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Abstract. Coupled physical-biogeochemical models can generally reproduce large-scale patterns of primary production and

biogeochemistry, but they often underestimate observed variability and gradients. This is partially caused by insufficient rep-

resentation of systematic variations in the elemental composition and pigment density of phytoplankton. Although progress

has been made through approaches accounting for the dynamics of phytoplankton composition with additional state variables,

formidable computational challenges arise when these are applied in spatially explicit setups. The Instantaneous Acclimation5

(IA) approach addresses these challenges by assuming that Chl:C:nutrient ratios are instantly optimized locally (within each

modelled grid cell, at each timestep), such that they can be resolved as diagnostic variables. Here we present the first tests of

IA in an idealized, 1D setup: we implemented the IA in the Framework for Aquatic Biogeochemical Models (FABM), and

coupled it with the General Ocean Turbulence Model (GOTM) to simulate the spatio-temporal dynamics in a 1-D water col-

umn. We compare the IA model against a fully dynamic, otherwise equivalently acclimative (DA) variant with an additional10

state variable, and a third, non-acclimative and fixed-stoichiometry (FS) variant. We find that, the IA and DA variants, which

require the same parameter set, behave similarly in many respects, although some differences do emerge especially during the

winter-spring and autumn-winter transitions. These differences however are relatively small in comparison to the differences

between the DA and FS variants, suggesting that the IA approach can be used as a cost-effective improvement over a fixed sto-

ichiometry approach. Our analysis provides insights into the roles of acclimative flexibilities in simulated primary production15

and nutrient drawdown rates, seasonal and vertical distribution of phytoplankton biomass, formation of thin chlorophyll layers

and stoichiometry of detrital material.

1 Introduction

1.1 Modelling phytoplankton and their cellular composition:

In early ecosystem models, the elemental composition, i.e., proportion of carbon (C), nitrogen (N), and phosphorus (P) content20

of phytoplankton was generally assumed constant, and at least since the work of Dugdale (1967) their growth was typically de-

scribed by the so-called ‘Monod’ model (Monod, 1949), which assumes a saturating response of the rate of carbon assimilation

(and hence, of nutrient uptake) to the ambient nutrient concentration, described by a rectangular hyperbolic function. Similarly,
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specific chlorophyll (Chl) content, i.e., Chl:C ratio was assumed to be constant, when comparing the simulated phytoplankton

biomass against the in-situ or satellite based chlorophyll measurements. In many primary production modules coupled to gen-25

eral circulation models that are actively being used for various purposes to this date, phytoplankton C:Chl and/or C:N:P ratios

are assumed to be constant (see e.g., the models in Laufkötter et al., 2015).

The inadequacy of these simplifying assumptions was made clear decades ago by the discovery that phytoplankton elemental

composition (e.g., Gerloff and Skoog, 1954) and chlorophyll content (e.g., Platt and Jassby, 1976) are variable. Chl:C:N:P ratios

of phytoplankton have since been found to vary widely in many laboratory experiments (e.g., Kruskopf and Flynn, 2006) and30

field observations (e.g., Martiny et al., 2013; Burson et al., 2016). Since the work of Caperon (1968) and Droop (1968), the so

called ‘quota’ (or variable internal stores, or ‘Droop’) model has been widely employed to describe the dynamics of carbon and

nutrients bound to phytoplankton, using a separate state variable for each element or nutrient resolved. For describing variable

Chl:C ratios, acclimation models, most commonly that of Geider et al. (1998), but also others (e.g. Pahlow and Oschlies, 2009;

Wirtz and Kerimoglu, 2016) are being increasingly employed in biogeochemical model frameworks. Such models typically35

couple a description of variable N:C (or other nutrient:C) with photoacclimation, i.e., variation of Chl:C, using one more

state variable for Chl bound to phytoplankton (Moore et al., 2002; Schourup-Kristensen et al., 2014; Kerimoglu et al., 2017;

Kwiatkowski et al., 2018). Some models assume a constant N:C ratio, while describing the variations in Chl:C, e.g., using only

the photoacclimation portion (e.g., Moore et al., 2004) of the model by Geider et al. (1998) or using an empirical function (e.g.,

Oschlies and Schartau, 2005), that was earlier proposed by Cloern et al. (1995).40

Models that account for variations in cellular composition are in principle more likely to provide more realistic estimates of

phytoplankton biomass and biogeochemical fluxes: when the variabilities in Chl:C and C:nutrient ratios are realistically repre-

sented by the models, their calibration on the basis of in situ and satellite Chl observations become more accurate (Behrenfeld

et al., 2009; Ayata et al., 2013; Kerimoglu et al., 2017), and their estimates of biosynthesis rates of C and nutrients, consequently

the drawdown of nutrients, and elemental composition of the export flux can be better reproduced (Anderson and Pondaven,45

2003; Mongin et al., 2003) respectively. However, the mechanistic basis of some of the models remain questionable, given

their parameterization of certain processes using heuristic or empirically inspired functions (Flynn et al., 2015). Moreover,

schemes that require additional state variables, due to the need to calculate their transport as tracers, impose substantial com-

putational costs. Especially for models that contain many phytoplankton functional types or clones (e.g., 350 in Dutkiewicz

et al., 2020), such additional computational costs may severely limit the kinds of simulations and in silica experiments that can50

be conducted.

1.2 An optimality based resource allocation model

For the prediction of growth, nutrient uptake and acclimative variations of pigment and nutrient content of phytoplankton in

response to changes in resource environment, such as the availability of mineral nutrients and light, ‘Resource Allocation

Models’ (RAM) have been used (Shuter, 1979; Laws and Chalup, 1990; Armstrong, 1999; Klausmeier et al., 2004; Pahlow,55

2005; Wirtz and Kerimoglu, 2016). This approach is based on the expectation that evolution has produced organisms that

strive to maximize their net growth rate by optimally allocating their resources to cellular functions. The dependence of all
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such functions on common resources therefore implies eco-physiological trade-offs (Smith et al., 2011). In this study, we

specifically consider four physiological variables for describing the acclimative flexibilities involved in phytoplankton growth,

as described by Pahlow et al. (2013):60

Q: N quota (i.e., N:C ratio [molN molC−1]) of phytoplankton.

fV: fractional allocation (dimensionless) to the nutrient uptake compartment (protoplast) to optimize the trade-off between

photosynthesis (µ) and nutrient uptake (V ), as described by Pahlow and Oschlies (2013).

fA: fractional allocation (dimensionless) to affinity to optimize the trade-off between nutrient affinity (A) and maximum uptake

rate within the nutrient uptake compartment (Vmax), as described by Pahlow (2005) and Smith et al. (2009).65

θ̂: Chl:C ratio in chloroplasts (θ̂, [gChl molC−1]) to optimize the trade-off between energy gained by light harvesting and

energetic costs of chlorophyll synthesis and maintenance, as described by Pahlow et al. (2013).

1.3 Instantaneous Acclimation (IA) approach

As in most previous models of flexible phytoplankton composition, the above mentioned model by Pahlow et al. (2013) explic-

itly resolved the dynamics of the carbon, nitrogen, and chlorophyll within phytoplankton biomass. This approach is well suited70

for simulating the short-term (i.e., hours to days) dynamics of growth, and hence for testing model assumptions against the

results of batch culture experiments (e.g., Pahlow, 2005; Pahlow et al., 2013). Resolving the transient dynamics is important for

such short-term experiments, where the response of phytoplankton may differ substantially in terms of nutrient uptake versus

carbon-based growth and chlorophyll synthesis.

By contrast, oceanic (or even freshwater) observations are rarely available at such fine temporal resolution. The lack of ob-75

servations at sufficient temporal resolution to test short-term model dynamics motivated the development of the Instantaneous

Acclimation (IA) approach (Smith et al., 2016) as a way to potentially capture growth response at longer timescales while

requiring substantially fewer calculations. IA is based on the balanced growth assumption, which Burmaster (1979) showed

was able to reconcile the ability of the Droop, Monod and Michaelis-Menten models to capture phytoplankton growth response

at steady state, as measured by continuous culture experiments. The key assumption is that growth and nutrient uptake are at80

all times strictly balanced with respect to the internal C:N stoichiometry of the cell (see Sect. 2.2 below for details). Based

on this assumption, IA calculates only one specific rate for both growth and nutrient uptake. Smith et al. (2016) applied this

assumption in a 0-D (box) model, adequate for reproducing sparse oceanic observations, but did not evaluate its performance

compared to fully dynamic models of flexible composition.

Ward (2017) compared the results of a phytoplankton model with instantaneosly adjusting quota against a fully dynamic85

model with explicit state variables for each element resolved, and a fixed stoichiometry model, in a 0-D setup. He found that

for a wide range of realistic forcing dynamics, the instantaneous approach yielded results practically indistinguishable from

the fully dynamic model whereas these results differed considerably from those of the fixed stoichiometry model. To our

knowledge, the IA approach has yet to be tested in a spatially explicit model, where the inclusion of transport terms may lead
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to additional complications. In a spatially structured environment, transport of cells with a certain internal state to a zone where90

the typical (average) cellular composition differs, can result in a spatial storage advantage (Grover, 2009). A typical example

of this is nutrient-replete cells (as represented by high N:C) at the deeper layers diffusing towards the Surface Mixed Layer

(SML) across the thermocline where the cells are typically nutrient starved (e.g., Kerimoglu et al., 2012). In principal, this

effect can be resolved only by explicitly tracing the constituents of the cell dynamically.

