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Abstract. Time dependent simulations of ice sheets require two equations to be solved: the mass transport equation, derived

from the conservation of mass, and the stress balance equation, derived from the conservation of momentum. The mass transport

equation controls the advection of ice from the interior of the ice sheet towards its periphery, thereby changing its geometry.

Because it is based on an advection-diffusion equation, a stabilization scheme needs to be employed when solved using the finite

element method. Several stabilization schemes exist in the finite element method framework, but their respective accuracy and5

robustness have not yet been systematically assessed for glaciological applications. Here, we compare classical schemes used

in the context of the finite element method: (i) Artificial Diffusion, (ii) Streamline Upwinding, (iii) Streamline Upwind Petrov-

Galerkin, (iv) Discontinuous Galerkin, and (v) Flux Corrected Transport. We also look at the stress balance equation, which

is responsible for computing the ice velocity that ‘advects’ the ice dowstream. To improve the velocity computation accuracy,

the ice sheet modeling community employs several sub-element parameterizations of physical processes at the grounding line,10

the point where the grounded ice starts to float onto the ocean. Here, we introduce a new sub-element parameterization for the

driving stress, the force that drives the ice sheet flow. We analyze the response of each stabilization scheme by running transient

simulations forced by ice shelf basal melt. The simulations are based on an idealized ice sheet geometry for which there is no

influence of bedrock topography. We also perform transient simulations of the Amundsen Sea Embayment, West Antarctica,

where real bedrock and surface elevations are employed. In both idealized and real ice sheet experiments, stabilization schemes15

based on artificial diffusion lead systematically to a bias towards more mass loss in comparison to the other schemes, and

therefore, should be avoided or employed with a sufficiently high mesh resolution in the vicinity of the grounding line. We

also run diagnostic simulations to assess the accuracy of the driving stress parameterization, which in combination with an

adequate parameterization for basal stress, provides improved numerical convergence in ice speed computations and more

accurate results.20
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1 Introduction

Numerical modeling is routinely used to understand the past and future behavior of the ice sheets in response to the evolution

of the climate (e.g., Ritz et al., 2015; DeConto and Pollard, 2016; Aschwanden et al., 2019; Goelzer et al., 2020; Seroussi et al.,

2020). As is always the case with numerical models, one needs to minimize biases, numerical artifacts, or poor numerical25

convergence due to the choice of numerical scheme. It is therefore critical for the numerical solution to converge to the ‘true

solution’ regardless of the numerical scheme employed, and that the model is not overly sensitive to the mesh resolution (e.g.,

Szabó and Babuška, 1991, p. 4). One of the governing equations in ice sheet numerical modeling is the mass transport equation,

an advection equation derived from the conservation of mass that prescribes the evolution of the ice sheet geometry (e.g., Cuffey

and Paterson, 2010, p. 333). Another governing equation is the stress balance equation, a set of equations that describes the30

ice velocity over the entire ice sheet. This velocity field is used to ‘advect’ the ice mass over time. These governing equations

are often solved using numerical methods such as the finite element method (FEM), widely employed in ice sheet modeling

community (e.g., Larour et al., 2012; Gagliardini et al., 2013; Gudmundsson, 2020). As with any numerical method, several

schemes exist to solve these equations within FEM in order to achieve stability, accuracy, and low computational cost, the

desired properties of any numerical method (see, for example, Szabó and Babuška, 1991, Chapter 1).35

It is well-known that the discretization of advection-dominated equations by the traditional finite element method leads to

numerical instabilities and spurious oscillations (e.g., John et al., 2018). The mass transport equation therefore needs to be

stabilized when solved using FEM. The choice of an adequate stabilization scheme is crucial to simulate the main character-

istics of ice sheet dynamics without introducing numerical artifacts in the solution, such as oscillations, nonphysical diffusion,

or poor numerical convergence (see, e.g., John and Schmeyer, 2008). While some stabilization techniques may have good40

properties for some specific applications, they may not be appropriate for others.

The finite element method’s literature presents a large number of stabilization schemes, with different levels of complexity

and accuracy (Codina, 1998; Franca et al., 2006; John and Schmeyer, 2008). The simplest schemes are based on adding an

artificial diffusive-type term, turning the advection equation into an advection-diffusion equation (LeVeque, 1992, p. 118). This

approach is equivalent to the upwind differencing employed in the finite difference method (Kelly et al., 1980; Selmin, 1993).45

While this method leads to a more stable formulation, the downside is the reduced accuracy especially in regions where the

solution is not smooth or presents steep gradients (Brooks and Hughes, 1982; Donea, 1984b). Other schemes are based on

counterbalancing the terms in the finite element formulation, such that the numerical diffusion vanishes (Brooks and Hughes,

1982). A popular method is the Streamline Upwind Petrov-Galerkin (SUPG), but the accuracy and stability of this scheme

relies on the definition of the stabilization parameter, which is problem-dependent (Almeida and Silva, 1997; Codina, 2000;50

Knopp et al., 2002; Bochev et al., 2004; John and Schmeyer, 2008; Burman, 2010). Alternatively, a Discontinuous Galerkin

(DG) formulation, a finite-volume-inspired scheme, produces accurate results in advection-dominated flows (Cockburn, 1998,

1999). However, its implementation requires specific data structures to handle (computational) nodes and (geometric) vertices

of the mesh (e.g., Calle et al., 2005; Devloo et al., 2007). Also, the increased number of degrees of freedom introduced by this

method may reduce the computational performance. Most recently, finite-element oriented flux-correction schemes have been55
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proposed as a promising alternative (Kuzmin and Turek, 2002; Kuzmin et al., 2003). These schemes manipulate the discretized

algebraic system in order to add anti-diffusive terms without compromising numerical stability. All the schemes described

above have been applied to a number of physical problems (e.g., Reed and Hill, 1973; Jameson, 1995; John and Schmeyer,

2008; Ngo et al., 2015; Watanabe and Kolditz, 2015; Diddens, 2017; Hansen et al., 2019). However, the performance of these

schemes has not been evaluated in a systematic way for ice sheet simulations.60

The stress balance is another critical component of transient models. For simplified stress balance equations, such as the

shallow shelf approximation (MacAyeal, 1989) or Blatter-Pattyn’s higher order models (Blatter, 1995), the right-hand side is

a function of the ice surface gradient (Cuffey and Paterson, 2010, p. 295). Usually, in finite-element-based ice sheet models,

gradients are assumed to be continuous within each element. This is a reasonable assumption for most of the ice sheet domain,

except at the grounding line, the point where ice detaches from the underlying bedrock and starts to float over the ocean. From65

a numerical simulation point of view, the grounding line represents a discontinuity of several physical processes (e.g., basal

friction, basal melt), and the accuracy of its dynamics requires a fine mesh resolution (Durand et al., 2009; Pattyn et al., 2012,

2013; Cornford et al., 2013). Sub-element parameterizations of such physical processes are commonly employed to improve

numerical convergence of the ice velocity computation (Seroussi et al., 2014a; Feldmann et al., 2014; Cornford et al., 2016;

Seroussi and Morlighem, 2018). In most basal friction parameterizations, for instance, the grounding line is free to evolve70

within the elements. Generally, in such a situation, the models assume the ice thickness to be continuous at the grounding

line1. This assumption implies that, for the grounded part of the element crossed by the grounding line, the ice surface is a

function of both bedrock elevation and ice thickness while, for the floating part, the ice surface is obtained by the hydrostatic

floatation only, which only depends on the ice thickness. This makes the gradient of the ice surface and the resulting driving

stress discontinuous within the elements containing the grounding line. While there exist comparison studies for basal friction75

and basal melt parameterizations (e.g., Seroussi et al., 2014a; Seroussi and Morlighem, 2018), little attention has been given to

the sub-element parameterization of the driving stress in the context of the finite element method. To the best of our knowledge,

only studies based on finite volume and finite differences methods use driving stress parameterizations (Cornford et al., 2013;

Feldmann et al., 2014).

In this context, the present paper aims to: (i) assess the response of different stabilization schemes in transient simulations80

subject to ice shelf basal melt and changes in basal friction, and (ii) develop and assess a sub-element parameterization for the

driving stress. The numerical experiments are based on the MISMIP3d setup (Pattyn et al., 2013), a simple idealized ice-sheet

geometry. Additional experiments are presented for the Amundsen Sea Embayment (ASE) of the West Antarctic Ice Sheet

(WAIS), that includes Pine Island and Thwaites glaciers. We use the Ice-sheet and Sea-level System Model (ISSM) to perform

all the numerical experiments. In Sec. 2 and 3, we describe the technical details of the stabilization schemes and driving stress85

parameterization, respectively, and in Sec. 4 we present the numerical setup of experiments used to test them. The results are

shown in Sec. 5, followed by discussions in Sec. 6 and final remarks in Sec. 7.

1This is a consequence of the finite element discretization, since such models employ continuous shape functions to approximate the ice thickness.
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2 Mass transport equation and stabilization schemes

2.1 Mass transport equation

The evolution of the ice thickness is described by an advection equation with source terms on the right-hand side:90

∂H

∂t
+∇ · (v̄H) = ṁs− ṁb, (1)

where v̄ = {vx, vy} is the depth-averaged ice velocity in the horizontal plane, ṁs the surface mass balance (positive for

accumulation), and ṁb the basal melt (positive for ablation). The velocity field v̄ is a function of the ice geometry, and

therefore, of the ice thickness H . Note that both surface mass balance ṁs and basal melt ṁb may depend on the surface

elevation and ice-shelf depth, respectively. All these dependencies make Eq. 1 a nonlinear advection-diffusion equation. For95

the sake of simplicity, we keep ṁs as a constant in all transient simulations. The description of ṁb is given in Sec. 4.1 (see

Eq. 41).

The weak formulation of Eq. 1 is:∫
Ω

(
∂H

∂t
+∇ · (v̄H)

)
ψdΩ =

∫
Ω

(ṁs− ṁb)ψdΩ,

∀ψ ∈H, (2)

whereH=H (Ω) is a space of admissible functions for the model domain Ω, and ψ is called test or weight function. We seek100

for a solution H ∈H such that the weak form Eq. 2 is satisfied. In the traditional finite element method, both H and ψ belong

to the same set of functions H. It is known that in this approach Eq. 2 generates potentially large, spurious oscillations if not

properly stabilized or if the mesh size is not excessively small (see, for example, Brooks and Hughes, 1982).

The weak form Eq. 2 (and its alternative stabilized forms) requires approximating functions inH with non-trivial first-order

derivatives. In this sense, we employ subspaceH1 ⊂H whose functions (and their first-derivatives) are square-integrable. For105

discretization purposes, we use P1 Lagrange functions and Delaunay-based triangulation.

2.2 Artificial Diffusion and Streamline Upwinding

In general, stabilization schemes may be seen as a consistent way of adding terms to Eq. 1 (or Eq. 2) in order to transform it in a

more stable formulation. In the Artificial Diffusion (ArtDiff, MacAyeal, 1997, p. 172) and Streamline Upwinding (Streamline,

Hughes and Brooks, 1979; Kelly et al., 1980) schemes, the resulting mass transport equation is:110

∂H

∂t
+∇ · (v̄H)−∇ · (D∇H) = ṁs− ṁb, (3)

where D is a second-order tensor, known as the diffusive tensor. In the Artificial Diffusion scheme, the tensor is defined

as (MacAyeal, 1997, p. 172):

D =
h

2

 |vx| 0

0 |vy|

 , (4)
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where h is the characteristic size of the element, vx and vy are the horizontal components of the (depth-averaged) ice velocity.115

In the Streamline Upwinding method, the tensor is defined in such a way that the artificial diffusion is added only along

streamlines and not in cross flows. In this sense, the tensor D is defined as (Hughes and Brooks, 1979; Kelly et al., 1980;

Brooks and Hughes, 1982):

D =
h

2 ‖ v̄ ‖
v̄⊗ v̄ =

h

2 ‖ v̄ ‖

 v2
x vxvy

vyvx v2
y

 . (5)

where ‖ · ‖ is the Euclidean norm. The resulting weak formulation of Eq. 3, after integrating by parts the diffusive term, is:120 ∫
Ω

(
∂H

∂t
+∇ · (v̄H)

)
ψdΩ +

∫
Ω

∇ψ ·D∇HdΩ

=

∫
Ω

(ṁs− ṁb)ψdΩ,

∀ψ ∈H. (6)

Both schemes are interpreted as an upwind-equivalent scheme employed in the finite difference method (Kelly et al., 1980;

Selmin, 1993), sharing therefore similar characteristics such as a first-order accuracy and large numerical dissipation (de Vahl

Davis and Mallinson, 1976; Gresho and Lee, 1979). However, the resulting formulation is very stable, which made them

popular in glaciology (e.g., MacAyeal, 1997, p. 172). Artificial Diffusion was the default scheme employed in ISSM. The125

low accuracy of such schemes leads to the development of alternative methods with higher accuracy, such as the Streamline

Upwind Petrov-Galerkin.

2.3 Streamline Upwind Petrov-Galerkin

In the Streamline Upwind Petrov-Galerkin scheme (SUPG, Brooks and Hughes, 1982), the diffusive or upwind term is not

added directly into Eq. 1. Instead, the upwind effect is achieved by adding the upwinding term into the test function ψ (Christie130

et al., 1976; Heinrich et al., 1977). This procedure, where the solution and test functions belong to different spaces, is commonly

called Petrov-Galerkin method (see e.g., Griffiths and Lorenz, 1978; Brooks and Hughes, 1982). The modified test functions

ψ̂ are generally defined as (Brooks and Hughes, 1982):

ψ̂ = ψ+ τ∇ · (v̄ψ) , (7)

where τ is a stabilization coefficient, defined below. Using the modified test functions ψ̂, the resulting weak formulation of135

Eq. 1 is written as:∫
Ω

(
∂H

∂t
+∇ · (v̄H)

)
ψdΩ +

∫
Ω

(
∂H

∂t
+∇ · (v̄H)

)
τ∇ · (v̄ψ) dΩ

=

∫
Ω

(ṁs− ṁb)ψdΩ +

∫
Ω

(ṁs− ṁb)τ∇ · (v̄ψ) dΩ,

∀ψ ∈H. (8)
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The most common definition of the stabilization term τ is given by (Franca et al., 2006):

τ =
h

2 ‖ v̄ ‖

(
coth(Pe)−

1

Pe

)
, (9)

with140

Pe =
h ‖ v̄ ‖

2κ
, (10)

where Pe is the Péclet number of element e, and κ is known as the diffusion coefficient. The diffusion coefficient κ is not

explicitly defined in Eq. 1. For fast ice streams where the flow is dominated by basal sliding rather than internal deformation2,

an alternative is to assume the asymptotic limit of the term within parentheses in Eq. 9 when κ and consequently Pe go to

infinity. With this assumption, the stabilization coefficient is approximated by:145

τ ∼ τ1 =
h

2 ‖ v̄ ‖
. (11)

An alternative to defining τ is to replace the Péclet number by the CFL number Ce in Eq. 9 (Gudmundsson, 2020, p. 19,20),

i.e.:

τ =
h

2 ‖ v̄ ‖

(
coth(Ce)−

1

Ce

)
, (12)

with150

Ce =
‖ v̄ ‖∆t

h
, (13)

where ∆t is the simulation time step. The motivation behind this approach is the equivalence between SUPG and Taylor-

Galerkin method in transient problems (see e.g., Donea, 1984a; Donea et al., 1984; Codina, 1998; Blank et al., 1999; Akin and

