisp','Iceshelves.exp')

8.1.2.14 expstyle

The style of the ARGUS pro�le can be controlled with the 'expstyle' option, followed by the desired line
style. Here is an example for a yellow dotted line:

>> plotmodel(md,'data',md.initialization.vel,'expdisp','Iceshelves.exp','expstyle','--y')

8.1.2.15 mask

If one does not want to display the value of the �eld on a mask only, use the 'mask' option followed by a vector
that holds 0 for the vertices whose values are hidden:

>> plotmodel(md,'data',md.initialization.vel,'mask',md.mask.ocean_levelset<0)

8.1.2.16 northarrow

An arrow pointing North can be added with the 'northarrow' option followed by 'on'. The shape and position
of the arrow can be controlled by using [x0 y0 length [ratio [width]]] instead of 'on'.

>> plotmodel(md,'data',md.initialization.vel,'northarrow','on')
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8.1.2.17 scaleruler

A scale ruler can be added. As for the North arrow, the default display is done by 'on' but the shape and
position of the scale ruler can be controlled by [x0 y0 length width numberofticks] where (x0,y0) are the
coordinates of the lower left corner.

>> plotmodel(md,'data',md.initialization.vel,'scaleruler','on')

8.1.2.18 title

Same as as standard title MATLAB option

>> plotmodel(md,'data',md.vel,'title','Ice velocity [m/yr]')

8.1.2.19 fontsize

Same as as standard fontsize MATLAB option

>> plotmodel(md,'data',md.vel,'title','Ice velocity [m/yr]','fontsize',8)

8.1.2.20 fontweight

Same as as standard fontweight MATLAB option

>> plotmodel(md,'data',md.vel,'title','Ice velocity [m/yr]','fontweight','b')

8.1.2.21 xlabel, ylabel

Same as as standard xlabel MATLAB option

>> plotmodel(md,'data',md.vel,'xlabel','x axis [m]')

8.1.3 Special plots

8.1.3.1 basaldrag

The special plot 'basal_drag' displays the norm of the basal drag friction in kPa following formula:

τb = −k2Nr‖v‖s−1vb (8.1)

Basal drag relies on the velocity provided in md.initialization. The x and y components of the basal drag
can be displayed with the 'basal_dragx' or 'basal_dragy' special plots:

>> plotmodel(md,'data','basal_drag')

>> plotmodel(md,'data','basal_dragx')
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Figure 8.1: Basal friction norm and Basal friction x-component

8.1.3.2 BC

The special plot 'BC' displays all boundary conditions (Newmann and Dirichlet) for 2d and 3d meshes.

>> plotmodel(md,'data','BC')

8.1.3.3 driving_stress

The special plot 'driving_stress' displays the basal drag friction in kPa following formula:

τd = ρgH ∇s (8.2)

>> plotmodel(md,'data','driving_stress')
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8.1.3.4 elementnumbering

In the debugging process, it is often very useful to display all the elements next to their numbers. This is what
the special plot 'elementnumbering' does:

>> plotmodel(md,'data','elementnumbering')

A given list of elements can be highlighted with te 'highlight' option:

>> plotmodel(md,'data','elementnumbering','highlight',[3 4 5 6 7])

8.1.3.5 elements_type

The special plot 'elements_type' displays the elements with a speci�c color for each formulation.

>> plotmodel(md,'data','elements_type')
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8.1.3.6 vertexnumbering

In the debugging process, it is often very useful to display all the vertices next to their numbers. This is what
the special plot 'vertexnumbering' does:

>> plotmodel(md,'data','vertexnumbering')

A given list of vertices can be highlighted with the 'highlight' option:

>> plotmodel(md,'data','vertexnumbering','highlight',[2 5 7 12])

8.1.3.7 highlightelements

The special plot 'highlightelements' is very similar to the plot 'elementnumbering'. It is another possiblity
to highlight one or several grids, but without indicating the number of all the elements. It is way faster for
large models.

