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Abstract. A huge amount of legacy drilling data is available in geological survey but cannot be used directly as it is compiled 10 

and recorded in an unstructured textual form and using different formats depending on the database structure, company, logging 

geologist, investigation method, investigated materials and/or drilling campaign. It is subjective and plagued with uncertainty 

as it is likely to have been conducted by tens to hundreds of geologists, all of whom would have their own personal biases. 

dh2loop (https://github.com/Loop3D/dh2loop) is an open-source python library for extracting and standardizing geologic drill 

hole data and export it into readily importable interval tables (collar, survey, lithology). In this contribution, we extract, process 15 

and classify lithological logs from the Geological Survey of Western Australia Mineral Exploration Reports Database in the 

Yalgoo-Singleton Greenstone Belt (YSGB) region. For this study case, the extraction rate for collar, survey and lithology data 

is respectively 93%, 86% and 34%. It also addresses the subjective nature and variability of nomenclature of lithological 

descriptions within and across different drilling campaigns by using thesauri and fuzzy string matching. 86% of the extracted 

lithology data is successfully matched to lithologies in the thesauri. Since this process can be tedious, we attempted to test the 20 

string matching with the comments, which resulted to a matching rate of 16% (7,870 successfully matched records out of 

47,823 records). The standardized lithological data is then classified into multi-level groupings that can be used to 

systematically upscale and downscale drill hole data inputs for multiscale 3D geological modelling. dh2loop formats legacy 

data bridging the gap between utilization and maximization of legacy drill hole data and drill hole analysis functionalities 

available in existing python libraries (lasio, welly, striplog).  25 

  



1 Introduction 

Drilling is a process of penetrating through the ground that is capable of extracting information about rocks from various 

depths below the surface. This is useful for establishing the geology beneath the surface. Drill core or cuttings can be collected 

thus providing samples for description, interpretation and analysis. The location of where drilling starts is referred to as the 30 

collar. As the drilling progresses, survey orientation measurements are taken to be able to convert the specific depths to exact 

coordinate locations of the drill core being retrieved. In a hard rock setting, geological drill core logging is the process whereby 

the recovered drill core sample is systematically studied to determine the lithology, mineralisation, structures, and alteration 

zones of a potential mineral deposit. It is usually performed by geologists who classify a rock unit into a code, based on one 

or multiple properties such as rock type, alteration intensity and mineralisation content. Exploration and mining companies 35 

rely on the diverse geoscientific information obtained by drill core logging techniques to target and to build models for 

prospectivity mapping or mine planning. This work focuses on lithological logs which is the component of a geological log 

that refers to the geological information on the dominant rock type in a specific downhole interval. Inevitably, lithological drill 

core logging is subjective and plagued with uncertainty as all logging geologists have their own personal biases (Lark et al., 

2014). The information and level of detail contained in logs is highly dependent on the purpose of the study, this already makes 40 

geological logging subjective. This subjectivity is also influenced by the lack of a standards between projects and/or companies 

combined with the personal biases of the logging geologist. Furthermore, it can be difficult to recognize lithology with 

confidence and to establish subtle variations or boundaries in apparently homogeneous sequences.  

 

With the advent of the digital age, semi-automated drill core logging techniques such as X-Ray Diffraction (XRD), X-Ray 45 

Fluorescence spectrometry (XRF) and Hyperspectral (HS) imaging have provided higher detail of data collection and other 

properties such as conductivity, volumetric magnetic susceptibility, density using gamma-ray attenuation, and chemical 

elements during logging (Zhou et al., 2003; Rothwell and Rack, 2006; Ross et al., 2013).  This has prompted a shift towards 

using numerical data rather than depending on traditional geological drill core logging procedures (Culshaw, 2005). Multiple 

methods have been recently applied to geological drill core logging such as wavelet transform analysis or data mosaic 50 

(Arabjamaloei et al., 2011; Hill et al., 2020; Le Vaillant et al., 2017; Hill et al., 2015),  artificial neural network model (Lindsay, 

2019; Zhou et al., 2019; Emelyanova et al., 2017) and inversion (Zhu et al., 2019). Relying solely on these semi-automatic 

methods comes with drawbacks as it excludes some of the subjective interpretations that cannot be replaced. The semi-

automatic methods also are poor at describing textural characteristics (foliation, banding, grain size variation). Furthermore, a 

rich amount of legacy data is collected in the traditional drill core logging method and disregarding this information limits the 55 

dataset. 

 

Legacy data are information collected, compiled and/or stored in the past into many different old or obsolete formats or 

systems, such as handwritten records, aperture cards, floppy disks, microfiche, transparencies, magnetic tapes and/or 

newspaper clippings making it difficult to access and/or process (Smith et al., 2015).  Legacy digital data also suffer from lack 60 

of standardisation and inconsistency. In geoscience, these are currently scattered amongst unpublished company reports, 

departmental reports, publications, petrographic reports, printed plans and maps, aerial photographs, field notebooks, sample 

ticket books, drill core samples, tenement information and geospatial data providing a major impediment to their efficient use. 

This includes geological drill core logs that are the outcome of most expensive part of most mineral exploration campaigns: 

drilling. This is valuable information source and key assets that can be used to add value to geoscientific data for research and 65 

exploration; design mapping programs and research questions of interest; more efficiently target remapping and sustainable 

new discoveries; and provide customers with all existing information at the start of the remapping program. It should not be 

abandoned for it may have lower intrinsic quality than observations made with more modern equipment, its recovery and 

translation to a digital format is too tedious. Griffin (2015) argues that there is no distinction in principle between legacy data 



and ‘new’ data, as all of it is data.  The intention of recovering legacy data is to a) upcycle information with integration into 70 

modern datasets, b) use salvaged data for new scientific applications and c) allow reuse of that information into utility 

downstream applications (Vearncombe et al., 2017). Furthermore, extracting information from legacy datasets is valuable and 

relatively low-risk as geoscientific insight is added to a project for little or no cost compared to those of drilling (Vearncombe 

et al., 2016).  

 75 

The primary challenge in dealing with geological legacy datasets is that a large amount of important data, information and 

knowledge are recorded in an unstructured textural form, such as host rock, alteration types, geological setting, ore-controlled 

factors, geochemical and geophysical anomaly patterns, and location (Wang and Ma, 2019). To acknowledge the ambiguity 

in the context of “unstructured textual form”, we define it in this paper as, “descriptive text that lacks a pre-defined format 

and/or metadata thus cannot be readily indexed and mapped into standard database fields”. The geological drill core logging 80 

forms and formats also vary depending on the company, logging geologist, investigation method, investigated materials and/or 

drilling campaign. Natural language processing (NLP) also known as computational linguistics has been used for information 

extraction, text classification and automatic text summarization (Otter et al., 2020). NLP applications on legacy data have been 

demonstrated in the fields of  taxonomy (Rivera-Quiroz and Miller, 2019), biomedicine (Liu et al., 2011) and legal services 

(Jallan et al., 2019). Qiu et al. (2020) proposed an ontology-based methodology to support automated classification of 85 

geological reports using word embeddings, geoscience dictionary matching and bidirectional long short-term memory model 

(Dic‐Att‐BiLSTM) that assists in identifying the difference in relevance from a report.  Padarian and Fuentes (2019) also 

introduced the use of domain-specific word embeddings (GeoVec) which is used to automate and reduce subjectivity of 

geological mapping of drill hole descriptions (Fuentes et al., 2020).  

 90 

Similarity matching has many applications in natural language processing as it is one of the best techniques for improving 

retrieval effectiveness (Park et al., 2005). The use of text similarity is beneficial for text categorization (Liu and Guo, 2005) 

and text summarization (Erkan and Radev, 2004; Lin and Hovy, 2003). It has been used to extract lithostratigraphic markers 

from drill lithology logs (Schetselaar and Lemieux, 2012). Fuzzy string matching, also known as approximate string matching, 

is the process of finding strings that approximately match a given pattern (Cohen, 2011; Gonzalez et al., 2017). It has been 95 

used in language syntax checker, spell-checking, DNA analysis and detection, spam detection, sport and concert event ticket 

search (Higgins and Mehta, 2018), text re-use detection (Recasens et al., 2013) and clinical trials (Kumari et al., 2020). 

 

Most of the available python libraries available have been built to process extracted and standardized drill hole data. The most 

common of these are: lasio (https://lasio.readthedocs.io/en/latest/) which deals with reading and writing Log ASCII  Standard 100 

(LAS) files, a drill hole format commonly used in the oil and gas industry, welly (https://github.com/agile-geoscience/welly) 

which deals with loading, processing, and analysis of drill holes and striplog (https://github.com/agile-geoscience/striplog) 

which digitizes, visualizes and archives stratigraphic and lithological data. Striplog (Hall and Keppie, 2016) also parses natural 

language 'descriptions', converting them into structured data via an arbitrary lexicon which allows further querying and analysis 

on drill hole data. The main limitation of these existing libraries, with respect to legacy data in the mining sector is that they 105 

assume that the data is already standardized and pre-processed. 

 

dh2loop provides the functionality to extract and standardize geologic drill hole data and export it into readily importable 

interval tables (collar, survey, lithology). It addresses the subjective nature and variability of nomenclature of lithological 

descriptions within and across different drilling campaigns by integrating published dictionaries, glossaries and/or thesauri 110 

that are built to improve resolution of poorly defined or highly subjective use of terminology and idiosyncratic logging 



methods. It is however important to highlight that verifying the accuracy and/or correctness of the geological logs being 

standardized is outside the scope of this tool, thus we assume logging has been conducted to the best of the geologist’s ability.  

 

Furthermore, it classifies lithological data into multi-level groupings that can be used to systematically upscale and downscale 115 

drill hole data inputs in multiscale 3D geological model. It also provides drill hole desurveying (computes the geometry of a 

drillhole in three-dimensional space) and log correlation functions so that the results can be plotted in 3D and analysed against 

each other.  It also links the gap between utilization and maximization of legacy drill hole data and the drill hole analysis 

functionalities available in existing python libraries.  