1.4 Objectives of this study95

This study presents a novel implementation of the IA-approach in the Framework for Aquatic Biogeochemical Models (FABM

Bruggeman and Bolding, 2014) , and an assessment of its behavior compared to two other established variants (Fig. 1): the first

is the widely used, non-acclimative, Fixed-Stoichiometry (FS) variant, which resolves only the N bound to phytoplankton

explicitly. The second variant is the Dynamic Acclimation (DA) variant, which resolves the C and N bound to phytoplankton

fully dynamically, with two state variables. The comparisons of the three model variants were conducted to answer the fol-100

lowing two specific questions: (i) how do the simulations performed with the IA variant differ from those of the fully dynamic

DA variant? and (ii) compared to the FS variant, do the results of the IA variant differ substantially? While answering these

questions, we aimed to gain mechanistic understanding of the dynamics driving the difference between the model results.
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Figure 1. Diagram of the FABM-NflexPD model. Abitoic components, DOM , DIM and Det are calculated by the module abio.F90,

which are then coupled to the phytoplankton simulated by the module phy.F90 that simulates the dynamics of PhyN, PhyC and PhyChl by

the DA, IA and FS variants (see section 2.2.2). Solid circles in the phytoplankton module represent state variables, dashed circles/ellipsoids

represent diagnostically calculated variables and solid squares (for FS) represent prescribed values. The DA variant estimates the N, C and

Chl content of phytoplankton based on a resource allocation scheme, whereas the FS variant estimates only N prognostically, while C and

Chl are based on prescribed values of nitrogen quota (Q) and cellular Chl:C ratio (θ) (see the text).

In the following sections, we describe the general structure of the model, the details of the physiological flexibilities men-

tioned above for each model variant, and the setup to simulate the model. Then we show the results of the simulated patterns of105

phytoplankton in terms of carbon, nitrogen, and chlorophyll, cell quota (Q), Chl:C ratio, as well as the fractional allocations.

We finally discuss the advantages, as well as the challenges and limitations of implementing the IA approach.
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2 Model Description

2.1 General Structure

For describing the cycling of N, we consider a simple model structure (Fig. 1) with four compartments: C and N bound110

to phytoplankton (PhyC, PhyN), detritus (DetC, DetN), dissolved organic matter (DOC, DON ) and Dissolved Inorganic

Nitrogen (DIN ). Note that our model does not resolve the dynamics of Dissolved Inorganic Carbon, DIC per se.

The coupled set of differential equations (s(x) short for dx
dt ) that describe the dynamics of state variables are provided in

Eqs. (1–4), where each of the coupled C/N terms are annotated with the processes they represent. The formal definition and

exact formulation of the flux terms (FFROM-TO) in Eqs. (1–4) that are trivial (i.e., all except FDIN−PhyN and FDIC−PhyC ) are115

provided in Table 1. For equations applying only to a subset of our model variants, the variants are indicated near the equation

number in curly braces ({}). In addition, Table 2 provides an overview of how the model variants differ.

s(PhyN) = FDIN−PhyN −FPhyN−DetN (1a)

s(PhyC) = FDIC−PhyC︸ ︷︷ ︸
Uptake

−FPhyC−DetC︸ ︷︷ ︸
Mortality

{DA} (1b)

120

s(DetN) = FPhyN−DetN −FDetN−DON (2a)

s(DetC) = FPhyC−DetC︸ ︷︷ ︸
Mortality

−FDetC−DOC︸ ︷︷ ︸
Hydrolysis

(2b)

s(DON) = FDetN−DON −FDON−DIN (3a)

s(DOC) = FDetC−DOC︸ ︷︷ ︸
Hydrolysis

−FDOC−DIC︸ ︷︷ ︸
Remineralization

(3b)125

s(DIN) = FDON−DIN︸ ︷︷ ︸
Remineralization

−FDIN−PhyN︸ ︷︷ ︸
N uptake

(4)

It should be noted that the PhyC is resolved as a state variable only by the DA variant (Eq. (1b)). The terms FDIN−PhyN and

FDIC−PhyC have central importance to this study and deserve explanation. FDIN−PhyN represents the net N flux from the

DIN to phytoplankton, and is given by the product of the phytoplankton carbon biomass, PhyC and the specific nutrient uptake130

rate, V :

FDIN−PhyN = V ·PhyC (5)

For the FS and IA variants, balanced growth (Burmaster, 1979) is assumed, such that V is directly linked to net growth rate,

µ, via the nutrient quota, Q:

V = µ ·Q {FS, IA} (6)135
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whereas for the DA variant, V is calculated explicitly (Eq. (12)). Net growth rate, µ, is obtained by subtracting the respiration

costs associated with chlorophyll maintenance and synthesis, RChl, and nutrient uptake, RN, from the cellular gross growth

rate, µg (Eq. (13)):

µ= µg−RChl−RN = µnet− ζN ·V (7)

where ζN is the cost of N assimilation (Table 3) and RChl is the cost of chlorophyll synthesis and maintenance (Section 2.2.4).140

FDIC−PhyC is required only by the DA variant that explicitly resolves the dynamics of PhyC (Eq. (1b)). It is given by the

product of net growth rate, µ with PhyC, as is typical in quota models (Caperon, 1968; Droop, 1968):

FDIC−PhyC = µ ·PhyC {DA} (8)

Table 1. Definitions, expansions/values and units of terms/symbols regarding the fluxes between model compartments.

Term/Symbol Definition Expansion/Value Units

FPhyN−DetN N flux from PhyN to DetN m ·Phy2N mmolN m−3d−1

FPhyC−DetC C flux from PhyC to DetC FPhyN−DetN/Q mmolC m−3d−1

FDetN−DON N flux from DetN to DON rhyd ·DetN mmolN m−3d−1

FDetC−DOC C flux from DetC to DOC rhyd ·DetC mmolC m−3d−1

FDON−DIN N flux from DON to DIN rrem ·DON mmolN m−3d−1

FDOC−DIC C flux from DOC to DIC rrem ·DOC mmolN m−3d−1

m Mortality rate coefficient 0.1 m3mmolN−1d−1

rhyd Hydrolysis rate constant 0.1 d−1

rrem Remineralization rate constant 0.1 d−1

2.2 Flexibilities Represented by the Model Variants

We compare the behavior of three model variants that differ in their representation of the physiological flexibilities. These145

variants are:

‘Dynamic Acclimation’ (DA): explicitly describes the dynamics of nitrogen and carbon bound to phytoplankton, and the

acclimation mechanisms introduced in Section 1.2, here as represented by flexibilities in growth vs. nutrient uptake;

nutrient affinity vs. maximum uptake; and chlorophyll density in chloroplasts; each of which are explained in detail in

the following sections. A full description of this variant (including diazotrophy) can be found in Pahlow et al. (2013).150

‘Instantaneous Acclimation’ (IA): assumes that the nitrogen quota (molar N:C ratio) adjusts instantaneously to its optimal

value locally (i.e., at any point in time and space), but is otherwise identical to the DA variant with respect to the

acclimation mechanisms. A full description of this variant can be found in Smith et al. (2016).

6



‘Fixed Stoichiometry’ (FS) which assumes no physiological acclimation or quota variability whatsoever.

In the following, representations of the acclimative flexibilities by each model variant are explained in detail.155

2.2.1 Flexibility I: Nutrient Quota

Flexibility in the elemental composition of phytoplankton (Q) is a result of acclimation processes, such as synthesis of enzymes

or pigments, which differ in elemental composition (e.g. Geider and La Roche, 2002), in response to changes in resource (light

and nutrients) availability.

DA: For the dynamic-acclimation variant, Q, is the ratio of the phytoplankton N and C state variables:160

Q=
PhyN

PhyC
{DA} (9)

IA: For the instantaneous-acclimation variant, Q is assumed to adjust instantaneously to its balanced-growth optimum (Qo)

according to Pahlow and Oschlies (2013):

Qo =
Q0

2

[
1 +

√
1 +

2

Q0(µ̂net/V̂ + ζN)

]
{IA} (10)

where, µ̂net and V̂ are the chloroplast-specific net growth and protoplast-specific N uptake rates (Table 2), andQ0 and ζN165

and are the subsistence quota, and cost of N uptake (Table 3), respectively. Note that this solution differs slightly from

the solution proposed by Smith et al. (2016), where the cost of chlorophyll maintenance and synthesis was ignored. (see

Appendix 1 for details).

FS: In the fixed-stoichiometry variant, Q is a prescribed parameter (Table 2).

2.2.2 Flexibility II: growth vs nutrient uptake170

Given the high nitrogen content in the enzymes responsible for both CO2 fixation and nutrient uptake and assimilation (Geider

and La Roche, 2002), we consider a trade-off in the allocation of nitrogen between carbon fixation and nutrient uptake for the

acclimative variants, whereas this trade-off is ignored for the FS variant.

DA & IA: For the acclimative variants, following Pahlow and Oschlies (2013), the trade-off is specified in terms of the fraction

of cellular nitrogen reserves allocated to nitrogen uptake (fV), which linearly increases V , and decreases µg, through175

decreasing the resources available for carbon fixation, fC, which is interpreted as the relative size of the chloroplast

(Pahlow and Oschlies, 2013).

fC =

(
1− Q0

2Q
− fV

)
{IA, DA} (11)

where fV is the fractional allocation towards nutrient uptake for the DA variant (see Eq. (6) for IA variant):

V = fV · V̂ {DA} (12)180
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Table 2. Summary of differences between model variants. NA denotes not applicable. (*): prescribed, see Table 3.

