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Abstract. Here we present an update to the FaIR model for use in probabilistic future climate and scenario exploration, inte-

grated assessment, policy analysis and education. In this update we have focussed on identifying a minimum level of structural

complexity in the model. The result is a set of six equations, five of which correspond to the standard Impulse Response model

used for greenhouse gas (GHG) metric calculations in the IPCC’s fifth assessment report, plus one additional physically-

motivated additional equation to represent state-dependent feedbacks on the response timescales of each greenhouse gas cycle.5

This additional equation is necessary to reproduce non-linearities in the carbon cycle apparent in both Earth System Models

and observations. These six equations are transparent and sufficiently simple that the model is able to be written in standard

tabular data analysis packages, such as Excel; increasing the potential user base considerably. However, we demonstrate that

the equations are flexible enough to be tuned to emulate the behaviour of several key processes within more complex models

from CMIP6. The model is exceptionally quick to run, making it ideal for integrating large probabilistic ensembles. We apply a10

constraint based on the current estimates of the global warming trend to a one million member ensemble, using the constrained

ensemble to make scenario dependent projections and infer ranges for properties of the climate system. Through these analyses,

we reaffirm that simple climate models (unlike more complex models) are not themselves intrinsically biased “hot” or “cold”:

it is the choice of parameters and how those are selected that determines the model response, something that appears to have

been misunderstood in the past. This updated FaIR model is able to reproduce the global climate system response to GHG and15

aerosol emissions with sufficient accuracy to be useful in a wide range of applications; and therefore could be used as a lowest

common denominator model to provide consistency in different contexts. The fact that FaIR can be written down in just six

equations greatly aids transparency in such contexts.
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1 Introduction20

Earth System Models (ESMs) are vital tools for providing insight into the drivers behind Earth’s climate system, as well as

projecting impacts of future emissions. Large scale multi-model studies, such as the Coupled Model Intercomparison Projects

(Eyring et al., 2016; Taylor et al., 2012, CMIPs), have been used in many reports to produce projections of what the future

climate may look like based on a range of different concentration scenarios, with associated emission scenarios and socio-

economic narratives quantified by Integrated Assessment Models (IAMs). In addition to simulating both the past and possible25

future climates, these CMIPs extensively use idealised experiments to try to determine some of the key properties of the climate

system, such as the equilibrium climate sensitivity [ECS, Collins et al. (2013)], or the transient climate response to cumulative

carbon emissions (Allen et al., 2009, TCRE).

While ESMs are integral to our current understanding of how the climate system responds to GHG and aerosol emissions,30

and provide the most comprehensive projections of what a future world might look like, they are so computationally expen-

sive that only a limited set of experiments are able to be run during a CMIP. This constraint on the quantity of experiments

necessitates the use of simpler models to provide probabilistic assessments and explore additional experiments and scenarios.

These models, often referred to as simple climate models (SCMs), are typically designed to emulate the response of more

complex models. In general, they are able to simulate the globally averaged emission → concentration → radiative forcing35

→ temperature response pathway, and can be tuned to emulate an individual ESM (or multi-model-mean). In general, SCMs

are considerably less complex than ESMs: while ESMs are three dimensional, gridded, and explicitly represent dynamical

and physical processes, therefore outputting many hundreds of variables, SCMs tend to be globally averaged (or cover large

regions), and parameterise many processes, resulting in many fewer output variables. This reduction in complexity means that

SCMs are much quicker than ESMs in terms of runtime: most SCMs can run tens of thousands of years of simulation per40

minute on an “average” personal computer, whereas ESMs may take several hours to run a single year on hundreds of super-

computer processors; and are much smaller in terms of the number of lines of code: SCMs tend to be on the order of thousands

of lines, ESMs can be up to a million lines (Alexander and Easterbrook, 2015).

Several simple climate models are available, such as the two used in the Intergovernmental Panel on Climate Change (IPCC)45

Special Report on 1.5°C warming (IPCC, 2018, SR15): FaIR v1.3 (Smith et al., 2018) and MAGICC6 (Meinshausen et al.,

2011a). However, while these models are “simple" in comparison to the ESMs they emulate, they are often still not so simple

as to allow new users to gain enough familiarity with the underlying equations to understand their behaviour without significant

effort. This learning curve reduces their uptake by the wider community, and has resulted in different research groups generally

using the single model that they are most familiar with (Nicholls et al., 2020) from the wide range of SCMs. In the past, this50

has led to a different simple models being used by different working groups in major reports, reducing the consistency of the

overall work. We believe one key step towards a transparent and coherent process in IPCC Assessments would be the use of at

least one common SCM as widely as possible throughout all working groups, allowing results to be directly comparable. Such
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use would provide additional context alongside domain specific models. For this to be realised, an SCM that is both easy to

understand and adapt is required.55

An important innovation of the IPCC 5th Assessment Report (Myhre et al., 2013) was the introduction of a fully transparent

set of equations (the AR5-IR model) for use in the calculation of GHG metrics. However, that model was not quite adequate

to reproduce the evolution of the integrated impulse response to emissions over time, due to the lack of non-linearity in the

carbon cycle. The Finite amplitude Impulse Response (FaIR) model v1.0 (Millar et al., 2017) introduced a state-dependence to60

the AR5-IR carbon cycle. This state-dependent carbon cycle was better able to capture both the observed relationship between

historical emission trajectories and atmospheric CO2 burden; and the behaviour of ESMs in idealised concentration increase

and pulse emission experiments. FaIR v1.0 used four equations to model the atmospheric gas cycle and corresponding effec-

tive radiative forcing (ERF) impact of CO2, and a further two (unchanged from the AR5-IR) to emulate the climate system’s

thermal response to changes in ERF. Subsequently, Smith et al. (2018) added a representation of other GHGs and aerosols,65

which necessarily increased the structural complexity of the model in FaIR v1.3. In this update, we maintain the ability to

simulate the atmospheric response to a wide range of GHGs and aerosol emissions, while attempting to significantly reduce

the complexity of the model structure.

In FaIRv2.0 we propose a set of six equations that we demonstrate are sufficient to capture the global-mean climate sys-70

tem response to GHG and aerosol emissions. These six equations are outlined in figure 1. In this text we explain the physical

reasoning behind each equation and select a default parameter set based on simple tunings to historical observations and recent

literature. We compare the default response of FaIRv2.0 to the a publicly available version of the widely used SCM, MAGICC6

(Meinshausen et al., 2011a, b), for a range of Socioeconomic Pathways (Riahi et al., 2017, SSPs). Further, we show that these

equations can be tuned to emulate key properties of a range of CMIP6 (Eyring et al., 2016) models. Finally, we constrain a large75

parameter ensemble inferred from more complex models and contemporary assessments with observations of the present-day

warming level and rate to provide a set of observationally constrained probabilistic projections for the future climate following

(Smith et al., 2018).

FaIRv2.0 is sufficiently simple as to be able to be used in undergraduate and high-school teaching of climate change, and80

can illustrate some key properties of the climate system such as the warming impacts of different GHGs, the implications of

uncertainty in ECS and TCR, or the importance of carbon cycle feedbacks. To allow students and other users unfamiliar with

scientific programming languages (such as FaIRv2.0’s native language, Python) access to the model, we also provide a version

of FaIRv2.0 written in Excel. We hope that this may open exploration of the climate system to a large group of potential users

who do not have the expertise to run presently-available SCMs. The simplicity of FaIRv2.0 additionally means that although85

we provide code in a central, open-source repository, which we strongly recommend is used for most cases, users are not forced

to rely on this. In fact we expect it would be relatively quick to re-create in whatever language users are familiar with, and in

whatever format fits their intended usage.
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Here we suggest that the major value of SCMs is in their ability to emulate more complex models, such as has been done90

in Meinshausen et al. (2011b); Tsutsui (2017, 2020); and in their ability to efficiently integrate massive parameter ensembles

for probabilistic climate projection as in Smith et al. (2018); Goodwin et al. (2019). While default parameters must be provided

to enable unfamilliar users access to the model, the response arising from these parameters is a function of how they them-

selves have been selected, rather than one of the model equations themselves. So long as the underlying model equations are

sufficiently flexible to emulate a wide range of climate system responses to the variables of interest (for instance the inferred95

range of responses within the CMIP ensemble), and have a basis in known physical processes, the SCM should be considered

to be valid. Although understanding why the default response of SCMs differ is important, comparisons of solely the default

response as a test of how “good” a model is are unhelpful; it is likely that any SCM could be re-tuned to better perform against

whatever (single) metric is being used for evaluation, whether another SCM, a more complex model, or something else.

100

In this study we first (section 2) outline the history and reasoning behind the model equations used, including how we se-

lected default parameters, stepping through the concentration response to emissions; the concentration-forcing relationships;

and the thermal response to forcing. We then demonstrate how several key components of FaIRv2.0 – the carbon cycle, aerosol

response and thermal response to forcing – can be tuned to emulate a set of CMIP6 models in section 3. section 4 describes the

use of FaIRv2.0 to constrain climate sensitivities and future surface temperature projections using a large ensemble, following105

Smith et al. (2018). We then provide a discussion of previous comparisons of SCMs in section 5, and suggest some ways in

which FaIRv2.0 could be used in section 6 before concluding.
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Emissions of agent  
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Figure 1. Schematic showing the full model structure and equations used. Model steps take place from left to right, with thick arrows

indicating the flow of model steps that occur during timestep t, and thin arrows indicating steps that occur in between timesteps t and t+dt.