2 dh2loop Drillhole Data Extraction 120 

2.1 Conventions and Terminologies 

This paper involves multiple python libraries, database tables and fields. For clarity, the following conventions are used for 

this paper (Appendix A1): 

1. Python libraries are written in italics: dh2loop 

2. Python functions are written in italics followed by an open and close parenthesis: token_set_ratio() 125 

3. Database tables are written in Lucida Console Italics: dhgeology 

4. Database table fields are written in Lucida Console: CollarID 

5. Workflows are written in Century Gothic Bold: Lithology Code workflow 

2.2 Dependencies 

dh2loop stands for drill hole data extracted into a 3D modelling input format, compatible with/for the Loop platform (Ailleres 130 

et al., 2019). It is a drill hole processing tool that integrates published dictionaries, glossaries and/or thesauri to and  improve 

standardize highly subjective use of terminology and idiosyncratic logging methods and classify lithological logs.  It primarily 

depends on a number of external open-source libraries (Appendix A2): 

1. fuzzywuzzy (https://github.com/seatgeek/fuzzywuzzy) which uses fuzzy logic for string matching (Cohen, 2011) 

2. pandas (https://pandas.pydata.org/) for data analysis and manipulation (McKinney, 2011) 135 

3. psycopg2 (https://pypi.org/project/psycopg2/), a PostgreSQL database adapter for python (Gregorio and Varrazzo, 

2018) 

4. numpy (https://github.com/numpy/numpy) 

5. nltk (https://github.com/nltk/nltk ), the Natural Language Toolkit is a suite of open source Python modules, data sets, 

and tutorials supporting research and development in Natural Language Processing (Loper and Bird, 2002). 140 

6. pyproj (https://github.com/pyproj4/pyproj), python interface to PROJ (cartographic projections and coordinate 

transformations library) 

Code describing basic drill hole operations, such as desurveying (process of translating collar (location) and survey data 

(azimuth, inclination, length) of drill holes into XYZ coordinates in order to define its 3D geometry of the non-vertical 

borehole), is heavily inspired from pyGSLIB drill hole module (Martínez-Vargas, 2016). The pyGSLIB drillhole module is re-145 

written into python to make it more compact with less dependencies and tailor it to the data extraction output.  

2.3 Data Source 

The Geological Survey of Western Australia Mineral Exploration Reports Database contains open-file reports submitted as a 

compliance to the Sunset Clause, Regulation 96(4) of the Western Australia legislation Mining Regulations 1981. These reports 

contain valuable exploration information in hardcopy (1957-2000), hardcopy and digital format (2000-2007) and digital format 150 



(2000-present) (Riganti et al., 2015). The minimum contents of a drilling report comprise a collar file which describe the 

geographic coordinates of the collar location (Fig. 1). Additional files may be included, such as a survey file describing the 

depth, azimuth and inclination measurements for the drilling path; assays; downhole geology and property surveys (e.g. 

downhole geochemistry, petrophysics) may also be available depending on the company’s submission (Riganti et al., 2015). 

The data in the drilling reports are extracted with spatial attribution and imported to a custom-designed relational database 155 

(also called the Mineral Drillhole Database) curated by the GSWA that allows easy retrieval and spatial querying. For 

simplicity, we will refer to this database as the WAMEX database in this text.  

 

The WAMEX database contains more than 50 years’ worth of mineral exploration drill hole data with more than 2.05 million 

drill holes, imported from over 1,514 companies. Each drill hole is identified by its surface coordinates and its unique ID 160 

(CollarID) in the collar table (Fig. 2). The drill hole 3D geometry is described in the survey tables (dhsurvey, 

dhsurveyattr). The lithology along the drill hole is described as a function of depth in the lithology tables (dhgeology 

and dhgeologyattr). However, it is important to emphasize that the drill hole data is of variable quality and reliability and 

that no validation has been done. The necessary amendments and reformatting enabling to extract and utilize data from the 

WAMEX database are part of the functionalities provided by dh2loop. 165 

 

 

Figure 1. Simplified example of a drill hole (1.A) and its corresponding interval tables collar (1.B), survey (1.C) and lithology (1.D). 
The black circle denotes the collar location of the drill hole which is obtained from a collar table (1.B). The purple line represents 
the first downhole interval taking its deviation data from the survey table (1.C) and the lithology information from the lithology 170 
table (1.D). The same applies for the second interval (orange line) and third interval (blue line). The orange line follows the same 
trajectory as the first interval as it uses the same entry in the survey table (1.C). The blue line has no lithology data as this information 
is not present in the lithology table (1.D). The MaxDepth denotes the total drill length (1.B).  

 



 175 

Figure 2. Simplified WAMEX database schema showing the one-to-many relationship between the collar table and the 
collarattr table (red solid line). collarattr stores other attributes that describe each unique drill hole, such as maximum 
depth and elevation. The figure also shows the relationship between the collar table and the other interval tables such as 
dhsurvey, dhsurveyattr, dhgeology, dhgeologyattr. The deviation of the drill hole is stored in a table, dhsurvey, 
with a primary key (DHSurveyID) that refers to each unique depth of a drill hole. This primary key has a many-to-one relationship 180 
with collar, as there are multiple depth measurements for each drill hole. Furthermore, dhsurvey also has a one-to-many 
relationship with table dhsurveyattr, which stores additional attribute information regarding survey, such as azimuth and 
inclination readings. The example shows the relationship between tables for the first (red dashed line) and second interval (red 
dashed-dot line). Each drill hole in the WAMEX database is identified by its geographic coordinates and a unique ID (CollarID) 
in the collar table. The drill hole 3D geometry is described in the survey tables (dhsurvey, dhsurveyattr). This similar 185 
relationship is maintained with interval tables, except that the primary key (e.g.DHGeologyID) is used to refer a unique downhole 
interval rather than a depth measurement. For lithological information, we refer to tables: dhgeology and dhgeologyattr. 
dhgeologyattr which contain information such as rock names and free text descriptions while dhgeology provides information 
to which hole and interval depth that data refers to. This information can be joined and extracted through SQL (Structured Query 
Language) queries. 190 

2.4 Thesauri 

Since most exploration companies have their own nomenclature and systems, which could also change between drilling 

campaigns, it is necessary to build thesauri: dictionaries that list equivalent and related nomenclature (or synonyms) for 

different attribute names and values. Synonyms include terminologies that share a similar intent, for example, RL (relative 

level) terms, whether elevation or relative level, as long as the words are recording a vertical height. These thesauri are stored 195 

as additional tables in the database. For example, if we are interested in the major lithology in a specific interval, this 

information can be tabulated as “Major Rock Type”, “Lithology_A” or “Main_Geology_Unit” depending on the drill core 

logging system used.  The resulting thesauri considers change in cases, abbreviations, addition of characters, typographical 

errors and a combination of these. Although listing out these terms is manual and tedious, it only needs to be done once and 

can be re-used and forms the basis for future text matching and as a training set to automate finding similar terms. This is 200 

preferred over selection based on regular expressions as when parsing these terms, there are complex patterns in the terms used 

and the inconsistencies in the way they are written that can be understood by a person with a geological background but not 

by a simple regular expression. The complexity of the regular expression required to catch all the terms of interest means an 

optimal expression is difficult, if not impossible, to define, and also tends to be computationally burdensome. dh2loop provides 

several thesauri that can easily be updated (if needed) for the following attributes (205 
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Appendix A: dh2loop package information 

A1 Conventions and Terminologies ):  

1. Drill Hole Collar Elevation Thesaurus: 360 synonyms such as “elevation” and “relative level” 

2. Drill Hole Maximum Depth Thesaurus:160 synonyms such as “end of hole”, “final depth” and “total depth” 

3. Drill Hole Survey Azimuth Thesaurus: 142 synonyms 210 

4. Drill Hole Survey Inclination Thesaurus: 8 synonyms such as “dip” 

5. Drill Hole Lithology Thesaurus: 688 synonyms such as “geology”, “Lithology_A”, “Major_Geology_Unit” and 

“Major_Rock_Type”  

6. Drill Hole Comments Thesaurus: 434 synonyms such as “description” 

The thesauri created specifically for further processing lithology and comments information are: 215 

7. Drill Hole Lithology Codes Thesaurus (discussed further in Sect. 2.4.1) 

8. Clean-up Dictionary (discussed further in Sect. 2.4.2) 

9. Lithology Hierarchical Thesaurus (discussed further in Sect. 2.4.3) 

In order to extract the other attributes we envisage developing other thesauri, following the same workflow. 

 220 

2.4.1 Drill Hole Lithology Codes Thesaurus 

This is a thesaurus compiling the equivalent lithology for a given lithological code based on the reports submitted to GSWA. 

This thesaurus is identified by a company id and report number. The current thesaurus covers 41 out of the 168 companies in 

the study area with a total of 352 entries (Appendix A1).  It is important to note that the Company_LithoCode varies 

depending on the CompanyID. For example, “Company 551” refers to “Saprolite” as “CS” while Company “2551” uses CS 225 

to refer to “Cambrian Sediment”. It is also common to for companies to use the different Company_LithoCode to refer to 

the same lithology. For example, a company may use “AMPH” to refer to “Amphibolite” while another company may use 

“MAA”. Basically, there is a many-to-many relationship between Company_LithoCode and Company_Litho.  

 

2.4.2 Clean-up Dictionary 230 

The Clean-up Dictionary is a list of words and non-alphabetic characters that are used as descriptions in the geological logging 

syntax. This dictionary is used to remove these terms from the Company_Litho and/or Comments free text descriptions 

prior to the fuzzy string matching. The dictionary is composed of 1662 records, most of which are compiled from abbreviations 

in field and mine geological mapping (Chace, 1956) and the CGI-IUGS geoscience vocabularies accessible at 

http://geosciml.org/resource/def/voc/ (Simons et al., 2006; Richard et al., 2007; Raymond et al., 2012). 353 of these records 235 

are original to dh2loop and are added to accommodate the geological logging syntax in Western Australia. The dictionary 

includes terms that describe age, location, structural forms, textures, amount/distribution, minerals, colors, symbols and 

common phrases. 

 

2.4.3 Lithology Hierarchical Thesaurus 240 

The Lithology Hierarchical Thesaurus is a list of 757 rock names (Detailed_Lithology), their synonyms and a two-

level upscale grouping (Lithology_Subgroup and Lithology_Group) (Fig 3). Each row in 

Detailed_Lithology refers to a rock name. Each rock name row lists the standardized terminology first, followed by 

its synonyms. The two corresponding columns for this row indicated the two-level upscale grouping. 169 of these rock names 

are compiled from the CGI-IUGS Simple Lithology vocabulary available at: 245 

http://resource.geosciml.org/classifier/cgi/lithology (Simons et al., 2006; Richard et al., 2007; Raymond et al., 2012). The 

synonyms are obtained from mindat.org (Ralph and Chau, 2014; Ralph, 2004).  The hierarchical classification is inherited 

from both mindat.org (Ralph and Chau, 2014; Ralph, 2004) and the British Geological Survey (BGS) Classification Scheme 
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(Gillespie and Styles, 1999; Robertson, 1999; Hallsworth and Knox, 1999; McMillan and Powell, 1999; Rosenbaum et al., 

2003). It is important to use multiple libraries to be able to build an exhaustive thesauri as some libraries are limited by the 250 

nomenclature, level of interest and presence of the lithology or rock group in a geographic area. For example, the BGS 

classification did not have a comprehensive regolith dictionary. Thus, regolith has been classified using the regolith glossary 