Tezduyar, 2004; Kuzmin, 2010, p. 73). ForCe� 1, which is basically true in ice sheet simulations3, the term within parentheses

in Eq. 12 is approximately Ce/3 (Gudmundsson, 2020, p. 20). Therefore, for low CFL numbers, we can approximate Eq. 12155

by:

τ ∼ τ2 =
∆t

6
. (14)

In ISSM, we implement τ as given by Eq. 11, i.e., τ = τ1. This definition is also employed in Elmer/Ice, a popular FEM-

based ice sheet model (Gagliardini et al., 2013). However, for some simulations performed here, we use the approximation

given by Eq. 14 (τ = τ2), as implemented in Úa (Gudmundsson, 2020), another popular ice sheet model.160

2In ice flows dominated by internal deformation rather than basal sliding, the velocity field may be described by the Shallow Ice Approximation. Within this

approximation, the thickness equation turns into a (nonlinear) diffusion equation (see Greve and Blatter, 2009, p. 82), which does not require any stabilization

scheme.
3In 2D, it is common to bound the CFL by 1/2 over the entire domain and simulation period.
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2.4 Discontinuous Galerkin

Strictly speaking, Discontinuous Galerkin (DG) is not exactly a stabilization scheme in the sense of adding upwinding terms

to Eq. 1 or to the space of test functions ψ. It is a variant of the traditional continuous Galerkin method, in which the functions

approximating the solution are discontinuous across elements’ edges. This adds the advantage of local conservation with typical

FEM characteristics such as the ease of dealing with non-structured meshes, complex domains and boundary conditions, and165

hp-adaptivity (Cockburn, 1998; Kuzmin, 2010, p. 84). With appropriate definition of the numerical inter-elements’ fluxes,

the resulting formulation is known to be stable in advection-dominated problems (e.g., Brezzi et al., 2004). It was originally

developed for neutron transport simulation (Reed and Hill, 1973), and since then DG has been applied to other fields, including

elliptic-type equations (e.g., Babuška et al., 1999; Brezzi et al., 2000; Arnold et al., 2002). A more complete history and an

overview of the vast application fields of DG can be found in Cockburn (1998, 2003).170

In DG, the weak formulation is written in an element-wise fashion, and the advection operator is integrated by parts such

that Eq. 2 is rewritten as:∫
Ωe

(
∂H

∂t
ψ− (v̄H) · ∇ψ

)
dΩe +

∫
Se

(v̄Hψ) ·ndSe

=

∫
Ωe

(ṁs− ṁb)ψdΩe,

∀ψ ∈H, (15)

where Ωe ∈ Ω is the domain of element e, Se is the boundary of Ωe, H is built on the element’s domain (i.e., H=H (Ωe)),

and n is a unit vector pointing outward along the boundary Se. The stabilized version of Eq. 15 comes from the definition of175

the numerical flux (v̄H) in the second integral on the left-hand side. In ISSM, an upwinding numerical flux is employed such

that Eq. 15 is rewritten as (Brezzi et al., 2004):∫
Ωe

(
∂H

∂t
ψ− (v̄H) · ∇ψ

)
dΩe +

∫
Se

(v̄H)u · (ψn) dSe

=

∫
Ωe

(ṁs− ṁb)ψdΩe,

∀ψ ∈H, (16)

where (v̄H)u is the upwinding numerical flux.

As seen in Sec. 2.6, the time-derivative discretization of Eq. 16 in ISSM relies on a Backward Euler scheme, which differs180

from the popular Runge-Kutta Discontinuous Galerkin (RKDG, Cockburn and Shu, 1991; Cockburn, 1998, 2003), an explicit

time projection scheme that is known for its stability (as long as CFL < 1/3) and allows full parallelization since the resulting

mass matrix is block-diagonal. The DG implementation in ISSM was conceived to be an alternative to other stabilization

schemes without enforcing large changes in an existing code. Therefore, we do not expect to achieve the same benefits as
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RKDG (and similar schemes) in our simulations. The Elmer/Ice model (Gagliardini et al., 2013) adopts a time discretization185

similar to the implementation of ISSM.

2.5 Flux Corrected Transport

The Flux Corrected Transport (FCT) scheme operates in the resulting algebraic system of the traditional Galerkin discretization

(i.e., Eq. 2) instead of modifying its weak form or the approximation/trial spaces. The scheme was developed to solve the

continuity equation for compressible fluids in a finite difference framework (Boris and Book, 1973), and it was extended to190

FEM by Löhner et al. (1987) and most recently by Kuzmin and Turek (2002) and Kuzmin et al. (2003). The latter is also

named as FEM-FCT in the literature. The FEM-FCT scheme seems to be stable even in the presence of steep gradients and

discontinuities(e.g., John and Schmeyer, 2008). For simplicity, we refer to the FEM-FCT scheme as FCT. This scheme can be

described as a hybrid method combining a higher-order (but potentially oscillatory) scheme and a lower-order diffusive (not

oscillatory) scheme. In regions where the solution is smooth, the higher-order scheme is applied, while the lower-order scheme195

is applied where necessary (e.g., steep gradient regions). However, this scheme adds into the ‘low-order region’ just enough

flux from the high-order (aka anti-diffusive) to maintain its accuracy without inducing oscillations.

The scheme modifies the discrete form of Eq. 2 by employing a generic finite difference scheme for the time derivative, i.e.:

(MC + θ∆tK)Hn+1 = [MC− (1− θ)∆tK]Hn + ∆tF, (17)

where ∆t is the time step, MC is the mass matrix4, K is the advection matrix, and F is the forcing vector. The superscripts200

n+ 1 and n indicate the next and current steps, and the fractional weight θ stands for Backward Euler scheme if θ = 1 and for

Crank-Nicolson if θ = 1/2. As explained in Sec. 2.6, the load vector F as well as the velocity field in K are defined in step n.

To simplify the notation, we drop the superscripts of these variables in this section.

The first step consists of turning Eq. 17 into a stable, low order algebraic system. This is achieved by replacing the consistent

mass matrix MC by a lumped mass matrix ML and the advection matrix K by a matrix L:205

MC = diag{mi} ,

mi =

N∑
j=1

mij , (18)

where N is the total number of degrees of freedom. The matrix L is defined as:

L = K+D, (19)

where D = {dij} represents an artificial diffusion with elements defined as (Kuzmin and Turek, 2002):

dij = dji =−max{0, kij , kji} , ∀i 6= j,

dii =−
N∑

j=1, j 6=i

dij , (20)210

4It is also named as consistent mass matrix, since it contains all terms from the FEM discretization.
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where kij are the elements of matrix K (= {kij}). By construction, the matrix L does not contain any positive off-diagonal

elements. The resulting stable low order system of equations is:

(ML + θ∆tL)Hn+1 = [ML− (1− θ)∆tL]Hn + ∆tF. (21)

Compared to the original system, Eq. 17, the modified system Eq. 21 creates large numerical diffusion that prevents spurious

oscillations. By doing so, however, it also reduces the accuracy of solution Hn+1.215

In order to improve the accuracy of the solution while still preventing spurious oscillations, the second step of the scheme

consists in adding an anti-diffusive term to the right-hand side of Eq. 21:

(ML + θ∆tL)Hn+1 = [ML− (1− θ)L]Hn + ∆tF+F∗, (22)

where F∗ is a vector whose elements f∗i are defined as:

f∗i =

N∑
j=1

αijrij , i= 1, . . . ,N. (23)220

In Eq. 23, αij ∈ [0, 1] are weights to be defined appropriately (see below and Appendix A), and R = {rij} is based on the

residual vector R between Eq. 21 and Eq. 17:

R = (ML−MC)
(
Hn+1−Hn

)
+ ∆tD

[
θHn+1 + (1− θ)Hn

]
. (24)

The residual vector R can be decomposed as (see, e.g., Kuzmin, 2009):

ri =

N∑
j=1, j 6=i

rij , rji =−rij , (25)225

where rij represents the raw anti-diffusive flux from node j into node i. Using Eq. 18 and Eq. 20, rij can be written as (John

and Schmeyer, 2008):

rij =mij

(
Hn+1
i −Hn+1

j

)
−mij

(
Hn
i −Hn

j

)
−∆tθdij

(
Hn+1
i −Hn+1

j

)
−∆t(1− θ)dij

(
Hn
i −Hn

j

)
. (26)

Note that rij depends on the solution Hn+1. Roughly speaking, there are two approaches to proceed with Eq. 26: (i) a

non-linear algorithm, and (ii) a linear algorithm. We describe here the latter (Kuzmin, 2009), which is currently implemented230

in ISSM. Further details of both approaches are found in John and Schmeyer (2008) or in Kuzmin (2009).

In the linear FCT algorithm, the solution Hn+1 in Eq. 26 is replaced by the solution HL obtained in the low order system

Eq. 21, i.e.:

(ML + θ∆tL)HL = [ML− (1− θ)∆tL]Hn + ∆tF. (27)

In ISSM, the Crank-Nicolson scheme (i.e., θ = 1/2) is used in Eq. 27, and the raw anti-diffusive flux Eq. 26 is replaced by235

an alternative form (Kuzmin, 2009):

rij =mij

(
ḢL,i− ḢL,j

)
+ dij (HL,i−HL,j) , (28)
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where ḢL is an approximation of the time derivative ∂H/∂t. This approximation is computed using Richardson’s iteration:

Ḣm+1
L = Ḣm

L +M−1
L

(
KHL−MCḢ

m
L

)
, m= 0, 1, . . . , (29)

with Ḣ0
L = 0. The convergence of Eq. 29 takes usually 1-5 iterations (Kuzmin, 2009).240

Once the anti-diffusive flux is obtained by Eq. 28 using Eq. 27 and Eq. 29, the last step is to compute the solution Hn+1. In

this linearized FTC version, the solution Hn+1 is explicitly obtained by solving (Kuzmin, 2009):

MLH
n+1 = MLHL + ∆tF∗, (30)

where F∗ is obtained by Eq. 23 with rij computed by Eq. 28. The weights αij are obtained using the so-called Zalesak’s

algorithm (Zalesak, 1979). Appendix A presents the algorithm as implemented in ISSM.245

2.6 Time discretization of the mass transport equation

We employ a semi-implicit finite-difference time stepping scheme to solve the temporal evolution of the ice thickness. This

scheme involves a backward Euler method5 for the time derivative in Eq. 1, but the other variables (velocity, surface mass

balance and basal melting) are based on the previous time step. To illustrate this scheme, we apply this time derivative dis-

cretization in Eq. 6, as follows:250 ∫
Ω

(
Hn+1−Hn

∆t
+∇ ·

(
v̄nHn+1

))
ψdΩ +

∫
Ω

∇ψ ·Dn∇Hn+1 dΩ

=

∫
Ω

(ṁn
s − ṁn

b )ψdΩ,

∀ψ ∈H, (31)

where ∆t is the time step, and superscripts n and n+1 indicate the current and next simulation steps, respectively. Algorithm 1

presents the solution sequence employed for the mass transport computation.

3 Sub-element parameterization of driving stress

The position of the grounding line in non-Full Stokes models is generally tracked with a level set condition based on a floatation255

criterion (Seroussi et al., 2014a). This level set can be located anywhere in an element, so it does not necessarily coincide with

elements’ edges:

ϕ=H +
ρw
ρ
r, (32)

where H is the ice thickness, ρ and ρw are ice and ocean densities, respectively, and r is the bedrock elevation (negative if

below sea level). The ice is grounded if ϕ > 0, otherwise, it is floating. The grounding line is implicitly defined where ϕ= 0.260

5For FCT, a Crank-Nicolson method is employed for H , but v̄, ṁs, and ṁb are defined in time step n.
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Algorithm 1 Solution sequence for the ice thickness evolution (mass transport equation).

Given an initial state (v̄, H), while tn ≤ tmax, do:

1. With Hn, compute v̄n (stress balance equation)

2. With Hn, compute ṁn
a and ṁn

b (update source terms)

3. With Hn, v̄n, ṁn
s , and ṁn

b , compute Hn+1 (mass transport equation)

4. With Hn+1, update glacier geometry and grounding line position

5. Time increment tn+1 = tn + ∆t

Post processing.

In the element e containing the grounding line, the ice surface, s, is recovered as follows:

s(x,y) =

H (x,y) + r (x,y) , if ϕ(x,y)> 0,

H (x,y)(1− ρ/ρw) , if ϕ(x,y)≤ 0.
(33)

The second condition in Eq. 33 guarantees the continuity of the ice surface at the grounding line. However, its gradient is

discontinuous within the element: in the grounded part (i.e., ϕ > 0), the surface gradient is a function of both thickness and

bedrock elevation, whereas in the floating part (ϕ < 0), it is proportional to the thickness gradient only. The driving stress is265

therefore also discontinuous in elements partially floating and partially grounded, and we propose to use a sub-element driving

stress parameterization to account for this discontinuity. A similar approach to sub-grid/cell was proposed (Cornford et al.,

2013; Feldmann et al., 2014) based on finite volume/difference methods by applying one-sided differences to compute surface

gradients on each side of the grounding line.

The driving stress parameterization is based on recovering the ice surface, and consequently its gradient, on the element e270

containing the grounding line. We divide the element domain Ωe in two sub-domains: ΩeG and ΩeF that are the grounded and

floating parts of the element, respectively (i.e., Ωe = ΩeG ∪ ΩeF and ΩeG ∩ ΩeF = ∅). We then perform the numerical integration

of the driving stress on these two sub-domains, i.e.:

Fe =

∫
Ωe

Ae∇sdΩe =

∫
Ωe

G

Ae∇sdΩeG +

∫
Ωe

F

Ae∇sdΩeF , (34)

where Fe is the element load vector, Ae is a matrix representing the rest of components of the driving stress and element275

basis functions6, and∇s is evaluated according to the recovered ice surface (Eq. 33). For comparison purposes, we named the

proposed driving stress parameterization SED2 (Sub-Element Driving Stress 2), since the approach here is similar to the basal

friction parameterization SEP2 developed by Seroussi et al. (2014a). The non-parameterized case, i.e., when the ice surface is

evaluated on the elements’ vertices and then linearly interpolated elsewhere within the elements, regardless of the grounding

6For Shallow Shelf Approximation equations (SSA, MacAyeal, 1989), Ae = ρgHΘe, where g is the gravitational acceleration and Θe is a matrix of

element basis functions.
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Table 1. List of the numerical schemes analyzed in this work.

Stabilization schemes

Artificial Diffusion ArtDiff (Sec. 2.2)

Streamline Upwinding Streamline (Sec. 2.2)

Streamline Upwind Petrov-Galerkin SUPG (Sec. 2.3)

Discontinuous Galerkin DG (Sec. 2.4)

Flux Corrected Transport FCT (Sec. 2.5)

Sub-element parameterization schemes

Friction parameterization 1 SEP1 (Seroussi et al., 2014a)

Friction parameterization 2 SEP2 (Seroussi et al., 2014a)

No driving stress parameterization NSED (Sec. 3)

Driving stress parameterization 2 SED2 (Sec. 3)

line position, is referred to as NSED. Mathematically, the ice surface in the NSED scheme is defined as s=H (1− ρ/ρw) over280

Ωe, and the resulting driving stress is proportional to∇H .

4 Numerical experiments

4.1 MISMIP3d - numerical setup

In this section, we describe the idealized geometry experiments used to evaluate the stabilization schemes and the proposed

driving stress parameterization. For the latter, we employ different parameterization schemes for basal friction. The list of all285

the schemes tested is summarized in Table 1.