>> plotmodel(md,'data','highlightelements','highlight',5)

>> plotmodel(md,'data','highlightelements','highlight',[5 12])
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8.1.3.8 highlightgrids

The special plot 'highlightgrids' is very similar to 'gridnumbering'. It is another possibility to highlight
grids without indicating all the grids numbers. It is way faster for big models.

>> plotmodel(md,'data','highlightgrids','highlight',[12 20])

>> plotmodel(md,'data','highlightgrids','highlight',[12 16 26])

8.1.3.9 icefront

The special plot 'icefront' displays the neumann boundary conditions, ie all the segments on ice front and
the normal to these segments, for a 2d or 3d mesh.

>> plotmodel(md,'data','icefront')
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8.1.3.10 mesh

The special plot 'mesh' displays the mesh of 2d or 3d model.

>> plotmodel(md,'data','mesh')

8.1.4 Quiver plot

For 2d or 3d �elds, a generic color plot cannot be used (except component by component). The 'data' used
by the function plotmodel must be a matrix of 2 or 3 columns. For example:

>> plotmodel(md,'data',[md.vx md.vy])

8.1.4.1 ColorLevels

The number of colors can be chosen by using the 'colorlevels' options. The user can specify a number of
levels or a cell containing the values of color changes (See examples below).

>> plotmodel(md,'data',[md.vx md.vy],'colorlevels',3)

>> plotmodel(md,'data',[md.vx md.vy],'colorlevels',100)
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>> plotmodel(md,'data',[md.vx md.vy],'colorlevels',{100,200,500,1000,2000,2500})

8.1.4.2 Scaling

The arrows length can be modi�ed with the 'scaling' options. The default value is 0.4. A higher scaling
value will result in longer arrows.

>> plotmodel(md,'data',[md.vx md.vy],'scaling',1)

>> plotmodel(md,'data',[md.vx md.vy],'scaling',0.1)

8.1.4.3 Autoscale

If the user wants all the arrows to have the same length, use the option 'autoscale' set as 'off'.

>> plotmodel(md,'data',[md.vx md.vy],'autoscale','off')
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8.1.4.4 Density

The number of arrows can be reduced with the option 'density'. If the density is set as 3, only one arrow
out of 3 will be displayed. This option is very useful when the mesh is very re�ned.

>> plotmodel(md,'data',[md.vx md.vy],'density',3)

8.1.5 Cross section

The section plot can be used to display the value of a �eld on a given track. The option 'sectionvalue' must
be followed by the name of an ARGUS �le which contained the coordinates of the points describing the pro�le
(this �le can be generated by exptool.m). The resulting plot will be a curve in 2d and a colored surface in 3d
(See example below).

>> plotmodel(md,'data',md.vel,'expdisp','track.exp')

>> plotmodel(md,'data',md.vel,'sectionvalue','track.exp')
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Figure 8.2: Section plot for 2D (left) and 3d (right) models

8.1.5.1 Resolution

The horizontal and vertical (in 3d) resolution can be speci�ed by the 'resolution' option. It must be a list
with the horizontal resolution followed by the vertical resolution (in meters). When not speci�ed, the default
resolution is displayed.

>> plotmodel(md,'data',md.vel,'sectionvalue','track.exp','resolution',[2*10^4 0])

>> plotmodel(md,'data',md.vel,'sectionvalue','track.exp','resolution',[10^3 0])

8.1.5.2 Show section

The pro�le used to create the section plot can be also plotted with the 'showsection' option.

>> plotmodel(md,'data',md.vel,'showsection','on')
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Miscellaneous Tools

Several tools are available to help the user analyze the results and set up the models. These tools are just
brie�y mentioned below. Interested user can learn how to use these tools by typing help function_name in
the MATLAB prompt for any of the following functions.