(Eggleton, 2001).   
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Figure 3. Lithology Hierarchical Thesaurus showing the 7 major Lithology_Groups: Igneous rocks (pink), Sedimentary rocks 255 
(light brown), Metamorphic rocks (green), Surficial Rocks (light yellow), Texture and Structure (blue), Mineralisation (purple) and 
Unclassified Rocks (dark yellow) and their corresponding Lithology_Subgroups. Many of the Lithology_Subgroups listed 
have parent-child relationships e.g. 'mafic_fine_grained_crystalline' is a child of 'mafic'.  Parents in parent-child relationships are 
included in their children as catch-all groups to capture free text descriptions that do not include details that would be captured by 
only using the child terms alone. Igneous rocks Lithology_Subgroups are further classified to 12 lithology subgroups, 260 
considering grain size, composition and a combination of both.  Sedimentary rocks are subclassified to 16 Lithology_Subgroups 
based on genetic source and composition (carbonate, clastic, evaporate, hybrid, hydroxide, ironstone, non-clastic siliceous, organic-
rich, phosphate, siliceous, siliciclastic, volcaniclastic, glacigenic). Metamorphic rocks are subdivided into Lithology_Subgroups 
based on the degree and type of metamorphism (metasomatic, contact, low-grade, schist, gneiss, high-grade, granofels, greenschist, 
metacarbonate). Surficial rocks are subdivided into 13 Lithology_Subgroups based on the depositional environment and 265 
composition. The residual deposit Lithology_Subgroup includes the regolith detailed lithologies. Mineralisation is considered 
as a separate classification to be able to classify ore zones. Structure and texture addresses situations that structures are logged as 
lithologies in geological logging. Structure and Texture is divided into five Lithology_Subgroups: fault rock, breaks, contact, 
fillings and sedimentary structures. The final classification is a catch–all for unclassified rocks. The matching is done at the 
Detailed_Lithology level, thus not causing confusion in the Lithology_Subgroup and Lithology_Group level. 270 
Volcaniclastics are present in both lithological groups as although volcaniclastics are volcanic in origin and are categorized as 
igneous rocks, ambiguous lithologies such as “metavolcaniclastic_sandstone” is more sedimentary than igneous. 
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2.5 Data Extraction 

Currently, the dh2loop library extracts collar, survey and lithology information. It uses a configuration file that allows the user 275 

to define the inputs, which are: 

1. Region of interest (in WGS 1984 lat/long); and/or 

2. List of drill hole ID codes codes, if known. 

3. If reprojection is desired, the EPSG code of the projected coordinate system (e.g. EPSG:28350 for MGA Zone 50; 

http://epsg.io) 280 

4. The connection credentials to the local copy of the WAMEX database 

5. Input and output file directories/location 

 

2.5.1 Collar Extraction 

With the minimum input of a region of interest, the dh2loop library exports a Comma-Separated Values file (CSV) listing the 285 

drill holes in the area with the following information (Fig. 4): 

1. CollarID: The CollarID for a drill hole is identical in all tables in order for data to be associated with that drill 

hole.  

2. HoleID: This is the drill hole name, as the company would internally identify the drill hole.  

3. Longitude and Latitude: Both values are expressed in WGS 1984 lat/long (EPSG:4326). 290 

4. Relative level (RL): We use RL here to refer to elevations of survey points with reference to the mean sea level. This 

definition of RL is equivalent to the elevation values used in DEMs. This value is extracted by using the Drill Hole 

Collar Elevation Thesaurus to filter the values referring to relative level (Fig. 4b). More than one value can be fetched 

due to duplicate company submissions or multiple elevation measurements, in which case the code retains the value 

with most decimal places assuming higher precision corresponds to better accuracy. If no elevation values are fetched 295 

from the database the entire record is skipped. Non-numeric values are also ignored.  

5. Maximum depth (MaxDepth): This value is extracted by using the Drill Hole Maximum Depth Thesaurus (Fig. 4c). 

Due to duplicate company submissions, there can be more than one value fetched. Since there is no submission date 

information, the code takes the value with largest value assuming it is the latest submission.  

6. Calculated X, Y values of projected coordinates: These values are commonly calculated and used to be able to plot 300 

the drill hole in a metric system to be able to accurate display and measure distance within and between drill holes. 

The projection system used in the calculation is based on the input specified in the configuration file.  

Figure 4. Collar extraction workflow showing the CollarID, HoleID, Longitude and Latitude information is fetched from 
the collar table (a, red), the corresponding RL and MaxDepth values are fetched from the collarattr table using the Drill 305 
Hole Collar Elevation Thesaurus (b, blue) and Drill Hole Maximum Depth Thesaurus (c, orange). 
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2.5.2 Survey Extraction 

With the same inputs defined in the configuration file, the dh2loop library outputs a survey CSV file containing the following 

information: CollarID, Depth, Azimuth, Inclination and Calculated X, Y, Z values (Fig. 5). The workflow 

accommodates for underground holes drilled upwards as long as the metadata and data appropriately describe them as such. 310 

For all properties, all non-numeric values are ignored. For Depth, negative values are replaced by their absolute value. This 

assumption is made as some drill holes have negative depth information and it is technically not possible to have a negative 

length. This is done by some companies to denote that the depth measure is going upwards (usually for underground probing 

drill holes) rather than downhole. For Azimuth, the code fetches values between 0-360 degrees, thus ignoring values greater 

than 360. Values between -360 to 0 are assumed to be counter-clockwise from the north. If there is no survey information for 315 

a drill hole present in collar, the azimuth value is set to 0. The X, Y, Z, values are calculated using the minimum curvature 

basing the code off the pyGSLIB drill hole module.   

 

 

Figure 5. Survey extraction workflow showing the DHSurveyID, CollarID and Depth information is fetched from the dhsurvey 320 
table (a, red), the corresponding Azimuth and Inclination values are fetched from the dhsurveyattr table using the Drill Hole 
Survey Azimuth Thesaurus (b, blue) and Drill Hole Survey Inclination Thesaurus (c, orange). 

2.5.3 Lithology Extraction 

The lithology extraction is divided into two workflows: Lithology Code Workflow and Comments Workflow. Both 

workflows output a lithology CSV file containing the following information (Fig. 6):  325 

1. CompanyID: The primary key to link the lithology code to the Drill Hole Lithology Codes Thesaurus and decode 

the lithologies. 

2. CollarID: The primary key to link the lithology information to the collar file. 

3. FromDepth and ToDepth: If the ToDepth is null, we assume ToDepth to be equal to FromDepth + 0.01. If 

the FromDepth is larger than ToDepth, the FromDepth and ToDepth values are switched.  330 

4. Detailed_Lithology: This value is the lithology matched through fuzzy string matching. The string that serves 

as input to the fuzzy string matching may either be the Company_Litho (decoded lithology from 

Company_LithoCode) or from the Comments (free text descriptions). 

4.1. Decoding Lithological Codes 

4.1.1. Company_LithoCode: This fetches the lithology codes that are typically three-letter codes using the 335 

Drill Hole Lithology Thesaurus. 

4.1.2. Company_Litho: The Company_Litho is fetched by matching the CompanyID and 

Company_LithoCode to the Drill Hole Lithology Codes Thesaurus. 
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4.2. Comments: This fetches the free text descriptions using the Drill Hole Comments Thesaurus. 

5. Lithology_Subgroup and Lithology_Group: Upscales the lithological information to more generic rock 340 

groups. For example, Detailed_Lithology: “basalt” is upscaled to Lithology_Subgroup:“mafic_fine-

grained crystalline” and further upscaled to Lithology_Group:“igneous rock”. 

6. Calculated X, Y, Z for the start, mid and endpoint also using the minimum curvature algorithm. The desurveying code 

is heavily based on the pyGSLIB drill hole module. 

 345 
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Figure 6. Lithology extraction is done through the Lithology Code workflow and Comments workflow. The values are fetched 350 
from the dhgeology and dhgeologyattr table (green) using either the Drill Hole Lithology Thesaurus (blue) and Drill Hole 
Lithology Codes Thesaurus (light blue) or the Drill Hole Comments Thesaurus (blue). The string fetched is then cleaned prior to the 
fuzzy string matching using the Clean-up Dictionary (dark yellow). The result is then matched against the Detailed_Lithology 
level of the Lithological Hierarchical Thesaurus.  If there is a match with a score greater or equal to 80, the match is taken and 
matched with the rest of the columns in the Lithology Hierarchical thesaurus. If not, it is labelled as unclassified rock.355 
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Once the Company_Litho (decoded lithology from Company_LithoCode or from the Comments (free text 

descriptions) have been extracted from the database, the lithology strings are pre-processed such that: 

a) The strings are converted to lowercase form. 

b) The string inside parenthesis, brackets and braces are removed, as these are found to reduce the accuracy of the 

matching. 360 

c) The string preceded by key phrases such as “with”, “possibly”, “similar to” are removed. 

d) If any of the words listed in the Clean-up Dictionary are present in the string, these words are removed. 

e) Lemmatization, the removal of the inflections at the end of the words in order the “lemma” or root of the words, is 

applied to all nouns (Müller et al., 2015).   

f) All words with non-alphabetic characters and tokens with less than three characters are removed. This include two-365 

letter words such as “to”, “in”, “at”. 

g) Stopwords, a set of words frequently used in language which are irrelevant for text mining purposes (Wilbur and 

Sirotkin, 1992), are removed. Examples on stopwords are: as the, is, at, which, and on. 

 

This is followed by fuzzy string matching, a technique that finds the string that matches a pattern approximately. Fuzzy string 370 

matching is typically divided into two sub-problems: 1) finding approximate substring matches inside a given string, and 2) 

finding dictionary strings that match the pattern approximately. Fuzzy string matching uses the Levenshtein Distance to 

calculate the differences between sequences and patterns (Okuda et al., 1976; Cohen, 2011). The Levenshtein distance 

measures the minimum number of single-character edits (insertion, deletion, substitution) necessary to convert a given string 

into an exact match with the dictionary string (Levenshtein, 1965).  375 

 

We utilize fuzzywuzzy (https://github.com/seatgeek/fuzzywuzzy) for this. fuzzywuzzy provides two methods to calculate a 

similarity score between two strings: ratio() or partial_ratio(). It also provides two functions to pre-process the strings: 

token_sort() and token_set(). In this work, we used the token_set_ratio() scorer to do fuzzy string matching to classify the 