The numerical experiments are based on the MISMIP3d setup (Pattyn et al., 2013). The ice sheet flows along the x-axis in

an 800 x 50 km2 rectangular domain entirely filled with ice. For the ice divide, x= 0, we set vx = 0. A free-slip condition

is applied to the lateral boundaries of the domain, i.e., vy = 0 for y = 0 and y = 50 km. The calving front is fixed in time

and located at x= 800 km, where we apply a Neumann boundary condition based on ocean water pressure. We employ a290

Weertman-type friction law given by:

τ b = C ‖ vb ‖m−1 vb, (35)

where τ b is the basal friction, C is the friction coefficient, vb is the basal velocity, and m is the sliding law exponent. The bed

elevation is defined as:

r(x,y) = 100−x, (36)295
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where r(x,y) is the bedrock elevation (in m, negative if below sea level), and x ∈ [0 800] is the x-coordinate in km. All

experiments start from the same initial geometry, defined by the following ice thickness profile:

H(x,y, t= 0) =



[
Hm+2
gl +

m+ 2

m+ 1

Cṁm
s

ρg

(
xm+1
gl −xm+1

)] 1

m+ 2
, if x < xgl,

 Aṁs
−

vn+1
gl

(
A
ṁs

Hn+1
gl − 1

)
[ṁs (x−xgl) + vglHgl]

n+1


−

1

n+ 1

, if x≥ xgl,

(37)

where H is the ice thickness, ṁs is the accumulation rate, xgl is the grounding line position (x-axis), n is the Glen’s law

exponent, Hgl and vgl are the ice thickness and the ice velocity (x-direction) at the grounding line, respectively, defined as:300

Hgl =
ρw
ρ
|r(xgl,y)| ,

vgl =
ṁsxgl
Hgl

, (38)

and A is defined by:

A=A

(
ρg (ρw − ρ)

4ρw

)n
, (39)

whereA is the Glen’s law rate factor. The parameters used in all experiments are summarized in Table 2. In Eq. 37, the thickness

expression for x < xgl is the steady state profile of a 1D ice sheet considering uniform accumulation rate and negligible305

longitudinal stresses Schoof (2007a). The x≥ xgl case is the steady state profile of a unconfined 1D ice shelf under a uniform

accumulation rate. Note that the initial thickness profile defined by Eq. 37 is a function of the grounding line position, xgl.

We define the initial grounding line position to be close to its steady state position. According to boundary layer (Schoof,

2007a) and numerical convergence analyses employing SSA (Seroussi et al., 2014a), the grounding line should be located at

x' 600 km. We therefore set xgl = 600 km. Note that this steady state grounding line position only applies to SSA models;310

other stress balance models (Full Stokes, Blatter-Pattyn, L1L2, etc.) produce steady state positions upstream of 600 km (Pattyn

et al., 2013). The ice thickness as defined by Eq. 37 is not an exact steady state profile, but represents a slightly perturbed profile

used to initialize all the experiments. The numerical models rely on unstructured triangular meshes (see some examples in

Appendix B), and the mesh resolutions (and respective number of elements) chosen for the numerical convergence experiments

are shown in Table 3. The analytical thickness (Eq. 37) is interpolated onto each vertex of the mesh, and the floatation criterion315

is applied to generate both surface and base profiles of the ice sheet. To enforce the same initial position of the grounding line

(xgl) in the models, we employ a friction level set defined according to a distance-based function:

ϕgr(x, y) = xgl−x, (40)

where ϕgr is the initial friction level set (positive if ice is grounded, and therefore, friction is applied). The level set is evaluated

at all elements’ vertices.320

13



The numerical experiments are divided in two sets of analyses: (i) diagnostic analysis, and (ii) prognostic analysis. The di-

agnostic analysis consists of solving the stress balance equations under different sets of sub-element parameterization schemes

(driving stress and basal friction, Table 1), with different mesh resolutions (Table 3). Here, we compare the ice speeds calculated

by each set of sub-element parameterization schemes and mesh resolutions. We employ the two-dimensional Shallow Shelf

Approximation (SSA, MacAyeal, 1989) to compute the velocity field. The SSA equations are solved using Picard iterations325

and each linear system is solved using an iterative linear solver (conjugate gradient). The ice sheet geometry is given by Eq. 37,

with grounding line position defined by Eq. 40. The aim of the prognostic analysis is to solve the mass transport equation and

compare the transient response using different stabilization schemes (Table 1). The transient simulations start from the same

initial condition (Eq. 37) and grounding line position (Eq. 40), and run forward in time for 100 years under the same accumula-

tion rate (ṁs, Table 2), and under three different scenarios of external forcings: (i) no external forcing, (ii) basal melt under the330

ice shelf, and (iii) changes in basal friction. The first experiment (no external forcing) aims to analyze the models’ adjustments

under no external perturbation. In the second experiment, basal melt is applied at the base of the ice shelf in order to thin it,

generating a large change in ice thickness close to the grounding line. Here, the basal melt is applied on (a) only fully floating

elements, and (b) fully and partially floating elements. It is important to note that applying melt on partly floating elements is

not suitable for realistic marine ice sheet simulations (see discussion in Seroussi and Morlighem (2018)) and we only assess the335

implications of using different stabilization schemes. In (a), no grounding line retreat is expected, since no buttressing effect is

present in the initial condition (unconfined ice shelf). In (b), the grounding line is expected to retreat because part of the melt

rate is applied on the first grounded vertices (Seroussi and Morlighem, 2018). The basal melt is defined below (see Eq. 41).

The last experiment (friction perturbation) is based on the MISMIP3d perturbation phase, as a non-symmetric change in the

basal friction coefficient is introduced. The goal of this experiment is not to assess grounding line reversibility, as proposed in340

the original MISMIP3d benchmark, but instead to assess the general migration of the grounding line (and resulting mass loss)

for each stabilization scheme and different mesh resolution.

The basal melt applied in the second set of experiments is defined as follows (Seroussi and Morlighem, 2018):

ṁb (zb) =


0, if zb ≥ zu,

m̄b
zb− zu
zd− zu

, if zd < zb < zu,

m̄b, if zb ≤ zd,

(41)

where ṁb is the depth-dependent basal melting in m/yr (positive if melting), zb, in m, is the vertical coordinate of the ice-shelf345

base (negative if below sea level), m̄b is the maximum melt rate for vertical coordinates equal or lower than zd. We use m̄b = 30

m/yr, zu =−50 m, and zd =−200 m, unless otherwise specified.

In all prognostic experiments, the grounding line is free to migrate and its position over the simulation time is updated

according to a hydrostatic floatation criterion, following Eq. 32: ice is floating (resp. grounded) if the thickness, H , is lower

(resp. higher) than the floatation height, Hf =−(ρw/ρ)r. The grounding line position is defined where H =Hf .350
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Table 2. Constants and parameters used along the numerical experiments.

symbol description value

ṁs surface mass balance 0.5m/yr

C friction coefficient 107 Pa m1/3s1/3

A ice rate factor 10−25 Pa−3s−1

m friction exponent 1/3

n Glen’s law exponent 3

zu upper elevation −50m

zd deep elevation −200m

m̄b deep melt rate 30m/yr

ρ ice density 900m/yr

ρw water density 1000m/yr

Table 3. Mesh resolution and associated number of elements

Resolution Number of elements

5 km 2,533

2 km 15,981

1 km 63,545

500 m 253,335

250 m 1,013,894

4.2 Amundsen Sea Embayment - numerical setup

In order to quantify the performance of the stabilization schemes with real ice sheet geometries and numerical setups, we

run transient simulations (prognostic analysis) of the Amundsen Sea Embayment (ASE), which includes the fastest glaciers

of WAIS. The glaciers in the ASE are subject to high ocean-induced melt rates, and are prone to the marine ice sheet in-

stability (MISI), a positive feedback of grounding line retreat and increased ice discharge sustained by a retrograde bedrock355

slope (Weertman, 1974; Schoof, 2007b; Gudmundsson et al., 2012). Ice-shelf buttressing is present for most glaciers in the

ASE, which helps stabilize the grounding line on retrograde slopes, reducing the possibility of MISI (Dupont and Alley, 2005;

Goldberg et al., 2009; Docquier et al., 2014; Gudmundsson et al., 2019; Martin et al., 2019). Therefore, ice shelf thinning plays

an important role in the dynamics of this sector, and it is important to assess the impact of different stabilization schemes on

the response of ASE due to ocean-induced melt and resulting sea-level rise contribution.360
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Our ASE domain includes Pine Island, Thwaites and neighboring glaciers (Haynes, Pope, Smith, and Kohler glaciers). We

use the BedMachineAntarctica v1 (Morlighem et al., 2020) to build the digital elevation model, and InSAR-derived surface

velocities (Mouginot et al., 2019a) to infer basal friction coefficient and ice rheology using control algorithms (Morlighem

et al., 2010, 2013). We generate the mesh based on an interpolation error estimate of the observed ice velocity and on the

distance to the grounding line: a mesh resolution equal to 1 km is employed in the vicinity of the grounding lines while coarser365

resolution (up to 16 km) is employed for the rest of the grounded ice. The mesh contains 261,375 elements and 131,087

vertices. Note that this is a typical numerical setup employed in many of ice sheet studies (e.g., Favier et al., 2014; Joughin

et al., 2014; Seroussi et al., 2014b; Cornford et al., 2015). Details of the model setup and initialization are described in Barnes

et al. (2020).

For this setup, we perform only transient simulations with different stabilization schemes. All simulations start from the370

same initial condition, and are forced by a constant surface mass balance obtained from the Regional Climate Model (RACMO

v2.3, Van Wessem et al., 2014) and the parameterized basal melt defined by Eq. 41. Here, the parameters in Eq. 41 are based

on ice-ocean simulations (Seroussi et al., 2017; Nakayama et al., 2019): zu = 0 and zd =−500 m. We run two basal melt

scenarios based on different values of m̄b. For the first scenario we set m̄b = 50 m/yr and, for the second one, m̄b = 200 m/yr.

Melt is applied only on fully floating elements. We chose the combination SEP1+NSED as a set of parameterization schemes375

for basal friction and driving stress, respectively. The densities of ice and ocean are set to 917 and 1027 kg/m3, respectively.

We run forward in time for 50 years with a fixed time step equal to 1/8 yr. Like the other experiments performed here, the ice

flow is computed by the SSA equations (MacAyeal, 1989).

5 Results

5.1 MISMIP3d - diagnostic analysis380

To compare the ice speed from different sets of sub-element parameterizations, we compute the speed from a reference model.

The reference model is based on a triangular structured conforming mesh with resolution of 50 m. This structured conforming

mesh is constructed in such a way that the elements’ edges (around the grounding line) match perfectly the grounding line

position (xgl = 600 km, see Sec. 4.1; see also examples of structured meshes in Appendix B), and therefore, no error related to

driving stress and basal friction modeling is introduced in the stress balance computation in this reference model. We compare385

the speeds using two norms, L2-Norm and L∞-Norm, defined as follows:

‖ vhi − vri ‖hL2
=

√√√√ N∑
i=1

(vhi − vri )2, (42)

‖ vhi − vri ‖hL∞
= max
i=1,N

∣∣vhi − vri ∣∣ , (43)

where v =‖ v̄ ‖ is the absolute value of the ice speed, h and r refer to the mesh resolution and reference model, respectively.

To evaluate the norms, the results from all models are interpolated onto a finer regular grid (25-m resolution), and the speed390

differences (vhi − vri ) are calculated on each vertex i of that grid. For the error convergence comparison, we also run models
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Figure 1. Ice speeds obtained by the diagnostic analysis along a flowline (y = 25 km) and around the grounding line (x= 600 km, dashed

line) for different mesh resolutions: 5,000, 2,000, 1,000, and 500 m. All sets of sub-element parameterizations are shown: SEP1+NSED,

SEP2+NSED, SEP1+SED2, and SEP2+SED2. The speed from the 50-m resolution structured conforming mesh (reference model) is also

shown (Reference, dotted line).

with structured meshes (conforming to xgl = 600 km) considering the mesh resolutions shown in Table 3 (see examples in

Appendix B). We refer to the speeds obtained by these conforming-mesh-based models as the reference speeds.

Upstream of the grounding line, all sets of parameterizations ‘approach’ the reference speed (vri ) for mesh resolutions finer

or equal to 1 km (Fig. 1). In the downstream part (floating ice), a 500-m mesh resolution or finer is required for all models to395

reach speeds at the grounding line and ice front similar to the reference model (Fig. 1 and Fig. 2). Overall, the errors in speed

from models employing SEP1+NSED and SEP2+SED2 are closer to the ones obtained from structured conforming meshes

(dotted line in Fig 3). In other words, the convergence of sets SEP1+NSED and SEP2+SED2 are similar to the convergence

of conforming-mesh-based models. The other combinations, SEP1+SED2 and SEP2+NSED, present relatively higher error

levels, in both norms (Fig 3), for mesh resolutions coarser than 500 m.400
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Figure 2. Convergence of the ice speed at the grounding line (x= 600 km, left panel) and at the ice front (x= 800 km, right panel) obtained

in the diagnostic analysis. All sets of sub-element parameterizations are shown: SEP1+NSED, SEP2+NSED, SEP1+SED2, and SEP2+SED2.

Reference speeds from structured-conforming-mesh-based models are also displayed (Reference, dotted line).
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Figure 3. Error convergence of the ice speed for the diagnostic analysis in L2-norm (left panel) and L∞-norm (right panel). All sets

of sub-element parameterizations are shown: SEP1+NSED, SEP2+NSED, SEP1+SED2, and SEP2+SED2. The error convergence from

structured-conforming-mesh-based models is also shown (Reference, dotted line).

5.2 MISMIP3d - prognostic analysis

We compare the transient results using the volume above floatation changes (∆VAF) generated by each model and mesh

resolution. The changes in VAF over time, t, are calculated as follows:

∆VAFht = VAFht −VAFht0 (44)

where h refers to mesh resolution and t0 is the initial time of the transient simulations. For some simulations, we also compare405

the grounding line positions at the end of the experiments. Based on the diagnostic analysis (Sec. 5.1), we employ the following

sets of parameterizations in all transient simulations: SEP1+NSED and SEP2+SED2. We also compute the relative error in
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Figure 4. No external forcing experiment: ice surface and ice base at the end of the experiment (t= 100 yr) for different stabilization schemes

(see legend). Two sets of parameterizations are employed: SEP1+NSED (left panel) and SEP2+SED2 (right panel). Black dotted line is the

initial ice sheet geometry, defined by Eq. 37. Here, the mesh resolution is equal to 500 m.

∆VAFh obtained at the end of the experiments for a mesh resolution h, defined as:

εh∆VAF =

∣∣∣∣∣∆VAF2h−∆VAFh

∆VAF2h

∣∣∣∣∣ , (45)

where 2h indicates the next coarser mesh resolution. We use similar quantities to compute the relative error in grounding line410

position at the end of the experiments, replacing ∆VAF by the grounding line position, GLpos, in Eq. 45.