9.0.1 Mesh

• triangle generate a mesh from a domain outline

• bamg anisotropic mesh generation and adaptation

• yams anisotropic mesh adaptation

• meshexprefine re�ne a region of a mesh

• meshprocessrift process mesh when rifts are present

• MeshQuality compute mesh quality

• rifttiprefine re�ne mesh near rift tips

9.0.2 Model parameterization

• extrude vertically extrude a model

• setmask establish boundaries between grounded and �oating ice

• modelextract extract the model over a subdomain

• parameterize model general parameterization

• setflowequation set stressbalance elements type

• solversettoasm set PETSc solver to ASM

• solversettomumps set PETSc solver to MUMPS

• solversettosor set PETSc solver to SOR

• SetIceSheetBC set ice sheet boundary conditions

• SetIceShelfBC set ice shelf boundary conditions

• SetMarineIceSheetBC set marine ice sheet boundary conditions

9.0.3 Mask

• contourenvelope create a list of segments enveloping an ARGUS contour

• ContourToMesh get elements and/or nodes inside an ARGUS contour

• GetAreas compute the area of each element

• xy2ll convert lat/lon to (x,y)

• ll2xy convert (x,y) to lat/lon

• utm2ll convert UTM to lat/lon
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9.0.4 Interpolation

• InterpFromGridToMesh interpolation from a grid to a list of (x,y)

• InterpFromMeshToGrid interpolation from a 2d mesh to a grid

• InterpFromMeshToMesh2d interpolation from a 2d mesh to a list of (x,y)

9.0.5 ARGUS �les

• expcoarsen coarsen or re�ne the resolution a contour

• exptool create and manage ARGUS �les

• expread read an ARGUS �le

• expwrite write an ARGUS �le

9.0.6 Results analysis

• averaging data averaging over a mesh

• basalstress compute the basal stress

• contourmassbalance compute the mass balance of a contour

• DepthAverage depth averaging of a 3d �eld

• drivingstress compute the driving stress

• flowlines compute the coordinates of one or several �owlines

• paterson compute B from a temperature

• project2d project a 3d �eld on a layer

• project3d extrude a 2d �eld on every layer

• SectionValues compute the value of a �eld on a section or line

• thicknessevolution compute dh/dt
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FAQ

Here are a list of frequently asked questions:

10.0.1 Compilation troubleshooting

The installation of some external packages may require some tweaking depending on your platform. If you
have compilation or con�guration issues, try one of the following links:

• External Packages installation

� PETSc

• ISSM con�guration and compilation

• Python related issues

� Python 2.7

� Python 3.2

10.0.2 Using ISSM

We list here the questions related to the use of ISSM: the interface, error messages, etc.

• MATLAB's interface

• Debugging with valgrind

• MPICH error messages

10.0.3 Other

• svn tricks

10.1 PETSc

10.1.1 Error running con�gure on MPICH

With GCC 10 and later, when using PETSc to install MPICH, you may encounter a failure that reads,

Error running configure on MPICH
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Inspection of src/configure.log should reveal,

error: The Fortran compiler gfortran will not compile files that call

the same routine with arguments of different types.

One way to get around this is to add,

--FFLAGS="-fallow-argument-mismatch"

to the list of arguments when running config/configure.py.

10.2 ISSM con�guration and compilation

10.2.1 con�gure: error: Couldn't �nd mex... check your installation of
matlab

This error message typically happens on Macs, because MATLAB does not support XCode7.0. MATLAB
provides a patch available here.

If this �x does not work, you can do the following maneuver manually. In MATLAB, open the xml �le that
speci�es where the SDK is located:

edit ([matlabroot '/bin/maci64/mexopts/clang++_maci64.xml'])

Toward the bottom, you will see a line that look like this, referencing "10.10":

<dirExists name="$$/Platforms/MacOSX.platform/Developer/SDKs/MacOSX10.10.sdk" />

Copy and paste this line (immediately after the �rst) and change the second one to "10.11", like this:

<dirExists name="$$/Platforms/MacOSX.platform/Developer/SDKs/MacOSX10.10.sdk" />

<dirExists name="$$/Platforms/MacOSX.platform/Developer/SDKs/MacOSX10.11.sdk" />

Do this against for another instance in this �le, both must be modi�ed. This should allow you to link against
the OS X 10.11 SDK, but please be aware that this is con�guration that has not been validated by MathWorks.

