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Abstract. Here we present an update to the FaIR model for use in probabilistic future climate and scenario exploration,

integrated assessment, policy analysis and education. In this update we have focussed on identifying a minimum level of

structural complexity in the model. The result is a set of six equations, five of which correspond to the standard Impulse

Response model used for greenhouse gas (GHG) metric calculations in the IPCC’s fifth assessment report, plus one additional

physically-motivated additional equation to represent state-dependent feedbacks on the response timescales of each greenhouse5

gas cycle. This additional equation is necessary to reproduce non-linearities in the carbon cycle apparent in both Earth System

Models and observations. These six equations are transparent and sufficiently simple that the model is able to be written in

ported into standard tabular data analysis packages, such as Excel; increasing the potential user base considerably. However,

we demonstrate that the equations are flexible enough to be tuned to emulate the behaviour of several key processes within

more complex models from CMIP6. The model is exceptionally quick to run, making it ideal for integrating large probabilistic10

ensembles. We apply a constraint based on the current estimates of the global warming trend to a one million member ensemble,

using the constrained ensemble to make scenario dependent projections and infer ranges for properties of the climate system.

Through these analyses, we reaffirm that simple climate models (unlike more complex models) are not themselves intrinsically

biased “hot” or “cold”: it is the choice of parameters and how those are selected that determines the model response, something

that appears to have been misunderstood in the past. This updated FaIR model is able to reproduce the global climate system15

response to GHG and aerosol emissions with sufficient accuracy to be useful in a wide range of applications; and therefore

could be used as a lowest common denominator model to provide consistency in different contexts. The fact that FaIR can be

written down in just six equations greatly aids transparency in such contexts.

Copyright statement. @ Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License.
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1 Introduction20

Earth System Models (ESMs) are vital tools for providing insight into the drivers behind Earth’s climate system, as well as

projecting impacts of future emissions. Large scale multi-model studies, such as the Coupled Model Intercomparison Projects

(Eyring et al., 2016; Taylor et al., 2012, CMIPs), have been used in many reports to produce projections of what the future

climate may look like based on a range of different concentration scenarios, with associated emission scenarios and socio-

economic narratives quantified by Integrated Assessment Models (IAMs). In addition to simulating both the past and possible25

future climates, these CMIPs extensively use idealised experiments to try to determine some of the key properties of the climate

system, such as the equilibrium climate sensitivity [ECS, Collins et al. (2013)], or the transient climate response to cumulative

carbon emissions (Allen et al., 2009, TCRE).

While ESMs are integral to our current understanding of how the climate system responds to GHG and aerosol emissions,30

and provide the most comprehensive projections of what a future world might look like, they are so computationally expen-

sive that only a limited set of experiments are able to be run during a CMIP. This constraint on the quantity of experiments

necessitates the use of simpler models to provide probabilistic assessments and explore additional experiments and scenarios.

These models, often referred to as simple climate models (SCMs), are typically designed to emulate the response of more

complex models. In general, they are able to simulate the globally averaged emission → concentration → radiative forcing35

→ temperature response pathway, and can be tuned to emulate an individual ESM (or multi-model-mean). In general, SCMs

are considerably less complex than ESMs: while ESMs are three dimensional, gridded, and explicitly represent dynamical

and physical processes, therefore outputting many hundreds of variables, SCMs tend to be globally averaged (or cover large

regions), and parameterise many processes, resulting in many fewer output variables. This reduction in complexity means that

SCMs are much quicker than ESMs in terms of runtime: most SCMs can run tens of thousands of years of simulation per40

minute on an “average” personal computer, whereas ESMs may take several hours to run a single year on hundreds of super-

computer processors; and are much smaller in terms of the number of lines of code: SCMs tend to be on the order of thousands

of lines, ESMs can be up to a million lines (Alexander and Easterbrook, 2015).