5.2.1 No external forcing experiment

Since the initial ice sheet profile (Eq. 37) is not exactly in steady state, some changes in VAF are expected to occur along the

transient simulation due to grounding line adjustments (Fig. 4). In this control experiment, for mesh resolutions equal to or

finer than 2 km, all stabilization schemes produce similar evolution of ∆VAF, for both sets of parameterizations (Fig. 5). At415

the end of the experiment (t= 100 yr), all models produce a VAF loss equal to 116± 4 Gt (Fig. 6). As shown in Fig. 6, the

stabilization schemes generate different convergence curves of relative errors (except for Streamline Upwinding and Artificial

Diffusion), but all show a decrease in error as the resolution increases, as expected. For a mesh resolution equal to 250 m, the

relative errors for all stabilization schemes and sub-element parameterizations are below 5% (Fig. 6).

5.2.2 Basal melt experiment420

In the setup where basal melt is applied only to fully floating elements (i.e., no melt on partly floating elements), models

using Artificial Diffusion and Streamline Upwinding schemes produce almost four times the VAF losses observed in the

control experiment (Fig. 7). At the end of the experiment, t= 100 yr, and for a mesh resolution equal to 500 m, the expected

∆VAF is −116± 4 Gt (see Sec. 5.2.1). A comparable amount of mass loss is obtained with models employing SUPG and

Discontinuous Galerkin. However, using Artificial Diffusion and Streamline Upwinding, the resulting ∆VAF is ∼−360 Gt,425
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Figure 5. No external forcing experiment: evolution of volume above floatation change (∆VAF) for different mesh resolutions and stabiliza-

tion schemes (see legend). Two sets of parameterizations are employed: SEP1+NSED and SEP2+SED2.

while with FCT, the ∆VAF reaches ∼−200 Gt (Fig. 8). The grounding line positions at the end of this basal melt experiment

are expected to be close to the ones obtained with the control experiment (no external forcing). This is virtually achieved

by models running with SUPG and Discontinuous Galerkin, as illustrated on the left panel of Fig. 9. The grounding lines

obtained from models employing Artificial Diffusion and Streamline Upwinding and even FCT have retreated further inland,

resulting in an overestimated mass loss in comparison to SUPG and Discontinuous Galerkin (Fig. 9). Both sets of sub-element430

parameterizations (SEP1+NSED and SEP2+SED2) lead to similar ∆VAF ‘convergence’ for all stabilization schemes, although

the convergence errors differ among them (Fig. 8). Only SUPG shows a decrease in relative error with mesh resolution, reaching

error levels smaller than 10% for a 250-m mesh resolution. Note that, in Fig. 8, Artificial Diffusion and Streamline Upwinding

present relatively smaller errors in comparison to the others schemes (mainly DG and FCT), but the errors produced by these

schemes do not decrease with mesh resolution and seem to be far from convergence, even for a mesh resolution of 250 m.435

When some basal melt is also applied to partly floating elements, all models generate VAF losses higher than with the

previous basal melt setup (Fig. 10), as expected (Seroussi and Morlighem, 2018). Models employing Artificial Diffusion and

Streamline Upwinding schemes produce almost twice the change in VAF compared to models using SUPG and Discontinuous

Galerkin. In this setup, FCT tends to perform as well as SUPG and Discontinuous Galerkin as the mesh resolution becomes

finer (Fig. 10 and Fig. 11). The grounding lines obtained with Artificial Diffusion and Streamline Upwinding schemes evolve440
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Figure 6. No external forcing experiment: convergence of volume above floatation change (∆VAF) at the end of the experiment (t= 100

yr) for different stabilization schemes (see legend). Two sets of parameterizations are employed: SEP1+NSED (left panels) and SEP2+SED2

(right panels). The relative errors are computed using Eq. 45.

upstream of the grounding lines computed with SUPG, Discontinuous Galerkin, and FCT schemes (Fig. 9, right panel). The

sensitivity to mesh resolution is higher for models using Artificial Diffusion and Streamline Upwinding: VAF losses vary from

400 to 1,300 Gt for the range of mesh resolutions used in this study, 250 to 5,000 m (Fig. 11). For models employing SUPG,

Discontinuous Galerkin, and FCT, VAF losses vary from about 200 to 800 Gt for the same range of mesh resolutions. In this

melt setup, a mesh resolution equal to 250 m is not enough to achieve relatively small errors in VAF changes: the relative445

errors for this mesh resolution vary from 20 to 30%, depending on the stabilization scheme used, and they do not seem to have

entered the asymptotic region (Fig. 11). Both sets of sub-element parameterizations, SEP1+NSED and SEP2+SED2, generate

virtually the same ∆VAF convergence for all stabilization schemes (see Fig. 11).

5.2.3 Friction perturbation experiment

Virtually all stabilization schemes produce the same ∆VAF evolution, for both sets of sub-element parameterizations (Fig. 12).450

The amount of mass loss at the end of the experiment varies with mesh resolution: from 1,300 to 1,600 Gt for the range of mesh

resolutions considered here, 5,000 to 250 m. Using SUPG, Discontinuous Galerkin, and FCT schemes, the models produce

slightly less mass loss than Artificial Diffusion and Streamline Upwinding, ∼ 40 Gt (Fig. 13). Both sets of parameterizations
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Figure 7. Basal melt experiment (no melt on partly floating elements): evolution of volume above floatation change (∆VAF) for differ-

ent mesh resolutions and stabilization schemes (see legend). Two sets of sub-element parameterizations are employed: SEP1+NSED and

SEP2+SED2.

generate similar ∆VAF convergence for all stabilization schemes (Fig. 13). For mesh resolutions equal to or finer than 1 km,

the relative errors decrease to values below 5%, reaching∼ 0.5% for a resolution of 250 m. The positions of the grounding line455

along the lateral boundaries (i.e., y = 0 and y = 50 km) reach 618 and 600.3 km, respectively, for mesh resolutions finer than

1 km (Fig. 14). For these mesh resolutions, the relative errors are smaller than 0.1% (Fig. 15).

5.3 Amundsen Sea Embayment - prognostic analysis

To evaluate the performance of the stabilization schemes in real ice sheet simulations (i.e., ASE setup), we compare the VAF

changes obtained with transient simulations employing the five schemes considered in this work. For the SUPG scheme, we460

chose the stability parameter as defined by Eq. 14. Models running with the other definition (i.e., Eq. 11) present spurious

oscillations in this experiment. The two major glaciers in ASE, i.e., Thwaites and Pine Island (PIG) glaciers, may respond

differently to ocean-induced melt: Pine Island presents a more confined ice shelf compared to Thwaites. Therefore, we also

compute the changes in VAF for these two glaciers.

In the experiment forced by the first basal melt scenario (i.e., m̄b = 50 m/yr), the VAF loss after 50 yrs varies from 3,200 to465

2,800 Gt for Thwaites, and from 1,900 to 1,700 for Pine Island (Fig. 16, upper panels). In both glaciers, the Artificial Diffusion
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Figure 8. Basal melt experiment (no melt on partly floating elements): convergence of volume above floatation change (∆VAF) at the end

of the experiment (t= 100 yr) for different stabilization schemes (see legend). Two sets of sub-element parameterizations are employed:

SEP1+NSED (left panels) and SEP2+SED2 (right panels). The relative errors are computed using Eq. 45.
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Figure 9. Basal melt experiment: ice surface and ice base at the end of the experiment (t= 100 yr) for different stabilization schemes (see

legend). Left panel: no melt on partly floating elements. Right panel: melt on fully and partly floating elements. Black dotted line is the

profile obtained with no basal melt applied (no external forcing experiment, Sec. 5.2.1 and Fig. 4). Here, the set of parameterizations is
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23



0 20 40 60 80 100

-1200

-1000

-800

-600

-400

-200

0

 V
A

F
 (

G
t)

Mesh resolution: 5000 m

0 20 40 60 80 100

-1200

-1000

-800

-600

-400

-200

0

Mesh resolution: 2000 m

0 20 40 60 80 100

Time (yr)

-1200

-1000

-800

-600

-400

-200

0

 V
A

F
 (

G
t)

Mesh resolution: 1000 m

0 20 40 60 80 100

Time (yr)

-1200

-1000

-800

-600

-400

-200

0

Mesh resolution: 500 m

SEP1+NSED+ArtDiff

SEP1+NSED+Streamline

SEP1+NSED+SUPG

SEP1+NSED+DG

SEP1+NSED+FCT

SEP2+SED2+ArtDiff

SEP2+SED2+Streamline

SEP2+SED2+SUPG

SEP2+SED2+DG

SEP2+SED2+FCT

Figure 10. Basal melt experiment (melt on partly floating elements): evolution of volume above floatation change (∆VAF) for different mesh

resolutions and stabilization schemes (see legend). Two sets of sub-element parameterizations are employed: SEP1+NSED and SEP2+SED2.

scheme overestimates the amount of VAF loss up to 10% in comparison to the SUPG scheme. Discontinuous Galerkin and

SUPG produce a smaller change in VAF, while Streamline Upwinding and FCT lies in between.

Under a higher basal melt scenario (m̄b = 200 m/yr), the VAF losses vary from 4,400 to 3,900 Gt and from 5,100 to

3,500 Gt for Thwaites and Pine Island, respectively (Fig. 16, lower panels). For Thwaites, the Streamline Upwinding scheme470

produces less mass loss during the entire simulation time, while Artificial Diffusion and FCT generate the highest amount of

mass losses. The effect of the artificial damping is more pronounced in Pine Island: at the end of the experiment, the Artificial

Diffusion scheme leads to ∼50% more VAF loss compared to SUPG, the scheme that produces the lowest change in VAF for

PIG. Discontinuous Galerkin generates spurious oscillations in ice thickness for this experimental setup, and therefore, it is not

shown in Fig. 16.475

Considering the entire ASE domain, in simulations forced by a low melt rate (m̄b = 50 m/yr), the model running with

Artificial Diffusion overestimates by 10% the VAF loss in comparison to the one employing SUPG. Under a higher rate of

basal melt (m̄b = 200 m/yr), the VAF loss of ASE is overestimated by about 20% in the same Artificial Diffusion/SUPG rate

comparison. Streamline Upwinding and FCT present similar responses for both melt scenarios: these schemes generate less

VAF losses in comparison to Artificial Diffusion. This difference is more pronounced in the experiment forced by 200 m/yr of480

melt rate.
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Figure 11. Basal melt experiment (melt on partly floating elements): convergence of volume above floatation change (∆VAF) at the end

of the experiment (t= 100 yr) for different stabilization schemes (see legend). Two sets of sub-element parameterizations are employed:

SEP1+NSED (left panels) and SEP2+SED2 (right panels). The relative errors are computed using Eq. 45.

6 Discussion

The diagnostic analysis using the analytical ice-sheet profile (Sec. 5.1) shows that the convergence of ice speeds depends on the

set of parameterizations chosen. The convergence curve associated to the new driving stress parameterization (SED2) is similar

to the ones of structured conforming meshes when combined with the parameterization SEP2 for basal friction. Specifically,485

considering an a priori error estimate of khβ , where k and β are constants, k is independent of h, β depends on the polynomial

order of elements and smoothness of the solution (Szabó and Babuška, 1991, p. 61, 62), employing SEP2+SED2 reduces

the value of k to a value closer to the ones produced by structured conforming meshes (see SEP2+SED2 and SEP2+NSED

in Fig. 3). The same is observed for SEP1+NSED in comparison to SEP1+SED2. Overall, models employing SEP1+NSED

and SEP2+SED2 achieve relatively low levels of errors with mesh resolutions at least 4× coarser in comparison to the other490

schemes, SEP1+SED2 and SEP2+NSED (see Fig. 3). These results suggest that improved convergence (i.e., smaller k) is

achieved by discretizing consistently the friction coefficient and driving stress, i.e., by employing SEP1+NSED or SEP2+SED2.

This is consistent with previous studies based on finite volume and difference methods (Cornford et al., 2013; Feldmann et al.,

2014), where one-sided differences were employed on each side of the grounding line to compute surface gradients and basal
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Figure 12. Basal friction perturbation experiment: evolution of volume above floatation change (∆VAF) for different mesh resolutions and

stabilization schemes (see legend). Two sets of sub-element parameterizations are employed: SEP1+NSED and SEP2+SED2.

friction. The driving stress and basal friction should be equally balanced (i.e., discretized) at the grounding line to improve the495

accuracy of the ice velocity as well as the dynamics of the grounding line (Cornford et al., 2013; Feldmann et al., 2014). The

error norms for fine mesh resolutions (500 m or finer) shown in Fig. 3 are probably impacted by our iterative solver. However,

note that the errors for these mesh resolutions are below 1 m/yr in L∞-Norm, or 3.17× 10−8 m/s, which is the same order of

magnitude as our solver tolerance and machine precision.

Employing an analytical expression of ice geometry based on a predefined grounding line position allows the setup of500

reference models (i.e., models whose mesh capture the exact position of the grounding line), in which no errors due to parame-

terization schemes are introduced during the stress balance solution (diagnostic analysis). Therefore, using the reference setup

improves the confidence of this analysis. Comparing grounding line positions at steady state is another approach (Table 4 and

Fig. 18), where the Boundary Layer Theory (BLT) provides an estimated position of the steady grounding line. The steady

state comparison shows that 1-km mesh resolution is enough for models using SEP1+NSED and SEP2+SED2 to achieve the505

grounding line position predicted by the BLT, within a tolerance of 0.5%, while models employing other schemes (SEP1+SED2

and SEP2+NSED) need finer mesh resolution (at least 16×more elements to generate a 250-m resolution mesh) to achieve the

BLT prediction with the same tolerance. This corroborates the conclusions obtained with the diagnostic analysis in Sec. 5.1.
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Figure 13. Basal friction perturbation experiment: convergence of volume above floatation change (∆VAF) at the end of the experiment

(t= 100 yr) for different stabilization schemes (see legend). Two sets of sub-element parameterizations are employed: SEP1+NSED (left

panels) and SEP2+SED2 (right panels). The relative errors are computed using Eq. 45.
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Figure 14. Basal friction perturbation experiment: convergence of grounding line positions at the end of the experiment (t= 100 yr), for

y = 0 (left panel) and y = 50 km (right panel). Different stabilization schemes and two sets of sub-element parameterizations are employed

(see legend).
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Figure 15. Basal friction perturbation experiment: convergence of grounding line positions (relative errors) at the end of the experiment

(t= 100 yr), for y = 0 (top panels) and y = 50 km (bottom panels), and for different stabilization schemes (see legend). Two sets of sub-

element parameterizations are employed: SEP1+NSED (left panels) and SEP2+SED2 (right panels). The relative errors are computed using

Eq. 45 and replacing ∆VAF by the grounding line position.