If you want to check that mex is now working, you can try to compile the following �le:

#include <mex.h>

void mexFunction(int nlhs, mxArray* plhs[], int nrhs, const mxArray* prhs[]){}

Let's call this �le conftest.cpp. You can compile it using:

mex conftest.cpp

If it fails, your mex compiler is still not working, please contact MATLAB support and send them this �le.
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10.2.2 MATLAB MEX compile error

In file included from /Applications/MATLAB_R2013a.app/extern/include/mex.h:58:

In file included from /Applications/MATLAB_R2013a.app/extern/include/matrix.h:294:

/Applications/MATLAB_R2013a.app/extern/include/tmwtypes.h:819:9: error: unknown type name 'char16_t'

typedef char16_t CHAR16_T;

This happens after an upgrade of XCode, which also upgraded the C/C++ compiler, which MATLAB is not
aware of. Add the following line to $ISSM_DIR/configure.sh

export CXXFLAGS=" -std=c++11"

Recon�gure and recompile.

10.2.3 Missing gfortran symbol

If you get the following error message:

CXX main/issm_slr-issm_slr.o

CXX main/kriging-kriging.o

CXXLD issm.exe

/bin/ld: ./.libs/libISSMCore.so: undefined reference to symbol '_gfortran_transfer_real_write@@GFORTRAN_1.4'

//usr/lib64/libgfortran.so.3: error adding symbols: DSO missing from command line

collect2: error: ld returned 1 exit status

This is because you need to tell ISSM where your gfortran library is located. One way to do this is to do:

$mpif77 -print-file-name="libgfortran.a"

This will return the path to the gfortran library that was used to compile mpich and PETSc. If, for example,
you get:

$/usr/lib/gcc/x86_64-linux-gnu/7/libgfortran.a

The path to the gfortran library in this case is /usr/lib/gcc/x86_64-linux-gnu/7/. In your con�guration
script, you should add the following line:

--with-fortran-lib="/usr/lib/gcc/x86_64-linux-gnu/7/ -lgfortran" \

You can then recon�gure and recompile ISSM:

$ ./configure.sh

$ make

$ make install

10.2.4 *** No rule to make target

If you get the following error message:

make[3]: *** No rule to make target `objects/Gauss/GaussTria.cpp', needed by

`libISSMCore_a-GaussTria.o'. Stop.

make[2]: *** [all-recursive] Error 1

make[1]: *** [all-recursive] Error 1

make: *** [all] Error 2
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This is because you just updated ISSM and you need to clean the trunk:

$ cd $ISSM_DIR

$ make distclean

and then you will need to recon�gure:

$ cd $ISSM_DIR

$ ./scripts/automakererun.sh

ISSM can then be con�gured for the given OS. Several scripts exist to con�gure ISSM, they are all located in
$ISSM_DIR/configs. Users should use the con�guration script that is the closest to their environment. The
con�guration �le must be copied in $ISSM_DIR and executed:

$ ./configure.sh

$ make

$ make install

10.2.5 Error message when compiling, with unresolved symbols in Petsc

The issue may lie with the externalpackage petsc, which you should compile with shared libraries enabled.
Otherwise, at run time, on some platforms, python will not be able to resolve the Petsc symbols using statically
compiled petscs libraries.

10.2.6 Linkage Error for drand48 and srand48 speci�cations in Windows

c:\issmuci\trunk-jpl\externalpackages\petsc\install\include\petscfix.h(12) : error

C2732: linkage specification contradicts earlier specification for 'drand48'

c:\issmuci\trunk-jpl\externalpackages\petsc\install\include\petscfix.h(12) : see declaration

of 'drand48'

c:\issmuci\trunk-jpl\externalpackages\petsc\install\include\petscfix.h(13) : error C2732:

linkage specification contradicts earlier specification for 'srand48'

c:\issmuci\trunk-jpl\externalpackages\petsc\install\include\petscfix.h(13) : see

declaration of 'srand48'