Equations are described in full below. The dashed grey line indicates the components identical to AR5-IR (Myhre et al., 2013). Table 1

provides brief descriptions of each named parameter in the figure.
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Table 1. Qualitative analogies for named parameters in FaIRv2.0

parameter units qualitative description

E(t) see table S1 Quantity of agent emitted into atmosphere

C(t) see table S1 Concentration of agent in atmosphere

C0 unit(C) Pre-industrial concentration of agent in atmosphere

Ri(t) unit(E) Quantity of agent in ith atmospheric pool

ai - Fraction of emissions entering ith atmospheric pool

τi yrs Atmospheric lifetime of gas in ith pool

α(t) - Multiplicative adjustment coefficient of pool lifetimes

r0 - Strength of pre-industrial uptake from atmospheric

ru unit(E)−1 Sensitivity of uptake from atmosphere to cumulative uptake of agent since model initialisation

rT K−1 Sensitivity of uptake from atmosphere to model temperature change since initialisation

ra unit(E)−1 Sensitivity of uptake from atmosphere to current atmospheric burden of agent

Gu(t) unit(E) Cumulative uptake of agent since model initialisation

T K Model temperature change since initialisation

Ga(t) unit(E) Atmospheric burden of agent above pre-industrial levels

F (t) W m−2 Effective radiative forcing change since the pre-industrial period

f1 W m−2 Logarithmic concentration–forcing coefficient

f2 W m−2 unit(C)−1 Linear concentration–forcing coefficient

f3 W m−2 unit(C)
−1
2 Square root concentration–forcing coefficient

Sk(t) K Response of kth thermal box

qk K W−1 m2 Equilibrium response of kth thermal box

dk yrs Response timescale of kth thermal box

T (t) K Surface temperature response since model initialisation

2 FaIRv2.0 model framework110

As with the previous iteration, FaIRv2.0 is a 0D model of globally averaged variables. It models the GHG emission→ con-

centration → effective radiative forcing (ERF), aerosol emission → ERF, and ERF → temperature responses of the climate

system. Here we present the equations behind these responses, separating out the model into the key components.

2.1 The gas cycle

FaIRv2.0 inherits the GHG gas cycle equations directly from the carbon cycle equations within FaIRv1.5 (Smith et al., 2018)

and v1.0 (Millar et al., 2017). This carbon cycle adapts the 4 pool impulse-response function model in Joos et al. (2013) by

introducing a state-dependent timescale adjustment factor, α. This factor scales the decay timescale of atmospheric carbon into
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each of the 4 pools, allowing for the effective carbon sink from the atmosphere to change in strength. This allows FaIRv2.0

to represent non-linearities in the carbon-cycle in a manner similar to JOOS et al. (1996) or Hooss et al. (2001). In Millar

et al. (2017), α was calculated through a parameterisation of the 100-year integrated Impulse Response Function (iIRF100, the

average airborne fraction over a period of 100 years). In Millar et al. (2017), the iIRF100 was parameterised by a simple linear

relationship with the quantity of carbon removed since initialisation Gu, and the current temperature T :

iIRF100 = r0 + ruGu + rTT ,

where r0 is the initial (pre-industrial) iIRF100, and ru and rT control how the iIRF100 changes as the cumulative carbon uptake115

and temperature increases. This parameterisation was informed by the behaviour of ESMs and remains consistent with the key

feedbacks involved in the carbon cycle (Arora et al., 2019). However, in Millar et al. (2017), the root of a non-linear equation

had to be found to update α at each model timestep. The solution of this equation is approximately exponential in iIRF100 to a

high degree of accuracy for a wide range of values and so in FaIRv2.0, α is calculated using the exponential form given below.

We parameterise this carbon cycle to enable it to simulate a wide range of GHGs, as discussed below. The equations for the120

carbon cycle and all other gas cycles are, in their most general form:

dRi(t)
dt

= aiE(t)− Ri(t)
ατi

, (1)

C(t) = C0 +
n∑

i=1

Ri(t) and (2)125

α(t) = g0 · exp
(r0 + ruGu(t) + rTT (t) + raGa(t)

g1

)
; (3)

where g1 =
n∑

i=1

aiτi
[
1−

(
1 +100/τi

)
e−100/τi

]

and g0 = exp
(
−
∑n
i=1 aiτi[1− e−100/τi ]

g1

)
.

Equations 1 and 2 describe a gas cycle with an atmospheric burden above the pre-industrial concentration, C0, formed of n

pools: each pool corresponds to a different sink from the atmosphere. Each pool, Ri, has an uptake fraction ai and decay130

timescale ατi. At each timestep, the state-dependent adjustment, α, is computed and the pool concentrations are updated

and aggregated to determine the new atmospheric burden. The new atmospheric concentration is then simply the sum of the

burden and the pre-industrial concentration. α provides feedbacks to the gas lifetimes based on the current timestep’s levels of

accumulated emissions (Gu), global temperature (T ), and atmospheric gas burden (Ga). Ga is included to enable FaIRv2.0

to emulate the sensitivity of the CH4 lifetime to its own atmospheric burden, as predicted by atmospheric chemistry and135

simulated in chemical transport models (CTMs) (Holmes et al., 2013; Prather et al., 2015). We also find that the emulation

of the carbon-cycle of a number of CMIP6 models over the 1pctCO2 experiment is significantly improved if Ga is included

in the iIRF100 parameterisation; see 3.2. g0 and g1 set the value and gradient of our analytic approximation for α equal to the
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numerical solution of the Millar et al. (2017) iIRF100 parameterisation at α= 1, and are therefore determined by the final two

equations above and not independent parameters. In the following section, we discuss how we parameterise the gas cycle to140

enable FaIRv2.0 to simulate a wide range of GHGs using these same three equations. Qualitative analogies for each parameter

to aid understanding are given in table 1.

Here we emphasize the advantage of using this common framework to simulate the response to all the different GHG

and aerosol emissions: if a user is able to understand the FaIRv2.0 carbon cycle, then they understand how the model will145

respond to emissions of any other GHG or aerosol. This is because the carbon cycle is the most complex parameterisation

of the above equations (it is the only gas that is simulated with more than one atmospheric pool as discussed below). This

structural simplicity makes gaining familiarity with the model far easier than if several different gas cycle formulations were

used for different GHGs.

2.1.1 Parameterising the gas cycle for a wide range of GHGs150

In this section, we consider how the above equations can be parameterised to represent the gas cycles for many different GHGs.

We also provide default parametersations for each GHG, given in full in table S2.

Carbon dioxide

As discussed above, FaIRv2.0 retains the state-dependent formulation (Millar et al., 2017) of the 4-pool impulse-reponse

model from Joos et al. (2013); hence n= 4. We retain the same state-dependency as in Millar et al. (2017), so the r parameters155

are non-zero with the exception of ra. The multi-model mean a and τ coefficients from Joos et al. (2013) are used by default.

Default ru and rT parameters are taken as the mean of the parameter distributions inferred from CMIP6 models in section 4.2.1.

Following Jenkins et al. (2018), we tune the default r0 parameter such that present-day (2018) cumulative CO2 emissions match

the Global Carbon Project (GCP) estimates (Friedlingstein et al., 2019) when historical concentrations (Meinshausen et al.,

2017) are inverted back to emissions by equations 1, 2 and 3. Here we take the GCP dataset as a best-estimate of observed160

emissions, but it is important to note that using a different dataset (such as the RCMIP protocol emissions, which are designed

to match the data used in CMIP6 esm- runs) would result in a different value. The pre-industrial concentration is fixed at 278

ppm.

Methane

We parameterise methane using a single atmospheric sink: n= 1. Although several individual mechanisms have been identified165

for the removal of atmospheric methane – tropospheric OH, tropospheric Cl, stratospheric reactions and soil uptake (Prather

et al., 2012; Holmes et al., 2013) – these can be aggregated into a single effective atmospheric lifetime. Through rT and ra,

we include the key lifetime feedback dependence on to its own atmospheric burden, and tropospheric air temperature and

water vapour mixing ratio (Holmes et al., 2013). We tune ra to match the sensitivity of the methane lifetime to its own atmo-
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spheric burden at the present-day found by Holmes et al. (2013). rT is tuned to match the sensitivity of the methane lifetime170

to tropospheric air temperature and water vapour at the present-day found by Holmes et al. (2013). Since both tropospheric

air temperature and water vapour are closely related to surface air temperatures (they are often approximated by simple pa-

rameterisations of the surface air temperature, as in Holmes et al. (2013)), including these two sensitivities through a single

surface temperature feedback closely replicates lifetime behaviour if both are included separately. τ is then set such that the

mean emission rate since 2000 matches current estimates from the RCMIP database (Nicholls et al., 2020) when historical175

concentrations (Meinshausen et al., 2017) are inverted by FaIRv2.0; and r0 is set such that α= 1 at model initialisation. The

pre-industrial concentration is fixed at 720 ppm.

Nitrous oxide

Nitrous oxide is parameterised with a single atmospheric sink, and no lifetime sensitivities: n= 1 and {ru, rT , ra}= 0. Al-

though there is evidence that nitrous oxide has a small sensitivity to its atmospheric burden (Prather et al., 2015), when included180

in FaIRv2.0 this made very little difference to nitrous oxide concentrations, even under high emission scenarios. We therefore

do not include this additional complexity. τ is set to match the best-estimate present-day residence lifetime in Prather et al.

(2015) of 109 years; and r0 is set such that α= 1 at model initialisation. The pre-industrial concentration is fixed at 270 ppm.

Halogenated gases

All other GHGs are treated as having a single atmospheric lifetime and no feedbacks: n= 1 and {ru, rT , ra}= 0. We take185

lifetime estimates from WMO (2018). Pre-industrial concentrations (if non-zero) are set to the 1750 value from Meinshausen

et al. (2017). Inclusion of a temperature-dependent lifetime to represent changes to the Brewer-Dobson circulation (Butchart

and Scaife, 2001), as in the MAGICC SCM (Meinshausen et al., 2011a), would be possible through a non-zero rT parameter.