Company_Litho or Comments entries into one of the Lithology Hierarchical Thesaurus entries (Table 1). token_set() pre-380 

processes the strings by: 1) splitting the string on white-spaces (tokenization), 2) turning to lowercase and 3) removing 

punctuations, non-alpha non-numeric characters and unicode symbols. It tokenizes both strings (given string and dictionary 

string), splits the tokens into: intersection and remainder, then sort and compare the strings. The sorted intersection component 

refers to the similar tokens between the two strings. Since the sorted intersection component (similar tokens between two 

strings) of token_set(), will result in an exact match, the score will tend to increase when: 1) the sorted intersection makes up 385 

a larger percentage of the full string, and 2) the remainder component are more similar.  The ratio() method then computes the 

standard Levenshtein distance between two strings. token_set_ratio() is found to be effective in addressing harmless 

misspelling and duplicated words but sensitive enough to calculate lower scores for longer strings (3-10 word labels), 

inconsistent word order and missing or extra words. partial_ratio() which takes the “best partial” of two strings or the best 

matching on the shorter substring is not preferred as it does not address the difference and order in substring construction. 390 

token_sort() is not preferred as it alphabetically sorts the tokens that ignores word order and does not weight intersection tokens 

which does not address the behavior of the strings in the logs. 
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Table 1. Examples of fuzzy string matching output using different combinations of the fuzzywuzzy functions. The table demonstrates 395 
the corresponding effect of these functions to the given string. token_set_ratio () which is used by dh2loop, works best on geological 
free text descriptions as it weights the intersection tokens, honors substring construction and word order and ignores misspelling, 
extra and duplicated words (in bold). partial_ratio () ignores substring construction and order and is more sensitive to misspellings. 
token_sort_ratio () also ignores substring order and does not recognize duplicate and extra words. The ticks and crosses indicated 
beside the score indicates the preferred (ticks) result between the methods clustered together. 400 

fuzzywuzzy Function Given String Dictionary String Score  Remarks 
ratio () diorite granodiorite rock 58  partial_ratio () ignores 

substring construction partial_ratio () diorite granodiorite rock 100  
ratio () granodoirit rcok granodiorite rock 85  ratio () mitigates 

misspelling partial_ratio () granodoirit rcok granodiorite rock 81  
ratio () rock felsic granodiorite granodiorite rock 59  partial_ratio () ignores 

substring order partial_ratio () rock felsic granodiorite granodiorite rock 83  
token_set_ratio () rock felsic granodiorite granodiorite rock 83  token_sort_ratio () ignores 

substring order token_sort_ratio () rock felsic granodiorite granodiorite rock 100  

token_set_ratio () intermediate 
granodiorite rock granodiorite rock 100  

token_set_ratio () weights 
intersection tokens 

token_sort_ratio () intermediate 
granodiorite rock granodiorite rock 72  

token_set_ratio () gray granodiorite 
granodiorite granodiorite rock 83  

token_set_ratio () ignores 
extra and duplicate words 

token_sort_ratio () gray granodiorite 
granodiorite granodiorite rock 64  

token_set_ratio () gray granodiorite 
granodiorite rckso granodiorite rock 83  token_set_ratio () weights 

intersection tokens, 
addresses substring 
construction and word 
order, ignores misspelling, 
extra and duplicate words 

partial_token_set_ratio () gray granodiorite 
granodiorite rckso granodiorite rock 100  

 

 

dh2loop calculates the token_set_ratio() between the Company_Litho or Comments (given string) and the entries in the 

Lithology Hierarchical Thesaurus (dictionary string). The tendency is to enumerate the descriptors before the rock name. For 

example, if the lithology in the logged interval is “basalt”, the free text description could be something like “Dark gray to dark 405 

reddish brown, with olivine phenocrysts, largely altered andesitic basalt”. After processing the string, it will be left with 

“andesitic basalt”. To avoid, misclassifying the rock to “andesite”, a bonus score is also added to add weight to the last word 

(in this case, “basalt”). Furthermore, the reader may worry that “basaltic andesite” will be simplified and classified into 

“andesite”. Since “basaltic andesite” is an established volcanic rock name, it will remain as “basaltic andesite”. For the pair 

between Company_Litho or Comments and the entries in the Lithology Hierarchical Thesaurus with the highest score, the 410 

first synonym is stored as Detailed_Lithology. If the score is less than 80, it is classified as “unclassified rock”. The 

cut-off value is user-defined and can be chosen based on the performance of the matching on the subset of the desired region. 

If the performance is significantly lower, this indicates that the thesauri used in dh2loop may not be suitable to your area. The 

user may opt to update these thesauri to suit their needs. Once matched on Detailed_Lithology, the corresponding 

Lithology_Subgroup and Lithology_Group classifications are also fetched. 415 

 

2.6 Fuzzy String Matching Assessment 

The objective is to compare the Detailed_Lithology classification results obtained from two independent workflows: 

1) Lithology Code Workflow and 2) Comments Workflow. Using the Company_LithoCode, Company_Litho, 
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Lithology Code Workflow: Detailed_Lithology and Comments Workflow: Detailed_Lithology from 420 

the dataset for the fuzzy string matching assessment, we can assess if matches using the Comments workflow alone can 

sufficiently decode lithology.  

 

To be able to assess the matching we take a look at the type of matches between Lithology Code Workflow: 

Detailed_Lithology and Comments Workflow: Detailed_Lithology. First, we define a match as retrieving 425 

an answer from the fuzzy string matching with a score greater than 80. It is important to note here that it only suggests that it 

succeeded to find an answer above the score threshold but not necessarily mean that it is the correct answer. To further describe 

the quality of a match, we modified for this purpose the following terminologies from the  Simple Knowledge Organization 

System (Miles and Bechhofer, 2009): 

a) Exact Match suggests that both Lithology Code workflow and Comments workflow resulted in the same 430 

classification at all 3 levels. The match at the Detailed_Lithology level has an exact match, thus resulting to 

an exact match on the other two levels.  

b) Close Match suggests that the results at the Detailed_Lithology level are related rocks and belong to the 

same Lithology_Subgroup. This is usually caused by differing use of lithological nomenclature. 

c) Related Match suggests that the results at the Detailed_Lithology level are related rocks and belong to the 435 

same Lithology_Group.  

d) Broad Match refers to the Detailed_Lithology from Lithology Code workflow matches to a 

Lithology_Subgroup in the Comments workflow. 

e) Narrow Match is the logical equivalent of a Broad Match. In this case, the Comments workflow resulted in a 

Detailed_Lithology level while the Lithology Code workflow resulted in a Lithology_Subgroup 440 

level. 

f) Broader Match is similar to a broad match except that the Detailed_Lithology from Lithology Code 

workflow matches to a Lithology_Group instead of a Lithology_Subgroup in the Comments 

workflow. 

g) Narrower Match is the logical equivalent of Broader Match. The Comments workflow results to a 445 

Detailed_Lithology while the Lithology Code workflow results to a Lithology_Group level. 

h) Failed Match suggests all levels of both workflows do not match. This is usually attributed to contrasting 

information from both fields or the algorithm fails. This category is an addition to the SKOS reference. 

 

For better understanding of these relationships, examples are shown in Table 2 and Fig 7. 450 
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Table 2. Fuzzy string matching terminology used to describe the quality of matches based on the Simple Knowledge Organization 
System  (SKOS)  (Miles and Bechhofer, 2009). The values being compared are the Detailed_Lithology level for both Lithology 
Code workflow and Comments workflow . The level at which the records are considered to match are in bold. A Match retrieves 455 
an answer from the fuzzy string matching with a score greater than 80. An Exact Match suggests that both workflows resulted in 
the same classification at all 3 levels. A Close Match suggests that the results at the Detailed_Lithology level are related rocks 
and belong to the same Lithology_Subgroup. A Related Match suggests that the results at the Detailed_Lithology level 
are related rocks and belong to the same Lithology_Group. A Broad Match refers to the Detailed_Lithology from 
Lithology Code workflow matches to a Lithology_Subgroup in the Comments workflow. Narrow Match is the logical 460 
equivalent of a Broad Match. Broader Match is similar to a broad match except that the Detailed_Lithology from Lithology 
Code workflow matches to a Lithology_Group instead of a Lithology_Subgroup in the Comments workflow. Narrower 
Match is the logical equivalent of Broader Match. A Failed Match suggests all levels of both workflows do not match.  

Lithology 
Code 
Workflow: 
Detailed_ 
Lithology 

Comments 
Workflow: 
Detailed_ 
Lithology 

Lithology 
Code 
Workflow: 
Lithology_ 
Subgroup 

Comments 
Workflow: 
Lithology_ 
Subgroup 

Lithology 
Code 
Workflow: 
Lithology_ 
Group 

Comments 
Workflow: 
Lithology_ 
Group 

Type of 
Match 

basalt  basalt          Exact 
Match 

basalt  basaltoid 
mafic fine 
grained 
crystalline 

mafic fine 
grained 
crystalline 

    Close 
Match 

basalt  gabbro 
mafic fine 
grained 
crystalline 

mafic coarse 
grained 
crystalline 

igneous  igneous  Related 
Match 

basalt 
mafic fine 
grained 
crystalline 

mafic fine 
grained 
crystalline 

mafic fine 
grained 
crystalline 

    Broad 
Match 

mafic fine 
grained 
crystalline 

basalt 
mafic fine 
grained 
crystalline 

mafic fine 
grained 
crystalline 

    Narrow 
Match 

basalt  mafic 
mafic fine 
grained 
crystalline 

mafic  igneous  igneous  Broader 
Match 

mafic  basalt  mafic 
mafic fine 
grained 
crystalline 

igneous  igneous  Narrower 
Match 

basalt  sandstone 
mafic fine 
grained 
crystalline 

clastic  igneous  sedimentary  Failed 
Match 
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 465 

 

Figure 7. SKOS graph showing the semantic, associative and hierarchical relationship in the Lithology Hierarchical Thesaurus. In 
this example, terms “basalt” and “alkali basalt” are judged to be sufficiently the same to assert an Exact Match relationship (in 
green). “basic volcanic rock” however is considered a Close Match (in cyan) and “gabbro” a Related Match (in blue). “mafic fine 
grained crystalline” and “mafic coarse grained crystalline” are broader concepts, thus considered a Broad Match (in orange) to 470 
“basalt” and “gabbro” respectively. Broader Match (in brown) are similar to Broad Matches but are used to refer a wider semantic 
difference between the two concepts. Narrow Matches (in light purple) and Narrower Matches (in dark purple) are the logical 
equivalent of Broad Match and Broader Match. Failed Matches is used to describe unrelated matches. 