This error message indicates that petsc is not linking properly with your issm due to a C-speci�c de�nition in a
header �le. The petsc header �le needs to be patched. Open $ISSM_DIR/externalpackages/petsc/install/include/petscfix.h,
and edit the �le by commenting out lines 10 and 14 like so:

10 //extern "C" {

11 int getdomainname(char *, int);

12 double drand48();

13 void srand48(long);

14 //}

10.2.7 wget: symbol lookup error

If you get the following error message,

wget: symbol lookup error: wget: undefined symbol: psl_str_to_utf8lower

when running an external package's installation script, it is likely due to the fact that you have installed GMT
(for example, for a build that features Dakota) and then run:
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source $ISSM_DIR/etc/environment.sh

What is happeneing here is that GMT has its own copy of libpsl and wget is loading it rather than the system
copy. One way to get around this is to simply open a new terminal, do not run

source $ISSM_DIR/etc/environment.sh

then try to install the external package again,

10.2.8 X11 Library not found

g++: /usr/lib64/libX11.so: No such file or directory

This error message indicates that your X11 library is not located in /usr/lib64/libX11.so, which is the
location that was provided in the ISSM con�guration script (configure.sh). You need to �nd where this
library is located and change the path in the con�guration script:

--with-graphics-lib="/usr/lib/x86_64-linux-gnu/libX11.so"

10.2.9 MPICH2 linking error

/trunk/externalpackages/mpich2/install/lib//libmpich.a(init.o):

In function `MPI_Init':

init.c:(.text+0x48): undefined reference to `MPL_env2str'

init.c:(.text+0x93): undefined reference to `MPL_env2bool'

This error message indicates that you are using mpich2 version higher than 1.3, and that -lmpl is missing in
--with-mpi-lib=. Edit your ISSM con�guration script (configure.sh) and change the corresponding line to:

--with-mpi-lib="-L$ISSM_DIR/externalpackages/mpich2/install/lib/ -lmpich -lmpl"

10.3 MATLAB's interface

MATLAB does not recognize any ISSM command

>> md=model;

??? Undefined function or variable 'model'.

This error message shows that ISSM tools have not been loaded by MATLAB. See this page for more info.

10.3.1 MATLAB complains about __gfortran_transfer_array_write sym-
bol

In some cases, MATLAB complains about missing symbols in mex modules. That is due to the fact that
MATLAB uses its own libraries that are not the ones you compiled the mex modules with. For example, you
might have the following error message:

Invalid MEX-file '/Users/rtwalker/ISSM/trunk/lib/TriMesh.mexmaci64':

dlopen(/Users/rtwalker/ISSM/trunk/lib/TriMesh.mexmaci64, 6): Symbol not found:

__gfortran_transfer_array_write

This problem has been reported on Macs. There are two ways to �x this problem:
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10.3.1.1 Option 1 (preferred)

1. Locate where your gfortran library is (for example: /usr/local/gfortran/lib/).

2. copy MATLAB's .matlab7rc.sh in your home directory. For example:

cp /Applications/MATLAB_R2014b.app/bin/.matlab7rc.sh ~/

3. open ~/.matlab7rc.sh with your favorite editor, you will see a "case" with di�erent architecture:
glnx86|glnxa64 for linux, mac|maci|maci64 for mac and * for other architectures (windows etc). Go to
the case that corresponds to your machine's architecture

4. uncomment the following line:

# LDPATH_PREFIX='$MATLAB/sys/opengl/lib/$ARCH'

and change the path to re�ect where your libgfortran.so is located (step 1). For example:

LDPATH_PREFIX='/usr/local/gfortran/lib/'

Restart matlab and it should now work.

10.3.1.2 Option 2 (requires admin priviledges)

The second �x consists of replacing MATLAB's library with the one that are on your system, but you will
need to have admin priviledges.

We show here the steps for the following MATLAB path: /Applications/MATLAB_R2013a.app/ and libgfortran
path: /usr/local/gfortran/lib/.