We do not include a representation of this effect in our default parametersation due to its small impact on model output and

increase in model complexity.190

Aerosols

Aerosols have considerably shorter lifetimes than the timescales generally considered by SCMs (Kristiansen et al., 2016).

In FaIRv2.0, as in previous iterations (Smith et al., 2018) and other SCMs (Meinshausen et al., 2011a), they are therefore

converted directly from emissions to radiative forcing. In FaIRv2.0, this can be achieved by setting n= 1, τ = 1, and providing

a unit conversion factor of 1 between emissions and “concentrations”.195

2.1.2 Historical and SSP concentration trajectories

Here we compare the default parameterisation gas cycle model in FaIRv2.0 to a previous version, FaIRv1.5 (Smith et al.,

2018), and to MAGICC7.1.0-beta (Meinshausen et al., 2019), highlighting any differences. All three models are run under the

fully emission-driven “esm-allGHG” RCMIP protocol (Nicholls et al., 2020); in the case of FaIRv2.0 we use data from the
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Global Carbon Project (Friedlingstein et al., 2019) for the input CO2 emissions. FaIRv2.0 matches trajectories from both its200

previous iteration and the more comprehensive MAGICC closely for all GHGs. We note some discrepancies in the timeseries

for halogenated gases between FaIRv2.0 and MAGICC, possibly due to the incorporation of a state-dependent OH abundance

and representation of changes to the Brewer-Dobson circulation which modulate the lifetimes of these gases (Meinshausen

et al., 2011a). We note that for these gases we could have matched historical concentrations closer by tuning the lifetimes

to the RCMIP emission and historical concentration timeseries (Nicholls et al., 2020; Meinshausen et al., 2017), but argue205

that taking the best-estimate lifetimes from WMO (2018) is defensible; it is more transparent and avoids emission source

dependent parameters (if a different emission dataset were used, the resulting tuned lifetimes would be different). The lower

CO2 concentration projections in FaIRv2.0 compared to FaIRv1.5 are due to weaker temperature and cumulative carbon uptake

feedbacks (lower ru and rT ) as inferred from the CMIP6 carbon cycle tunings performed in section 3.2.
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Figure 2. Comparison of historical and future concentration trajectories over a range of SSPs. Units for all GHGs are ppb with the exception

of CO2 which is plotted in ppm. Inset panels for CO2, CH4 and N2O show the historic period.

11

https://doi.org/10.5194/gmd-2020-390
Preprint. Discussion started: 24 November 2020
c© Author(s) 2020. CC BY 4.0 License.



Specification of natural emissions210

In FaIRv2.0 we have chosen to formulate the gas cycle equations in terms of a perturbation above the pre-industrial (natural

equilibrium) concentration. By definition, this assumes a time-independent quantity of natural emissions for each gas (which

can be derived from the pre-industrial concentration and lifetime of the gas). This differs from Meinshausen et al. (2011a) and

Smith et al. (2018), who (when driving the respective models with emissions and with the exception of CO2) require a quantity

of natural emissions to be supplied in addition to any anthropogenic emissions by default (though the models can also be run215

in a fully emission-driven mode as in figure 2). Over the historical period, these emissions are chosen such that they “close the

budget” between total anthropogenic emissions, and observed concentrations (Meinshausen et al., 2011a; Smith et al., 2018).

This procedure of balancing the budget over history is analogous to driving the model with concentrations up to the present

day, and then switching to driving the model with emissions afterwards. While this methodology has the advantage of ensuring

the model simulates present-day concentrations that match observation exactly, it loses consistency between the way in which220

the model simulates the past and the future. If care is not taken when running these models, this loss of consistency could lead

to discontinuities at the present-day (when the model switches from concentration- to emission-driven). As present-day trends

are crucial for the estimation of many policy and scientifically relevant quantities such as TCR, TCRE and remaining carbon

budgets (Leach et al., 2018; Tokarska et al., 2020; Jiménez-de-la Cuesta and Mauritsen, 2019), we have chosen to enforce a

consistent model (ie. emission- or concentration-driven) over the entire simulation period in FaIRv2.0. We note that replicating225

this budget closing procedure is possible in FaIRv2.0 by inverting observed concentrations to emissions and then joining these

inverse emission timeseries to any future scenarios manually. In this study, FaIRv2.0 is run in emission-driven mode unless

stated otherwise.

2.2 Effective radiative forcing

FaIRv2.0 uses a simple formula to relate atmospheric gas concentrations to effective radiative forcing. This equation, below,230

includes logarithmic, square-root, and linear terms; motivated by the concentration-forcing relationships in Myhre et al. (2013)

of CO2, CH4 and N2O, and all other well-mixed GHGs respectively. For most agents, the concentration- (or for aerosols,

emission-) forcing relationship can be reasonably approximated by one of these terms in isolation, however if there is sub-

stantial evidence the relationship deviates significantly from any one term, others are able to be included to provide a more

accurate fit. Fext is the sum of all exogenous forcings supplied. These may include natural forcing agents or forcing due to235

albedo changes.

F (t) =
forcing agents∑

x

{
fx1 · ln

[
Cx(t)
Cx0

]
+ fx2 · [Cx(t)−Cx0 ] + fx3 ·

[√
Cx(t)−

√
Cx0

]}
+Fext. (4)
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2.2.1 Parameterising the forcing equation

Carbon dixoide, nitrous oxide and methane

We assume the forcing relationship for carbon dioxide is well approximated by the combination of a logarithmic and square240

root term (Ramaswamy et al., 2001), fCO2
2 = 0; both the methane and nitrous oxide concentration-forcing relationships are

approximated by a square root term only, fCH4,N2O
1,2 = 0. Although overlaps between the spectral bands of these gases mean

more complex function forms including interaction terms represent our current best approximation to the observed relationship

from spectral calculation (Etminan et al., 2016), inclusion of these interaction terms significantly increases the structural com-

plexity of the model. These overlap terms are most significant for very high concentrations of these gases, and we find that the245

more simple relationships used here are sufficiently accurate within the context of the uncertainties associated with such high

concentration scenarios. We fit the non-zero f coefficients to the Oslo-line-by-line (OLBL) data from Etminan et al. (2016).

Our resulting fits have a maximum absolute error of 0.115 W m−2 when compared to the OLBL data, though this is for the most

extreme-high concentration data point; and the associated relative error is 1.1%. Figure S1 provides a complete comparison of

how the fit relationships used here compare to the OLBL data, and to the simple formulae which include interaction terms in250

Etminan et al. (2016).

Halogenated GHGs

Following other simple models (Smith et al., 2018; Meinshausen et al., 2011a), we assume concentrations of halogenated gases

are linearly related to their direct effective radiative forcing, fx1,3 = 0. The conversion coefficient for each gas is its radiative

efficiency, which we take from WMO (2018).255

Aerosol-radiation interaction

We follow Smith et al. (2020), parameterising the ERF due to aerosol radiation interaction as a linear function of sulphate,

organic carbon and black carbon aerosol emissions:

ERFari = fSO2
2 ESO2 + fOC2 EOC + fBC2 EBC . (5)

Default parameters are taken as the mean of parameters tuned to 10 CMIP6 models in (Smith et al., 2020, see section 3.3).260

Aerosol-cloud interaction

ERF due to aerosol-cloud interactions is parameterised following a modification of Smith et al. (2020), as a logarithmic function

of sulphate aerosol emissions, and a linear function of organic carbon and black carbon aerosol emissions:

ERFaci = faci1 ln
(

1 +
ESO2

CSO2
0

)
+ faci2 (EOC +EBC). (6)

Here CSO2
0 effectively acts as a shape parameter for the logarithmic term. We fit this functional form to the ERFaci component265

in 10 CMIP6 models derived by the Approximate Partial Radiative Perturbation method (Zelinka et al., 2014) in section 3.3.
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The default value for the OC+BC coefficient is taken as the mean of the CMIP6 fits. For the logarithmic coefficient and

shape parameter, which appear to have highly skewed distributions due to some models displaying linear and others displaying

logarithmic behaviour against sulphate emissions, we calculate default parameters as the mean of the CMIP6 fits, assuming the

underlying distribution is lognormally distributed.270

Tropospheric ozone

Tropospheric ozone is parameterised following (Stevenson et al., 2013) as a linear function of methane concentrations, and

nitrate aerosol, carbon monoxide, and volatile organic compound emissions. For the methane component, default coefficients

are taken from Holmes et al. (2013). For the others, default coefficients are found by dividing the attributed forcing in (Myhre

et al., 2013) by the 2011 emission rate from the Community Emissions Data System (CEDS) inventory (Hoesly et al., 2018).275

Stratospheric ozone

Stratospheric ozone ERF is parameterised as a linear function of the concentration of ozone depleting substances (ODSs). We

assume that the cumulative ERF of a gas over its lifetime is proportional to its ozone depletion potential (WMO, 2018). The

best-estimate AR5 value for stratospheric ozone ERF of -0.05 W m−2 and observed concentrations of each ODS (Meinshausen

et al., 2017) in 2011 then allows us to calculate default linear coefficients for each gas.280

Stratospheric water vapour

Stratospheric water vapour is assumed to be a linear function of methane concentrations (Smith et al., 2018) due to its small

magnitude. The default coefficient is derived from the indirect forcing components in Holmes et al. (2013): 5.5×10−5 W m−2

ppb−1.

Black carbon on snow285

ERF due to light absorbing particles on snow and ice remains a linear function of black carbon emissions (Smith et al., 2018).