Several There are many simple climate models are available, such as the two (Nicholls et al., 2020a) that have been in use by the45

climate science and integrated assessment modelling communities for decades. Of particular note are MAGICC (Meinshausen et al., 2011a)

, which has dominated SCM usage within integrated assessment models, and FaIR1 (Smith et al., 2018); both of which were

used in the Intergovernmental Panel on Climate Change (IPCC) Special Report on 1.5°C warming (IPCC, 2018, SR15): FaIR

v1.3 (Smith et al., 2018) and MAGICC6 (Meinshausen et al., 2011a). However, while these models are “simple" in compar-

ison to the ESMs they emulate, they are often still not so simple as not simple enough to allow new users to gain enough50

familiarity with the underlying equations to understand their behaviour without significant effort. This learning curve reduces

1We refer to the FaIR model in general as “FaIR”, to the version presented in this text as “FaIRv2.0.0”, and to the specific implementation used to create

the figures as “FaIRv2.0.0-alpha” throughout.
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their uptake by the wider community, and has resulted in different research groups generally using the single model that they

are most familiar with (Nicholls et al., 2020a) from the wide range of SCMs. In the past, this has led to a different simple

models being used by different working groups in major reports, reducing the consistency of the overall work. We believe one

key step towards a transparent and coherent process in IPCC Assessments would be the use of to use at least one common55

SCM as widely as possible throughout all working groups, allowing results to be directly comparable. Such use would provide

additional context alongside domain specific models. For this to be realised, an SCM that is both easy to understand and adapt

is required.

An important innovation of the IPCC 5th Assessment Report (Myhre et al., 2013) was the introduction of a fully transparent60

set of equations (the AR5-IR model) for use in the calculation of GHG metrics. However, that model was not quite adequate

to reproduce the evolution of the integrated impulse response to emissions over time, due to the lack of non-linearity in the

carbon cycle. The Finite amplitude Impulse Response (FaIR) model v1.0 (Millar et al., 2017) introduced a state-dependence to

the AR5-IR carbon cycle. This state-dependent carbon cycle was better able to capture both the observed relationship between

historical emission trajectories and atmospheric CO2 burden; and the behaviour of ESMs in idealised concentration increase65

and pulse emission experiments. FaIR v1.0 used four equations to model the atmospheric gas cycle and corresponding effec-

tive radiative forcing (ERF) impact of CO2, and a further two (unchanged from the AR5-IR) to emulate the climate system’s

thermal response to changes in ERF. Subsequently, Smith et al. (2018) added a representation of other GHGs and aerosols,

which necessarily increased the structural complexity of the model in FaIR v1FaIRv1.3. In this update, we maintain the ability

to simulate the atmospheric response to a wide range of GHGs and aerosol emissions, while attempting to significantly reduce70

the complexity of the model structure.

In FaIRv2.0.0 we propose a set of six equations that we demonstrate are sufficient to capture the global-mean climate sys-

tem response to GHG and aerosol emissions. These six equations are outlined in figure Figure 1. In this text we explain the

physical reasoning behind each equation and select a default parameter set based on simple tunings to historical observations75

and recent literature. We compare the default response of FaIRv2.0to the .0 to a publicly available version of the widely used

SCM, MAGICC6 (Meinshausen et al., 2011a, b), for a range of Socioeconomic Pathways (Riahi et al., 2017, SSPs). Further,

we show that these equations can be tuned to emulate key properties of a range of CMIP6 (Eyring et al., 2016) models. Finally,

we constrain a large parameter ensemble inferred from more complex models and contemporary assessments with observations

of the present-day warming level and rate to provide a set of observationally constrained probabilistic projections for the future80

climate following (Smith et al., 2018).

FaIRv2.0.0 is sufficiently simple as to be able to be used in undergraduate and high-school teaching of climate change, and

can illustrate some key properties of the climate system such as the warming impacts of different GHGs, the implications of

uncertainty in ECS and TCR, or the importance of carbon cycle feedbacks. To allow students and other users unfamiliar with85

scientific programming languages (such as FaIRv2.0’s native language, Python) access to the model, we also provide a version
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of FaIRv2.0.0 written in Excel. We hope that this may open exploration of the climate system to a large group of potential

users who do not have the expertise to run presently-available SCMs. The simplicity of FaIRv2.0.0 additionally means that

although we provide code in a central, open-source repository, which we strongly recommend is used for most cases, users are

not forced to rely on this. In fact we expect it would be relatively quick to re-create in whatever language users are familiar90

with, and in whatever format fits their intended usage.