Before changing the libraries, make a backup:

cd /Applications/MATLAB_R2013a.app/sys/os/maci64/

mkdir OLD

mv libgfortran.* OLD

Then subsitute these libraries by the current ones used by gfortran (copy or symlink)

ln -s /usr/local/gfortran/lib/libgfortran.dylib .

ln -s /usr/local/gfortran/lib/libgfortran.3.dylib .

Contact us if the problem is not �xed.

10.3.2 MATLAB complains GLIBCXX libraries

In some cases, MATLAB complains about its own libraries. That is due to the fact that MATLAB uses its
own libraries that might not be the ones you compiled the mex modules with. For example, you might have
the following error message:

libstdc++.so.6: version `GLIBCXX_3.4.9' not found

10.3.2.1 Option 1

You should locate where your libstdc++.so.6 is, and declare it using LD_PRELOAD before you launch MATLAB.
For example:

LD_PRELOAD=/usr/lib/x86_64-linux-gnu/libstdc++.so.6 matlab
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10.3.2.2 Option 2

We found a �x on an Ubuntu forum that we copied here. The idea is to replace MATLAB's library with the
one that was used to compile the mex modules, but you will need to have admin priviledges.

We show here the steps for the following MATLAB path: /usr/local/matlab80/ and gcc libraries in: /usr/lib.

Before changing the libraries, make a backup:

cd /usr/local/matlab80/sys/os/glnxa64

mkdir OLD

mv libstdc++.so* OLD/

mv libgcc_s.so* OLD/

Then subsitute the last two by the current ones used by gcc (copy or symlink):

ln -s /usr/lib/libstd* .

ln -s /lib/libgcc_s.so* .

10.3.3 MATLAB complains about intel_fast_memm symbol

If you compile mex modules with intel compilers, MATLAB might complain about missing symbols. That is
due to the fact that MATLAB uses its own libirc.so library that are not the ones you compiled the mex
modules with. For example, you might have the following error message:

Invalid MEX-file '/users/username/test/issm/install/lib/IssmConfig.mexa64':

/users/username/test/issm/src/externalpackages/petsc/install/lib/libmetis.so: undefined symbol:

_intel_fast_memmove

Here is how you can �x this problem:

1. Locate where your libirc.so library is (for example: /opt/share/intel/composer_xe_2013_sp1.3.174/compiler/lib/intel64/).

2. copy MATLAB's .matlab7rc.sh in your home directory. For example:

cp /nasa/mw/2013b/bin/.matlab7rc.sh ~/

3. open ~/.matlab7rc.sh with your favorite editor, you will see a "case" with di�erent architecture:
glnx86|glnxa64 for linux, mac|maci|maci64 for mac and * for other architectures (windows etc). Go to
the case that corresponds to your machine's architecture

4. uncomment the following line:

# LDPATH_PREFIX='$MATLAB/sys/opengl/lib/$ARCH'

and change the path to re�ect where your libgfortran.so is located (step 1). For example:

LDPATH_PREFIX='/opt/share/intel/composer_xe_2013_sp1.3.174/compiler/lib/intel64/'

Restart matlab and it should now work.

Contact us if the problem is not �xed.

Fatal error in MPI_Init

You may encounter a runtime error that looks something like the following,
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Fatal error in MPI_Init: Other MPI error, error stack:

MPIR_Init_thread(474)..............:

MPID_Init(190).....................: channel initialization failed

MPIDI_CH3_Init(89).................:

MPID_nem_init(320).................:

MPID_nem_tcp_init(173).............:

MPID_nem_tcp_get_business_card(420):

MPID_nem_tcp_init(379).............: gethostbyname failed, MT-<integers> (errno 1)

loading results from cluster

This issue has been observed on more recent versions of MacOS, on both the precompiled and compiled-from-
source versions of ISSM.

The �x involves modifying the hosts �le, sudo vi /etc/hosts and adding a line that reads,

127.0.0.1 COMPUTER_NAME

where COMPUTER_NAME is the result of running,

>> oshostname();

After saving the changes to /etc/hosts and restarting MATLAB, the issue should be resolved.