Term Definition
Equation/Definition

Units
IA DA FS

PhyC Carbon bound to phytoplankton PhyN/Q Eq. (1)b PhyN/Q mmolC m−3

FDIN−PhyN N flux from DIN to PhyN Eq. (5) mmolN m−3 d−1

FDIC−PhyC C flux from DIC to PhyN NA Eq. (8) NA mmolc m−3 d−1

fV Fractional allocation to uptake Eq. (14) (*) −

V Specific N uptake rate Eq. (6) Eq. (12) Eq. (6) molN molC−1 d−1

µ Cellular net growth rate Eq. (7) d−1

µg Cellular gross growth rate Eq. (13) d−1

µnet µg−RChl Eq. (7) d−1

µ̂g Gross growth rate within chloroplast Eq. (21) d−1

µ̂net Net growth rate within chloroplast µ̂g− R̂Chl d−1

Q N quota Eq. (10) PhyN/PhyC (*) molN molC−1

V̂ Protoplast-specific N uptake rate Eq. (16) molN molC−1 d−1

fA Fractional allocation to affinity Eq. (18) (*) −

θ̂ Chl:C in chloroplasts Eq. (26) (*) gChl molC−1

θ Chl:C in the entire cell Eq. (24) gChl molC−1

RN Cost of N uptake Eq. (7) d−1

R̂Chl Cost of light harvesting within chloroplast Eq. (23) d−1

RChl Cellular cost of light harvesting Eq. (25) d−1

fC Fractional N allocation to C-fixation Eq. (11) NA −

LN Nutrient limitation term NA Eq. (15) −

LI Light limitation Eq. (22) −

where V̂ is the protoplast-specific N uptake rate (see below). The cellular gross growth rate is then determined by scaling

the gross growth rate within the chloroplast µ̂g (see Section 2.2.4) by the relative size of the chloroplast, fC:

µg = fC · µ̂g (13)

Note that, for calculating the effective flux from DIN to PhyN (Eq. (5)), only the DA variant uses V as calculated by

Eq. (12), while the IA variant calculates the uptake rate from the growth rate, based on the balanced growth assumption185

(Eq. (6)). However, the IA variant still needs the V as calculated by Eq. (12), for calculating the costs of nutrient uptake

(Eq. (7)).
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Both acclimative variants assume that fV maximises the net specific growth rate under balanced growth conditions.

Following Pahlow and Oschlies (2013), this optimal value is found as (see Appendix 1):

dµ
dfV

= 0 ⇒ fV =

(
Q0

2Q

)
− ζN(Q−Q0) {IA, DA} (14)190

FS: For the fixed-stoichiometry variant, the gross growth rate, µg is obtained by the multiplication of µ̂g, for FS, interpreted as

the light-limited potential growth rate, with a nutrient limitation term LN, formulated as a hyperbolic function of ambient

DIN concentration, following the Michaelis-Menten-Monod model (Johnson and Goody, 2011; Monod, 1949):

µg = µ̂g ·LN = µ̂g ·
DIN

KN +DIN
{FS} (15)

Thus, for the FS variant, µ (Eq. (7)), and hence, through the balanced growth assumption, V (Eq. (6)) are directly linked195

to the external nutrient concentration (Eq. (15)) as in typical fixed-stoichiometry models. Given the fact that both LN

(Eq. (15)) for the FS variant and fC (Eq. (11)) for the acclimative variants have an equivalent role (in scaling µ̂g to µg),

and they both represent nutrient limitation, we consider them to be comparable, i.e., LN ∼ fC.

2.2.3 Flexibility III: nutrient affinity vs. maximum uptake rate

DA & IA: Originally introduced for describing the substrate uptake by bacteria, ‘affinity’ of a microorganism ‘can be viewed200

as a measure of effective collusion between substrate and transport site’ (Button, 1978), which can be practically found

from the initial slope (i.e., before saturation) of the uptake rate with respect to the substrate concentration (Button, 1978).

The term has been used for describing the nutrient uptake by phytoplankton (Aksnes and Egge, 1991), and recognized

to be a measure of competitive ability under low concentrations. The maximum nutrient uptake rate, on the contrary, can

taken to be a measure of competitiveness under hight nutrient concentrations. The protoplast-specific N uptake rate, V̂205

can be described by a function of maximal uptake rate, V̂max, and nutrient affinity, Â:

V̂ =
V̂max · Â ·DIN
V̂max + Â ·DIN

{IA, DA} (16)

The acclimation variants introduce a trade-off between affinity vs. maximum uptake rate. This trade-off is captured by

the fractional allocation of resources to affinity (fA), which increases affinity, Â= fAÂ0, while decreasing maximum

uptake rate, V̂max = (1− fA)V̂0, so that Eq. (16) becomes:210

V̂ =
(1− fA)V̂0 · fAÂ0 ·DIN
(1− fA)V̂0 + fAÂ0 ·DIN

{IA, DA} (17)

fA is set to its optimum value, which maximizes V̂ , and hence also V (Pahlow, 2005):

dV̂
dfA

= 0 ⇒ fA =

1 +

√
Â0 ·DIN

V̂0

−1 {IA, DA} (18)

9



FS: The fixed-stoichiometry variant ignores this trade-off entirely, by describing the nutrient limitation with the Michaelis-

Menten-Monod function (Eq. (15)). Following Button (1978) and Smith et al. (2009), the KN parameter in Eq. (15), can215

be expressed as a function of Vmax and Â, according to:

KN =
V̂max

Â
=

(1− fA) · V̂0
fA · Â0

{FS} (19)

Based on Eq. (19), corresponding KN values were diagnosed from the solution of the IA variant (i.e., using the locally

optimized fA values as calculated with Eq. (18), and Â0 and V̂0 parameters specified for the IA and DA variants). The

biomass-weighted spatio-temporal average KN value so obtained was prescribed for the FS variant (Table 3).220

2.2.4 Flexibility IV: photoacclimation

Photo-acclimation is based on the net carbon fixation rate within the chloroplast, µ̂net (equivalent to A in Pahlow and Oschlies

(2013)), which is obtained by subtracting the chloroplast specific synthesis and maintenance costs of chlorophyll, from the

gross growth rate within the chloroplast, i.e.,

µ̂net = µ̂g− R̂Chl (20)225

where, µ̂g is given by the product of daylength as a fraction of 24 h„ LD, potential turnover rate, µ̂0, and the light-saturation of

the photosynthetic apparatus, LI:

µ̂g = LDµ̂0LI (21)

LI is a saturating function of daytime average light, Ī , and chlorophyll density in chloroplasts, θ̂:

LI = 1− exp

(
−αθ̂Ī
µ̂0

)
(22)

where α is light affinity. Returning to Eq. (20), R̂Chl is given by:230

R̂Chl =
(
µ̂g +RChl

M

)
ζChlθ̂ (23)

where RChl
M and ζChl are the costs of chlorophyll maintenance and synthesis, respectively (Table 3).

Photo-acclimation is mainly represented in terms of the chlorophyll density in chloroplasts, θ̂. Increasing θ̂ reduces light

limitation (Eq. (22)), but at the expense of greater respiration costs (Eq. (23)). In turn, for obtaining the cellular Chl:C ratio, θ,

is calculated by multiplying θ̂ times fC, i.e., size of the chloroplast:235

θ = fC · θ̂ {IA,DA} (24)

Similarly, the overall respiratory cost of maintaining cellular chlorophyll is obtained by multiplying the chloroplast-specific

cost by the size of the chloroplast:

RChl = fC · R̂Chl {IA,DA} (25)

10



Although θ (Eq. (24)) is only a diagnostic quantity, RChl (Eq. (25)) directly determines the net growth rate through Eq. (7).240

Therefore, scaling of the chloroplast-specific respiration rate, R̂Chl by fC can considered to be an acclimative quality implied

by variable fV and Q, which, in combination (Eq. (11)), determine the chlorophyll maintenance cost through Eq. (25)).

IA & DA: In the acclimation variants, θ̂ is assumed to adjust instantaneously to its optimal value, which maximizes µ̂net.

Following Pahlow et al. (2013) this optimal value is:

θ̂ =


1

ζChl
+
µ̂0

αĪ

(
1−W0

[(
1 +

RChl
M

LDµ̂0

)
exp
(

1 +
αĪ

µ̂0ζChl

)])
, Ī > ĪC

0, Ī ≤ ĪC

{IA, DA} (26)245

where W0 is the 0-branch of the Lambert-W function, Ī is the daytime average irradiance (i.e., Î = Ī24h/LD) and ĪC is

the critical daytime average irradiance level, above which chlorophyll synthesis is worthwhile (Pahlow et al., 2013):

ĪC =
ζChlR

Chl
M

αLD
(27)

FS: For the fixed-stoichiometry variant, θ̂ is prescribed as the biomass-weighted average value calculated by the IA variant.

Considering that θ is typically a constant ‘conversion factor’ in classical, fixed stoichiometry and fixed Chl:C models, in250

Eqs. (24) and (25), we assume that the size of the chloroplast, fC, is constant too. For the sake of consistency with the IA

variant, fC for FS is diagnosed from its expanded form, i.e., 1− Q0

2Q −fV (Eq. (11)). Hence, in addition to the prescribed

value of Q (see Section 2.2.1), the biomass-weighted mean of fV, as calculated by the IA variant is prescribed (Table 3).

Given the comparability of the terms (Section 2.2.2), diagnosing fC from LN comes into question, which is elaborated

in Appendix B.255

2.2.5 Temperature Scaling

Kinetic rate constants: m, rhyd, rrem in Table 1, and V̂0, Â, Â0 and RChl
M in Table 3 are prescribed for a reference temperature of

Tr = 20 °C= 293.15K, and scaled to the ambient temperature in water, T (in K), according to the Arrhenius function:

f(T ) = exp

(
−Ea

R

[
1

T
− 1

Tr

])
(28)

where the gas constantR= 8.3145J mol−1K−1, and the activation energy,Ea = 4.82·104 J mol−1, such that every 10 degrees260

increase/decrease in T approximately doubles/halves the reference rates.