In AR5, the best estimate of its associated ERF was 0.04 W m−2 (Myhre et al., 2013). However, this value is very uncertain,

and the efficacy of black carbon on snow may at least double this value (Bond et al., 2013). We therefore calculate our default

forcing efficiency by dividing an adopted value of -0.08 W m−2 by the CEDS emission rate: 0.011 W m−2 MtBC−1.

Contrails290

Combined ERF due to contrails and contrail-induced cirrus is modelled as a linear function of aviation-sector NOx emissions.

The default coefficient is calculated by dividing the best-estimate present-day contrail ERF (Lee et al., 2020) by the CEDS

emission rate: 0.011 W m−2 MtNOx
−1.
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Albedo shift due to land-use change

In this study we prescribe ERF due to land-use change externally. However, it could be incorporated in a manner identical to295

FaIRv1.5 by supplying a time-series of cumulative land-use change CO2 emissions, and scaling linearly by a coefficient of

-0.00114 W m−2 GtC−1 (Smith et al., 2018).

2.3 Default parameter metric values for comparison

Table S3 contains default parameter calculated values for the global warming potential (Lashof and Ahuja, 1990) of each

emission type simulated in FaIRv2.0. These values are intended to aid comparison between FaIRv2.0 and other SCMs and do300

not represent any new analysis.

2.4 Temperature response

The final component of the model calculates the surface temperature response to the changes in ERF. A common representation

of this physical process is the energy balance model outlined by Geoffroy et al. (2013). Here we consider the three-box energy

balance model, including the ocean heat uptake efficacy factor introduced by Held et al. (2010). Recent literature has suggested305

that a two-box energy balance model is insufficient to capture the full range of behaviour observed in CMIP6 models (Tsutsui,

2020, 2017; Cummins et al., 2020). The three-box model can be written in state-space form as:

Ẋ =AX, (7)

Y = CdX;

where X =




F

T1

T2

T3



,310

A=




0 0 0 0

1/C1 −(λ+κ2)/C1 κ2/C1 0

0 κ2/C2 −(κ2 + εκ3)/C2 εκ3/C2

0 0 κ3/C3 −κ3/C3



,

Y =


T1

N


 ,

and Cd =


0 1 0 0

1 −λ (1− ε)κ3 −(1− ε)κ3


 .

Here, each box i has a temperature Ti and heat capacity Ci. F is the prescribed radiative forcing and N is the observed top-

of-atmosphere energy imbalance. Heat exchange coefficients κ represent the strength of thermal coupling between boxes i and315
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i− 1. λ is the so-called climate feedback parameter. ε is the efficacy factor that enables the energy balance model to account

for the variations in λ during periods of transient warming observed in GCMs. T1 represents the surface temperature change

relative to a pre-industrial climate. For many users of SCMs, the key variable of interest is T1, the surface temperature response.

Calculating the surface temperature response can be simplified by diagonalising equation 7, resulting in an impulse-response

in T1 (henceforth referred to as T ), giving the thermal response form in Millar et al. (2017) (Tsutsui, 2017):320

dSj(t)
dt

=
qjF (t)−Sj(t)

dj
(8)

and T (t) =
3∑

j=1

Sj(t). (9)

The response timescales, di, are given by −1
ei

, where ei are the eigenvalues of Aij;2≤i,j≤4, and the response coefficients, qi,

are given by the product of ei with the first element of the associated right and left eigenvectors of Aij;2≤i,j≤4. In FaIRv2.0,

we use this three timescale impulse response form due to its simplicity and flexibility. Two common measures of the climate325

sensitivity, the equilibrium climate sensitivity (ECS) and transient climate response (TCR) (Collins et al., 2013) are easily

expressed in terms of the impulse response parameters:

ECS = F2×CO2 ·
3∑

i=1

qi (10)

TCR = F2×CO2 ·
3∑

i=1

{
qi

(
1− di

70

[
1− e−

70
di

])}
. (11)

The default thermal response parameters in FaIRv2.0 are derived as follows. d1, d2, d3 and q1 are taken as the central value330

of the CMIP6 inferred distributions described in section 4.2.3. q2 and q3 are then set by equations 10 and 11 such that the

default parameter set response has climate sensitivites (ECS and TCR) equal to the central values of the constrained ensemble

described in section 4: ECS = 3.2 K and TCR = 1.8 K.

3 Emulating complex climate models

In this section we demonstrate the ability of FaIRv2.0 to emulate the more complex models from CMIP6 (Eyring et al., 2016)335

in a limited set of experiments. Due to constraints on data availability, we have focussed on tuning the key components of

the model: the carbon cycle; the thermal response; and the aerosol ERF relationships. We use the abrupt-4xCO2 and 1pctCO2

CMIP6 experiments to tune the carbon cycle and thermal response. The highly idealised nature of these experiments means

that parameters arising from these tunings will not necessarily be able to emulate complex model response to more realistic

scenarios due to processes that FaIRv2.0 cannot represent. In the near future we hope to be able to tune to the historical and340

SSP CMIP6 experiments in order to validate the tunings given here.
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3.1 Tuning the thermal response

We follow the statistically rigorous methodology of Cummins et al. (2020) to tune thermal response parameters to 40 CMIP6

models. This involves fitting parameters to the energy balance model above by recursively computing the likelihood via the

Kalman filter; the optimal parameters are those that maximise the computed likelihood. We then transform the calculated345

optimal energy balance parameters into the impulse response form used in FaIRv2.0. We obtain model data from the

“abrupt-4xCO2”, “1pctCO2” and “piControl” experiments for the top-of-energy imbalance and surface temperature response

from ESGF (Cinquini et al., 2014). We calculate anomalies and correct for model drift in the abrupt-4xCO2 and 1pctCO2

experiments using output from the piControl experiment, based on the CMOR parent branch time metadata. To reduce noise

in the input data, we average over all available ensemble members for each model. For full details of this anomaly-correction350

procedure, see the supplement. The Cummins et al. (2020) methodology uses surface temperatures and top-of-atmosphere

energy imbalances from the abrupt-4xCO2 experiment to return all the parameters of the energy balance model above, plus

the radiative forcing arising from the quadrupling of carbon dioxide concentrations. While this would fully specify both the

thermal response and the concentration-forcing relationship if concentration-forcing was a pure logarithmic relationship,

several models display significant deviations from a pure logarithmic concentration-forcing relationship (Tsutsui, 2020, 2017).355

We account for this within the FaIR framework by assuming that the concentration-forcing relationship can be reasonably

approximated by the sum of a logarithmic and square-root term. Best-estimate fCO2
1 and fCO2

3 parameters are found by first

deriving the TCR of each model using the 1pctCO2 experiment. We can use the tuned impulse-response parameters and TCR

to then calculate the forcing at a doubling of carbon dioxide using the relationship above. The forcings at carbon dioxide

doubling and quadrupling uniquely specify fCO2
1 and fCO2

3 values for use in FaIR. The best-estimate impulse-response and360

forcings at carbon dioxide doubling and quadrupling are given below. Corresponding energy balance model parameters are

given in the supplement. Figure 3 shows the emulated and original responses to the abrupt-4xCO2 and 1pctCO2 experiments

for each model.

Table 2. Tuned CMIP6 thermal response parameters365
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model d1 d2 d3 / yrs q1 q2 q3 / K W−1 m2 F_2x F_4x / W m−2 ECS TCR / K