The prognostic analysis performed with the MISMIP3d-type geometry shows that the numerical damping produced by the

Artificial Diffusion and Streamline Upwinding schemes impacts the accuracy of grounding line dynamics mainly in simu-510

lations when large ∆H appear at its vicinity, such as the ice shelf melt experiments. These two schemes generate the same

stabilization term in the x-direction flow performed in this numerical setup (see Sec. 2.2). The numerical damping induces a

positive feedback of mass loss: the grounded ice upstream of the grounding line thins due to the (artificial) damping and starts

to unground; once it is floating, it is subject to basal melt, which induces further thinning inland. For melt-induced experiments,

where some melt is also applied to partly floating elements, models running with Artificial Diffusion and Streamline Upwind-515

ing overestimate mass loss in comparison to models running with other schemes (SUPG, DG, and FCT). Note, however, that

applying melt on partly floating elements leads to high levels of errors for all the stabilization schemes and mesh resolutions

used in this study, and is therefore not a suitable approach. The basal friction perturbation experiment (Sec. 5.2.3) shows that,

for a given mesh resolution, the relative errors in ∆VAF are at least one order of magnitude higher than the errors in grounding

line position (see Fig. 13 and Fig. 15). For instance, the grounding line position has an error of 1% for a 2-km mesh, while520

the corresponding error in ∆VAF is higher than 10%. Small changes in grounding line position can therefore lead to large

differences in ∆VAF. This suggests that ∆VAF should be used as a metric of numerical convergence in ice sheet model inter-
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Figure 16. Changes in volume above floatation (∆VAF) along transient simulations for Thwaites (left panels) and Pine Island (PIG, right

panels) glaciers. The transient simulations are forced by two different basal melt rate scenarios: 50 m/yr (upper panels) and 200 m/yr (lower

panels). The basal melt is applied only on fully floating elements, and the parameterization schemes for basal friction and driving stress are

SEP1 and NSED, respectively.

comparison projects. The MISMIP3d setup used in this analysis is suitable because: (1) there is no buttressing effect involved in

these basal melt experiments and, therefore, the grounding line dynamics is expected to be independent of ice shelf basal melt;

(2) the bedrock is the same for all mesh resolutions, which eliminates the source of errors related to bedrock resolution (Du-525

rand et al., 2011); (3) it allows the definition of an analytical ice sheet profile and guarantees the same initial condition for all

models independently of the mesh resolution or stabilization schemes. These numerical characteristics therefore eliminate the

influence of several sources of errors, allowing the analysis to focus only on the response to the stabilization schemes.

For the prognostic analysis performed with real glaciers in West Antarctica (Sec. 5.3), Streamline Upwinding performs as

well as the FCT scheme, which may be explained by the ‘anisotropic balancing dissipation’ of the stabilization term (Kelly530

et al., 1980; Brooks and Hughes, 1982) (Sec. 2.2) that has prevented numerical damping over transverse flows. Interestingly,

Streamline Upwinding generates less mass loss in comparison to SUPG for Thwaites glacier in the high melt rate scenario

(Fig. 16). We attribute this to the low performance of the stabilization parameter (τ ) in this simulations. In this same melt

scenario, the mass loss of PIG is clearly overestimated using Artificial Diffusion, which is likely associated to the positive

feedback explained above: the grounding line of PIG retreats several kilometers more using ArtDiff compared to the other535
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Figure 17. Changes in volume above floatation (∆VAF) along transient simulations for the Amundsen Sea Embayment (ASE) domain.

The transient simulations are forced by two different basal melt rate scenarios: 50 m/yr (left panel) and 200 m/yr (right panel). The basal

melt is applied only on fully floating elements, and the parameterization schemes for basal friction and driving stress are SEP1 and NSED,

respectively.

schemes. For the entire ASE domain considered here, SUPG, FTC, and Streamline Upwinding yield similar VAF evolution

within a difference of ∼5% in the high melt experiment. Discontinuous Galerkin has similar performance as SUPG, at least

for the lower basal melt scenario. However, producing spurious oscillations in ice thickness in the second melt experiment

highlights that the DG scheme as implemented in ISSM may be not completely robust.

The choice of the stabilization scheme relies on the balance between stability, accuracy, computational cost, and imple-540

mentation effort. Yet, the ‘best’ choice could be never reached (e.g., John et al., 2018). Artificial diffusion provides stability

to numerical solutions, even in the presence of strong discontinuities and shocks (which is not the case in ice sheet dynam-

ics). But at the same time, it excessively smooths the solution for large ∆H , which impacts the results. For simulations with

large buttressing effect, as is the case for Pine Island and Thwaites glaciers, numerical damping could artificially ‘enhance’ the

marine ice sheet instability feedback existing for retrograde bedrock slopes and, consequently, overestimate mass loss in ocean-545

induced melt simulations. Note that numerical damping does not always lead to grounding line retreat, but it can also prevent its

advance. High mesh resolution could be employed to decrease the diffusion effects, but it comes at a higher computational cost.

Adaptive mesh refinement could be an alternative in this case, although it is not available in all ice sheet models. Discontinuous

Galerkin and SUPG may generate spurious oscillations in idealized experiments where discontinuities are present (e.g., John

and Schmeyer, 2008), and in real ice sheet simulations, as observed here for ASE experiments. The performance and stability550

of SUPG clearly relies on the definition of the stabilization parameter τ , and the numerical issues and results observed here for

the ASE simulations indicate that the definitions of τ as given by Eq. 11 and by Eq. 14 are not totally robust and optimized for

real ice sheet simulations, at least for the SUPG as currently implemented in ISSM. FCT presents better results on idealized

cases (John and Schmeyer, 2008), but some excessive VAF loss is observed in some experiments performed here (e.g., Fig. 7).

Besides that, this scheme performs as well as the Streamline Upwinding in the two basal melt scenarios using the ASE setup.555
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the boundary layer theory, BLT (Schoof, 2007b).

Apart from differences observed in terms of accuracy (i.e., VAF change), the remaining differences between the stabilization

schemes used here are their numerical implementations and computational costs. The implementation of the Artificial Diffu-

sion, Streamline Upwinding, and SUPG is straightforward in most of ice-sheet FEM-based models. However, the definition of

the stability coefficient for SUPG (Eq. 7) is problem-dependent, and possibly, its optimum value may remain unclear in many

real ice sheet simulations. Discontinuous Galerkin requires specific coding of data structures, at the minimum requiring infor-560

mation of elements’ neighbors, and significant implementation effort to compute the integrals along elements’ edges. Also, the

number of degrees of freedom in comparison to other schemes is considerably increased (up to a factor of 6 for triangular P1

Lagrange elements), which impacts the computational cost when the Backward Euler approach is used, as is the case in ISSM.

An alternative would be an explicit approach (Runge Kutta Discontinuous Galerkin): in this case, the solution using the DG

scheme would be completely parallel (e.g., Cockburn, 2003). While this would improve the computational cost, there are more565

stringent restrictions on the CFL time step. The FCT scheme requires operations on global matrices and vectors. While this

is straightforward in codes relying on shared memory (e.g, one process, multiple threads), these operations require additional

CPU communications in codes based on distributed memory (e.g., Message Passing Interface), potentially translating into a

larger computation time. Finally, we note that the current ISSM implementations of the stabilization schemes presented here are

based on the classical literature of FEM, where the numerical analyses of such schemes are carried out in idealized problems.570

There is still room for development of stabilization schemes and improved numerical accuracy, stability, and computational

performance in the specific field of ice sheet modeling; most stabilization schemes were designed to handle the presence of

shocks and strong discontinuities, which are mostly absent from this field.
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Table 4. Steady-state grounding line (GL) positions for the MISMIP3d setup using different sub-element parameterization schemes. GL

positions for SEP1+NSED and SEP2+NSED are extracted from Seroussi et al. (2014a). We employ the same numerical setup as described

in Seroussi et al. (2014a). The estimated GL position from Boundary Layer Theory (BLT) is also included (Schoof, 2007b).

Parameterization Mesh resol. GL (y = 0 km) GL (y = 50 km)

Friction Driv. stress (m) (km) (km)

SEP1 NSED 5,000 631.7 631.9

SEP1 NSED 2,000 609.8 610.2

SEP1 NSED 1,000 604.9 604.8

SEP1 NSED 500 605.0 605.0

SEP1 NSED 250 605.5 605.6

SEP1 SED2 5,000 689.4 689.0

SEP1 SED2 2,000 635.3 635.0

SEP1 SED2 1,000 619.4 619.4

SEP1 SED2 500 610.2 610.2

SEP1 SED2 250 607.2 607.2

SEP2 NSED 5,000 550.3 551.1

SEP2 NSED 2,000 575.0 574.8

SEP2 NSED 1,000 592.2 591.9

SEP2 NSED 500 599.1 599.1

SEP2 NSED 250 603.3 603.4

SEP2 SED2 5,000 631.4 631.5

SEP2 SED2 2,000 613.1 612.9

SEP2 SED2 1,000 607.0 607.1

SEP2 SED2 500 605.7 605.7

SEP2 SED2 250 605.6 605.6

BLT - 606.8 606.8

7 Final remarks

The convergence error of ice speed depends on the combination of parameterizations chosen for basal friction and driving575

stress. Given that the a priori error estimate is khβ (h is the mesh resolution), the sub-element parameterization for driving

stress proposed here (SED2) presents smaller values of k when combined with a similar approach for basal friction (SEP2).

In models employing the SEP1 basal friction parameterization, a smaller k is achieved with no driving stress parameterization

(NSED). As already suggested by previous simulations based on finite volume/difference methods, in order to achieve improved
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numerical convergence (i.e., smaller values of k) for a given computational cost, the discretization of the basal friction should580

match the discretization of the driving stress; the following combinations of sub-element parameterizations therefore provide

the best results: SEP1+NSED and SEP2+SED2.

In all transient simulations performed here for both idealized and real ice sheet configurations, models relying on Artificial

Diffusion generate the largest amount of mass loss in comparison to models running with the other schemes. SUPG and

Discontinuous Galerkin produce the expected grounding line dynamics for the idealized case (e.g., MISMIP3d-type setup). For585

the Amundsen Sea Embayment (ASE) experiments, these two schemes produce less mass loss than the others ones, although

some spurious oscillations are observed, which compromised the results. By design, the Streamline Upwinding has the same

behavior as Artificial Diffusion in the idealized case (x-direction flow). However, in the real ice sheet simulations (ASE setup),

Streamline Upwinding performs as well as the Flux Corrected Transport scheme. Based on the numerical tests performed here

and the ease of implementation, SUPG seems a preferred scheme, although careful attention shall be given to the definition of590

the stabilization parameter, which may be problem-dependent. A second choice would be the Streamline Upwinding scheme,

as long as a high enough mesh resolution is employed around the discontinuities (e.g., grounding line). The development of

new stabilization schemes and/or improvements of existing ones in FEM remains an active field of research. Nevertheless, since

most of theoretical studies and convergence analyses involve, in general, smooth data and regular boundaries, the conclusions

drawn from these studies may not necessarily hold for real cases, such as the Amundsen Sea Embayment simulation performed595

here. This highlights the importance of testing future stabilization schemes with real geometries and external forcing. In general,

most stabilization schemes were developed in the context of compressible flow, where shocks and strong discontinuities appear,

which is not the case of ice sheet modeling, opening new development opportunities for this specific field.

Code availability. The numerical schemes evaluated here are currently implemented in the ISSM. The code can be downloaded, compiled

and executed following the instructions available on the ISSM website: https://issm.jpl.nasa.gov/download (last access: 20 November 2020).600

The public SVN repository for the ISSM code can also be found directly at https://issm.ess.uci.edu/svn/issm/issm/trunk (Larour et al., 2020)

and downloaded using user name “anon” and password “anon”. The version of the code for this study, corresponding to ISSM release 4.18,

is SVN version tag number 25833. The documentation of the code version used here is available at https://issm.jpl.nasa.gov/documentation/

(last access: 20 November 2020).

Appendix A: Zalesak’s algorithm605

We compute the weights αij in Eq. 23 using the anti-diffusive flux rij (Eq. 28) and the Zalesak’s algorithm (Zalesak, 1979)

(see also Möller et al. (2004), John and Schmeyer (2008), and Kuzmin (2009)):

7We note thatHmax
L,i andHmin

L,i are the maximum and minimum values of the low order solutionHL over the patch of elements sharing node i, respectively.
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Algorithm 2 Zalesak’s algorithm for the weights (αij) computation.

Given an anti-diffusive flux rij , do:

1. Compute:

P+
i =

N∑
j=1, j 6=i

max{0, rij} ,

P−i =

N∑
j=1, j 6=i

min{0, rij} . (A1)

2. Compute7:

Q+
i =

mi

∆t

(
Hmax

L,i −HL,i

)
,

Q−i =
mi

∆t

(
Hmin

L,i −HL,i

)
. (A2)

3. Compute:

R+
i = min

{
1,
Q+

i

P+
i

}
,

R−i = min

{
1,
Q−i
P−i

}
. (A3)

4. Compute:

αij =

min{R+
i ,R

−
j }, if rij > 0,

min{R−i ,R
+
j }, if rij < 0.

(A4)

Appendix B: Example of meshes

Six examples of structured and unstructured meshes are shown in Fig. B1. We use the package Triangle (Shewchuk, 1996) to

generate the unstructured meshes.610

Data availability. All data sets used in the prognostic analysis of the Amundsen Sea Embayment, Sec. 4.2 and Sec. 5.3, are freely available

in the public domain and are referenced in the text. The BedMachine Antarctica v1 is available at the National Snow and Ice Data Center

(NSIDC), Boulder, CO, DOI: https://doi.org/10.5067/C2GFER6PTOS4 (Morlighem, 2019). The InSAR-derived surface velocity is available

at the National Snow and Ice Data Center (NSIDC), Bourder, CO, DOI: https://doi.org/10.5067/PZ3NJ5RXRH10 (Mouginot et al., 2019b).
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Figure B1. Examples of meshes employed in this work. Left panels are structured conforming meshes, and right panels the unstructured

meshes. Three mesh resolutions are shown: 2, 1, and 0.5 km. The colormaps are the ice speeds obtained in the diagnostic analysis (Sec. 5.1)

considering the grounding line at x= 600 km. Note that the structured meshes are conforming to the grounding line, i.e., they are generated

such that the elements’ edges match the grounding line position (in this case, xgl = 600 km). Sub-element parameterizations SEP1+NSED

are employed in the unstructured meshes to computed the ice speeds presented here.

Author contributions. MM and HS implemented some stabilization schemes in ISSM. TDS implemented the driving stress parameterization615

and stabilization SUPG. TDS designed the experimental setup and performed the simulations. TDS, MM and HS led the analysis of the

results. TDS led the initial writing of the paper. All authors contributed to writing the final version of the paper.

Competing interests. The authors declare that they have no conflict of interest.

Acknowledgements. This work is from the PROPHET project, a component of the International Thwaites Glacier Collaboration (ITGC).

Support from National Science Foundation (NSF: Grant 1739031)]. ITGC Contribution No. ITGC-022. Hélène Seroussi is funded by grants620

from the NASA Cryospheric Sciences Program. We thank the Editor, Steven Phipps, and the two reviewers, Stephen Cornford and Daniel

Martin, for their positive and constructive comments, which improved the clarity of the manuscript.

35



References

Akin, J. and Tezduyar, T. E.: Calculation of the advective limit of the SUPG stabilization parameter for linear and higher-order elements,

Computer Methods in Applied Mechanics and Engineering, 193, 1909 – 1922, https://doi.org/https://doi.org/10.1016/j.cma.2003.12.050,625

http://www.sciencedirect.com/science/article/pii/S004578250400060X, flow Simulation and Modeling, 2004.

Almeida, R. C. and Silva, R. S.: A stable Petrov-Galerkin method for convection-dominated problems, Computer Methods in Applied

Mechanics and Engineering, 140, 291 – 304, https://doi.org/https://doi.org/10.1016/S0045-7825(96)01108-5, http://www.sciencedirect.

com/science/article/pii/S0045782596011085, 1997.

Arnold, D. N., Brezzi, F., Cockburn, B., and Marini, L. D.: Unified Analysis of Discontinuous Galerkin Methods for Elliptic Prob-630

lems, SIAM Journal on Numerical Analysis, 39, 1749–1779, https://doi.org/10.1137/S0036142901384162, https://doi.org/10.1137/

S0036142901384162, 2002.