MATLAB crashes unexpectedly

There are many causes that might make MATLAB crash. A possible cause is that PETSc is con�icting
with java (this happens on some linux machines). The workaround is to use MATLAB in command line by
deactivating the gui:

matlab -nojvm

Why can't I see what I am typing in the terminal after I exit MATLAB

This is a bug of MATLAB when running with -nojvm or -nodesktop �ags under bash. The solution proposed by
MathWorks consists of reseting the terminal after MATLAB exits by running reset command in the terminal
window:

reset

The following message appears when I launch MATLAB:

Warning: Executing startup failed in matlabrc.

This indicates a potentially serious problem in your MATLAB setup,

which should be resolved as soon as possible. Error detected was:

MATLAB:m_illegal_reserved_keyword_usage

Error: File: trunk/src/m/classes/qmu/normal_uncertain.m Line: 38

Column: 5

Illegal use of reserved keyword "end".

> In matlabrc at 220

This message indicates that your MATLAB version is too old (less than 7.6), and does not support MATLAB's
new Class-De�nition syntax. In this case, contact us, and we will help you convert all ISSM's MATLAB classes
to the older syntax.
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10.4 Debugging with valgrind

How to debug a crash in issm.exe?

If there is crash during the solve phase, we strongly suggest using Valgrind. Install Valgrind using one of the
script in the directory $ISSM_DIR/externalpackages/valgrind. valgrind will subsequently be embedded in
ISSM and can detect segmentation faults as well as memory leaks. To do so, set the model debugging �eld to
1 and use only one cpu:

md.debug.valgrind=1;

md.cluster.np=1;

Launch the solution sequence and read the errlog �le that it outputs.

10.4.0.1 When a build includes Boost

If your build includes the Boost C++ libraries, there are additional con�guration steps needed to overcome a
con�ict when running Valgrind. Either,

1. install Valgrind with externalpackages/valgrind/install-VERSION-OS-valgrind.sh

2. set #define BOOST_MATH_PROMOTE_DOUBLE_POLICY false in externalpackages/valgrind/src/boost/math/tools/user.hpp
before running bootstrap.sh and b2 install (if you are using Dakota, this will need to be reinstalled
as well)

How to debug a MATLAB crash?

If there is a crash that is not in issm.exe (sometimes shown as by PETSc's error manager), one should also
use Valgrind. Use the following command:

matlab -nojvm -nosplash -r "your matlab commands" -D"valgrind \

--error-limit=no --tool=memcheck -v --log-file=valgrind.log"

Valgrind's output �le valgrind.log should help (look for Invalid read and Invalid write).

How to debug a Python crash?

If there is a crash that is not in issm.exe (sometimes shown as by PETSc's error manager), one should also
use Valgrind. Use the following command:

valgrind --error-limit=no --tool=memcheck -v --log-file=valgrind.log \

python -E -tt ./yourpythonscript.py

Valgrind's output �le valgrind.log should help (look for Invalid read and Invalid write).

NOTE : if line numbers are not displayed for Mac users, add the following option --dsymutil=yes

10.5 MPICH error messages

The following message appears in the errlog �le when launching my job in
parallel:

mpdrun_wilkes.jpl.nasa.gov: cannot connect to local mpd (/tmp/mpd2.console_name);
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possible causes:

1. no mpd is running on this host

2. an mpd is running but was started without a "console" (-n option)

~

~

This message means that the MPI (Message Passing Interface) server, called mpd, is not running. Therefore,
no parallel jobs can run on the cluster. To solve this issue, just type, at the command prompt on the server
side (if for example your cluster has 8 cpus):

mpd --ncpus=8 &

This will launch the MPI server to manage 8 cpus on the cluster.

10.6 svn tricks

How do I control the list of �les that are ignored by svn?

Go to the directory you are interested in and use the following command:

svn propedit svn:ignore .

You will get a list of all ignored �les. You can modify this list and then commit.
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