ACCESS-CM2 0.8140 8.980 339.0 0.168000 0.508 0.810000 3.18 7.20 4.72 2.18

ACCESS-ESM1-5 0.6380 6.010 342.0 0.119000 0.447 0.865000 3.53 6.55 5.05 2.15

AWI-CM-1-1-MR 1.1600 6.950 170.0 0.222000 0.296 0.337000 3.96 7.85 3.39 2.16

BCC-CSM2-MR 1.2200 7.230 225.0 0.176000 0.341 0.566000 3.28 6.16 3.55 1.83

BCC-ESM1 2.0100 9.880 282.0 0.289000 0.305 0.539000 3.18 6.25 3.60 1.92

CAMS-CSM1-0 0.3360 4.230 132.0 0.072500 0.297 0.166000 4.61 8.74 2.47 1.79

CESM2 4.1300 81.700 929.0 0.676000 0.644 1.120000 2.58 5.52 6.28 2.28

CESM2-FV2 0.5670 4.600 427.0 0.093900 0.448 1.280000 3.35 7.39 6.09 2.04

CESM2-WACCM 0.3180 4.740 330.0 0.052700 0.470 0.872000 3.71 8.06 5.17 2.14

CESM2-WACCM-FV2 0.6350 6.220 469.0 0.140000 0.461 1.190000 2.99 6.74 5.34 1.92

CIESM 1.1600 7.600 242.0 0.152000 0.424 0.867000 3.91 8.38 5.64 2.51

CNRM-CM6-1 1.5900 25.700 1160.0 0.352000 0.401 0.045400 3.25 8.74 2.59 1.98

CNRM-CM6-1-HR 1.1700 11.600 233.0 0.235000 0.454 0.293000 3.92 7.94 3.85 2.55

CNRM-ESM2-1 1.7300 11.200 367.0 0.280000 0.542 0.683000 2.59 6.01 3.90 2.04

CanESM5 1.1600 11.300 296.0 0.232000 0.571 0.770000 3.43 7.42 5.39 2.71

E3SM-1-0 0.9690 11.300 275.0 0.203000 0.698 0.832000 3.52 7.00 6.10 3.10

EC-Earth3-Veg 0.8550 7.570 119.0 0.201000 0.400 0.587000 3.59 7.47 4.27 2.51

GFDL-CM4 0.0298 2.370 253.0 0.000024 0.427 0.558000 4.20 8.95 4.14 2.03

GFDL-ESM4 1.1300 7.890 292.0 0.227000 0.253 0.154000 3.39 7.87 2.15 1.58

GISS-E2-1-G 0.9460 5.610 369.0 0.202000 0.226 0.233000 4.28 8.14 2.83 1.83

GISS-E2-1-H 1.5400 35.500 1.11e8 0.318000 0.278 0.000075 4.61 8.38 2.75 2.15

GISS-E2-2-G 0.8250 9.900 896.0 0.209000 0.235 0.038500 4.04 8.20 1.95 1.65

HadGEM3-GC31-LL 0.8600 9.310 279.0 0.167000 0.604 0.863000 3.30 7.22 5.39 2.60

HadGEM3-GC31-MM 1.1200 12.300 237.0 0.276000 0.477 0.762000 3.36 7.20 5.10 2.58

INM-CM4-8 1.0700 6.190 79.3 0.207000 0.224 0.201000 2.83 5.93 1.79 1.35

INM-CM5-0 1.1300 7.330 165.0 0.217000 0.235 0.185000 2.92 6.29 1.86 1.33

IPSL-CM6A-LR 1.0600 13.500 366.0 0.316000 0.504 0.634000 3.06 6.98 4.46 2.38

KACE-1-0-G 0.0318 6.260 345.0 0.029900 0.480 0.867000 3.68 7.11 5.07 2.02

MIROC-ES2L 3.5700 19.400 552.0 0.324000 0.168 0.113000 3.84 7.89 2.33 1.68

MIROC6 1.1000 8.470 440.0 0.268000 0.178 0.246000 3.56 7.80 2.46 1.56

MPI-ESM1-2-HR 1.7200 9.630 254.0 0.298000 0.167 0.378000 3.52 7.82 2.97 1.70

MPI-ESM1-2-LR 2.4600 72.700 6.72e6 0.375000 0.172 0.032000 4.19 9.48 2.43 1.77

MRI-ESM2-0 1.1100 5.280 247.0 0.163000 0.286 0.444000 3.48 7.47 3.11 1.68

NESM3 1.2400 22.900 445.0 0.472000 0.345 0.267000 3.75 7.86 4.06 2.70

NorCPM1 2.5000 42.500 1.77e8 0.334000 0.246 0.065500 3.60 7.82 2.33 1.61

NorESM2-LM 0.2310 0.938 1350.0 0.000073 0.250 1.080000 5.47 11.70 7.30 1.50

NorESM2-MM 0.4290 1.210 302.0 0.000088 0.292 0.217000 4.19 10.80 2.13 1.30

SAM0-UNICON 0.8180 4.580 308.0 0.105000 0.405 0.459000 4.57 8.33 4.43 2.42

TaiESM1 1.1600 6.750 274.0 0.152000 0.428 0.553000 4.07 8.15 4.61 2.45

UKESM1-0-LL 0.7530 10.200 277.0 0.210000 0.552 0.769000 3.60 7.38 5.51 2.76
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Figure 3. FaIRv2.0 emulation of CMIP6 model response to the abrupt4xCO2 and 1pctCO2 experiments. Small orange and blue dots show

drift-corrected model surface temperature anomaly output for the abrupt-4xCO2 and 1pctCO2 experiments respectively. Dashed black lines

show corresponding FaIRv2.0 emulation. Large orange and blue dots over the y-axis indicate the assessed model ECS and TCR respectively

(see table 2). 19
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We found that optimal parameters found over the first 150 years of the abrupt-4xCO2 experiment were not able to well-

reproduce the remainder of the experiment for those models that continued the experiment past 150 years (CESM2 and370

NorESM2-LM). These models appear to exhibit particularly high ocean heat uptake efficacy, resulting in a sharp “elbow”

feature in their Gregory plots (see figure S2), which tends to be underestimated by the maximum likelihood procedure when

tuning to abbreviated data. Without longer runs from more models, it is difficult to predict whether the projection issues with

tuning parameters to the first 150 years observed in these two models would apply more generally. Rugenstein et al. (2020)

suggests that the inclusion of an ocean heat uptake efficacy in the fit should alleviate this issue to a limited extent.375

3.2 Tuning the carbon cycle response

We tune the carbon cycle using CMIP6 data from the C4MIP (Jones et al., 2016) fully coupled and biogeochemically coupled

1pctCO2 runs (Arora et al., 2019). Since constraining the response coefficients ai and timescales τi requires pulse-emission

experiments such as carried out by Joos et al. (2013), here we only fit the r feedback parameters and keep the response

coefficients, a, and timescales, τ , equal to the multi-model mean from Joos et al. (2013). The inclusion of both the fully coupled380

and biogeochemically coupled runs in the procedure allows us to constrain ru, ra, and rT independently. We use equations 1

and 2 to diagnose the values of α required to reproduce the C4MIP emissions from the corresponding concentrations within the

FaIRv2.0 carbon-cycle impulse-response framework. We then use equation 3 to convert α into iIRF100 timeseries. Finally, we

use an ordinary least squares estimator to calculate r parameters by regressing the C4MIP cumulative uptake, temperature and

atmospheric burden timeseries against the diagnosed iIRF100 timeseries. r0 is taken as the intercept of the estimator. We include385

the atmospheric burden as a predictor (and hence obtain non-zero rA values) due to a significant reduction in regression residual

for several models when included. We find that all the C4MIP models display an exceptionally high, rapidly decreasing initial

airborne fraction. In terms of the FaIRv2.0 equations, this corresponds to an α value that decreases initially before reaching a

minimum, representing a carbon sink that initially increases in strength when concentrations start to rise before decreasing as

the concentrations and temperatures rise further. FaIRv2.0 is unable to fully capture this initial adjustment, and as such in our390

tunings we prioritise emulating the long-term behaviour and carry out the regression over the final 75 years of the C4MIP data.

It would be possible to better capture the initial adjustment by including additional terms in equation 3, but since it remains

to be seen whether this behaviour is apparent in scenarios where concentrations do not rise suddenly and rapidly from a pre-

industrial level as is the case in the 1pctCO2 experiment (such as a historical emission scenario), we do not do so here. Tuned

parameters are given below, with figure 4 showing diagnosed C4MIP emissions and the FaIRv2.0 emulation. We note that395

these tunings suggest that the pre-industrial sink strength (which is encapsulated by r0) in all but one of the models is higher

than the historically observed best-estimate found here (2.1.1), and in a previous study (Jenkins et al., 2018).

Table 3. Tuned CMIP6 carbon-cycle parameters
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r0 ru rT ra

ACCESS-ESM1-5 32.8 0.048200 3.4400 -0.00627

BCC-CSM2-MR 27.7 0.001590 4.5200 0.00873

CESM2 41.3 0.007510 1.1900 0.00626

CNRM-ESM2-1 38.5 -0.000362 2.4400 0.01030

CanESM5 35.9 -0.007120 -0.0847 0.01910

GFDL-ESM4 35.8 0.017700 4.5100 -0.00156

IPSL-CM6A-LR 34.8 0.009360 0.9340 0.01560

MIROC-ES2L 34.3 0.010400 3.2900 0.00574

MPI-ESM1-2-LR 35.7 0.020800 1.2600 0.00357

NorESM2-LM 41.3 0.005590 1.4500 0.00757

UKESM1-0-LL 38.5 0.018100 2.5800 0.00287
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Figure 4. FaIRv2.0 emulation of CMIP6 model carbon cycle response to the C4MIP 1pctCO2 experiments. Orange and blue dots show

model annual and cumulative emissions for the experiments specified above the figure. Dashed black lines show corresponding FaIRv2.0

emulation. Red dots in the right-hand column show cumulative emissions arising from radiation feedback directly from the radiatively-

coupled 1pctCO2 experiment, while blue dots show cumulative emissions calculated as the difference between the equivalent fully- and

biogeochemically-coupled experiments.
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3.3 Tuning aerosol ERF400

Aerosol forcing relationships are tuned to ERF data from 10 CMIP6 models and emission data from the RCMIP protocol

(Nicholls et al., 2020) following Smith et al. (2020). For each CMIP6 model, aerosol-radiation and aerosol-cloud interaction

components of the ERF are calculated by the Approximate Partial Radiative Perturbation (APRP) method. For additional

details on the exact procedure, see Smith et al. (2020) and Zelinka et al. (2014). For each model, we fit the f coefficients in

equation 5 to the ERFari component using an ordinary least squares estimator. The resulting coefficients are almost identical405

to those from Smith et al. (2020), with differences arising only due to the emission data used. We then fit the f coefficients

and CSO2
0 in equation 6 to the ERFaci component by minimising the residual sum of squares using a simplex algorithm

(Nelder and Mead, 1965). The tuned parameters are given below. Figure 5, following figure 2 of Smith et al. (2020), shows the

parameterised fits compared to the APRP derived model ERF components.

410

Table 4. Tuned CMIP6 aerosol forcing parameters

Model ERFari ERFaci

fBC2 fOC2 fSO2
2 faci1 CSO2

0 faci2

CanESM5 0.03260 -0.000347 -0.002490 -0.387 23.8 -0.015200

E3SM 0.02480 -0.012600 -0.000942 -1.640 113.0 -0.014200

GFDL-CM4 0.02690 -0.002090 -0.002610 -2.230 427.0 -0.008030

GFDL-ESM4 0.10200 -0.030400 -0.002640 -57.600 17000.0 -0.015300

GISS-E2-1-G 0.14600 -0.044100 -0.006680 -0.156 16.8 -0.017600

HadGEM3-GC31-LL 0.00196 0.004150 -0.002910 -0.783 66.9 -0.006910

IPSL-CM6A-LR -0.05610 0.008850 -0.000748 -0.951 306.0 -0.001730

MIROC6 0.03870 -0.014200 -0.001780 -0.392 46.6 -0.012400

NorESM2-LM 0.00302 -0.003400 -0.001260 -68.600 10300.0 -0.012300

UKESM1-0-LL 0.00255 0.000063 -0.002390 -0.740 38.9 -0.000265
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4 Constraining probabilistic parameter ensembles

The computational efficiency of SCMs makes them an ideal tool for carrying out large ensemble simulations from which

probabilistic projections can be derived. Smith et al. (2018) carried out such a large ensemble, and produced projections415

based on constraining the ensemble members to fall within the 5-95% uncertainty range in observed warming to date from the

Cowtan and Way dataset (Cowtan and Way, 2014). Here we replicate this procedure with the new model, but with an additional

constraint on the current rate of warming, and updated prior parameters distributions.