2.3 Coupling with the Hydrodynamical Host

The model is implemented in the Framework for Aquatic Biogeochemical Models (i.e., FABM, Bruggeman and Bolding,

2014), so that it can be used, without modification, in combination with various hydrodynamical hosts. In this study, we

performed simulations of an idealized water column, using the General Ocean Turbulence Model (i.e., GOTM Burchard et al.,265
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Table 3. Descriptions, values and units of model parameters regarding phytoplankton growth. Prescribed values forQ,KN, fV, and are based

on the biomass-weighted averages estimated by the IA variant. All other parameter values are taken from within the published range (Pahlow

et al., 2013; Smith et al., 2016), without particular reference to species.

Term/Symbol Definition Value Unit Used by

µ̂0 Potential maximum growth rate 5.0 d−1 all

Q0 Subsistence quota 0.039 mmolN molC−1 IA, DA

Â0 Potential maximum nutrient affinity 0.1 m3 mmolC−1 d−1 IA, DA

V̂0 Potential maximum N uptake rate 5.0 molN molC−1 d−1 IA, DA

α Chl-specific slope of P-I curve 1.0 m2 E molCgChl−1 d−1 all

RChl
M Cost of chlorophyll maintenance 0.1 d−1 all

ζChl Cost of chlorophyll synthesis 0.5 mmolC gChl−1 all

ζN Cost of N uptake 0.6 molC molN−1 all

Q N quota 0.084 molN molC−1 FS

KN Half saturation constant for N uptake 4.84 mmolN m−3 FS

fV Fractional allocation to uptake 0.32 − FS

θ̂ Chl:C in chloroplasts 0.518 gChl molC−1 FS

2006). GOTM calculates and provides the relevant physical quantities, such as I (needed in Eq. (22)) and T (needed in Eq. (28)).

I is attenuated with depth (z) by various substances in water, according to:

I(z) = I0

Aexp

(
−z
η1

)
+ (1−A)exp

−z
η2
−

0∫
z

∑
i

kici(z
′)dz′

 (29)

whereA, η1 and η2 represent the differential attenuation length scales of red and blue light (Burchard et al., 2006), and ki is the

specific attenuation coefficient of the biological quantities, which we set as 0.03 m2 mmolN−1 for PhyN and DetN. In order270

to account for background attenuation, we set the ‘light extinction method’ to ‘Jerlov Type IB’, corresponding to A= 0.67

η1 = 1.0 m, η2 = 17 m, characterizing water of medium clarity (Paulson and Simpson, 1977). Our results are qualitatively

insensitive to these parameter settings. Besides providing necessary environmental variables, GOTM calculates the transport

rates of the biological quantities, according to the general equation (Burchard et al., 2006):

∂ci
∂t

+
∂

∂z

(
wici−Kz

∂ci
∂z

)
= s(ci) (30)275

where, KZ is the eddy diffusivity calculated by GOTM, the source terms, s(ci) correspond to the Eqs. (1-4) and advection

rates, wi are all set to 0.0, except that of detritus for which a sinking rate of -2.0 m d−1 was specified. Note that the latter value

was arbitrarily chosen to induce a downward flux in this idealized setup, and that in reality, it depends on the average size and

density of detritus particles being modelled and displays a vast range (Guidi et al., 2008).
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2.4 Idealized Setup and Simulations280

We consider an idealized water column of 100 m depth. In order to mimic an environment that is characterized by strong

seasonality, with deep mixed layers in spring and summer stratification, we force the model with astronomically calculated

short wave radiation at 60°N latitude, and a repeating annual cycle of air temperature that ranges between 4–20 ◦C as described

by a scaled sinusoidal function (Fig. 2).

(a) (b)

Figure 2. Atmospheric variables. (a) astronomically estimated instantaneus irradiance at the water surface, and (b) prescribed air temperature.

All other meteorological variables (wind speed, air pressure, humidity, and cloud cover) are assumed to be constant, and the285

model ignores precipitation and evaporation losses, as well as tidal variations. Starting from initial conditions, and annually

repeating meteorological forcing as described above, each model variant was run for 3 years. The 3rd year results were nearly

identical to those for the 2nd year, indicating that an equilibrium annual cycle was reached. In the following, we elaborate the

seasonal dynamics during the 3rd year.

3 Results290

Daytime-averaged irradiance, Ī and water temperature T simulated by different model variants are very similar with subtle

differences (Fig. 3a,d vs. b,e, vs. c,f), because each variant calculates slightly different phytoplankton biomass (see below),

resulting in differences in attenuation of light and associated heating. Seasonal and vertical distributions of DIN as estimated

by the model variants are similar (Fig. 3g-i). DIN depletion (<1 mmolN m−3) during summer is confined to the upper 25 m as

estimated by the FS variant, whereas it extends 5-10 m deeper as estimated by the IA and DA variants.295
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FS IA DA

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3. Abiotic environment. (a-c) daytime-averaged photosynthetically active radiation, Ī [E m−2 d−1], (d-f) water temperature T [°C],

and (g-i) DIN [mmolN m−3], as simulated by the FS (left); IA (center) and DA (right) variants.

With all three model variants phytoplankton growth patterns are characterized by an intense surface bloom in spring, fol-

lowed by a gradual deepening of the biomass maxima (Fig. 4a-c). Biomass concentration as estimated by the IA and DA

variants during summer is greater than with the FS variant (Fig. 4a,b,c). Compared to the FS variant, the acclimation response

in the other two variants tends to produce steeper gradients over both depth and time, because of combined dependencies on

the three dynamically optimized allocation factors (fA, fV, and θ̂). This effect is most pronounced for PhyChl, which differs300

the most between the FS and the other two variants. With the FS variant, given the constant N:C (Q) and cellular Chl:C (θ)

(Fig. 4g,m), C, N and Chl bound to phytoplankton clearly display identical patterns (Fig. 4a,d,j; note that apparent differences

in contour plots are due to contour limits not matching these ratios). IA and DA on the other hand simulate slightly different

patterns for C, N and Chl bound to phytoplankton (Fig. 4b,e,k and c,f,l), because of the seasonally and vertically variable

Chl:C:N. Decoupling of PhyN from PhyC is mainly monotonic, and is driven by increasing Q with depth (Fig. 4h-i). On305

the other hand, decoupling of PhyChl from PhyC follows a more complex pattern, because of the uni-modal distribution of θ

across the water column (Fig. 4n-o). As a result of this uni-modality, Chl simulated by the IA and DA variants forms a distinct,

thin layer below the thermocline (Fig. 4k-l).

During summer, θ̂ follows a complex, but roughly uni-modal distribution across depth (Fig. 5b-c): intermediate values at

the surface first increase with depth to reach a maximum and then sharply decrease with increasing depth. The low values310

of θ̂ towards the surface reflect the optimization, which reduces pigment density when light is abundantly available because

of the chloroplast-specific respiratory costs θ̂ (Eq. (23)). This can be seen in the flattening of the light-saturation function LI

(Eq. (22)). In the deep layers, as Ī approaches ĪC, irradiance becomes insufficient to support the synthesis and maintenance of

chlorophyll, and θ̂ rapidly converges to 0. fA and fV simulated by the IA and DA variants (Fig. 5e-f, h-i) increase with nutrient

limitation (Fig. 5j-l) as expected (Smith et al., 2016). The fraction of resources available for carbon fixation, fC, displays a315
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FS IA DA

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure 4. Phytoplankton C, N and Chl concentrations: (a-c) PhyC [mmolC m−3], (d-f) PhyN [mmolN m−3], (j-l) PhyChl [mgC m−3];

and phytoplankton N:C (Q) and Chl:C (Θ) ratios: (g-i) Q [molN molC−1] and (m-o) Θ [gChl gC−1], as simulated by the FS (left); IA

(center) and DA (right) variants.

similar pattern in all model variants and is roughly the inverse of fV: high during winter throughout the water column and

in the deeper layers during summer, low in the upper layers during summer (Fig. 5j-l). For the FS variant, the pattern of

the nutrient limitation term, LN, is similar to the patterns of fC for IA and DA variants, Fig.5, although its magnitude in the

summer is higher than other variants, as can be explained by the incomplete DIN depletion (Fig.3g, see below). Light saturation

of photosynthesis, LI, displays a similar pattern in all variants (Fig. 5m-o), and mainly reflects irradiance levels (Fig. 3a-c).320

However, compared to the FS variant, the intermediate LI values in the IA and DA variants penetrate deeper (Fig. 5n,o vs m),

because the optimization of θ̂ enhances light harvesting ability at these intermediate depths (Fig. 5b,c).

During winter and spring blooms, the net cellular growth rate, µ as estimated by the FS variant temporarily exceeds those

estimated by the acclimative variants (Fig. 6a-c, see below for the explanation). The IA and DA variants estimate higher nutrient

uptake rates, V , in surface layers during the spring bloom, and in deeper layers during summer (Fig. 6d-f). Negative V in the325

bottom layers as estimated by the FS and IA variants is a direct result of the balanced growth assumption (Eq. (6)) and can be

interpreted as exudation. Respiratory costs of nutrient uptake, RN , (Fig. 6h-i) are much lower than RChl (Fig. 6j-l). For the FS

variant, RN drops below 0 in the deeper (>50m) waters, implying negative respiration, which is a model artefact, as a result of

µ̂net becoming negative (see Eq. (A4) in Sect.A1) due to the fixed θ̂. However these negative values are small, and therefore
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FS IA DA

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure 5. Phytoplankton physiological variables. (a-c) Chlorophyll density in chloroplasts, Θ̂ [gChl gC−1]; (d-f) fractional allocation to

affinity, fA [-]; (g-i) fractional allocation to nutrient uptake, fV [-]; nutrient limitation term of the FS variant, LN [-] (j) and fractional

allocation to carbon fixation of the IA and DA variants, fC [-] (k-l); and (m-o) light saturation of photosyntehsis, LI [-] as simulated by the

FS (left); IA (center) and DA (right) variants.

do not have a significant effect on the model results, as evidenced by a sensitivity experiment, where µ̂net was constrained330

to positive values for the FS variant (results not shown). In comparison to the acclimative variants, RChl of the FS variant is

smaller during the spring bloom, but larger during summer, reasons for which are explained below.