 

The matching results can be visualized as confusion matrices, which are typically used in machine learning to compare the 475 

performance of an algorithm versus a known result. In this case, we are comparing the performance of the string matching 

using the Comments workflow against the results from the Lithology Code workflow. Each row of the matrix represents 

the matched lithology from the Comments workflow while each column represents the matched lithology from the 

Lithology Code workflow. The diagonal elements represent the count for which the Comments workflow class is equal 

to the Lithology Code workflow. The off-diagonal elements are those that are misclassified by the Comments workflow. 480 

The higher the diagonal values of the confusion matrix the better, indicating many correct matches. The confusion matrices 

show normalisation by class support size. This kind of normalisation addresses the class imbalance and allows better visual 

interpretation of which class is being misclassified. The color of the cell represents the normalised count of the records to 

address the uneven distribution of records across different classes. Relying on one metric to assess the matching can be 

misleading, therefore, we would like to use four metrics: accuracy, precision, recall and F1 score. It is worth mentioning that 485 

a small support influences the precision and/or recall. However, this is the nature of using real-world geological logs as more 

detail is given to particular lithologies or areas depending on the interest of the study. 
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3 Case Study: Yalgoo-Singleton Greenstone Belt 

3.1 Study Area 490 

In this paper, we demonstrate the application of dh2loop to data from the Yalgoo-Singleton greenstone belt (YSGB) (Fig. 8), 

a geologically complex, largely heterogeneous and highly mineralized arcuate granite-greenstone terrane, in the western 

Youanmi Terrane, Yilgarn Craton in Western Australia (Anand and Butt, 2010). The YSGB has good range of different 

lithologies in the area. Igneous rocks occur as extensive granitoid intrusions emplaced between 2700 and 2630 Ma (Myers, 

1993), as well as ultramafic to mafic volcanic rocks formed as extensive submarine lavas and local eruptive centres of felsic 495 

and mafic volcanic rocks. Some layered gabbroic sills intruding the greenstone are also observed. Sedimentary rocks formed 

in broad basins during tectonic and volcanic quiescence consist of mostly banded iron formation (BIF) and felsic volcaniclastic 

rocks. The greenstone belt is metamorphosed to greenschist facies (Barley et al., 2008). The area is also covered by deeply 

weathered regolith which conceals mineral deposits hosted by the underlying bedrock. Regolith contains signatures of 

mineralisation that are distal signatures of possible economically significant deposits (Cockbain, 2002). Furthermore, the 500 

YSGB is a major target for exploration as it has considerable resources of gold, nickel, bauxite, as well as lesser amounts of a 

wide range of other commodities (Cockbain, 2002). It hosts multiple mineral deposits ranging from volcanogenic massive 

sulphide (Golden Grove, Gossan Hill), orogenic gold (Mt. Magnet), banded iron formations (Mount Gibson, Karara, Extension 

Hill). The geological and structural complexity, including its relevance to mineral exploration makes the YSGB a reasonable 

and sensible area to test the dh2loop thesauri, matching and upscaling. 505 
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Figure 8. The map shows the Yalgoo-Singleton greenstone belt highlighting the different mines and prospects in the area. The inset 
map shows the heterogeneous distribution and drill hole density from the legacy data available from the WAMEX database. 
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3.2  Data Extraction Results 510 

3.2.1 Collar 

Extraction of the collar data for YSGB resulted in a collar file with 68,729 drill holes (Fig. 9). This information is extracted 

from the collar table with 73,881 drill holes with 769,981 rows of information from collarattr. It includes the location 

of the collar both in geographic and projected coordinated systems, relative level (RL) and maximum depth (MaxDepth). A 

total of 136,100 records for RL are retrieved from the database, 1,526 of which are disregarded: 846 records for having an RL 515 

value greater than 10,000 meters and 680 non-numeric records.  These discarded values are retrieved from the attribute column 

“RL_Local”. In spite of it being an isolated issue for “RL_Local”, the attribute column is retained as it is retrieved sensible 

values for other companies. The discarded values are limited to data from two companies (4085, 4670) for RL attribute columns 

“TD” and “DEPTH”. A total of 58,706 records for MaxDepth are retrieved from the database: 58,642 of which are extracted 

as is, while 64 entries are disregarded for having a value of -999. The discarded values come from 8 companies. Null values 520 

are disregarded and absent RL or MaxDepth values. The “clean” collar export file contains at least either a value for RL or 

MaxDepth. The reasoning behind keeping records with at least one of the two field is there are other ways to extract for RL 

or MaxDepth from the database. RL values can be extracted from digital terrain models and MaxDepth values can be taken 

for the largest ToDepth values from the other tables. 

 525 

 

Figure 3. Extraction of the collar, survey and lithology data for the YSGB. The collar extraction resulted in a collar file with 68,729 
drill holes from the collar table with 73,881 drill holes with 769,981 rows of information from collarattr. A total of 136,100 
records for RL are retrieved from the database, 1,526 of which are disregarded: 846 records for having an RL value greater than 
10,000 meters and 680 non-numeric records.  A total of 58,706 records for MaxDepth are retrieved from the database: 58,642 of 530 
which are extracted as is, while 64 entries are disregarded for having a value of -999. The “clean” collar export file contains at least 
either a value for RL or MaxDepth. Survey extraction in YSGB resulted in 126,669 survey depth information across 45,708 drill 
holes. The dhsurvey table contained 146,713 survey depth intervals (from 45,708 drill holes) with corresponding 850,507 entries 
of supplementary survey information in dhsurveyattr. 77 Azimuth values greater than 360 and 152 values are non-numeric 
values. Lithology extraction is divided into two workflows. For the Lithology Code workflow, the extraction starts with filtering 535 
the dhgeology and dhgeologyattr table by the location extents and the Drill Hole Lithology Thesaurus. The dhgeology table 
contained 47,062 drill holes across 115 companies with 797,975 lithology depth intervals with corresponding 820,612 entries of 
lithology information in dhgeologyattr. These records are matched with the entries from the Lithology Code thesaurus resulting 
to 273,684 matched records. The FromDepth and ToDepth for these records are then validated. 74 records had equal FromDepth 
and ToDepth values. 654 had values for FromDepth but null values for ToDepth. For both cases, ToDepth is calculated as 540 
FromDepth+0.01. The Lithology Code workflow resulted to 273,684 intervals across 12,793 drill holes wherein 235,606 records 
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are successfully matched in the fuzzy string matching. The Comments workflow extracts the records from the dhgeology and 
dhgeologyattr table as well, but this time using the Drill Hole Comments Thesaurus (262,567 records across 22,766 drill holes 
with free text descriptions). 47,823 records are present in both workflows, 7,870 records of which are successfully matched. The 
3,074 unique entries from this is used as the dataset for the fuzzy string matching assessment. 545 

3.2.2 Survey 

For the survey extraction, the dhsurvey table contained 146,713 survey depth intervals (from 45,708 drill holes) with 

corresponding 850,507 entries of supplementary survey information in dhsurveyattr (Fig. 9). Survey extraction in YSGB 

resulted in 126,669 survey depth information across 45,708 drill holes with azimuth (-52.5 to 359) and inclination 

measurements (0-90) for each depth interval. A total of 517,592 records for Azimuth are retrieved from the database. 77 550 

Azimuth values greater than 360 are retrieved and thus disregarded. 152 values are non-numeric values and are also 

disregarded.  These discarded values involved 228 holes across 10 companies. A value of 0 is assigned to missing Azimuth 

values. A total of 118,223 records for Inclination are fetched from the database, 118,138 of which are extracted as is, 

while 95 entries are disregarded for having a value greater than 90. A values of -90 is assigned as the default for 

Inclination. The discarded values correspond to 94 drill holes across 5 companies. 555 

 

3.2.3 Lithology: Lithology Code Workflow and Comments Workflow 

Lithology extraction is divided into two workflows. For the Lithology Code workflow, the extraction starts with filtering 

the dhgeology and dhgeologyattr table by the location extents and the Drill Hole Lithology Thesaurus. The 

dhgeology table contained 47,062 drill holes across 115 companies with 797,975 lithology depth intervals with 560 

corresponding 820,612 entries of lithology information in dhgeologyattr.  These records are matched with the entries 

from the Drill Hole Lithology Codes Thesaurus resulting to 273,684 matched records. The FromDepth and ToDepth for 

these records are then validated. 74 records had equal FromDepth and ToDepth values. 654 had values for FromDepth 

but null values for ToDepth. For both cases, ToDepth is calculated as FromDepth+0.01. The cut-off value of 80 is used 

for the string matching based on the performance of the matching on a subset of 1,548 unique lithology codes from the Golden 565 

Grove area (Fig. 10). The Lithology Code workflow resulted to 273,684 intervals across 12,793 drill holes wherein 235,606 

records are successfully matched in the fuzzy string matching. The remaining 546, 819 entries did not obtain a match with a 

score greater than 80. An example of unmatched entries is provided in Table 2. 

 

 570 
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Figure 10. The user-defined cut-off score of 80 is chosen based on the results of the testing different cut-offs on a smaller dataset 
within the YSGB area.  As seen in this figure, the number of exact matches plateau at a score of 80. This relationship may vary 
depending on the datasets available in the area. Thus, this cut-off value is user-defined and is best to test the matching performance 575 
on a subset in the user’s area.  The number of exact matches plateau at a score of 80 giving a realistic cut-off and avoids an overly 
stringent threshold of 100, where useful matches may not be captured. 

 

The Comments workflow extracts the records from the dhgeology and dhgeologyattr table as well, but this time 

using the Drill Hole Comments Thesaurus. For YSGB, the database has 262,567 records across 22,766 drill holes with free 580 

text descriptions. 47,823 records are present in both workflow. Since the free text descriptions are extracted here to compare 

their results from fuzzy string matching, only 7,870 records that also matched (both have a score greater than 80) in the 

Lithology Code workflow are retained. 

 

3.3 Fuzzy String Matching Results 585 

We present results from the data extraction using both workflows: Lithology Code and Comments. The dataset for the 

fuzzy string matching assessment consists only of the unique records matched on both Lithology Code workflow and 

Comments workflow (3,074 records). It is visually checked from the records that the Lithology Code workflow: 
Detailed_Lithology results are sound classifications of the Company_Litho. This is done to make sure that these 

results could be considered as the “true value” in the fuzzy string matching assessment. The overlaps between these two 590 

workflows suggest that the user may need to make choices to identify which is better suited for matching in their area of 

interest. To better understand the difference between these results, we looked at the matching overlaps between the two 

workflows (3,074 entries). These matching overlaps are used to compare and describe the fuzzy string matching using the 

decoding the Company_LithoCode and using Comments.  

 595 

We also take a look at the unique combinations of Company_LithoCode, Company_Litho, Lithology Code 

workflow:  Detailed_Lithology and Comments workflow: Detailed_Lithology (53 unique records from 

the 3,074 records). 34 out of the 53 unique entries (64%) result to matches between the Lithology Code Workflow: 

Detailed_Lithology and Comments Workflow: Detailed_Lithology. 26 of which are Exact Matches, 19 
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unique entries are Close Matches and 26% percent are Failed Matches. The Failed Matches are due to unrelated descriptions 600 

in the Comments field which is used to obtain the results in Comments Workflow: Detailed_Lithology. An example 

of this is the interval is logged as “ironstone” (Company_Litho) but Comments contains “mafic schist”. Another less 

common reason is the Company_LithoCode is repeated in the Comments. An example of this is would be an interval 

logged as “colluvium” and the Comments as “COL”. The Comments workflow will result to “coal” instead. 

Exact Matches: Of the total matched entries, 944 are Exact Matches (31%) (Table 2). The Exact Matches are ideal outcomes 605 

as both workflows resulted in exactly the same answers.  