4.1 The current level and rate of warming

We determine the current level and rate of warming following the Global Warming Index methodology (Haustein et al., 2017).420

This takes into account multiple sources of uncertainty: observational, forcing, earth system response (through parameter

variation in an identical thermal response model to the one used in FaIR) and internal variability. We find that a 90% credible

interval on the 2014 level of warming relative to 1861-1880 is 0.75 - 1.26 K; and on the 2010-2014 rate of warming is 0.18

- 0.40 K decade−1. We use 2014 as the year in which our constraint is applied as this is the final year for which historical

aerosol emissions – used in the calculation of the forcing timeseries – are available (Hoesly et al., 2018). We could extend the425

calculation to the present day using the SSP2-4.5 emission scenario as was done in Smith et al. (2020), but the rapid reduction

in sulfate emissions following 2014 in this scenario projects significantly onto the rate of warming constraint and this decline

does not appear to reflect observed aerosol forcing trends from atmospheric reanalyses (Bellouin et al., 2020). We note that the

interval obtained for the level of warming here is larger than previous estimates (Haustein et al., 2017; Leach et al., 2018); this

is largely due to updates to the aerosol forcing timeseries. For full details of the calculation, see the supplement.430

4.1.1 Definition of global mean temperature

Recent studies (Richardson et al., 2016, 2018) have shown that the definition of globally averaged surface temperature used

is important when comparing observations to climate model output, and is relevant when exploring policy-relevant quantities

such as the carbon budget (Tokarska et al., 2019). Discrepancies arise since observations blend air temperatures over land

and sea ice with water temperature over ocean, and do not have full global coverage (they are blended-masked); while climate435

model surface temperature output is globally complete, and always measured as the air temperature 2m above the surface of the

Earth. It has been shown both historically, and over future climate scenarios (Richardson et al., 2018), that the blended-masked

temperature definition (GMST) may be cooler than the globally complete 2m air temperature definition (GSAT). In our Global

Warming Index calculation, we use the mean of 5 temperature observation datasets (Lenssen et al., 2019; Cowtan and Way,

2014; Vose et al., 2012; Morice et al., 2011; Rohde et al., 2013) following the IPCC Special Report on 1.5°C warming (IPCC,440

2018); this implies that our constrained ensemble will measure surface temperatures using the GMST definition. This will lead

to slightly lower model estimates of surface temperature than if we used the GSAT definition. We can estimate the difference

between our definition of GMST and GSAT by regressing the 5-dataset mean used here against GSAT from ERA5 (Hersbach

et al., 2020). A least squares estimator suggests that our GMST definition is 3.4 ± 0.01 % smaller than GSAT.
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4.2 Sampled prior distributions445

4.2.1 Carbon cycle parameters

While including the atmospheric burden is necessary to well-emulate the carbon-cycle behaviour of individual C4MIP models,

parameterising the iIRF100 as a linear function of just cumulative carbon uptake and temperature is sufficient to capture

the spread of the model ensemble. Correlations between parameters also complicate sampling from the inferred parameter

distributions derived from table 3. We therefore repeat the parameter tuning procedure described in section 3.2, but exclude450

the atmospheric burden as a predictor for the C4MIP iIRF100 timeseries. The resulting r0, ru and rT parameter samples

are uncorrelated. We sample these parameters by applying scaling factors inferred from the CMIP6 tunings to the default

parameter values (for ru and rT this is equivalent to sampling directly from the distribution inferred from the CMIP6 tunings).

The underlying uncorrelated scaling factor distributions are given below.

455

Table 5. Carbon-cycle parameter sampling

parameter default value scaling factor, X

r0 30.4 X ∼N (1,0.122)

ru 0.0177 ln(X)∼N (0,0.116)

rT 2.64 X ∼N (1,0.613)

4.2.2 Forcing parameters

Uncertainty in effective radiative forcing is included by grouping individual forcing agents into broader forcing classes (IPCC

et al., 2013), and applying a randomly sampled scaling factor to all the f parameters within each class (with the exception460

of aerosol forcings, which we discuss below). Scaling factors between forcing classes are uncorrelated. The scaling factor

distributions are given below. Uncertainty in aerosol forcing is included as follows. ERFari f coefficients (equation 5) are

first drawn from a multivariate normal distribution inferred from the CMIP6 tuned parameters in 4. We then apply a quantile

map to scale the resulting coefficients such that the 1850 to 2005-2015 mean ERFari distribution matches the process based

assessment in Bellouin et al.. For ERFaci, faci2 coefficients (equation 6) are drawn from a normal distribution inferred from the465

CMIP6 tuned parameters in 4. faci1 and CSO2
0 coefficients are drawn from a multivariate log-normal distribution; this ensures

we sample the full range of ERFaci shapes provided by CMIP6 models. As with the ERFari coefficients, we then apply a

quantile map to scale these coefficients such that the sampled 1850 to 2005-2015 mean ERFaci distribution matches Bellouin

et al.. The underlying scaling factor distributions used for each forcing class (excluding aerosol forcing) are given below.

470

Table 6. ERF parameter sampling
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forcing category scaling factor, X 5-95% uncertainty (%)

CO2 X ∼N (1,0.122) ±20

CH4 X ∼N (1,0.170) ±28

N2O X ∼N (1,0.122) ±20

other WMGHGs X ∼N (1,0.122) ±20

tropospheric ozone X ∼N (1,0.304) ±50

stratospheric ozone X ∼N (1,1.22) ±200

stratospheric H2O from CH4 X ∼N (1,0.438) ±72

black carbon on snow ln(X)∼N (0,0.457) -

contrails X ∼N (1,0.456) ±75

land use change X ∼N (1,0.456) ±75

volcanic X ∼N (1,0.304) ±50

solar X ∼N (1,0.608) ±100

4.2.3 Thermal response parameters

Uncertainty in thermal response is incorporated by sampling response parameters directly from distributions inferred from

the CMIP6 tunings in section 2, taking correlations between parameters into account. Referring to parameters as in equations475

8, 9, 10 and 11, we draw parameters from the following distributions. d1, d2 and q1 are highly correlated, and we therefore

sample ln(d1), ln(d2) and q1 from a multivariate normal distribution with covariances and means taken from the values in

section 2. d3 is not strongly correlated with any other parameter, and so we sample ln(d3) from a normal distribution. We then

independently sample the TCR and the TCR/ECS ratio, the Realised Warming Fraction (RWF), as it has been shown that the

TCR and RWF are much more weakly correlated than any other combination of ECS, TCR and RWF (Millar et al., 2015). We480

draw TCR samples from a normal distribution, TCR∼N (2,0.608), truncating the distribution at a distance of ±3σ from the

central value of 2. We draw RWF samples from a normal distribution RWF∼N (0.55,0.15), again truncating at ±3σ. The

90% credible interval of the sampled TCR and RWF distributions closely, but not exactly, match the ranges inferred from the

parameters in table 2. Using equations 10 and 11, we then calculate q2 and q3. We reject any samples in which any of the q

parameters are unphysical (negative). The quantiles of the underlying ECS and TCR distributions used are given below.485

4.3 The constrained ensemble

Taking historical CO2 emissions from GCP (Friedlingstein et al., 2019), and all other historical and future SSP (Riahi et al.,

2017) emissions from the RCMIP protocol (Nicholls et al., 2020); and land use change, volcanic, and solar forcing from the

SSP effective radiative forcing timeseries (Smith, 2020), we run a 1,000,000 member emission-driven ensemble (FULL),

sampling uncertainty in the carbon cycle, effective radiative forcing and thermal response as described above. We then490

constrain this ensemble (CONSTRAINED) based on the assessed 90% credible intervals of the 2014 level and rate of the

Global Warming Index (Haustein et al., 2017) as above (4.1). Table 7 gives outlines the results of this analysis in terms of the
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quantiles of key variables.

Table 7. Constrained ensemble results for climate sensitivities and current ERF. ERF in 2019 is based on following an SSP2-4.5 pathway495

from 2014 onwards.