Aschwanden, A., Fahnestock, M. A., Truffer, M., Brinkerhoff, D. J., Hock, R., Khroulev, C., Mottram, R., and Khan, S. A.: Contribution

of the Greenland Ice Sheet to sea level over the next millennium, Science Advances, 5, https://doi.org/10.1126/sciadv.aav9396, https:

//advances.sciencemag.org/content/5/6/eaav9396, 2019.635

Babuška, I., Baumann, C., and Oden, J.: A discontinuous hp finite element method for diffusion problems: 1-D analysis, Computers &

Mathematics with Applications, 37, 103 – 122, https://doi.org/https://doi.org/10.1016/S0898-1221(99)00117-0, http://www.sciencedirect.

com/science/article/pii/S0898122199001170, 1999.

Barnes, J. M., dos Santos, T. D., Goldberg, D., Gudmundsson, G. H., Morlighem, M., and De Rydt, J.: The transferability of adjoint inver-

sion products between different ice flow models, The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-235, https://doi.org/10.5194/640

tc-2020-235, 2020.

Blank, H., Rudgyard, M., and Wathen, A.: Stabilised finite element methods for steady incompressible flow, Computer Methods in Applied

Mechanics and Engineering, 174, 91 – 105, https://doi.org/https://doi.org/10.1016/S0045-7825(98)00279-5, http://www.sciencedirect.

com/science/article/pii/S0045782598002795, 1999.

Blatter, H.: Velocity and stress-fields in grounded glaciers: A simple algorithm for including deviatoric stress gradients, Journal of Glaciology,645

41, 333–344, 1995.

Bochev, P. B., Gunzburger, M. D., and Shadid, J. N.: Stability of the SUPG finite element method for transient advection–diffusion problems,

Computer Methods in Applied Mechanics and Engineering, 193, 2301 – 2323, https://doi.org/https://doi.org/10.1016/j.cma.2004.01.026,

http://www.sciencedirect.com/science/article/pii/S0045782504000830, 2004.

Boris, J. P. and Book, D. L.: Flux-corrected transport. I. SHASTA, a fluid transport algorithm that works, Journal of Computational650

Physics, 11, 38 – 69, https://doi.org/https://doi.org/10.1016/0021-9991(73)90147-2, http://www.sciencedirect.com/science/article/pii/

0021999173901472, 1973.

Brezzi, F., Manzini, G., Marini, D., Pietra, P., and Russo, A.: Discontinuous Galerkin approximations for elliptic problems, Numerical

Methods for Partial Differential Equations, 16, 365–378, https://doi.org/10.1002/1098-2426(200007)16:4<365::AID-NUM2>3.0.CO;2-

Y, https://onlinelibrary.wiley.com/doi/abs/10.1002/1098-2426%28200007%2916%3A4%3C365%3A%3AAID-NUM2%3E3.0.CO%655

3B2-Y, 2000.

Brezzi, F., Marini, L. D., and Süli, E.: Discontinuous Galerkin methods for first-order hyperbolic problems, Mathematical Models and Meth-

ods in Applied Sciences, 14, 1893–1903, https://doi.org/10.1142/S0218202504003866, https://doi.org/10.1142/S0218202504003866,

2004.

36

https://doi.org/https://doi.org/10.1016/j.cma.2003.12.050
http://www.sciencedirect.com/science/article/pii/S004578250400060X
https://doi.org/https://doi.org/10.1016/S0045-7825(96)01108-5
http://www.sciencedirect.com/science/article/pii/S0045782596011085
http://www.sciencedirect.com/science/article/pii/S0045782596011085
http://www.sciencedirect.com/science/article/pii/S0045782596011085
https://doi.org/10.1137/S0036142901384162
https://doi.org/10.1137/S0036142901384162
https://doi.org/10.1137/S0036142901384162
https://doi.org/10.1137/S0036142901384162
https://doi.org/10.1126/sciadv.aav9396
https://advances.sciencemag.org/content/5/6/eaav9396
https://advances.sciencemag.org/content/5/6/eaav9396
https://advances.sciencemag.org/content/5/6/eaav9396
https://doi.org/https://doi.org/10.1016/S0898-1221(99)00117-0
http://www.sciencedirect.com/science/article/pii/S0898122199001170
http://www.sciencedirect.com/science/article/pii/S0898122199001170
http://www.sciencedirect.com/science/article/pii/S0898122199001170
https://doi.org/10.5194/tc-2020-235
https://doi.org/10.5194/tc-2020-235
https://doi.org/10.5194/tc-2020-235
https://doi.org/10.5194/tc-2020-235
https://doi.org/https://doi.org/10.1016/S0045-7825(98)00279-5
http://www.sciencedirect.com/science/article/pii/S0045782598002795
http://www.sciencedirect.com/science/article/pii/S0045782598002795
http://www.sciencedirect.com/science/article/pii/S0045782598002795
https://doi.org/https://doi.org/10.1016/j.cma.2004.01.026
http://www.sciencedirect.com/science/article/pii/S0045782504000830
https://doi.org/https://doi.org/10.1016/0021-9991(73)90147-2
http://www.sciencedirect.com/science/article/pii/0021999173901472
http://www.sciencedirect.com/science/article/pii/0021999173901472
http://www.sciencedirect.com/science/article/pii/0021999173901472
https://doi.org/10.1002/1098-2426(200007)16:4%3C365::AID-NUM2%3E3.0.CO;2-Y
https://doi.org/10.1002/1098-2426(200007)16:4%3C365::AID-NUM2%3E3.0.CO;2-Y
https://doi.org/10.1002/1098-2426(200007)16:4%3C365::AID-NUM2%3E3.0.CO;2-Y
https://onlinelibrary.wiley.com/doi/abs/10.1002/1098-2426%28200007%2916%3A4%3C365%3A%3AAID-NUM2%3E3.0.CO%3B2-Y
https://onlinelibrary.wiley.com/doi/abs/10.1002/1098-2426%28200007%2916%3A4%3C365%3A%3AAID-NUM2%3E3.0.CO%3B2-Y
https://onlinelibrary.wiley.com/doi/abs/10.1002/1098-2426%28200007%2916%3A4%3C365%3A%3AAID-NUM2%3E3.0.CO%3B2-Y
https://doi.org/10.1142/S0218202504003866
https://doi.org/10.1142/S0218202504003866


Brooks, A. N. and Hughes, T. J.: Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular660

emphasis on the incompressible Navier-Stokes equations, Computer Methods in Applied Mechanics and Engineering, 32, 199 –

259, https://doi.org/https://doi.org/10.1016/0045-7825(82)90071-8, http://www.sciencedirect.com/science/article/pii/0045782582900718,

1982.

Burman, E.: Consistent SUPG-method for transient transport problems: Stability and convergence, Computer Methods in Applied Mechan-

ics and Engineering, 199, 1114 – 1123, https://doi.org/https://doi.org/10.1016/j.cma.2009.11.023, http://www.sciencedirect.com/science/665

article/pii/S0045782509003983, 2010.

Calle, J. L., Devloo, P. R., and Gomes, S. M.: Stabilized discontinuous Galerkin method for hyperbolic equations, Computer Methods in Ap-

plied Mechanics and Engineering, 194, 1861 – 1874, https://doi.org/https://doi.org/10.1016/j.cma.2004.06.036, http://www.sciencedirect.

com/science/article/pii/S0045782504003573, 2005.

Christie, I., Griffiths, D. F., Mitchell, A. R., and Zienkiewicz, O. C.: Finite element methods for second order differen-670

tial equations with significant first derivatives, International Journal for Numerical Methods in Engineering, 10, 1389–1396,

https://doi.org/10.1002/nme.1620100617, https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.1620100617, 1976.

Cockburn, B.: An introduction to the Discontinuous Galerkin method for convection-dominated problems, pp. 150–268, Springer Berlin

Heidelberg, Berlin, Heidelberg, https://doi.org/10.1007/BFb0096353, https://doi.org/10.1007/BFb0096353, 1998.

Cockburn, B.: Discontinuous Galerkin Methods for Convection-Dominated Problems, pp. 69–224, Springer Berlin Heidelberg, Berlin, Hei-675

delberg, https://doi.org/10.1007/978-3-662-03882-6_2, https://doi.org/10.1007/978-3-662-03882-6_2, 1999.

Cockburn, B.: Discontinuous Galerkin methods, ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Ange-

wandte Mathematik und Mechanik, 83, 731–754, https://doi.org/10.1002/zamm.200310088, https://onlinelibrary.wiley.com/doi/abs/10.

1002/zamm.200310088, 2003.

Cockburn, B. and Shu, C.-W.: The Runge-Kutta local projection P1-discontinuous-Galerkin finite element method for scalar conservation680

laws, ESAIM: M2AN, 25, 337–361, https://doi.org/10.1051/m2an/1991250303371, https://doi.org/10.1051/m2an/1991250303371, 1991.

Codina, R.: Comparison of some finite element methods for solving the diffusion-convection-reaction equation, Computer Methods

in Applied Mechanics and Engineering, 156, 185 – 210, https://doi.org/https://doi.org/10.1016/S0045-7825(97)00206-5, http://www.

sciencedirect.com/science/article/pii/S0045782597002065, 1998.

Codina, R.: On stabilized finite element methods for linear systems of convection–diffusion-reaction equations, Computer Methods in Ap-685

plied Mechanics and Engineering, 188, 61 – 82, https://doi.org/https://doi.org/10.1016/S0045-7825(00)00177-8, http://www.sciencedirect.

com/science/article/pii/S0045782500001778, 2000.

Cornford, S. L., Martin, D. F., Graves, D. T., Ranken, D. F., Brocq, A. M. L., Gladstone, R. M., Payne, A. J., Ng, E. G., and Lip-

scomb, W. H.: Adaptive mesh, finite volume modeling of marine ice sheets, Journal of Computational Physics, 232, 529 – 549,

https://doi.org/https://doi.org/10.1016/j.jcp.2012.08.037, http://www.sciencedirect.com/science/article/pii/S0021999112005050, 2013.690

Cornford, S. L., Martin, D. F., Payne, A. J., Ng, E. G., Le Brocq, A. M., Gladstone, R. M., Edwards, T. L., Shannon, S. R., Agosta, C., van den

Broeke, M. R., Hellmer, H. H., Krinner, G., Ligtenberg, S. R. M., Timmermann, R., and Vaughan, D. G.: Century-scale simulations of the

response of the West Antarctic Ice Sheet to a warming climate, The Cryosphere, 9, 1579–1600, https://doi.org/10.5194/tc-9-1579-2015,

https://www.the-cryosphere.net/9/1579/2015/, 2015.

Cornford, S. L., Martin, D. F., Lee, V., Payne, A. J., and Ng, E. G.: Adaptive mesh refinement versus subgrid friction interpolation in695

simulations of Antarctic ice dynamics, Annals of Glaciology, 57, 1–9, https://doi.org/10.1017/aog.2016.13, 2016.

Cuffey, K. and Paterson, W. S. B.: The Physics of Glaciers, Elsevier, Oxford, 4th edn., 2010.

37

https://doi.org/https://doi.org/10.1016/0045-7825(82)90071-8
http://www.sciencedirect.com/science/article/pii/0045782582900718
https://doi.org/https://doi.org/10.1016/j.cma.2009.11.023
http://www.sciencedirect.com/science/article/pii/S0045782509003983
http://www.sciencedirect.com/science/article/pii/S0045782509003983
http://www.sciencedirect.com/science/article/pii/S0045782509003983
https://doi.org/https://doi.org/10.1016/j.cma.2004.06.036
http://www.sciencedirect.com/science/article/pii/S0045782504003573
http://www.sciencedirect.com/science/article/pii/S0045782504003573
http://www.sciencedirect.com/science/article/pii/S0045782504003573
https://doi.org/10.1002/nme.1620100617
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.1620100617
https://doi.org/10.1007/BFb0096353
https://doi.org/10.1007/BFb0096353
https://doi.org/10.1007/978-3-662-03882-6_2
https://doi.org/10.1007/978-3-662-03882-6_2
https://doi.org/10.1002/zamm.200310088
https://onlinelibrary.wiley.com/doi/abs/10.1002/zamm.200310088
https://onlinelibrary.wiley.com/doi/abs/10.1002/zamm.200310088
https://onlinelibrary.wiley.com/doi/abs/10.1002/zamm.200310088
https://doi.org/10.1051/m2an/1991250303371
https://doi.org/10.1051/m2an/1991250303371
https://doi.org/https://doi.org/10.1016/S0045-7825(97)00206-5
http://www.sciencedirect.com/science/article/pii/S0045782597002065
http://www.sciencedirect.com/science/article/pii/S0045782597002065
http://www.sciencedirect.com/science/article/pii/S0045782597002065
https://doi.org/https://doi.org/10.1016/S0045-7825(00)00177-8
http://www.sciencedirect.com/science/article/pii/S0045782500001778
http://www.sciencedirect.com/science/article/pii/S0045782500001778
http://www.sciencedirect.com/science/article/pii/S0045782500001778
https://doi.org/https://doi.org/10.1016/j.jcp.2012.08.037
http://www.sciencedirect.com/science/article/pii/S0021999112005050
https://doi.org/10.5194/tc-9-1579-2015
https://www.the-cryosphere.net/9/1579/2015/
https://doi.org/10.1017/aog.2016.13


de Vahl Davis, G. and Mallinson, G.: An evaluation of upwind and central difference approximations by a study of recirculating flow,

Computers & Fluids, 4, 29 – 43, https://doi.org/https://doi.org/10.1016/0045-7930(76)90010-4, http://www.sciencedirect.com/science/

article/pii/0045793076900104, 1976.700

DeConto, R. M. and Pollard, D.: Contribution of Antarctica to past and future sea-level rise, Nature, 531, 591–597,

https://doi.org/10.1038/nature17145, http://dx.doi.org/10.1038/nature17145, 2016.

Devloo, P., Forti, T., and Gomes, S.: A combined continuous-discontinuous finite element method for convection-diffusion problems, Latin

American Journal of Solids and Structures, 4, 229–246, 2007.

Diddens, C.: Detailed finite element method modeling of evaporating multi-component droplets, Journal of Computational Physics, 340, 670705

– 687, https://doi.org/https://doi.org/10.1016/j.jcp.2017.03.049, http://www.sciencedirect.com/science/article/pii/S0021999117302504,

2017.

Docquier, D., Pollard, D., and Pattyn, F.: Thwaites Glacier grounding-line retreat: influence of width and buttressing parameterizations,

Journal of Glaciology, 60, 305–313, https://doi.org/10.3189/2014JoG13J117, 2014.

Donea, J.: A Taylor–Galerkin method for convective transport problems, International Journal for Numerical Methods in Engineering, 20,710

101–119, https://doi.org/10.1002/nme.1620200108, https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.1620200108, 1984a.

Donea, J.: Recent advances in computational methods for steady and transient transport problems, Nuclear Engineering and Design, 80, 141 –

162, https://doi.org/https://doi.org/10.1016/0029-5493(84)90163-8, http://www.sciencedirect.com/science/article/pii/0029549384901638,

4th Special Issue on Smirt-7, 1984b.

Donea, J., Giuliani, S., Laval, H., and Quartapelle, L.: Time-accurate solution of advection-diffusion problems by finite elements, Computer715

Methods in Applied Mechanics and Engineering, 45, 123 – 145, https://doi.org/https://doi.org/10.1016/0045-7825(84)90153-1, http://

www.sciencedirect.com/science/article/pii/0045782584901531, 1984.