For the most part, primary production and relevant dynamics take place within roughly the upper 50m in the simulated

system (Figs. 4-6). A comparison of average quantities in this zone (Fig. 7), in combination with vertical profiles throughout

the water column during different times of the year (Fig. 8), as estimated by the three model variants reveal differences between335

model variants that are not resolved by the contour plots (Fig. 4–6). In both the IA and DA variants, DIN concentrations

are almost entirely depleted before the onset of winter mixing in early November, with minimum concentrations of ∼0.005

mmolN m−3 near the surface. In the FS variant DIN remains higher (minimum concentration of ∼0.7 mmolN m−3 near the

surface (Fig. 7a, Fig. 8Ja,Na). Q and fC, as estimated by the IA and DA variants are nearly identical throughout the season

(Fig. 7b,c), but differences arise during winter. For DA, PhyC and PhyN, hence Q, become vertically homogeneous due to340

rapid turbulent mixing (Fig. 4c,f,i, Fig. 8Fb). However under the instantaneous acclimation assumption in the IA variant, no
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 6. Phytoplankton growth, uptake and respiration rates. (a-c) Net growth rate, µ [d−1], (d-f): specific uptake rate, V [mmolN mmolC−1

d−1] and respiration costs of (g-i) N uptake, RN [d−1] and (j-l) chlorophyll maintenance and synthesis, RChl [d−1] as simulated by the FS

(left); IA (center) and DA (right) variants.

matter how well mixed the water column may be, vertical gradients persist for the optimal Q values between the surface and

deeper layers during winter (Fig. 8Fb,Nb).

During winter and the spring bloom in March-April, nutrient limitation is almost non-existent for the acclimative variants as

indicated by fC approaching unity (Fig. 7c), whereas for the FS variant, a degree of nutrient limitation persists (as indicated by345

LN < fC), owed to the saturating behavior of the Monod function to the nutrient concentrations. During late summer (July to

October), nutrient limitation becomes less severe for the FS variant than for the acclimative variants in the surface layers (i.e.,

LN > fC, Fig. 8Jc,Oc). The relatively high LN (minimum: 0.12) of the FS variant results from the incomplete DIN depletion as

simulated by the FS variant as mentioned above, and the linear response of the Monod function to substrate concentrations at

low levels (Eq. (15). In contrast, for the IA and DA variants, Q approaches Q0 and fV approaches its maximum value of 0.5,350

causing (through Eq. (11)) severe nutrient limitation, as fC approaches to zero (minimum: 0.005) near the surface.

The cellular net growth rate, µ, as estimated by the FS variant is slightly faster than those of the acclimative variants during

winter/spring near the surface (e.g. Fig. 8Ff,Mf) but becomes slower right after the spring bloom (e.g. Fig. 8Af), and stays low

throughout the summer (Fig. 7f, Fig. 8Jf). It should be noted that, the chloroplast-specific growth rate, µ̂, which is maximized

for the acclimative variants through photoacclimative flexibility (Section 2.2.4), is always higher than that calculated by the355

FS variant, as expected (not shown). As the chloroplast specific chlorophyll maintenance and synthesis costs, R̂Chl is scaled

to the cellular level (through multiplication with fC, Eq. (25)), the resulting RChl for the FS becomes lower than those of the
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(a) (b) (c)

(d) (e) (f)

Figure 7. Upper 50m averages of critical variables. (a) DIN [mmolN m−3], (b) phytoplankton Q [mmolN mmolC−1], (c) fC [-] (in addition

LN [-] for FS, shown with pale broken line), and (d) PhyC [mmolC m−3], PhyN [mmolN m−3] (e), and µ [d−1] (f), as simulated by the

FS (dashed green line), IA (fine-dashed dark blue line) and DA (continuous orange line) variants.

acclimative variants, given that the prescribed fC of the FS variant during this time period is smaller than the dynamically

calculated values by the acclimative variants (Fig. 7c; Fig. 8Fc,Mc). The lower RChl of the FS variant, in turn, explains the

higher µ during the spring bloom (Fig. 7f). When the chloroplast size of the FS variant is assumed to be proportional to LN360

as explained in the Appendix B, estimated growth rate becomes similar to those of the acclimative variants (Fig. B2f). During

summer, this effect becomes reversed: high RChl as estimated by the FS variant in the surface layers (Fig. 6j vs k-l) contributes

to the relatively low µ estimated by this variant (Fig. 7; Fig. 8Jf): in addition to the higher µ̂, the IA and DA variants achieve

lower RChl (Fig. 6j-l) through lower θ̂ (Fig. 5a-c) and fC (Fig. 7c, Fig. 8Jc) at the surface.

During the spring bloom, C bound to phytoplankton, PhyC, simulated by the FS variant exceeds those of the IA and DA365

variants (Fig. 7d), whereas the differences between the N bound to phytoplankton, PhyN as simulated by different variants

are much smaller (Fig. 7e). This discrepancy between C and N content of phytoplankton is due to the decoupling in the

acclimative variants: due to the lower value of the prescribed Q of the FS variant (based on the spatio-temporal average of the

values simulated by IA) during winter-spring season (Fig. 7b), a larger amount of C-biomass can be synthesized per N taken up

in comparison to the acclimative variants, explaining therefore the higher PhyC simulated by the FS. The sensitivity of PhyC370

of the FS variant is evidenced also by a strong reduction of PhyC (in contrast to relatively unaltered PhyN) during the spring

bloom in response to a doubling of the prescribed Q (not shown). During summer, the FS variant estimates considerably lower

values of PhyC compared to the IA and DA variants (Fig. 7d) whereas the simulated PhyN concentrations remain to be similar

(Fig. 7e). Therefore the higher PhyC concentrations simulated by the acclimative variants during this period are promoted by

lower Q (Fig. 7b, Fig 8Jb) in the surface layers.375

Differences between the IA and DA variants emerge especially right after the spring bloom and autumn destratification. After

the spring bloom, growth rate simulated by the IA variant (until May) becomes lower than that by the DA variant (Fig. 7f) near

the surface (Fig. 8Af). The main reason for this difference is the slightly lower fC of the IA variant during the winter-spring

period (i.e., from December to May) near the surface (Fig. 8Fc,Mc,Ac) except for a short period at the peak of the bloom
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Figure 8. Vertical profiles on 1st of February (indicated as F in panel label), March (M), April (A), July (J), and 15th of October(O) and

November (N) for DIN [mmolN m−3] (indicated as a in panel label), phytoplankton Q [mmolN mmolC−1] (b), fC [-] (c), PhyC [mmolC

m−3] (d), PhyN [mmolN m−3] (e), µ [d−1] (f), and V [molN molN−1 d−1] (g) as simulated by the IA (fine-dashed dark blue line), DA

(continuous orange line) and the FS (dashed green line) variants, when the prescribed Θ (Table 3) is scaled with fC, according to Eq. (24).

(Fig. 7c). The lower fC of IA during this period is, in turn, driven by slightly lower Q (Fig. 7b, Fig. 8Mb,Ab), which also leads380

to slightly higher fV (see Eq. (14)). As pointed out above, the higher Q simulated by the DA variant before the spring bloom

near the surface is maintained by the homogenizing effect of vertical transport (which does not occur with the IA variant),
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and after the spring bloom following the onset of stratification, the persistently higher Q of the DA variant near the surface is

reflects the lagged response captured by dynamically tracing C and N content of phytoplankton.

Following the weakening of stratification in early November (Fig. 3), a new phytoplankton bloom develops, especially as385

reflected by PhyN in all variants, but also by PhyC as simulated by the DA variant (Fig. 7d,e). This bloom is driven by the

entrainment of DIN and phytoplankton biomass below the thermocline into the SML (compare Fig. 8Oa,d,e vs. Fig. 8Na,d,e).

Under these nutrient-replenished conditions, µ is predominantly limited by light, as in winter (Fig. 8Ff), therefore monoton-

ically increases towards the surface (Fig. 8Nf), as simulated by all variants. On the other hand, vertical distribution of Q as

simulated by the IA and DA variants become qualitatively different: due to the rapid turbulent mixing of PhyC and PhyN390

as simulated by the DA variant, Q is homogeneously distributed within the SML (Fig. 8Nb), but such homogenization does

not occur in the IA variant, and Q is determined by the locally optimized fV. Therefore, in the DA variant, a high nutrient

uptake at the bottom of the SML (Fig. 8Ng), in combination with mixing within the SML can support growth near the surface

(through Q, Fig. 8Nb), whereas in IA, growth and uptake dynamics are always coupled by definition, and determined by local

physiological states only, as in the FS variant. The decoupling of (growth and uptake) rates and re-shuffling of Q as simulated395

by the DA variant appears to allow faster uptake of nutrients in comparison to the IA variant within the SML (Fig. 8Ng). A

related mechanism potentially contributing to the higher nutrient uptake rates is again a time-lag effect: in the DA variant, the

nutrient-starved phytoplankton (i.e., the low Q, see Fig. 8Ob) in the SML corresponds to a higher nutrient demand.

C:N of detritus as estimated by the FS variant approaches a constant equilibrium value throughout the water column by the

end of the first year, and remains there during the third year (Fig. 9a,d). This is as expected, and this value is simply equal400

to the reciprocal of the prescribed constant (N:C) quota of phytoplankton, calculated as the biomass-weighted average of the

Q estimated by the IA variant (Table 3). The C:N ratio of detritus, as estimated by the IA and DA variants, increases during

summer (Fig. 9b,c and e,f), driven by the lower phytoplankton quotas during summer (Fig. 4).