FULL CONSTRAINED

climate sensitivity 5% 17% 50% 83% 95% 5% 17% 50% 83% 95%

ECS 1.91 2.55 3.73 5.43 7.26 1.94 2.36 3.17 4.45 5.84

TCR 1.18 1.53 2.06 2.62 3.02 1.25 1.45 1.77 2.13 2.41

2019 ERF relative to 1750 / W m−2

CO2 1.62 1.80 2.08 2.37 2.58 1.67 1.84 2.11 2.38 2.59

CH4 0.45 0.53 0.63 0.73 0.81 0.45 0.52 0.63 0.73 0.80

N2O 0.16 0.18 0.20 0.22 0.24 0.16 0.18 0.20 0.22 0.24

other WMGHGs 0.29 0.32 0.36 0.40 0.43 0.29 0.32 0.36 0.40 0.43

tropospheric O3 0.20 0.28 0.40 0.51 0.59 0.20 0.28 0.39 0.51 0.59

stratospheric O3 -0.14 -0.10 -0.05 0.01 0.05 -0.14 -0.10 -0.05 0.01 0.05

stratospheric H2O from CH4 0.02 0.04 0.06 0.09 0.11 0.02 0.04 0.06 0.09 0.11

total WMGHGs 3.14 3.36 3.69 4.02 4.27 3.18 3.39 3.71 4.03 4.27

ERFari -0.59 -0.46 -0.30 -0.14 -0.02 -0.58 -0.46 -0.31 -0.16 -0.05

ERFaci -2.26 -1.46 -0.69 -0.26 -0.05 -1.25 -1.00 -0.63 -0.30 -0.11

total aerosols -2.59 -1.79 -1.00 -0.52 -0.26 -1.56 -1.32 -0.95 -0.60 -0.37

black carbon on snow 0.04 0.05 0.09 0.13 0.18 0.04 0.05 0.08 0.13 0.18

contrails 0.01 0.02 0.04 0.06 0.07 0.01 0.02 0.04 0.06 0.07

total anthropogenic 0.90 1.73 2.59 3.22 3.63 1.98 2.25 2.67 3.13 3.46

4.3.1 Current effective radiative forcing

The constraint applied only significantly affects the estimated ranges of ERFaci, total aerosol and anthropogenic forcings in

2019 (based on an SSP2-45 pathway following 2014). ERFaci is constrained from -0.69 [-2.26 , -0.05]1 to -0.63 [-1.25 , -0.11];500

total aerosol forcing from -1.00 [-2.59 , -0.26] to -0.95 [-1.55 , -0.37]; and total anthropogenic forcing from 2.59 [0.90 , 3.63] to

2.67 [1.98 , 3.46]. These results are consistent with a recent study that used similar methods but concentrated on aerosol forcing

and used a constraint based on observed warming and Earth energy uptake (Smith et al., 2020). Other forcing categories are

not affected by the constraint due to their relatively smaller magnitude and/or prior uncertainty.

1square brackets indicate a 90% credible interval
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4.3.2 Climate sensitivities505

We find that the TCR is constrained from 2.06 [1.18 , 3.02] to 1.77 [1.25 , 2.41] and the ECS from 3.73 [1.91 , 7.26] to 3.17

[1.94 , 5.84]. These results are relatively consistent with several recent studies that have used emergent constraint techniques

(Nijsse et al., 2020; Jiménez-de-la Cuesta and Mauritsen, 2019; Tokarska et al., 2020) or drawn on multiple lines of evidence

(Sherwood et al., 2020). The largest discrepancies with these studies occur at the upper tails of the constrained distributions;

the constraint applied here is unable to rule out some higher values of the ECS which these other studies have done, though510

we note that the 95th percentile of the CONSTRAINED ECS distribution is only slightly above the robust upper bound in

Sherwood et al. (2020). The CONSTRAINED RWF distribution does not differ significantly from the FULL distribution of

0.55 [0.3 , 0.8].
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Figure 6. Climate sensitivities of our FULL, CONSTRAINED and ALTERNATIVE ensembles in the context of other studies. Black line

indicates median values; grey shading likely range; unfilled bars 5-95% range. Studies included are: Nijsse et al. (2020); Tokarska et al.

(2020); Jiménez-de-la Cuesta and Mauritsen (2019); Sherwood et al. (2020). CMIP6 indicates climate sensitivities derived from the energy

balance model fits calculated above (including ocean heat uptake efficacy), CMIP6* indicates climate sensitivities derived using the Gregory

method (Gregory et al., 2004) over the first 150 years of the abrupt-4xCO2 experiment.
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4.3.3 Correlations between climate sensitivities and ERF515

There are significant correlations between key variables in the CONSTRAINED ensemble, consistent with previous studies

(Smith et al., 2018; Millar et al., 2015; Sanderson, 2020; Forest et al., 2002; Marvel et al., 2016). These are shown in the

contour plots in figure 7.
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Figure 7. Corner plot depiction of FULL and CONSTRAINED ensembles. Diagonal plots show marginal probability density functions

of each key variable; FULL shown in grey, CONSTRAINED in black, and FULL constrained by the current level of warming only in

red. Subdiagonal plots show contour plots of gaussian kernel density estimates of joint probability density. Contours show indicate regions

containing 95, 67, 33 and 5 % of the ensemble members. Purple crosses and lines indicate the positions of individual CMIP6 models. The

temperature and ERF variables are based on following an SSP2-45 trajectory from 2014 onwards.
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4.3.4 Sensitivity to prior response parameter distributions

Previous work has shown that posterior marginal distributions of ECS and TCR depend strongly on the assumed prior dis-520

tributions (Bodman and Jones, 2016). Here we test the sensitivity of our CONSTRAINED results to the response param-

eters sampled in FULL by replacing the TCR and RWF sample distributions stated in 4.2.3 with: TCR∼ U (0.5,3.5) and

RWF∼ U (0.2,0.85). The actual prior distributions of TCR and RWF differ slightly from those stated here due to the rejection

of unphysical response parameter sets, which tends to occur more often for lower values of TCR and higher values of RWF:

the quantiles of the input TCR and ECS distributions are 2.24 [0.87 , 3.37] and 4.11 [1.44 , 10.55] respectively. The poste-525

rior distributions of TCR and ECS after applying the constraint (ALTERNATIVE) described in 4.1 are 1.69 [1.15 , 2.54] and

3.14 [1.74 , 7.42]. The resulting marginal posterior distributions are wider than in the CONSTRAINED ensemble; though not

considerably so for the TCR estimate. The upper end of the ALTERNATIVE ECS distribution is most affected by the change

in prior, suggesting that the current level and rate of warming does not provide an exceptionally tight constraint on the upper

bound of the ECS. The ALTERNATIVE TCR distribution is not significantly different from CONSTRAINED, differing only530

by 0.1 K over the range of the distribution, demonstrating the close relationship between the TCR and historical warming

(Sanderson, 2020) that enforces a tight constraint even with a significantly less informed prior. An analogous figure to figure 7

but for the ALTERNATIVE ensemble is in the Supplement (figure S3).

4.4 Constrained idealised experiments

Here we carry out standard CMIP6 experiments used in diagnosing the key properties of the climate - the abrupt-4xCO2535

and 1pctCO2 experiments - with the FULL and CONSTRAINED parameter ensembles. This represents a test of whether our

parameter sampling methods are sufficient to ensure that the range of carbon cycle and climate system responses are sampled

from (as informed by the CMIP6 ensemble). We see in fig 8a, b that the FULL 90% credible interval closely matches the

CMIP6 model ensemble range. The most significant discrepancy between the FULL ensemble and the CMIP6 model ensemble

is apparent in figures 8d, e, f; the FULL ensemble carbon cycle does not completely span the range of 11 C4MIP models,540

particularly at the high end of airborne fraction. This occurs due to the use of a lower central r0 value, consistent with historical

observations, in the FULL parameter sample, rather than taking the central value as the mean of the C4MIP model tunings.

The FULL ensemble does span the range of carbon-cycle radiation feedback behaviour found in the C4MIP models (Arora

et al., 2019, fig 8g). The CONSTRAINED ensemble, as expected from the climate sensitivity results above, is significantly

less spread than the CMIP6 model ensemble. It precludes both models with high and low climate sensitivities. Although our545

constraint does not significantly affect the carbon-cycle parameters, it does preclude some FULL ensemble members with a

high airborne fraction, more apparent towards the end of the experiments. The CONSTRAINED ensemble implies a likely

range (fig 8c) for the (CO2-only) TCRE (Matthews et al., 2009; Allen et al., 2009; Zickfeld et al., 2016; MacDougall, 2016) of

1.17 - 1.81, with a central estimate of 1.45 and 5-95% range of 1.00 - 2.13 K TtC−1, based on the temperature response at a

cumulative CO2 emission of 1000 GtC. If instead we estimate the TCRE at a cumulative emission of 3000 GtC, this estimate550

is reduced by around 12% due to the slight non-linearity in the temperature–cumulative emission relationship. These estimates
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Figure 8. Idealised CMIP6 experiments with FULL and CONSTRAINED FaIRv2.0 ensembles. Thin black lines show drift-corrected CMIP6

model data. Light-grey shading indicates FULL ensemble 5-95% range. Dark-grey shading indicates CONSTRAINED ensemble 17-83%

range. Thick black line shows central CONSTRAINED series. Dashed grey line in d shows airborne fraction for the most recent decade

estimated from the Global Carbon Project data (Friedlingstein et al., 2019). Thin red lines in g show data directly from the radiatively-

coupled C4MIP experiment, while thin black lines show an estimate of the radiation feedback on carbon sink strength as the difference

between the fully- and biogeochemically-coupled C4MIP experiments.

are consistent with recent estimates based on the observational record (Millar and Friedlingstein, 2018; Gillett et al., 2013);

though our best-estimate is slightly higher and the range less spread. This tighter range may be due to the noise reduction from

using an idealised experiment and model with no representation of internal variability.
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4.5 Constrained scenario projections555