Dupont, T. K. and Alley, R. B.: Assessment of the importance of ice-shelf buttressing to ice-sheet flow, Geophysical Research Letters, 32,

https://doi.org/10.1029/2004GL022024, https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2004GL022024, 2005.

Durand, G., Gagliardini, O., Zwinger, T., Le Meur, E., and Hindmarsh, R. C. A.: Full Stokes modeling of marine ice sheets: influence of the720

grid size, Annals of Glaciology, 50, 109–114, https://doi.org/10.3189/172756409789624283, 2009.

Durand, G., Gagliardini, O., Favier, L., Zwinger, T., and Le Meur, E.: Impact of bedrock description on modeling ice sheet dynamics,

Geophysical Research Letters, 38, 1–6, https://doi.org/10.1029/2011GL048892, https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/

2011GL048892, 2011.

Favier, L., Durand, G., Cornford, S. L., Gudmundsson, G. H., Gagliardini, O., Gillet-Chaulet, F., Zwinger, T., Payne, A. J., and725

Le Brocq, A. M.: Retreat of Pine Island Glacier controlled by marine ice-sheet instability, Nature Climate Change, 4, 117–121,

https://doi.org/10.1038/nclimate2094, https://www.nature.com/articles/nclimate2094#supplementary-information, 2014.

Feldmann, J., Albrecht, T., Khroulev, C., Pattyn, F., and Levermann, A.: Resolution-dependent performance of grounding line motion in

a shallow model compared with a full-Stokes model according to the MISMIP3d intercomparison, Journal of Glaciology, 60, 353–360,

https://doi.org/10.3189/2014JoG13J093, 2014.730

Franca, L. P., Hauke, G., and Masud, A.: Revisiting stabilized finite element methods for the advective–diffusive equation, Computer

Methods in Applied Mechanics and Engineering, 195, 1560 – 1572, https://doi.org/https://doi.org/10.1016/j.cma.2005.05.028, http:

//www.sciencedirect.com/science/article/pii/S0045782505002951, a Tribute to Thomas J.R. Hughes on the Occasion of his 60th Birth-

day, 2006.

38

https://doi.org/https://doi.org/10.1016/0045-7930(76)90010-4
http://www.sciencedirect.com/science/article/pii/0045793076900104
http://www.sciencedirect.com/science/article/pii/0045793076900104
http://www.sciencedirect.com/science/article/pii/0045793076900104
https://doi.org/10.1038/nature17145
http://dx.doi.org/10.1038/nature17145
https://doi.org/https://doi.org/10.1016/j.jcp.2017.03.049
http://www.sciencedirect.com/science/article/pii/S0021999117302504
https://doi.org/10.3189/2014JoG13J117
https://doi.org/10.1002/nme.1620200108
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.1620200108
https://doi.org/https://doi.org/10.1016/0029-5493(84)90163-8
http://www.sciencedirect.com/science/article/pii/0029549384901638
https://doi.org/https://doi.org/10.1016/0045-7825(84)90153-1
http://www.sciencedirect.com/science/article/pii/0045782584901531
http://www.sciencedirect.com/science/article/pii/0045782584901531
http://www.sciencedirect.com/science/article/pii/0045782584901531
https://doi.org/10.1029/2004GL022024
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2004GL022024
https://doi.org/10.3189/172756409789624283
https://doi.org/10.1029/2011GL048892
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2011GL048892
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2011GL048892
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2011GL048892
https://doi.org/10.1038/nclimate2094
https://www.nature.com/articles/nclimate2094#supplementary-information
https://doi.org/10.3189/2014JoG13J093
https://doi.org/https://doi.org/10.1016/j.cma.2005.05.028
http://www.sciencedirect.com/science/article/pii/S0045782505002951
http://www.sciencedirect.com/science/article/pii/S0045782505002951
http://www.sciencedirect.com/science/article/pii/S0045782505002951


Gagliardini, O., Zwinger, T., Gillet-Chaulet, F., Durand, G., Favier, L., de Fleurian, B., Greve, R., Malinen, M., Martín, C., Råback, P.,735

Ruokolainen, J., Sacchettini, M., Schäfer, M., Seddik, H., and Thies, J.: Capabilities and performance of Elmer/Ice, a new-generation ice

sheet model, Geoscientific Model Development, 6, 1299–1318, https://doi.org/10.5194/gmd-6-1299-2013, https://www.geosci-model-dev.

net/6/1299/2013/, 2013.

Goelzer, H., Nowicki, S., Payne, A., Larour, E., Seroussi, H., Lipscomb, W. H., Gregory, J., Abe-Ouchi, A., Shepherd, A., Simon, E., Agosta,

C., Alexander, P., Aschwanden, A., Barthel, A., Calov, R., Chambers, C., Choi, Y., Cuzzone, J., Dumas, C., Edwards, T., Felikson, D.,740

Fettweis, X., Golledge, N. R., Greve, R., Humbert, A., Huybrechts, P., Le clec’h, S., Lee, V., Leguy, G., Little, C., Lowry, D. P., Morlighem,

M., Nias, I., Quiquet, A., Rückamp, M., Schlegel, N.-J., Slater, D. A., Smith, R. S., Straneo, F., Tarasov, L., van de Wal, R., and van den

Broeke, M.: The future sea-level contribution of the Greenland ice sheet: a multi-model ensemble study of ISMIP6, The Cryosphere, 14,

3071–3096, https://doi.org/10.5194/tc-14-3071-2020, https://tc.copernicus.org/articles/14/3071/2020/, 2020.

Goldberg, D., Holland, D. M., and Schoof, C.: Grounding line movement and ice shelf buttressing in marine ice sheets, Journal of Geophysi-745

cal Research: Earth Surface, 114, 1–23, https://doi.org/10.1029/2008JF001227, https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/

2008JF001227, 2009.

Gresho, P. M. and Lee, R. L.: Don’t suppress the wiggles - they’re telling you something, Tech. rep., United States, http://inis.iaea.org/search/

search.aspx?orig_q=RN:11526189, uCRL–82979, 1979.

Greve, R. and Blatter, H.: Dynamics of Ice Sheets and Glaciers, Advances in Geophysical and Environmental Mechanics and Mathematics,750

Springer-Verlag Berlin Heidelberg, Berlin, Germany, 1th edn., 2009.

Griffiths, D. and Lorenz, J.: An analysis of the petrov—galerkin finite element method, Computer Methods in Applied Mechanics and

Engineering, 14, 39 – 64, https://doi.org/https://doi.org/10.1016/0045-7825(78)90012-9, http://www.sciencedirect.com/science/article/pii/

0045782578900129, 1978.

Gudmundsson, G. H.: GHilmarG/UaSource: Ua2019b (Version v2019b), http://doi.org/10.5281/zenodo.3706623, 2020.755

Gudmundsson, G. H., Krug, J., Durand, G., Favier, L., and Gagliardini, O.: The stability of grounding lines on retrograde slopes, The

Cryosphere, 6, 1497–1505, https://doi.org/10.5194/tc-6-1497-2012, https://www.the-cryosphere.net/6/1497/2012/, 2012.

Gudmundsson, G. H., Paolo, F. S., Adusumilli, S., and Fricker, H. A.: Instantaneous Antarctic ice sheet mass loss driven by thinning ice

shelves, Geophysical Research Letters, 46, 13 903–13 909, https://doi.org/10.1029/2019GL085027, https://agupubs.onlinelibrary.wiley.

com/doi/abs/10.1029/2019GL085027, 2019.760

Hansen, K. B., Arzani, A., and Shadden, S. C.: Finite element modeling of near-wall mass transport in cardiovascular flows, International

Journal for Numerical Methods in Biomedical Engineering, 35, e3148, https://doi.org/10.1002/cnm.3148, https://onlinelibrary.wiley.com/

doi/abs/10.1002/cnm.3148, e3148 cnm.3148, 2019.

Heinrich, J. C., Huyakorn, P. S., Zienkiewicz, O. C., and Mitchell, A. R.: An ‘upwind’ finite element scheme for two-dimensional convective

transport equation, International Journal for Numerical Methods in Engineering, 11, 131–143, https://doi.org/10.1002/nme.1620110113,765

https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.1620110113, 1977.

Hughes, T. and Brooks, A. N.: Multidimensional Upwind Scheme with no Crosswind Diffusion, in: Finite Element Methods for Convection

Dominated Flows, edited by Hughes, T. J. R., vol. 34, pp. 19–35, ASME, New York, 1979.

Jameson, A.: Analysis and design of numerical schemes for gas dynamics, 1: Artificial diffusion, upwind biasing, limiters

and their effect on accuracy and multigrid convergence, International Journal of Computational Fluid Dynamics, 4, 171–218,770

https://doi.org/10.1080/10618569508904524, https://doi.org/10.1080/10618569508904524, 1995.

39

https://doi.org/10.5194/gmd-6-1299-2013
https://www.geosci-model-dev.net/6/1299/2013/
https://www.geosci-model-dev.net/6/1299/2013/
https://www.geosci-model-dev.net/6/1299/2013/
https://doi.org/10.5194/tc-14-3071-2020
https://tc.copernicus.org/articles/14/3071/2020/
https://doi.org/10.1029/2008JF001227
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2008JF001227
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2008JF001227
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2008JF001227
http://inis.iaea.org/search/search.aspx?orig_q=RN:11526189
http://inis.iaea.org/search/search.aspx?orig_q=RN:11526189
http://inis.iaea.org/search/search.aspx?orig_q=RN:11526189
https://doi.org/https://doi.org/10.1016/0045-7825(78)90012-9
http://www.sciencedirect.com/science/article/pii/0045782578900129
http://www.sciencedirect.com/science/article/pii/0045782578900129
http://www.sciencedirect.com/science/article/pii/0045782578900129
http://doi.org/10.5281/zenodo.3706623
https://doi.org/10.5194/tc-6-1497-2012
https://www.the-cryosphere.net/6/1497/2012/
https://doi.org/10.1029/2019GL085027
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019GL085027
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019GL085027
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019GL085027
https://doi.org/10.1002/cnm.3148
https://onlinelibrary.wiley.com/doi/abs/10.1002/cnm.3148
https://onlinelibrary.wiley.com/doi/abs/10.1002/cnm.3148
https://onlinelibrary.wiley.com/doi/abs/10.1002/cnm.3148
https://doi.org/10.1002/nme.1620110113
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.1620110113
https://doi.org/10.1080/10618569508904524
https://doi.org/10.1080/10618569508904524


John, V. and Schmeyer, E.: Finite element methods for time-dependent convection–diffusion–reaction equations with small diffusion,

Computer Methods in Applied Mechanics and Engineering, 198, 475 – 494, https://doi.org/https://doi.org/10.1016/j.cma.2008.08.016,

http://www.sciencedirect.com/science/article/pii/S0045782508003150, 2008.

John, V., Knobloch, P., and Novo, J.: Finite elements for scalar convection-dominated equations and incompressible flow problems: a never775

ending story?, Computing and Visualization in Science, 19, 47–63, https://doi.org/10.1007/s00791-018-0290-5, https://doi.org/10.1007/

s00791-018-0290-5, 2018.

Joughin, I., Smith, B. E., and Medley, B.: Marine Ice Sheet Collapse Potentially Under Way for the Thwaites Glacier Basin, West Antarctica,

Science, 344, 735–738, https://doi.org/10.1126/science.1249055, http://science.sciencemag.org/content/344/6185/735, 2014.

Kelly, D. W., Nakazawa, S., Zienkiewicz, O. C., and Heinrich, J. C.: A note on upwinding and anisotropic balancing dissipation in finite780

element approximations to convective diffusion problems, International Journal for Numerical Methods in Engineering, 15, 1705–1711,

https://doi.org/10.1002/nme.1620151111, https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.1620151111, 1980.

Knopp, T., Lube, G., and Rapin, G.: Stabilized finite element methods with shock capturing for advection–diffusion problems, Computer

Methods in Applied Mechanics and Engineering, 191, 2997 – 3013, https://doi.org/https://doi.org/10.1016/S0045-7825(02)00222-0, http:

//www.sciencedirect.com/science/article/pii/S0045782502002220, 2002.785

Kuzmin, D.: Explicit and implicit FEM-FCT algorithms with flux linearization, Journal of Computational Physics, 228, 2517 – 2534,

https://doi.org/https://doi.org/10.1016/j.jcp.2008.12.011, http://www.sciencedirect.com/science/article/pii/S0021999108006475, 2009.

Kuzmin, D.: A Guide to Numerical Methods for Transport Equations, http://www.mathematik.uni-dortmund.de/~kuzmin/cfdbook.html,

2010.

Kuzmin, D. and Turek, S.: Flux Correction Tools for Finite Elements, Journal of Computational Physics, 175, 525 – 558,790

https://doi.org/https://doi.org/10.1006/jcph.2001.6955, http://www.sciencedirect.com/science/article/pii/S0021999101969554, 2002.

Kuzmin, D., Möller, M., and Turek, S.: Multidimensional FEM-FCT schemes for arbitrary time stepping, International Journal for Numerical

Methods in Fluids, 42, 265–295, https://doi.org/10.1002/fld.493, https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.493, 2003.

Larour, E., Seroussi, H., Morlighem, M., and Rignot, E.: Continental scale, high order, high spatial resolution, ice sheet modeling using

the Ice Sheet System Model (ISSM), Journal of Geophysical Research: Earth Surface, 117, 1–20, https://doi.org/10.1029/2011JF002140,795

https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2011JF002140, 2012.

Larour, E., Morlighem, M., and Seroussi, H.: Ice-Sheet and Sea-Level System Model, svn repository, https://issm.ess.uci.edu/svn/issm/issm/

trunk, last access: 20 November 2020, 2020.

LeVeque, R. J.: Numerical Methods for Conservation Laws, Lectures in mathematics ETH Zürich, Birkhäuser Basel, 2nd edn., 1992.

Löhner, R., Morgan, K., Peraire, J., and Vahdati, M.: Finite element flux-corrected transport (FEM–FCT) for the euler and Navier–Stokes800

equations, International Journal for Numerical Methods in Fluids, 7, 1093–1109, https://doi.org/10.1002/fld.1650071007, https://

onlinelibrary.wiley.com/doi/abs/10.1002/fld.1650071007, 1987.

MacAyeal, D.: Large-scale ice flow over a viscous basal sediment: Theory and application to ice stream B, Antarctica, Journal of Geophysi-

cal Research: Solid Earth, 94, 4071–4087, https://doi.org/10.1029/JB094iB04p04071, https://agupubs.onlinelibrary.wiley.com/doi/abs/10.

1029/JB094iB04p04071, 1989.805

MacAyeal, D. R.: EISMINT: Lessons in Ice-Sheet Modeling, 1997.

Martin, D. F., Cornford, S. L., and Payne, A. J.: Millennial-Scale Vulnerability of the Antarctic Ice Sheet to Regional Ice Shelf Collapse,

Geophysical Research Letters, 46, 1467–1475, https://doi.org/10.1029/2018GL081229, https://agupubs.onlinelibrary.wiley.com/doi/abs/

10.1029/2018GL081229, 2019.