FS IA DA

(a) (b) (c)

(d) (e) (f)

Figure 9. Detrital C:N [molC molN−1] (a-c) in the entire water column, and (d-f) in the bottom layer (d-f), as simulated by the FS (left); IA

(center) and DA (right) variants.

Simulated process rates determining ecosystem functioning, such as the water-column integrated Net Primary Production

(NPP) and Nutrient Drawdown (NDD) rates also differ between the model variants. FS estimates higher NPP rates during405
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winter and the spring bloom (Fig. 10a), consistent with the higher PhyC it estimates during this period (Fig. 7d). While the

NPP estimates of IA and DA are very close between the late summer (starting from September) to the spring bloom (in early

March), right after the spring bloom, IA estimates suddenly decrease, as a consequence of reduced net specific growth rate,

µ (Fig. 7f) as was pointed out above. Interestingly, this difference between the IA and DA is larger than the differences in

µ, and contrasts with the differences in PhyC averaged over the top 50m (Fig. 7d,f), but can be explained by the higher410

vertical covariance between the PhyC and µ in DA than in IA (Fig. 8Ad,Af). Annual average NPP rates as estimated by

the FS (48.77 mmolC m−2d−1) and IA (45.66 mmolC m−2d−1) variants are respectively 8.1% and 13.9% smaller than that

of the DA variant (53.06 mmolC m−2d−1). NDD rates (Fig. 10b) are similar during the spring bloom, but the acclimative

variants become higher during summer. After the autumn mixing, NDD as simulated by the DA variant shows a spike not

well reproduced by the IA and FS variants, which is driven by the fast uptake rates simulated by the DA variant throughout the415

SML, contrasting with those simulated by the IA variant constrained to the surface layers (Fig. 8Ng). Annual average NDD rate

simulated by the DA variant (4.78 mmolN m−2d−1) is the highest, followed by the 8.2% lower IA (4.39 mmolN m−2d−1)

and 14.3% lower FS (4.1 mmolN m−2d−1) variants.

(a) (b)

Figure 10. (a) Water-column integrated Net Primary Production (NPP) rate [mmolC m−2 d−1] and (b) water-column integrated Nitrogen

Drawdown (NDD) rate [mmolN m−2 d−1] as simulated by the IA (fine-dashed dark blue line), DA (continuous orange line) and the FS

(dashed green line) variants.

4 Discussion

4.1 Modelling variable phytoplankton composition420

Elemental composition and pigment density of phytoplankton are known to vary, at both the organismal and community levels

(Halsey and Jones, 2015), as demonstrated in the laboratory and under in-situ conditions (Moreno and Martiny, 2018). Such

variations in phytoplankton and hence detrital C:nutrient ratios have implications for C and nutrient export fluxes, including

the functioning of the biological carbon pump in the ocean. Notwithstanding, in many biogeochemical models coupled to

GCM’s, primary producers are still unrealistically represented with a constant ‘Redfield’ C:N:P ratio, and/or constant Chl:C425
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ratio (see, e.g. the models used in Laufkötter et al., 2015). More detailed ‘Quota’ models exist; however, these approaches

are often challenged by two major limitations: i) dependence on formulations that lack a clear mechanistic basis, and ii) their

requirement for additional state variables, which increase computational costs.

A concrete example of the first problem, i.e., dependence on heuristic formulations, is the down-regulation of nutrient uptake,

which is needed to avoid unrealistically high nutrient quotas in a Droop scheme. Often, down-regulation is formulated as some430

function (linear, e.g., Grover (1991) or non-linear, e.g., Geider et al. (1998)) of ‘relative quota’, with reference to a prescribed

maximum value. The acclimation scheme used in this study (IA and DA variants), requires no such explicit down-regulation

term, nor any prescribed maximum quota value. This is because the optimization of growth, subject to the growth vs nutrient

uptake trade-off (sect. 2.2.2), accomplishes this regulation by balancing the marginal benefits of investing into nutrient uptake

versus photosynthesis. This RAM approach, which links various cellular functions via trade-offs, has proven successful at435

reproducing various Chl:C:N:P measurements obtained in laboratory experiments (e.g. Klausmeier et al., 2004; Pahlow et al.,

2013; Wirtz and Kerimoglu, 2016). Furthermore, given its mechanistic basis, this approach can be expected to reproduce

biological feedbacks more realistically (Flynn et al., 2015).

Earlier studies had pointed out that representation of variable in Chl:C:N ratios of phytoplankton in models resulted in better

reproduction of field observations (e.g. Doney et al., 1996; Christian, 2005; Ayata et al., 2013; Chen and Smith, 2018). Con-440

sistent with those studies, implementation of the model introduced here for simulating two oligotrophic ocean sites suggested

that the the portability of phytoplankton growth models are enhanced by the variable cellular composition (Anugerahanti et al.,

2021). As demonstrated by these studies, 1D setups, as we also used here are ideal computational environments for examining

the behavior of phytoplankton growth models: while resolving the essential features of aquatic environments, foremost the

seasonally variable vertical structuring of resources and transport rates, they increase the computational costs minimally, in445

comparison to the 3D models. On the other hand, realistic representation of the horizontal gradients, or investigation of the

effects of phytoplankton on the biogeochemical functioning at larger scales do require 3D setups. Recent applications of these

models in realistic 3D setups (Kerimoglu et al., 2017; Pahlow et al., 2020) have indicated that accounting for acclimation en-

hances the ability of models to reproduce field observations and large scale patterns. Moreover, a consistent representation of

phytoplankton composition allows identification of potential alterations in trophic transfer efficiencies as mediated by changes450

in food quality of prey in response to environmental change (Kerimoglu et al., 2018; Kwiatkowski et al., 2018).

Regarding the second problem, i.e., the computational costs of resolving additional state variables, Smith et al. (2016)

proposed the ‘Instantaneous Acclimation’ approach, according to which, the elemental composition of phytoplankton vary, but

instantaneously, such that tracking these variations does not require additional state variables. As in Smith et al. (2016), we

considered the same specific acclimation mechanisms of (Pahlow et al., 2013), but under the assumption that the N quota adjusts455

to an optimal value locally, under strictly ‘balanced growth’ (Burmaster, 1979, see sect. 2.2.1). While at steady-state, this is a

natural consequence of any ‘Droop-like’ model (Burmaster, 1979), assuming this behavior to hold under transient conditions

is merely an approximation. Ward (2017), using a classical Droop-approach, showed that this approximation holds well under

a wide range of conditions in a 0D (box) setup. Here, for the first time, we have tested this approach in an idealized 1D setup,

and shown that in many respects, the IA model and the fully explicit DA variant behave similarly. Our preliminary experiments460
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demonstrated that, even in an environment characterized by periodic perturbations of stratification during summer, behavior

of the two variants remain similar (results not shown). This is significant, considering that IA requires only 1 state variable,

whereas DA requires 2 state variables. Thus, it can be concluded that IA provides improved realism over a computationally

equivalent FS approach, which ignores variations in cellular composition. For simulating a few years of the dynamics of the

single phytoplankton group in a 1D setup as we did here, differences in computational costs relative to the fully dynamic465

variant are nearly negligible, but for simulating decades/centuries or millennia in a 3D setup (e.g., as in Pahlow et al., 2020),

and/or when multiple phytoplankton clones/types (e.g., with different sizes) are considered (e.g., 350 in Dutkiewicz et al.,

2020), differences in computational costs can indeed be substantial.

4.2 Qualitative versus quantitative differences between model variants

The capacity to store nutrients is known to be an advantageous trait for phytoplankton in temporally fluctuating environments,470

where greater nutrient storage capacity, e.g., by larger cells, during the nutrient-replete phase provides a competitive advantage

during subsequent periods of nutrient scarcity (Grover, 1991; Litchman et al., 2009). Similarly, diffusion or active movement

of nutrient-rich cells from the nutrient-replete to nutrient-rich environments, e.g., from bottom towards surface layers, has been

shown to favor species with greater storage capacities (Grover, 2009; Kerimoglu et al., 2012). The IA model presented in this

study cannot capture this effect, since according to this approach: i) growth and nutrient uptake rates are always proportional475

(by definition of the ‘balanced growth’ assumption), thus, differential benefits along a space or time continuum cannot be

combined through re-shuffling of physiological states; ii) nutrient quotas do not have inertia, hence, lagged response, as they are

instantaneously adjusted to the local (light and nutrient) resource conditions; unlike in the DA variant where Q is dynamically

traced (by the virtue of dynamically tracing both PhyC and PhyN). In fact, the DA variant we considered here presumably has

a weaker storage capacity compared to a classical ‘Droop’ model, because in our acclimative approach, allocation of resources480

to maximize growth can be expected to suppress ‘luxury consumption’ (Droop, 1968) of nutrients. Finally, it should be noted

that because of the differences in the formulation of the uptake in the IA (Eq. (6)) and DA (Eq. (12)) variants, and the complex

inter-dependencies between the physiological states and process rates involved (Q, fV, fC µ, V , V̂ , DIN), comparison of the

response of the two variants is not straightforward during such transient phases, and a fuller understanding will require further

analysis and experimentation.485

Some of the differences in phytoplankton growth dynamics, as simulated by the acclimative IA and DA variants and the

non-acclimative FS variant, could be reconciled by tuning the parameters. For instance, the amount of phytoplankton biomass,

or the extent of nutrient depletion as simulated by the FS variant can be increased by specifying higher resource affinities (e.g.,

lower KN or higher α, to make up for the deficiency in the formulation of light limited growth (Oschlies and Schartau, 2005).