We use our CONSTRAINED parameter ensemble to project end-of-century warming and ERF in FaIRv2.0. Taking CO2

emissions until 2014 from the Global Carbon Project (Friedlingstein et al., 2019), all other emissions from the RCMIP protocol,

and land-use change and natural ERF timeseries from the SSP ERF timeseries database (Smith, 2020), we run both the FULL

and CONSTRAINED ensembles for each SSP (Riahi et al., 2017). The FULL ensemble should not be used for projection and

is included only to demonstrate the impact of the constraint.560

FULL CONSTRAINED

2100 warming relative to 1861-1880 / K 5 17 50 83 95 5 17 50 83 95

ssp119 0.749 1.02 1.49 2.10 2.67 0.848 1.00 1.27 1.63 1.96

ssp126 0.984 1.33 1.92 2.65 3.32 1.100 1.29 1.63 2.05 2.44

ssp245 1.550 2.08 2.97 4.03 4.93 1.800 2.08 2.56 3.12 3.60

ssp370 2.150 2.91 4.18 5.65 6.84 2.720 3.08 3.67 4.31 4.81

ssp370-lowNTCF-aerchemmip 2.460 3.25 4.53 6.01 7.19 2.790 3.20 3.89 4.67 5.29

ssp370-lowNTCF-gidden 2.060 2.74 3.86 5.17 6.23 2.370 2.72 3.32 4.01 4.55

ssp434 1.150 1.55 2.24 3.10 3.87 1.360 1.57 1.93 2.38 2.78

ssp460 1.790 2.39 3.39 4.57 5.56 2.100 2.41 2.93 3.53 4.02

ssp534-over 1.140 1.54 2.24 3.14 3.96 1.280 1.50 1.90 2.41 2.88

ssp585 2.880 3.80 5.29 6.99 8.33 3.250 3.73 4.54 5.46 6.18

2100 anthropogenic ERF / W m−2

ssp119 1.700 1.89 2.16 2.45 2.67 1.760 1.93 2.18 2.45 2.64

ssp126 2.260 2.50 2.85 3.22 3.50 2.330 2.55 2.87 3.20 3.45

ssp245 3.710 4.14 4.73 5.33 5.79 3.960 4.30 4.80 5.33 5.71

ssp370 5.240 6.10 7.18 8.20 8.92 6.020 6.55 7.34 8.16 8.75

ssp370-lowNTCF-aerchemmip 6.190 6.79 7.65 8.53 9.19 6.440 6.97 7.74 8.54 9.11

ssp370-lowNTCF-gidden 5.120 5.70 6.54 7.40 8.05 5.380 5.88 6.63 7.39 7.95

ssp434 2.640 2.96 3.41 3.86 4.21 2.850 3.10 3.46 3.85 4.13

ssp460 4.320 4.80 5.48 6.18 6.69 4.630 5.01 5.58 6.17 6.60

ssp534-over 2.500 2.78 3.19 3.64 3.99 2.590 2.85 3.22 3.62 3.92

ssp585 7.260 7.95 8.95 9.97 10.70 7.530 8.15 9.06 10.00 10.70
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Figure 9. ERF timeseries by category for a range of SSP pathways using the CONSTRAINED parameter ensemble. Solid lines indicate

central estimate and shading shows the 5-95% range. Dashed lines show default projection from a development version of the MAGICC

SCM.
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Figure 10. Surface temperature response projections for a range of SSPs with the CONSTRAINED parameter ensemble. Solid lines indicate

central projection. Shading indicates a 5-95% range. Dashed line indicates default projection from a development version of the MAGICC

SCM. Dots show the mean of 5 observational datasets. Bars on the right-hand side of the figure show end-of-century (2081-2100) warming.

Filled bars show CONSTRAINED best-estimate, and likely and 5-95% ranges. Unfilled bars show CMIP6 median, and likely and minimum–

maximum range. The number of CMIP6 models used in each scenario is given in table S4.
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5 The response of simple climate models

The IPCC Special Report on 1.5°C warming (IPCC, 2018) included results from two SCMs, FaIRv1.3 (Smith et al., 2018) and

MAGICC6 (Meinshausen et al., 2011a). One point of discussion following the report was the difference in results between

these two models, with FaIRv1.3 tending to project a lower temperature response than MAGICC6 (Huppmann et al., 2018).565

This has resulted in a widely-held belief that FaIRv1.3 is intrinsically “cooler” than MAGICC6 in general, a belief that some

of these authors have unintentionally contributed to previously (Leach et al., 2018). This belief is unfounded: the response of

an SCM is a function of the parameters used. Although some parameters may be chosen to be consistent with geophysical

observation or theory, in general SCM parameters are tuned such that they emulate, or reproduce, either the output of more

complex models, or observations of the Earth. Relating this to the models used in SR15, the FaIRv1.3 ensemble was tuned570

such that the model response lay within observed changes in global mean surface temperature since pre-industrial (Smith

et al., 2018; Cowtan and Way, 2014); the MAGICC6 ensemble was constrained to observations up until 2009 (Meinshausen

et al., 2009). The two different tuning targets naturally leads to differences in the response of FaIRv1.3 and MAGICC6. Here

we emphasize that the differences between the models’ output is not systematic – it is the parameters used, and how these are

selected (which is often a subjective decision on the part of the modellers), that determines the model response.575

6 Uses of FaIRv2.0

We envisage that FaIRv2.0 will primarily be used for similar assessments as are carried out with the current SCMs, such

as providing probabilistic projections of atmospheric concentrations, radiative forcings and temperature anomalies for wide580

ranges of scenarios, such as in the SR15 scenario explorer (Huppmann et al., 2018). FaIRv2.0 could also easily be coupled to

integrated assessment models (IAMs) to explore impacts of climate policy options. One advantage that FaIRv2.0 has it that it

was built with performance in mind, hence is easily vectorised. It can be vectorised in a programming language designed for

array operations (such as Fortran, MATLAB, or the NumPy Python module) and hence FaIRv2.0 is extremely quick to run. For

example, using its present Python implementation, FaIRv2.0 can compute the 1 million member FULL ensemble (emission585

driven for 52 gases, 78 forcing components, over the period 1750-2100) in under 30 minutes 2. This speed provides significant

advantages when computing large probabilistic ensembles, or when optimizing parameters. An important consideration for

users computing probabilistic ensembles will be the memory required by FaIRv2.0 output, as this is more likely to be the

limiting factor on a modern computer, rather than the model runtime. A related point is that FaIRv2.0 can be run in programs

for analysis of tabular data, including (but not limited to) Excel. This opens up climate system exploration to a large group of590

potential new users who are familiar with spreadsheets, but not formal scientific programming languages.

2on a laptop with 31GB RAM and an Intel(R) Core(TM) i7-8750H@2.2GHz, 12 cores
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We suggest that the speed, simplicity and transparency of FaIRv2.0 lends it to use in undergraduate and high-school

education in addition to scientific research. It can be used to explain (and demonstrate) important features of both the carbon

(or other GHG) cycle and Earth’s thermal response to radiative forcing, and is simple enough to use that students could595

themselves carry out experiments (such as a CO2 doubling) easily with no prior experience and only basic computing skills.

FaIRv2.0 can also be used to rapidly investigate differences between ESMs, tuning FaIRv2.0 to emulate different full

models and comparing differences between the tuned parameter sets to identify which aspects of the models differ most, as

was done with MAGICC in Meinshausen et al. (2011a, b). The ability to tune FaIRv2.0, as demonstrated here and in other600

work (Tsutsui, 2017; Joos et al., 2013; Millar et al., 2017), to more complex models also allows estimation of complex model

response to a particular scenario or experiment without having to expend computer power to run the model itself; which could

allow climate system uncertainties to be introduced more fully into integrated assessment studies by emulating the full CMIP6

ensemble within IAMs (providing some of the capability demonstrated by Meinshausen et al. (2011a) with a simpler model).

605

7 Conclusions

In this paper we have presented a significant update to the FaIRv1.3 SCM (Smith et al., 2018), focussed on reducing the

structural complexity of the model as much as possible. The updated model, FaIRv2.0, uses the five equations of the AR5

impulse response model (Myhre et al., 2013) plus just one additional equation to allow the model to represent non-linearities610

in the carbon-cycle. We demonstrate that this reduction in complexity does not come at the cost of the model’s ability

to reproduce globally-averaged observations or output of more complex models from CMIP6 (Eyring et al., 2016). After

demonstrating the ability of the model in emulating more complex models, we show how the model can be used for climate

projection by constraining a large parameter ensemble.

615

There are many potential uses for FaIRv2.0 as a result of its simplicity and transparency. In addition to being available

for the same probabilistic scenario assessment as is carried out by SCMs in reports such as SR15 (IPCC, 2018), it could be

very easily implemented into IAMs; and likely improves computational efficiency due to its vectorisation and resulting ex-

tremely rapid runtime. We encourage policy-makers to use FaIRv2.0 in order to directly assess whether warming implications

are aligned with the intended outcomes of mitigation policies; since GHG accounting metrics used at present such as GWP620

do not provide accurate results for targets such as Net-Zero CO2 due to the short life of some GHGs (Allen et al., 2018). To

aid this use of FaIRv2.0, we will provide an Excel file containing the model with its default parameter set, ensuring FaIRv2.0

as available for all interested parties, even those unfamiliar with computer programming languages. The Excel version of

the model could also be used to assist teaching of climate change and climate processes; and could even allow students

access to an easy-to-understand model that they could use themselves to explore future scenarios and the relative impacts625
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of future emissions of different greenhouse gases; or demonstrate the importance of climate sensitivity in an interactive manner.

We aim to be able to provide complete gas-cycle parameter sets tuned to each of the CMIP6 ESMs in the near future,

such that FaIRv2.0 is able to be used to emulate the full CMIP6 ensemble and to improve understanding of how these models

differ in a single consistent framework. We hope that such parameter sets may also provide users in other related fields, such630

as climate policy, who do not have experience with climate models, access to a robust emulation of complex climate models

with little learning curve.

Code and data availability. The code used to produce the figures is publicly available at https://github.com/njleach/GIR. However, we stress

that the code here is not a model release. This update to the FaIR model will be made available at https://github.com/OMS-NetZero/FAIR

when fully integrated and tested. All data used in this study is publicly available at the relevant cited sources.635
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