 

Close Matches: The Close Matches are common for coarse-grained igneous rocks, clastic sedimentary rocks, surficial residual 

rocks and filling structures. The coarse-grained igneous rocks such as gabbro, gabbroid and dolerites are used interchangeably 

in both fields. Comments can contain terminologies such as “gabbroic”, “granophyric gabbro to dolerite”, “intrusive granitoid 610 

to gabbro” resulting to close matches. Similar cases are observed between granodiorite and granite and between peridotite and 

coarse-grained ultramafic rocks. For clastic sedimentary rocks, the Close Matches are a result of gradation of grain size in the 

Comments. For example, an interval logged as mudstone (Company_Litho) is then described in Comments as “mudstone 

to sandstone” or “intercalated with siltstone”. Comments entries like this will result in “sandstone” and “siltstone”, 

respectively. Both clastic sedimentary rocks but not an Exact Match to mudstone. Metasediments and quartz veins occur 615 

together and what is described last dictates the Detailed_Lithology classification. Surficial rocks such as soil, duricrust, 

colluvium, laterite, calcrete, ferricrete and cover are used loosely or occur together resulting to multiple combination of these 

Close Matches. 

 

Related Matches: 60 entries (3%) resulted in related matches. For igneous rocks, this result is observed when Comments use 620 

rock type descriptors such as “komatitic”, “basaltic” and “doleritic”. An example would be an interval logged as dolerite and 

is then described in Comments as “dolertic basalt”. This would result in dolerite in the Lithology Code workflow and 

“basalt” in the Comments workflow. Both lithologies are igneous, however have different composition and textural 

implications. For sedimentary rocks, Lithology Code workflow results to sedimentary rocks classified based on grain size 

as they have been logged (“gravel”, “mud”). The comments contains compositional descriptions such as “with silcrete” or 625 

“minor chert”. In this case, the Comments workflow will result in “silcrete” and “chert”. Both workflows will result in 

sedimentary rocks, but the Lithology Code workflow will result in “clastic” rocks while the Comments workflow will 

classify these to “siliceous” at the Lithology_Subgroup level. The related matches for structures occur across coincident 

lithologies such as “mylonite”, “vein”, “fault” and “breccia” which could either be “fillings” or “fault_rock” at the 

Lithology_Sugbroup. 630 

 

Broad and Narrow Matches: No broad matches are noted and only one narrow match is obtained (Table 3). The interval is 

logged as “ironstone” with “BIF” in comments, “ironstone” being a more general description for “banded iron formation”.  

 

Broader and Narrower Matches: More common cases are Broader and Narrower Matches indicate that there is a bigger 635 

relationship gap between the data in Company_Litho and Comments. Broad matches are a result of low detail free text 

descriptions in Comments. For example, an interval logged as “gabbro” is described as “medium-grained mafic”, “massive 

mafic”, “rich mafic”. The inverse is noted for narrower matches, the interval is logged as “sediment” but in Comments the 

interval is described as “siliceous sediments”. 

 640 
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Failed Matches: 1,694 entries resulted in Failed Matches (55%).  Failed Matches occur when Company_Litho and 

Comments contain different information. This could be because the Company_Litho contains the main lithology while 

Comments contains all other lithologies intercalated in the interval. Another reason is the Company_Litho is relogged 

based on adjacent intervals without amending Comments. “Mudstone” had failed matches with a wide range of lithologies, 

such as: “amphibolite”, “dolerite”, “saprolite”, “duricrust”, “laterite”, “banded iron formation”, “chert”, “phyllite”, “schist”, 645 

“vein”.  The same is observed for igneous rocks such as: “coarse-grained-ultramafic-rock”. For “chert”, the failed matches are 

within a range of sedimentary rocks: “alluvium” and “mud”, “amphibolite” and “massive sulphide”, “carbonate”, “vein”, 

“pegmatite”. 

 

Table 3. Distribution of matches across the Fuzzy String Matching Dataset. A total of 45% of the unique records are matched 650 
reasonably, 31% of which are Exact Matches, 6% Close Matches, 3% Related Matches, 3% Broader Matches and 3% Narrower 
Matches. 

Type of Match Number of Entries Percent 

Exact Match 944 31% 

Close Match 197 6% 

Related Match 60 3% 

Broad Match 0 0% 

Narrow Match 1 0% 

Broader Match 84 3% 

Narrower Match 95 3% 

Failed Match 1694 55% 

TOTAL 3,074 100% 

 

The matching results are visualized as confusion matrices, comparing the performance of the string matching using the 

Comments workflow against the results from the Lithology Code workflow. From the 3,074 unique records, we use a 655 

total of 1,200 samples for the confusion matrices. The reason for this difference is the limitation of building a confusion matrix 

wherein both workflows look at the same classes, and ensuring that both workflows produce a match.  

 

3.3.1 Structure and Texture 

While geological structures are not lithologies, they are sometimes described in lithological logs (Fig 11).  Structures common 660 

in the YSGB area are faults and veins. Figure 11 shows the confusion matrix for the structures and textures. The vertical axis 

represents the matches from the Lithology Code workflow while the horizontal axis for the results from the Comments 

workflow.  We consider a dataset of 52 unique records where we are trying to assess if the Comments workflow results 

to the same classification as the Lithology Code workflow.  Figure 11 shows that there are 6 records classified as “fault” 

and 46 records as “vein”. When looking at the classification of “faults” we can say that there are 2 records that are true positives. 665 

46 records are true negative pairs, as in this 2x2 matrix, if it is not a “fault”, it is a “vein”. True negatives together with true 

positives are the Exact Matches and suggests that the Comments workflow identified it correctly. To have a better look at 

the parts that are not classified correctly we look at the false positives and false negatives. False positives represent the number 

of records classified as “fault” but based on the Lithology Code workflow are not. In this case, there are no false positive 

values. False negatives represent number of records classified as “vein” but are actually “faults” based on the Lithology 670 

Code workflow. 
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A total of 48 Exact Matches are noted, 46 records of which are “veins” and 2 records are “faults”. This can be surmised by 

looking into the diagonal cells. The rest of the “veins” (4 records) are Related Matches as “faults”. They are considered Related 

Matches as faults and veins tend to coexist in nature. In addition, faults often occur as fault zones, with infill clay or silica vein 675 

sulphides which are described in Comments that then obscures the classification. These structure-related lithological 

descriptions can be used as proxies in further geological studies. 

 

Figure 4. Confusion matrix for structure and texture comparing the fuzzy string matching results from the Lithology Code 
workflow (vertical axis) and Comments workflow (horizontal axis). The heatmap shows the values normalised to the support size 680 
to address the imbalance between classes. The values shown in the cells indicate the number of samples classified for the class. Empty 
cells indicate zero samples. The Structures and Texture Lithology_Group had an accuracy of 92.3% across 52 samples, 46 for 
veins and 6 for faults. 

3.3.2 Igneous Rocks 

The confusion matrix for igneous rocks considers a dataset of 218 unique records (Fig 12). Dealing with a larger matrix is not 685 

as straight-forward as the previous matrix. When looking at the classification of a single lithology, the true positives are where 

both axes refer to the same class. For example, for “basalt” there are 15 records of true positives which correspond to the Exact 

Matches. The false positives are the sum of all the other entries along the corresponding vertical axis and the false negatives 

are the sum of all the entries along the corresponding horizontal axis. The sum of all the other cells represent the true negatives. 

For “basalt”, there are 15 true positives, 13, false positives, 15 false negatives and 175 true negatives. This results to 54% 690 

classification precision for “basalt”. 

 

This statistic is helpful in quantifying the performance of the classification. However, what it does not capture is the semantic 

and hierarchical relationship of the false negative pairs. As shown in Figure 12, 3 records are classified as “komatiite” and 12 
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records are classified as “mafic”. The “komatiite” matches are a result of when Comments describe the basalts as “komatiitic 695 

basalts”. This can be considered as a Related Match. The 12 records which are classified as “mafic: are considered “Broader 

Match”. For the false positive values, the “mafic” records are Narrower Matches while the “dolerite” is a Related Match. These 

quantitative assessment of the matches show us that although the matching is not perfect, the context of the misclassification 

is not severe.  

 700 

“Dolerite” is the most common igneous rock matched. This could be attributed to the sampling bias towards dolerite as it is 

often targeted by drilling as they are used as targeting criteria for gold mineralisation (Groves et al., 2000). Given that dolerites 

can be described by their mafic component or be confused as gabbro when weathered, the descriptions contain strings “mafic” 

and “gabbro” which explain Close and Broader Matches. Gabbros are also common in the YSGB. Some of the “gabbros” are 

classified as “mafic” in the Comments Detailed_Lithology. This is another example of a Broader Match. However, 705 

it is important to note that although it is not an Exact Match, a Broader Match can be useful in geological studies relating to 

rock composition as gabbros are members of mafic rocks. 40% of the igneous rock that are mismatched at the 

Detailed_Lithology level are Broader Matches (matches correctly at Lithology_Group).  
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Figure 5. Confusion matrix for igneous rocks comparing the fuzzy string matching results from the Lithology_Code workflow 710 
(vertical axis) and Comments workflow (horizontal axis). The heatmap shows the values normalised to the support size to address 
the imbalance between classes. The values shown in the cells indicate the number of samples classified for the class. Empty cells 
indicate zero samples. The accuracy is 59.6%, with a weighted average precision of 66% and recall of 60%. These results are taken 
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from a subset of 218 samples across 8 classes. “Coarse-grained-ultramafic-rock” has a precision of 1 that implies there are no False 
Positives. 715 

3.3.3 Sedimentary Rocks 

The largest Lithology_Group of the lithological entries relates to sedimentary rocks (800 entries) (Fig 13). 457 of the 

800 entries are true positive classification of mudstones. Mudstones are common as shale beds. Mudstones resulted in Related 

Matches with “chert” and “ironstone”. The misclassification occurs when the logs describe intervals wherein the mudstone 

occurs together and is intercalated with these lithologies. A few mudstones (17) are matched as sandstone due to textural and 720 

grain-size descriptors (Close Match). 48% of the cherts are resulted in Exact Matches. 39 records of cherts resulted in Failed 

Matches as their Detailed_Lithogy level matched with “banded iron formation”, it occurs when intercalated together 

such as “cherts with BIF” or as include string descriptors such as “BIF-fy”. 

 

Figure 6. Confusion matrix for sedimentary rocks comparing the fuzzy string matching results from the Lithology Code workflow 725 
(vertical axis) and Comments workflow (horizontal axis). The heatmap shows the values normalised to the support size to address 
the imbalance between classes. The values shown in the cells indicate the number of samples classified for the class. Empty cells 
indicate zero samples. The accuracy is 73.9%, with a weighted average precision of 82% and recall of 74%. These results are taken 
from a subset of 800 samples across 7 classes.  
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 730 

3.3.4 Metamorphic Rocks 

Out of a total of 61 metamorphic rock entries, 60 are matched correctly (Fig 14). Most of these are “schists” as the YSGB area 

is rich in talc-carbonate schists. The Company_Litho entry “amphibolite mica schist” which is matched as “amphibolite” 

matches as “schist” in the Comments workflow. This is considered a Related Match.  