40

https://doi.org/https://doi.org/10.1016/j.cma.2008.08.016
http://www.sciencedirect.com/science/article/pii/S0045782508003150
https://doi.org/10.1007/s00791-018-0290-5
https://doi.org/10.1007/s00791-018-0290-5
https://doi.org/10.1007/s00791-018-0290-5
https://doi.org/10.1007/s00791-018-0290-5
https://doi.org/10.1126/science.1249055
http://science.sciencemag.org/content/344/6185/735
https://doi.org/10.1002/nme.1620151111
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.1620151111
https://doi.org/https://doi.org/10.1016/S0045-7825(02)00222-0
http://www.sciencedirect.com/science/article/pii/S0045782502002220
http://www.sciencedirect.com/science/article/pii/S0045782502002220
http://www.sciencedirect.com/science/article/pii/S0045782502002220
https://doi.org/https://doi.org/10.1016/j.jcp.2008.12.011
http://www.sciencedirect.com/science/article/pii/S0021999108006475
http://www.mathematik.uni-dortmund.de/~kuzmin/cfdbook.html
https://doi.org/https://doi.org/10.1006/jcph.2001.6955
http://www.sciencedirect.com/science/article/pii/S0021999101969554
https://doi.org/10.1002/fld.493
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.493
https://doi.org/10.1029/2011JF002140
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2011JF002140
https://issm.ess.uci.edu/svn/issm/issm/trunk
https://issm.ess.uci.edu/svn/issm/issm/trunk
https://issm.ess.uci.edu/svn/issm/issm/trunk
https://doi.org/10.1002/fld.1650071007
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.1650071007
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.1650071007
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.1650071007
https://doi.org/10.1029/JB094iB04p04071
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/JB094iB04p04071
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/JB094iB04p04071
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/JB094iB04p04071
https://doi.org/10.1029/2018GL081229
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018GL081229
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018GL081229
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018GL081229


Möller, M., Kuzmin, D., and Turek, S.: Implicit Flux-Corrected Transport Algorithm for Finite Element Simulation of the Compressible810

Euler Equations, pp. 325–354, Springer Berlin Heidelberg, Berlin, Heidelberg, https://doi.org/10.1007/978-3-642-18560-1_20, https://

doi.org/10.1007/978-3-642-18560-1_20, 2004.

Morlighem, M.: MEaSUREs BedMachine Antarctica, Version 1, https://doi.org/10.5067/C2GFER6PTOS4, https://nsidc.org/data/

nsidc-0756/versions/1, last access: 14 December 2020, 2019.

Morlighem, M., Rignot, E., Seroussi, H., Larour, E., Ben Dhia, H., and Aubry, D.: Spatial patterns of basal drag inferred using con-815

trol methods from a full-Stokes and simpler models for Pine Island Glacier, West Antarctica, Geophysical Research Letters, 37, 1–6,

https://doi.org/10.1029/2010GL043853, https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2010GL043853, 2010.

Morlighem, M., Seroussi, H., Larour, E., and Rignot, E.: Inversion of basal friction in Antarctica using exact and incomplete adjoints of a

higher-order model, Journal of Geophysical Research: Earth Surface, 118, 1746–1753, 2013.

Morlighem, M., Rignot, E., Binder, T., Blankenship, D., Drews, R., Eagles, G., Eisen, O., Ferraccioli, F., Forsberg, R., Fretwell, P., Goel,820

V., Greenbaum, J. S., Gudmundsson, H., Guo, J., Helm, V., Hofstede, C., Howat, I., Humbert, A., Jokat, W., Karlsson, N. B., Lee,

W. S., Matsuoka, K., Millan, R., Mouginot, J., Paden, J., Pattyn, F., Roberts, J., Rosier, S., Ruppel, A., Seroussi, H., Smith, E. C.,

Steinhage, D., Sun, B., Broeke, M. R. v. d., Ommen, T. D. v., Wessem, M. v., and Young, D. A.: Deep glacial troughs and stabilizing

ridges unveiled beneath the margins of the Antarctic ice sheet, Nature Geoscience, 13, 132–137, https://doi.org/10.1038/s41561-019-

0510-8, https://doi.org/10.1038/s41561-019-0510-8, 2020.825

Mouginot, J., Rignot, E., and Scheuchl, B.: Continent-Wide, Interferometric SAR Phase, Mapping of Antarctic Ice Velocity, Geophysical

Research Letters, 46, 9710–9718, https://doi.org/https://doi.org/10.1029/2019GL083826, https://agupubs.onlinelibrary.wiley.com/doi/abs/

10.1029/2019GL083826, 2019a.

Mouginot, J., Rignot, E., and Scheuchl, B.: MEaSUREs Phase-Based Antarctica Ice Velocity Map, Version 1,

https://doi.org/10.5067/PZ3NJ5RXRH10, https://nsidc.org/data/nsidc-0754/versions/1, last access: 14 December 2020, 2019b.830

Nakayama, Y., Manucharyan, G., Zhang, H., Dutrieux, P., Torres, H. S., Klein, P., Seroussi, H., Schodlok, M., Rignot, E., and Menemenlis, D.:

Pathways of ocean heat towards Pine Island and Thwaites grounding lines, Scientific Reports, 9, 16 649, https://doi.org/10.1038/s41598-

019-53190-6, https://doi.org/10.1038/s41598-019-53190-6, 2019.

Ngo, A., Bastian, P., and Ippisch, O.: Numerical solution of steady-state groundwater flow and solute transport problems: Discontin-

uous Galerkin based methods compared to the Streamline Diffusion approach, Computer Methods in Applied Mechanics and En-835

gineering, 294, 331 – 358, https://doi.org/https://doi.org/10.1016/j.cma.2015.06.008, http://www.sciencedirect.com/science/article/pii/

S0045782515002005, 2015.

Pattyn, F., Schoof, C., Perichon, L., Hindmarsh, R. C. A., Bueler, E., de Fleurian, B., Durand, G., Gagliardini, O., Gladstone, R., Goldberg,

D., Gudmundsson, G. H., Huybrechts, P., Lee, V., Nick, F. M., Payne, A. J., Pollard, D., Rybak, O., Saito, F., and Vieli, A.: Results

of the Marine Ice Sheet Model Intercomparison Project, MISMIP, The Cryosphere, 6, 573–588, https://doi.org/10.5194/tc-6-573-2012,840

https://www.the-cryosphere.net/6/573/2012/, 2012.

Pattyn, F., Perichon, L., Durand, G., Favier, L., Gagliardini, O., Hindmarsh, R. C. A., Zwinger, T., Albrecht, T., Cornford, S., Docquier,

D., Fürst, J. J., Goldberg, D., Gudmundsson, G. H., Humbert, A., Hütten, M., Huybrechts, P., Jouvet, G., Kleiner, T., Larour, E., Martin,

D., Morlighem, M., Payne, A. J., Pollard, D., Rückamp, M., Rybak, O., Seroussi, H., Thoma, M., and Wilkens, N.: Grounding-line

migration in plan-view marine ice-sheet models: results of the ice2sea MISMIP3d intercomparison, Journal of Glaciology, 59, 410–422,845

https://doi.org/10.3189/2013JoG12J129, 2013.

Reed, W. H. and Hill, T. R.: Triangular mesh methods for the neutron transport equation, 1973.

41

https://doi.org/10.1007/978-3-642-18560-1_20
https://doi.org/10.1007/978-3-642-18560-1_20
https://doi.org/10.1007/978-3-642-18560-1_20
https://doi.org/10.1007/978-3-642-18560-1_20
https://doi.org/10.5067/C2GFER6PTOS4
https://nsidc.org/data/nsidc-0756/versions/1
https://nsidc.org/data/nsidc-0756/versions/1
https://nsidc.org/data/nsidc-0756/versions/1
https://doi.org/10.1029/2010GL043853
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2010GL043853
https://doi.org/10.1038/s41561-019-0510-8
https://doi.org/10.1038/s41561-019-0510-8
https://doi.org/10.1038/s41561-019-0510-8
https://doi.org/10.1038/s41561-019-0510-8
https://doi.org/https://doi.org/10.1029/2019GL083826
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019GL083826
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019GL083826
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019GL083826
https://doi.org/10.5067/PZ3NJ5RXRH10
https://nsidc.org/data/nsidc-0754/versions/1
https://doi.org/10.1038/s41598-019-53190-6
https://doi.org/10.1038/s41598-019-53190-6
https://doi.org/10.1038/s41598-019-53190-6
https://doi.org/10.1038/s41598-019-53190-6
https://doi.org/https://doi.org/10.1016/j.cma.2015.06.008
http://www.sciencedirect.com/science/article/pii/S0045782515002005
http://www.sciencedirect.com/science/article/pii/S0045782515002005
http://www.sciencedirect.com/science/article/pii/S0045782515002005
https://doi.org/10.5194/tc-6-573-2012
https://www.the-cryosphere.net/6/573/2012/
https://doi.org/10.3189/2013JoG12J129


Ritz, C., Edwards, T. L., Durand, G., Payne, A. J., Peyaud, V., and Hindmarsh, R. C. A.: Potential sea-level rise from Antarctic Ice-Sheet in-

stability constrained by observations, Nature, 528, 115–118, https://doi.org/10.1038/nature16147, http://dx.doi.org/10.1038/nature16147,

2015.850

Schoof, C.: Marine ice-sheet dynamics. Part 1. The case of rapid sliding, Journal of Fluid Mechanics, 573, 27–55,

https://doi.org/10.1017/S0022112006003570, 2007a.

Schoof, C.: Ice sheet grounding line dynamics: Steady states, stability, and hysteresis, Journal of Geophysical Research: Earth Surface, 112,

1–19, https://doi.org/10.1029/2006JF000664, https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2006JF000664, 2007b.

Selmin, V.: The node-centred finite volume approach: Bridge between finite differences and finite elements, Computer Methods in Applied855

Mechanics and Engineering, 102, 107 – 138, https://doi.org/https://doi.org/10.1016/0045-7825(93)90143-L, http://www.sciencedirect.

com/science/article/pii/004578259390143L, 1993.

Seroussi, H. and Morlighem, M.: Representation of basal melting at the grounding line in ice flow models, The Cryosphere, 12, 3085–3096,

https://doi.org/10.5194/tc-12-3085-2018, https://www.the-cryosphere.net/12/3085/2018/, 2018.

Seroussi, H., Morlighem, M., Larour, E., Rignot, E., and Khazendar, A.: Hydrostatic grounding line parameterization in ice sheet models,860

The Cryosphere, 8, 2075–2087, https://doi.org/10.5194/tc-8-2075-2014, https://www.the-cryosphere.net/8/2075/2014/, 2014a.

Seroussi, H., Morlighem, M., Rignot, E., Mouginot, J., Larour, E., Schodlok, M., and Khazendar, A.: Sensitivity of the dynamics of Pine

Island Glacier, West Antarctica, to climate forcing for the next 50 years, The Cryosphere, 8, 1699–1710, https://doi.org/10.5194/tc-8-

1699-2014, https://www.the-cryosphere.net/8/1699/2014/, 2014b.

Seroussi, H., Nakayama, Y., Larour, E., Menemenlis, D., Morlighem, M., Rignot, E., and Khazendar, A.: Continued retreat of865

Thwaites Glacier, West Antarctica, controlled by bed topography and ocean circulation, Geophysical Research Letters, 44, 6191–6199,

https://doi.org/10.1002/2017GL072910, https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017GL072910, 2017.

Seroussi, H., Nowicki, S., Payne, A. J., Goelzer, H., Lipscomb, W. H., Abe-Ouchi, A., Agosta, C., Albrecht, T., Asay-Davis, X., Barthel,

A., Calov, R., Cullather, R., Dumas, C., Galton-Fenzi, B. K., Gladstone, R., Golledge, N. R., Gregory, J. M., Greve, R., Hattermann, T.,

Hoffman, M. J., Humbert, A., Huybrechts, P., Jourdain, N. C., Kleiner, T., Larour, E., Leguy, G. R., Lowry, D. P., Little, C. M., Morlighem,870

M., Pattyn, F., Pelle, T., Price, S. F., Quiquet, A., Reese, R., Schlegel, N.-J., Shepherd, A., Simon, E., Smith, R. S., Straneo, F., Sun, S.,

Trusel, L. D., Van Breedam, J., van de Wal, R. S. W., Winkelmann, R., Zhao, C., Zhang, T., and Zwinger, T.: ISMIP6 Antarctica: a multi-

model ensemble of the Antarctic ice sheet evolution over the 21st century, The Cryosphere, 14, 3033–3070, https://doi.org/10.5194/tc-14-

3033-2020, https://tc.copernicus.org/articles/14/3033/2020/, 2020.

Shewchuk, J. R.: Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator, in: Applied Computational Geometry:875

Towards Geometric Engineering, edited by Lin, M. C. and Manocha, D., vol. 1148 of Lecture Notes in Computer Science, pp. 203–222,

Springer-Verlag, from the First ACM Workshop on Applied Computational Geometry, 1996.

Szabó, B. and Babuška, I.: Finite Element Analysis, John Wiley & Sons, USA, 1991.

Van Wessem, J., Reijmer, C., Morlighem, M., Mouginot, J., Rignot, E., Medley, B., Joughin, I., Wouters, B., Depoorter, M., Bamber, J., and

et al.: Improved representation of East Antarctic surface mass balance in a regional atmospheric climate model, Journal of Glaciology, 60,880

761–770, https://doi.org/10.3189/2014JoG14J051, 2014.

Watanabe, N. and Kolditz, O.: Numerical stability analysis of two-dimensional solute transport along a discrete fracture in a porous rock

matrix, Water Resources Research, 51, 5855–5868, https://doi.org/10.1002/2015WR017164, https://agupubs.onlinelibrary.wiley.com/doi/

abs/10.1002/2015WR017164, 2015.

42

https://doi.org/10.1038/nature16147
http://dx.doi.org/10.1038/nature16147
https://doi.org/10.1017/S0022112006003570
https://doi.org/10.1029/2006JF000664
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2006JF000664
https://doi.org/https://doi.org/10.1016/0045-7825(93)90143-L
http://www.sciencedirect.com/science/article/pii/004578259390143L
http://www.sciencedirect.com/science/article/pii/004578259390143L
http://www.sciencedirect.com/science/article/pii/004578259390143L
https://doi.org/10.5194/tc-12-3085-2018
https://www.the-cryosphere.net/12/3085/2018/
https://doi.org/10.5194/tc-8-2075-2014
https://www.the-cryosphere.net/8/2075/2014/
https://doi.org/10.5194/tc-8-1699-2014
https://doi.org/10.5194/tc-8-1699-2014
https://doi.org/10.5194/tc-8-1699-2014
https://www.the-cryosphere.net/8/1699/2014/
https://doi.org/10.1002/2017GL072910
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017GL072910
https://doi.org/10.5194/tc-14-3033-2020
https://doi.org/10.5194/tc-14-3033-2020
https://doi.org/10.5194/tc-14-3033-2020
https://tc.copernicus.org/articles/14/3033/2020/
https://doi.org/10.3189/2014JoG14J051
https://doi.org/10.1002/2015WR017164
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2015WR017164
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2015WR017164
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2015WR017164


Weertman, J.: Stability of the junction of an ice sheet and an ice shelf, Journal of Glaciology, 13, 3–11,885

https://doi.org/10.3189/S0022143000023327, 1974.

Zalesak, S. T.: Fully multidimensional flux-corrected transport algorithms for fluids, Journal of Computational Physics, 31, 335 –

362, https://doi.org/https://doi.org/10.1016/0021-9991(79)90051-2, http://www.sciencedirect.com/science/article/pii/0021999179900512,

1979.

43

https://doi.org/10.3189/S0022143000023327
https://doi.org/https://doi.org/10.1016/0021-9991(79)90051-2
http://www.sciencedirect.com/science/article/pii/0021999179900512