However, improvements in these specific aspects typically result in greater discrepancies in other aspects, such as the timing490

and magnitude of the spring bloom, or winter concentrations of nutrients and phytoplankton. In other words, in terms of model

performance, trade-offs exist between multiple objectives. Such trade-offs become more obvious when attempting to simulate

multiple environments characterized by different resource conditions (e.g., multiple sites, or the same site in two different time
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periods) with a single parameter set (Anugerahanti et al., 2021). How acclimative flexibilities impact the sensitivity of models

to parameter perturbations remains to be an open question.495

The RAM approach used here, as in ‘adaptive dynamics’ approaches (Follows and Dutkiewicz, 2011), ambiguously reflects

processes at multiple organismal scales. For instance, higher fA and fV and lower θ̂ at the surface layers during summer

(Fig. 5), which agrees with lower light harvesting and higher nutrient harvesting investment as found by Bruggeman and

Kooijman (2007), can be attributed to: i) evolutionary adaptation of new species (which would be more relevant in a longer-

term simulation), ii) selection among existing species that had been pre-adapted to these conditions, and iii) individual-level500

acclimation. Optimality-based acclimative models can thus capture some key community-level effects of evolutionary and

ecological dynamics, without explicitly resolving competing species or groups (Smith et al., 2011). The same idea underlies

the recent work of Chakraborty et al. (2020), where they described the changes in community composition by assuming that

the trophic strategy of the entire plankton community is optimized instantaneously.

Some features, such as the dense and thin chlorophyll layers at the thermocline as captured by the acclimative variants505

(Fig. 4) seem qualitatively irreproducible by the FS variant even for a single site and time period. This is because multiple

dependencies are necessary for capturing this feature, namely the unimodal distribution of chlorophyll density over depth

(Fig. 4) and the steep increase in chloroplast size with depth near the thermocline (Fig. 5), as well as the thermocline being

the best compromise between light- and nutrient- limitation (Fig.5). The FS variant includes only the last dependency, because

it lacks acclimation, and is therefore unable to produce such thin chlorophyll layers. When the chloroplast size is assumed to510

vary, and diagnosed by the nutrient limitation term, such that the vertical Chl:C increases monotonically with depth, the vertical

distribution of Chl can be partially captured (Appendix B).

We also found differences in system-level metrics such as NPP and NDD (e.g., Bergeron and Tremblay, 2014; Johnson

et al., 2017) rates as simulated by different variants. For both metrics, DA estimates were about 10% higher than the FS and

IA variants, with FS estimates systematically skewed towards earlier in the season. It should be noted that, for the FS variant,515

prescribed Q, which, in this study was based on the results of the IA variant, but normally is effectively a free parameter

(although the common approach is to set it to the Redfield proportions), largely determines the estimated PhyC, and related

quantities, such as NPP rates. For instance, doubling the Q of FS results in only a few percent further underestimation (relative

to DA) of the NDD rate (annual average: 3.89, instead of the original 4.1 mmolN m−2d−1, which corresponds to 18.6% lower

than the DA estimate, instead of the original 14.3%), whereas it leads to more than 50% lower estimates of NPP rate (23.26520

mmolC m−2d−1) in comparison to that of the DA variant. Some FS variants are not based on C, and not N as in this study

(i.e., the explicit state variable is the C bound to phytoplankton). For those models, instead of the NPP, NDD rates may be more

sensitive to prescribed Q. In contrast to the FS variant, with the IA variant, the total C and N content, and growth and nutrient

uptake rates of the phytoplankton, thus the system-level process rates, like the PPR and NDD rates are determined by the same

set of parameters governing the fully explicit DA variant.525
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4.3 Physiological Flexibility and Environmental Feedbacks

The well known links between the composition of phytoplankton and the biogeochemistry of their ambient environments imply

feedbacks, which are important in ecology, environmental science, and water quality studies. These feedbacks can be mediated

by both physiological acclimation and evolutionary adaptation (Moreno and Martiny, 2018), with the latter typically understood

to operate on much longer timescales. However, acclimation and adaptation do interact in eco-evolutionary dynamics, and for530

plankton they may even occur on similar timescales (Smith et al., 2011; Edelaar and Bolnick, 2019). Disentangling their

effects is challenging, and debate continues as to the relative roles of acclimation and evolutionary adaptation in determining

the observed patterns of variation. For example, although Sharoni and Halevy (2020) attribute observed seasonal variations in

the elemental composition of detritus to seasonal sorting among various well adapted species, that conclusion was based on

the assumption that acclimation implies a lack of nutrient limitation, which is not the assumption underlying most acclimative535

models, including ours. For example, the near-zero values of fC in the upper 25 m during summer months (Fig. 5k,l) indicate

extreme nutrient limitation, which prevents growth in the surface layers (Fig. 6b,c). In any case, only models that account for the

relevant flexibilities and variations in the composition of phytoplankton can be expected capture such feedbacks in a general,

yet realistic sense, which is necessary to correctly assess the relative roles of plankton-related processes in biogeochemical

cycles.540

An important link between flexibility and environmental feedbacks is the role of phytoplankton in determining the elemental

composition of particulate matter (Redfield, 1934). Key mechanisms involve the activities of nitrogen fixers and denitrifiers

(Redfield, 1958). However, given the differences in stoichiometry of macromolecules involved in various cellular functions

(Geider and La Roche, 2002), a consistent description of the acclimation of phytoplankton is necessary to represent realistically

the variabilities in elemental composition of particulate matter, hence, export fluxes. Fixed stoichiometry models erroneously545

predict constant elemental composition of detrital matter production, as demonstrated by our FS variant in this study. The

so called ‘Droop’ models have been shown to capture the observed seasonal increase in detrital C:N ratios during summer,

reflecting nutrient limitation of phytoplankton (e.g., Mongin et al., 2003). Representing the growth and uptake terms consis-

tently using the RAM framework, the DA variant resolves the seasonal and vertical variations in the elemental composition of

particulate matter (Fig. 9). With some exceptions, estimates of the IA variant are nearly identical to those of the DA variant,550

thereby implying that a more realistic representation of these can be achieved at no additional computational cost compared to

a fixed-stoichiometry models.

4.4 Present implementation, challenges and perspectives

Moving a coupled hydrodynamic-biogeochemical models from a 0-D setup to a spatially explicit setup can be error-prone and

time consuming. The Framework for Aquatic Biogeochemical Models, (FABM Bruggeman and Bolding, 2014), provides an555

easy to use coupling layer that connects a hydrodynamic model with multiple biogeochemical sub-models. FABM specifies

how the these models communicate by separating the hydrodynamics and biogeochemical models, with FABM acting as a glue

layer in between. The biogeochemical model in this framework operates locally in space where the local source and sink terms
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are computed based on the local state and environment, making it feasible to scale up from 0-D to n-D, and swap different hy-

drodynamic models. FABM also provides mechanisms to pass other environmental data, such as temperature, salinity, and pH,560

from different submodules, as long as the biogeochemical models register any dependencies during initialisation. Therefore,

complex description of the biogeochemical models can be partitioned into several sub-modules. The modular implementation

of our model in FABM, specifically, the isolation of the phytoplankton module (Fig. 1) is expected to facilitate studies with

multiple phytoplankton types. For example, without changing the model code nor recompiling, just through changing a con-

figuration file, it is possible to include further types (see Bruggeman and Bolding, 2014), which can be parameterized, e.g.,565

according to cell size (as in, e.g. Smith et al., 2016; Dutkiewicz et al., 2020). Moreover, the isolated phytoplankton module can

be relatively easily coupled with or incorporated into existing models, especially those implemented in FABM.

Currently, the model simplistically accounts for the grazing losses to higher trophic levels with a quadratic mortality term

(Table 1), without describing explicitly the dynamics of preditors. This limitation may prohibit realistic applications to highly

productive ecosystems, where the strength of top-down control exhibits strong seasonality (e.g., Maar et al., 2014; Sailley et al.,570

2015). However, this problem can be easily resolved by adapting an existing zooplankton module available for FABM, such as

the N-only resolving module in the ‘NPZD’ example provided in the standard FABM library (Bruggeman and Bolding, 2014).

An explicit consideration of zooplankton can expected to introduce additional complexities: depending on how zooplankton C

and N co-limitation is described, variabilities in phytoplankton stoichiometry may affect zooplankton growth (e.g., Mitra et al.,

2007; Branco et al., 2018; Kerimoglu et al., 2018) and in turn, depending on the parameterization of zooplankton excretion575

and remineralization processes, subsequent phytoplankton blooms may occur. While it was our explicit aim to avoid such

complicated indirect effects and focus on the direct effects of acclimation mechanisms on phytoplankton growth in this study,

coupling the presented model to a larger ecosystem model including herbivores and their predators would allow investigating

the propagation of these effects throughout the food web in a cost-effective manner.

For simplicity, we have traced only N here fully (e.g., no explicit DIC, but only DIN, see Eq. (4)) and the model is therefore580

conservative with respect to N, but not with respect to C. When multiple nutrient elements in the dissolved inorganic material

pool (e.g., C, N, and P) are resolved, maintaining mass balance becomes more complicated under the IA assumption (see Smith

et al., 2016; Ward, 2017). FABM-implementation of a carbon-based version of the model that resolves the C and N cycles is

being currently developed, which are we are planing to present in a separate study. The extended model will be able to resolve

C, N, P and micronutrient cycles based on a common mass-balance formalism, and therefore allow investigating the validity585

of assuming instantaneous optimization of C:N:P:micronutrient ratios under various environmental conditions (relevantly, see

Bonachela et al., 2013). However, for various ecological applications, especially those resolving multiple phytoplankton types,

tracing only one nutrient element, as in the current study may be sufficient and more convenient.