 735 

 

Figure 7. Confusion matrix for metamorphic rocks comparing the fuzzy string matching results from the Lithology Code 
workflow (vertical axis) and Comments workflow (horizontal axis). The heatmap shows the values normalised to the support 
size to address the imbalance between classes. The values shown in the cells indicate the number of samples classified for the class. 
Empty cells indicate zero samples. The accuracy is 98.4%, with a weighted average precision of 98% and recall of 98%. These 740 
results are taken from a subset of 61 samples across 4 classes. 
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3.3.5 Surficial Rocks 

Fuzzy string matching accuracy of surficial rocks scored a 45% on a total of 69 entries (Fig 15).  Saprolites are matched as 

saprolite (Exact Match), rock (Failed Match) and saprock (Close Match). In instances where saprock is inputted as “sap rock”, 

it results to a failed match as “rock”. “Soil” is commonly used in logs to refer to the first intercept of highly weathered, clay-745 

rich and unidentifiable intercept. “Soil” is classified with the highest variability of terms: “soil” (Exact Match), “rock” (Failed 

Match), “duricrust” (Close Match), “colluvium” (Related Match) and “calcrete” (Close Match).  “Laterite” is matched to 

“colluvium” (Related Match), “duricrust” (Close Match) and “lag” (Close Match). “Lag” generally matches with “colluvium: 

(Related Match). However, when described in Comments, it can be associated with its protolith which results into a Failed 

Match as “rock”. 750 

 

Figure 8. Confusion matrix for surficial comparing the fuzzy string matching results from the Lithology Code workflow 
(vertical axis) and Comments workflow (horizontal axis). The heatmap shows the values normalised to the support size to 
address the imbalance between classes. The values shown in the cells indicate the number of samples classified for the class. Empty 
cells indicate zero samples. The accuracy is 44.9%, with a weighted average precision of 57% and recall of 45%. These results are 755 
taken from a subset of 69 samples across 9 classes. 
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4 Discussion 

4.1 dh2loop Functions and Notebooks 

The dh2loop library supports a workflow that extracts, processes and classifies lithological logs (Appendix A4). This library 

is built to extract drill hole logs from the WAMEX database. The assumptions made in the entire workflow attempts to replicate 760 

the thought process of a geologist performing the data extraction, data quality checks and lithological log classification 

manually. However, it can be adapted for other geological relational databases or from other table formats. An example using 

comma separated values tables (CSVs) is shown in the notebook: Exporting and Text Parsing of drill hole Data Demo. 

 

In addition to the data extraction, downhole desurveying and lithological matching functions discussed, dh2loop also provides 765 

functionalities and a notebook demonstrating harmonization of drill hole data. This is useful for combining and correlating 

drill hole exports of different properties such as lithology, assays and alteration. It is also possible to export this information 

in Visualization Toolkit format (.VTK). It also provides a notebook that demonstrates the application of lasio and striplog on 

dh2loop interval table exports. WAMEX reports can also be interactively downloaded through a notebook provided in the 

package. 770 

4.2 Thesauri 

dh2loop provides the user with 9 thesauri that deal with the extraction of collar, survey and lithology interval tables. For 

extraction of other properties, such as downhole alteration, geochemistry, mineralogy and structures, at least one thesaurus is 

needed for each attribute we would like to export. These thesauri are built manually by inspecting all the terminologies 

available in the database. Although, creating them can be tedious, updating an existing thesaurus is as simple as adding and/or 775 

removing a word to the list. There are many other properties available in the database that could be exploited using the existing 

methodology, thus there is an incentive in finding a way to improve the methodology of building these thesauri. Analysis on 

the syntax of the existing thesauri may help in automating creation of other thesauri. 

 

The Hierarchical Lithology thesaurus puts equal weight on each of the entries in the thesaurus. Knowing the geology in a 780 

user’s area, the matching can be improved by adding more weight to prevalent lithologies through adding a bonus score.  

 

4.3 Data Extraction 

dh2loop supports data extraction of collar, survey and lithology interval tables. The main consideration in the data extraction 

is that the data retrieved is complete, relevant and useful. We would rather throw erroneous or questionable data out and have 785 

the rest with a high level of confidence, than the other way around. 93% of the available collar data in the area is extracted 

successfully. This can be improved by implementing alternative ways for retrieving RL and MaxDepth values. For example, 

if no RL values are fetched from the database, it could be fetched from open-source digital terrain models (DTM) and/or SRTM 

(Shuttle Radar Topography Mission). As for missing MaxDepth values, the maximum ToDepth values in the survey and/or 

interval tables could be used. 790 

 

The survey extraction rate of 86% is fairly good. dh2loop ensures that the Azimuth and Inclination values are sensible 

measurements before including them into the extracted output file. An improvement that could be implemented is to run an 

assessment on the deflection angles for each drill hole and flag intervals with unrealistic deflection angles.  

 795 

The lithology extraction using the Lithology Code workflow shows that the bottle neck to its extraction rate is the 

extensiveness of the Drill Hole Lithology Codes Thesaurus. Since the thesaurus did not have the information for all companies 
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in the area, only 34% of the available information is retrieved. The extraction results for the Comments workflow cannot 

be compared with the Lithology Code workflow as only the intersection of both workflows is considered in this study. 

 800 

4.4 Assessment of String Matching Results 

The number of successful matches are dependent on the selected cut-off score. The selection of a cut-off score is a balance 

between the number of matched records and the exact match percentage. In this case study, we selected a cut-off score of 80 

since this is where the number of exact matches plateaus (Fig. 10). A lower cut-off score could be used, depending on the 

familiarity to the data and/or purpose of drillhole processing. For our case, we wanted to be as conservative as possible without 805 

being too stringent (cut-off score 100). 

 

The string matching results highlights that geological drill core logging is prone to human error and bias, and result to incorrect 

logs. Sometimes even if the data is available and correct, it is not in format that can be directly extracted. For example, 

Comments are filled with a string description such as “same as above” and “-do-“. Currently, for this case, dh2loop returns 810 

without a match, as replacing “same as above” requires building a dictionary for all possible permutations to refer to this. This 

is not included in the scope of this work. In the future, we could be able to search through the previous entries to retrieve the 

correct lithology. Furthermore, the code does not handle and check for inconsistencies in the logs. It only addresses the 

inconsistencies in nomenclature and not the logging itself. The string matching misclassification results illustrate that 

importance in the consistency and level of detail being put into logging and identifies differences in convention or 815 

uncoordinated logging among geologists. dh2loop provides a notebook that demonstrates using striplog to improve the 

consistency of the logs through data pruning and annealing. In the future, the geochemical compositions can be used to counter 

check and lithology assigned to the interval.  

 

Comparing the string matching between the Lithology Code workflow and Comments workflow, the Lithology code 820 

workflow results to a higher matching rate, 86% of the extracted data is successfully matched.  Comparing this subset to the 

Comments workflow, the matching rate is much lower at 16%. This shows that the Lithology Code workflow, while 

potentially tedious, results into a higher percentage of successful matches. However, if we are considering a regional study 

involving multiple companies and drilling campaigns, building thesauri can be time-consuming depending on the size of the 

region being studied, number of attributes of interest, number of companies and drilling campaigns. This could range from a 825 

couple of hours to months. It can also be tedious as it involves inputting errors and inconsistencies as well as exhausting all 

permutations for decision-tree based logging systems. The thesauri provided by dh2loop could serve as a starting point to 

automate this process using recent advances in NLP and machine learning. 

 

String matching using Comments provides a quicker way to standardize and classify rocks. The comprehensive Clean-up 830 

Dictionary allows assists in improving the matching accuracy. Given the context that we are dealing with legacy data, an 

extraction rate of 16% Although it is a low extraction rate, there is value in being able to obtain 7,870 records more than what 

is previously deemed “unusable“. With minimal effort, we obtain additional geological data wherein, although of a smaller 

percentage (31% of Exact Matches) but with reasonably high confidence in its quality. It is important to note that most of the 

time Failed Matches are not a result of the limitations of the algorithm but of the legacy geological logs itself. Inconsistent 835 

logs (Company_Litho data is different from Comments) usually occur when: 

1. The logs are post-processed and correlated with the rest of the hole or neighbouring drill holes and changes are 

made to the Company_Litho but none on the Comments field.  
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2. The Comments would have more level of detail than the Company_Litho. In this case, we may get a lithology 

at Lithology_Subgroup from the Lithology Code workflow and a Detailed_Lithology from the 840 

Comments workflow.  

3. The Company_Litho would have more level of detail than the Comments 

4. Comments contains the description of the whole intercept, which could include a contact of two lithologies or 

intercalating lithologies. 

 845 

From the results of the confusion matrix (Sect. 3.4), some rock groups are more sensitive to these inconsistencies than others. 

There is higher confidence in the classification of structures and textures and metamorphic rocks in the study area dataset, not 

necessarily in others. There could be metamorphic-dominated terranes where the subordinate igneous rocks will be classified 

with higher confidence. The user should be more careful when dealing with sedimentary and surficial rocks. They are more 

difficult to classify as the way they are described are highly variable between different geologists. For structure-related 850 

lithological descriptions the small number of misclassifications occur where faults, veins and fillings coexist. For metamorphic 

rocks, entries like “mica amphibolite schist” can cause Broader Matches with the confusion of whether to classify it as 

“amphibolite” or “schist”. “Schist” is a textural term of medium grade metamorphic rock with a medium to coarse-grained 

foliation defined by micas while “amphibolite” is a compositional term representing a granular metamorphic rock which 

mainly consists of hornblende and plagioclase. One should be wary about these possibilities as they may impact the 855 

interpretation of the geology in the area. For sedimentary rocks, descriptions of intercalated lithologies or presence of major 

and minor lithology can result to Failed Matches. The lack of a standard syntax as to how free text descriptions are recorded 

impacts the classification. This procedure provides a basis for creating a pre-standard. Not so much providing a guide of 

practice but highlighting what should not be done and what practices create ambiguity.  Standardization will definitely reduce 

subjectivity and is for the geological surveys to decide and implement. It is also important to note that a “standard” would be 860 

tricky to achieve as the information and level of detail contained in logs is highly dependent on the purpose of the study. 

Igneous rocks perform fairly well, most of what is not captured as Exact Matches are captured at least as Broader Matches. 

These are usually related to either an inconsistent level of detail between the fields or rock types used as descriptors 

(“komatiitic”, “andesitic”, basaltic”). 