In the current study, we focused on the differences between the fully acclimative IA and DA variants, and an entirely non-

acclimative variant. Our acclimation scheme consists of four acclimative flexibilities: variability of internal nutrient quota,590

optimization of uptake vs growth trade-off, optimization of maximum uptake vs. affinity trade-off, and optimization of chloro-

phyll density in chloroplast density (and as an additional half-step, size of the chloroplast, see Appendix B). In a future study,

we are planning to investigate the relative importance of each of these flexibilities for the organismal fitness under various
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environmental conditions: such an assessment would not only help the model developers to prioritize the research needs, but

may also provide insights into the evolution of these acclimative flexibilities.595

5 Conclusions

In this study, we present a FABM-implementation of the ‘NflexPD’ model, and the behavior of three variants it can emulate: a

Fixed Stoichiometry (FS) variant that lacks any acclimative flexibility and explicitly tracks only N bound to phytoplankton; a

Dynamic Acclimation (DA) variant that resolves various acclimative flexibilities by explicitly tracking the C and N in phyto-

plankton; and the Instantaneous Acclimation (IA) variant that resolves the same flexibilities as the DA variant, but by tracking600

the N in phytoplankton as in the FS variant.

By applying the NflexPD model coupled to an idealized, 1D water column model, we aimed to understand: i) whether and

how the behavior of the IA and DA variants differ; and ii) whether and how the behavior of the acclimative variants differ

from the non-acclimative, fixed stoichiometry variant. With regard to the first of our objectives, we found that behavior of IA

is stable and in many respects very similar to that of DA, although differences arise during the spring and autumn transitions,605

owing to the lagged response and vertical transport of nutrient quotas in the DA variant. With this, our study provides proof-

of-concept that the IA approach is applicable in spatially-explicit setups, and hints at conditions under which deviations from

the fully explicit variant can be expected. With regard to the second objective, we found substantial differences between the

behavior of the FS and acclimative variants: with the particular parameterization we show-cased here, the acclimative variants

estimated smaller spring blooms, but sustained growth during summer and stronger nitrogen depletion in the surface layers,610

as well as steeper chlorophyll layers at the thermocline; and unlike the FS variant, they can reproduce the variabilities in

C:N of particulate matter. Moreover, a subset of quantities estimated by the FS variant, such as the phytoplankton biomass

and NPP rates were found to be strongly sensitive to the prescribed parameters such as Q, which, in this study was derived

as a spatio-temporal average from the IA variant, but is typically an adjustable parameter, implying thus a higher degree of

freedom. These qualitative differences provide insight into the impact of acclimative flexibilities on model response, and their615

ecosystem-scale implications. The model implementation presented here tracks only N as dissolved nutrient, which restricts

its utility in biogeochemical studies that require a complete representation of the cycling of multiple elements, but it can be

readily used in various ecological contexts.

Code availability. For running the model and reproducing the results presented in this study, FABM and GOTM need to be downloaded

and installed. See https://github.com/fabm-model/fabm/wiki/GOTM for the instructions. The version of the FABM-NflexPD used in this620

manuscript has been stored in Zenodo repository https://doi.org/10.5281/zenodo.4761937. Instructions for compiling FABM-NflexPD for

GOTM-FABM and a 0D setup are provided in README.md. The ‘src’ folder contains the Fortran codes. The model was implemented

as two separate modules: the ‘phy.F90’ module that describes phytoplankton growth and the ‘abio.F90’ module that describes everything

other than phytoplankton (Fig. 1). The phytoplankton module can reproduce the behavior of all three different variants considered in the
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manuscript through optional parameters. The ‘testcases’ folder contains the configuration (yaml) file that was used to produce the results625

presented in this manuscript, thereby providing examples of how each variant can be initiated.

Appendix A: Details of Derivations

A1 RN for FS variant

According to Eq. (7), RN = ζN ·V . For the DA and IA variants, V can be calculated externally (Eq. (12)), hence so can be

RN. For the FS variant on the other hand, there is no explicit solution for V , but it can only be calculated as a function of µ,630

(V = µ ·Q, Eq.(6)), and since µ in turn, depends on RN (µ= µnet−RN, Eq. (7)), RN cannot be directly calculated. Expanding

the terms in Eq. (7) according to Eqs. (6), (13) and (20):

µ= µ̂net ·LN− ζN ·µ ·Q (A1)

reorganizing:

µ=
µ̂net ·LN

1 + ζN ·Q
(A2)635

substituting this with µ in:

RN = ζN ·V = ζN ·µ ·Q (A3)

we obtain a V -independent expression for RN :

RN = ζN ·
µ̂net ·LN

1 + ζN ·Q
·Q (A4)

It can be verified that, when this term is substituted in µ= µnet−RN , it yields µ= µnet−ζN ·µ·Q= µnet−ζN ·V , i.e., Eq. (7),640

implying that using RN in Eq. (A4) for the FS variant makes Eq. (7) valid for the FS variant as well.

A2 Optimal Q and fV

In Eq. (7), substituting µg , RN and and RChl with the expanded forms in Eqs. (13), (20), and (25), respectively, and subse-

quently expanding θ, using Eq. (24)):

µ= fCµ̂g − ζNfVV̂ − (µ̂g +RChl
M )ζChlθ̂fC (A5)645

Reorganizing:

µ= fC

[
µ̂g(1− ζChlθ̂)− ζChlθ̂R

Chl
M

]
− ζNfVV̂ (A6)
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Substituting the term in square brackets with µ̂net based on Eq. (7) and expanding fC using Eq. (11)):

µ=

(
1− Q0

2Q
− fV

)
µ̂net− ζNfVV̂ (A7)

At this point, it can be readily recognized that Eq. (A7)) is equivalent to the Eq. (5) in Pahlow and Oschlies (2013), only650

difference being their denotion of µ̂net as µ̂I . Note that their formulation of respiration losses within the chloroplast as a fraction

of gross growth with respect to chloroplast (i.e., µ̂I = µ̂I
g(1− ζC) in their notation), differs from the more precise formulation

we used here, that considers a base loss rate independent of gross growth. However, considering that µ̂net (just like their µ̂I ) is

independent of Q and fV, the solutions provided by Pahlow and Oschlies (2013) for foV (i.e., their Eq. (9), our Eq. (14)) and Q

(their Eq. (10), our Eq. (10)) can be directly used, only after replacing µ̂I in the original solutions with µ̂net for the latter.655

Appendix B: FS variant with a variable chloroplast size

Given the similar roles of fC in the IA and DA variants and the nutrient limitation term, LN, in the FS variant for calculating

µg (see Section 2.2.2), LN can be considered as a proxy for the relative size of the chlorplast. Therefore, fC in Eq. (24) and

(25) can be replaced by LN for scaling the chloroplast-specific chlorophyll density and respiration costs in order to represent

spatio-temporal variations of the cellular Chl:C ratio and proportional respiration costs.660

When this is done, unlike the original results shown in the main text (Fig. 4m), a spatio-temporally variable Chl:C ratio

(Fig. B1c) is obtained. Monotonically increasing LN with depth during summer (Fig. 5j) reduces Chl at the surface, and

enhances it at the deeper layers relative to the Chl pattern obtained with constant Chl:C (compare Fig. 4m vs. Fig. B1a).

However, due to the missing unimodal signal through θ̂ as accounted for by the IA and DA variants (see Fig. 5b,c), the

resulting Chl pattern is still qualitatively different from those estimated by the truly acclimative variants (compare Fig. B1a665

vs. Fig. 4k,l). Furthermore, the relatively higher value of LN during the spring bloom under nutrient-rich conditions (Fig. 5j)

relative to the prescribed, constant value of fC=0.44 used for the case with constant chloroplast size (hence, constant Chl:C)

shown in the main text as yielded by the prescribed values of fV, Q and Q0 (Table 3 and Eq. (11)), results in greater RChl

(compare Fig. B1d vs Fig. 6j). Hence, net cellular growth rate, µ becomes slightly lower than in the constant chloroplast case

during the spring bloom (compare Fig. B1b vs Fig. 6a). On the other hand, during summer, relatively lower values of LN make670

RChl lower, and µ greater compared to the constant chloroplast case.

Dynamics of the PhyC within the top 50m as simulated with this flavor of the FS variant with variable chloroplast size are

almost identical to those simulated by the standard, ‘vanilla’ version with constant chloroplast size (compare Fig. B2d with

Fig. 7d). Relatively higherRChl at nutrient-rich conditions during winter and early spring makes the winterPhyC concentrations

(Fig. B2d) lower in comparison to the standard case (Fig. 7d). On the other hand, relatively lower RChl at nutrient-scarce675

summer conditions make the PhyC concentrations (Fig. B2d) slightly higher than the standard case (Fig. 7d). As a result, the

the average DIN concentrations in the surface 50m become slightly lower than the standard case (Fig. B2a vs. Fig. 7a), which

is, better observed in lower LN (Fig. B2c vs. Fig. 7c), due to the strong response of the function at low concentrations.
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(a)

(c)

(b)

(d)

Figure B1. Phytoplankton (a) Chl concentration, PhyChl [mgC m−3]; (b) net growth rate, µ [d−1]; (c) Chl:C, Θ [gChl gC−1]; (d)

respiration cost of chlorophyll maintenance and synthesis, RChl [d−1] as simulated by the FS variant, when the prescrebed Θ (Table 3) is

scaled with fC, according to Eq. (24).

(a) (b) (c)

(d) (e) (f)

Figure B2. Like Fig. 7, but when for the FS variant, prescribed θ̂ (Table 3) is scaled with LN, i.e., replacing fC with LN in Eq. (24).

Despite the differences in details explained above, especially based on the preserved qualitative differences in simulated

PhyC concentrations between the FS and acclimative variants, it can be concluded that the overall conclusions are insensitive680

to the assumption regarding the size of the chloroplast of the FS variant.
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