 865 

Low matching accuracy in surficial rocks can be attributed to the lack of universally agreed terminology for: deeply weathered 

regolith; poorly-defined and misapplied surficial rock nomenclature; wide range and variation of materials within the regolith 

and; difficulty in bulk mineral identification from macroscopic samples. Furthermore, since the degree of weathering of 

minerals generally increases from the bottom to the top of in-situ weathering profiles, the intermixing of strongly weathered 

and less weathered grains may cause confusion (Cockbain, 2002). Ubiquitous, highly variable and less interesting lithologies 870 

also cause mismatches. An example of this is “soil”. Soils are technically are not rocks but is commonly used in logs to refer 

to the first intercept of the regolith or to describe highly weathered, clay-rich and unidentifiable intercept. Soils vary in 

character from thin, coarse-grained, poorly differentiated lithosols to thick, well-differentiated silt and clay-rich soils. Soils are 

classified with the highest variability of terms: “soil”, “rock”, “duricrust”, “colluvium” and “calcrete”. There are also certain 

lithologies with ambiguous nomenclature conventions, like “laterite”, “duricrust”, “lag”. Some geologists use laterite to refer 875 

to the whole lateritic profile (ferruginous zone, mottled zone, and saprolite) while others to refer to the ferruginous zone 

(Eggleton, 2001). Ironcrust, duricrust, lateritic gravels and lag are commonly used interchangeably.  Duricrust and ironcrust 

are terms to describe ferruginous indurated accumulations at or just below the surface. The difference in usage of the term 

laterite and the interchangeability of duricrust and lag explains the misclassification of “laterite” to “colluvium”, “duricrust” 

and “lag”. Another example is “saprolite” and “saprock”. They are ambiguous terminologies as they both represent the lower 880 

horizons of lateritic weathering profiles, with saprolites having more than 20% of weatherable minerals altered and saprock 
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having less than 20% of the weatherable minerals being altered (Eggleton, 2001). This arbitrary limit makes the terminology 

used in the logs easily interchangeable, thus affecting the Detailed_Lithology matching. 

 

Ideally, a combination of the Lithology Code workflow and Comments workflow should result in a more robust 885 

classification. This will also allow the user to have a better look at the result of both workflows and decide what is appropriate 

for one’s purpose. 

 

4.5 Value of the Lithological Information Extracted for Multiscale Analyses 

The dh2loop lithology export provides a standardized lithological log across different drilling campaigns. This information 890 

can readily imported into 3D visualization and modelling software. This allows for drill hole data to be incorporated into 3D 

modelling, providing better subsurface constraints, especially at a regional scale. It also allows the user to decide on the 

lithological resolution necessary for their purpose. It provides a three-level hierarchical scheme: Detailed_Lithology, 

Lithology_Subgroup and Lithology_Group that  can be used as an  input  to multiscale geological modelling. 

dh2loop can be improved by correlating the these lithologies to their corresponding stratigraphic formations. Having the spatial 895 

extents of the different geological formations and their lithological assemblages (GSWA Explanatory Notes System) as well 

stratigraphic drill holes, it may be possible to infer the corresponding stratigraphic formation.  

5 Conclusions 

The dh2loop library is an open-source library that extracts geological information from a legacy drill hole database. This 

workflow has the following advantages: 900 

1. Maximizes the amount of legacy geoscientific data available for analysis and modelling.  

2. Provides better subsurface characterization and critical inputs to 3D geological modelling  

3. Standardizes geological logs across different drilling campaigns, a necessary but typically time-consuming and error-

prone activity 

4. Provides a set of complementary thesauri that are easily updated and are individually useful references  905 

5. Implements a hierarchical classification scheme that can be used as an input to multiscale geological modelling 

6. Classification results can also be used as a tool to improve future geological logging works by revealing common 

errors and sources of inconsistencies 

Code and Data Availability 

dh2loop is a free, open-source python library licensed under the MIT License. It is hosted on the GitHub repository 910 

https://github.com/Loop3D/dh2loop and can be cited as http://doi.org/10.5281/zenodo.4043568. 
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Appendix A: dh2loop package information 925 

A1 Conventions and Terminologies  

Convention  Usage in the paper  Description/Repository 
Python libraries are 
written in italics 

dh2loop  
fuzzywuzzy  Python package for fuzzy logic for string matching 

(Cohen, 2011)(Cohen, 2011)(Cohen, 2011)(Cohen, 2011)  
pandas Python package for data analysis and manipulation 

(McKinney, 2011)(McKinney, 2011)(McKinney, 
2011)(McKinney, 2011)  

psycopg2  Python package for PostgreSQL database adapter for 
python 

numpy  numpy 
nltk Python package for Natural Language Toolkit 
pyproj Python package for cartographic projections and 

coordinate transformations library 
Python functions are 
written in italics followed 
by an open and close 
parenthesis 

ratio () fuzzywuzzy functions 
partial_ratio () 
token_set_ratio () 
token_sort_ratio () 
partial_token_set_ratio () 

Database tables are 
written in Lucida Console 
Italics 

collar It contains main collar information 
collarattr It contains collar additional information 
dhsurvey It contains main survey information 
dhsurveyattr It contains survey additional information 
dhgeology It contains geology information 
dhgeologyattr It contains additional geology information 

Database table fields are 
written in Lucida Console 

CollarID It is the primary key from the collar table. It is the 
Unique ID field that identifies drill hole It is used to 
associate data in different tables with a single drill hole.  

HoleID This is the drill hole name as the company would 
internally identify the drill hole.  

Longitude The geographical longitude coordinate locating the collar 
of the drill hole. 

Latitude The geographical latitude coordinate locating the collar of 
the drill hole. 

CompanyID Unique ID field that identifies the company used 
DHSurveyID Unique ID field that identified unique drill hole and depth 

location 
Depth It refers to the downhole depth where the survey 

measurement is taken (meters) 
DHGeologyID Unique ID field that identified unique drill hole and depth 

interval 
FromDepth The start/from and end/to downhole depth values (meters) 
ToDepth The end/to downhole depth values (meters) 

Output fields are written 
in Lucida Console 

RL Relative Level refers to the Z coordinate of the collar 
location (meters). 

MaxDepth This refers to the maximum downhole length (meters) 
drilled for a drill hole, commonly referred as the end-of-
hole. 

X It is the calculated Northing (meters) 
Y It is the calculated Easting (meters) 
Z It is the calculated Z position (meters) 
Azimuth It is the trend direction indicated by an angle between 0-

360 degrees from the north going clockwise. 
Inclination It is the plunge angle of the drill hole relative to horizontal 

indicated by an angle between -90 to 90. It is measured 
from the horizontal plane, thus a positive value indicates 
an upward-directed drill hole and a negative value 
indicates a drill hole directed downwards. 
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Company_LithoCode This fetches the lithology codes that are typically three-
letter codes using the Drill Hole Lithology Thesaurus. 

Company_Litho This value is fetched by matching the CompanyID and 
Company_LithoCode to the Drill Hole Lithology 
Codes Thesaurus. 

Comments It is the free text descriptions from dhgeologyattr 
Detailed_Lithology This value is the lowest level lithology matched through 

fuzzy string matching.  
Lithology_Subgroup This value is the subgroup level lithology matched 

through fuzzy string matching.  
Lithology_Group This value is the highest/group level lithology matched 

through fuzzy string matching.  
Workflows are written in 
Century Gothic Bold 

Lithology Code workflow Workflow to decode Company_LithoCode 
Comments workflow Workflow to decode Comments 

Thesurus 
(https://github.com/Loop
3D/dh2loop/blob/master/
thesauri/) 

Drill Hole Collar Elevation Thesaurus https://github.com/Loop3D/dh2loop/blob/master/thesauri
/thesaurus_collar_elevation.csv 

Drill Hole Maximum Depth Thesaurus https://github.com/Loop3D/dh2loop/blob/master/thesauri
/thesaurus_collar_maxdepth.csv 

Drill Hole Survey Azimuth Thesaurus https://github.com/Loop3D/dh2loop/blob/master/thesauri
/thesaurus_survey_azimuth.csv 

Drill Hole Survey Inclination Thesaurus https://github.com/Loop3D/dh2loop/blob/master/thesauri
/thesaurus_survey_inclination.csv 

Drill Hole Lithology Thesaurus https://github.com/Loop3D/dh2loop/blob/master/thesauri
/thesaurus_geology_lithology.csv 

Drill Hole Comments Thesaurus https://github.com/Loop3D/dh2loop/blob/master/thesauri
/thesaurus_geology_comment.csv 

Drill Hole lithology Codes Thesaurus https://github.com/Loop3D/dh2loop/blob/master/Thesaur
i/thesaurus_geology_lithology_code.csv 

Clean-up Dictionary https://github.com/Loop3D/dh2loop/blob/master/thesauri
/thesaurus_cleanup.csv 

Lithology Hierarchical Thesaurus https://github.com/Loop3D/dh2loop/blob/master/thesauri
/thesaurus_geology_hierarchical.csv 
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A2 Installation and Dependencies 

Installing dh2loop can be done by cloning the GitHub repository with $ git clone https://github.com/Loop3D/dh2loop.git and 

then manually installing it by running the python setup script in the repository: $ python setup.py install 930 

 

It primarily depends on a number of external open-source libraries: 

1. fuzzywuzzy (https://github.com/seatgeek/fuzzywuzzy) which uses fuzzy logic for string matching (Cohen, 2011) 

2. pandas (https://pandas.pydata.org/) for data analysis and manipulation (McKinney, 2011) 

3. psycopg2 (https://pypi.org/project/psycopg2/), a PostgreSQL database adapter for python (Gregorio and Varrazzo, 935 

2018) 

4. numpy (https://github.com/numpy/numpy) 

5. nltk (https://github.com/nltk/nltk ), the Natural Language Toolkit is a suite of open source Python modules, data sets, 

and tutorials supporting research and development in Natural Language Processing (Loper and Bird, 2002). 

6. pyproj (https://github.com/pyproj4/pyproj), python interface to PROJ (cartographic projections and coordinate 940 

transformations library) 

 

A3 Documentation 

dh2loop’s documentation provides a general overview over the library and multiple in-depth tutorials. The tutorials are 

provided as Jupyter Notebooks, which will provide the convenient combination of documentation and executable script blocks 945 

in one document. The notebooks are part of the repository and located in the notebooks folder. See http://jupyter.org/ for more 

information on installing and running Jupyter Notebooks. 

 

A4 Jupyter notebooks 

Jupyter notebooks are provided as part of the online documentation. These notebooks can be executed in a local python 950 

environment (if the required dependencies are correctly installed). In addition, static versions of the notebooks can currently 

be inspected directly on the github repository web page or through the use of nbviewer.  

1. WAMEX Interactive report downloads 

(https://github.com/Loop3D/dh2loop/blob/master/notebooks/0_WAMEX_Downloads_Interactive.ipynb)  

2. Exporting and text parsing of drill hole data from PostgreSQL database 955 

(https://github.com/Loop3D/dh2loop/blob/master/notebooks/1_Exporting_and_Text_Parsing_of_Drillhole_Data_Fr

om_PostgreSQL.ipynb)  

3. Exporting and Text Parsing of drill hole Data Demo 

(https://github.com/Loop3D/dh2loop/blob/master/notebooks/2_Exporting_and_Text_Parsing_of_Drillhole_Data_D

emo.ipynb) 960 

4. Harmonizing drill hole data 

(https://github.com/Loop3D/dh2loop/blob/master/notebooks/3_Harmonizing_Drillhole_Data.ipynb) 
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