Here we suggest that the major value of SCMs is in their ability to emulate more complex models, such as has been done

in Meinshausen et al. (2011b); Tsutsui (2017, 2020); and in their ability to efficiently integrate massive parameter ensembles

for probabilistic climate projection as in Smith et al. (2018); Goodwin et al. (2019). While default parameters must be provided95

to enable unfamilliar unfamiliar users access to the model, the response arising from these parameters is a function of how they

themselves have been selected, rather than one of the model equations themselves. So long as the underlying model equations

are sufficiently flexible to emulate a wide range of climate system responses to the variables of interest (for instance the inferred

range of responses within the CMIP ensemble), and have a basis in known physical processes, the SCM should be considered

to be valid. Although understanding why the default response of SCMs differ is important, comparisons of solely the default100

response as a test of how “good” a model is are unhelpful; it is likely that any SCM could be re-tuned to better perform against

whatever (single) metric is being used for evaluation, whether another SCM, a more complex model, or something else.

In this study we first (section 2) outline the history and reasoning behind the model equations used in Section 2, including

how we selected default parameters, stepping through the concentration response to emissions; the concentration-forcing rela-105

tionships; and the thermal response to forcing. We then demonstrate how several key components of FaIRv2.0.0 – the carbon

cycle, aerosol response and thermal response to forcing – can be tuned to emulate a set of CMIP6 models in section 3. section

Section 3. Section 4 describes the use of FaIRv2.0.0 to constrain climate sensitivities and future surface temperature projec-

tions using a large ensemble, following Smith et al. (2018). We then provide a discussion of previous comparisons of SCMs in

section Section 5, and suggest some ways in which FaIRv2.0.0 could be used in section Section 6 before concluding.110

4



Emissions of agent  
Concentrations

Effective Radiative Forcing

Temperature

Gas pools Thermal boxes

State dependent timescale adjustment

Figure 1. Schematic showing the full model structure and equations used. Model steps take place from left to right, with thick arrows

indicating Terms without (t) are constants. Colouring splits the flow of model steps that occur during timestep tinto gas cycle, radiative

forcing, and thin arrows indicating steps that occur in between timesteps t and t+ dt. Equations are described in full belowclimate response

components. The dashed grey line indicates the components identical to AR5-IR (Myhre et al., 2013). Table 1 provides brief descriptions

of each named parameter in the figure. We note that under the default parameterisation, for all gases except carbon dioxide, the index i and

associated sums can be removed as these gases are modelled as having a single atmospheric decay timescale only. Equations are described

in full in Section 2.1.
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parameter units qualitative descriptionE(t) see table S1 Quantity of agent emitted into atmosphereC(t) see table S1 Concentration

of agent in atmosphereC0 unit(C) Pre-industrial concentration of agent in atmosphereRi(t) unit(E) Quantity of agent in ith

atmospheric poolai - Fraction of emissions entering ith atmospheric poolτi yrs Atmospheric lifetime of gas in ith poolα(t)

- Multiplicative adjustment coefficient of pool lifetimesr0 - Strength of pre-industrial uptake from atmosphericru unit(E)−1

Sensitivity of uptake from atmosphere to cumulative uptake of agent since model initialisationrT K−1 Sensitivity of uptake115

from atmosphere to model temperature change since initialisationra unit(E)−1 Sensitivity of uptake from atmosphere to current

atmospheric burden of agentGu(t) unit(E) Cumulative uptake of agent since model initialisationT K Model temperature

change since initialisationGa(t) unit(E) Atmospheric burden of agent above pre-industrial levelsF (t) W m−2 Effective radiative

forcing change since the pre-industrial periodf1 W m−2 Logarithmic concentration–forcing coefficientf2 W m−2 unit(C)−1

Linear concentration–forcing coefficientf3 W m−2 unit(C)
−1
2 Square root concentration–forcing coefficientSk(t) K Response120

of kth thermal boxqk K W−1 m2 Equilibrium response of kth thermal boxdk yrs Response timescale of kth thermal boxT (t) K

Surface temperature response since model initialisation
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Table 1. Qualitative analogies for named parameters in FaIRv2.0.0.

parameter units qualitative description

E(t) see table S1 Quantity of agent emitted into atmosphere

C(t) see table S1 Concentration of agent in atmosphere

C0 unit(C) Pre-industrial concentration of agent in atmosphere

Ri(t) unit(E) Quantity of agent in ith atmospheric pool

ai - Fraction of emissions entering ith atmospheric pool

τi yrs Atmospheric lifetime of gas in ith pool

α(t) - Multiplicative adjustment coefficient of pool lifetimes

r0 - Strength of pre-industrial uptake from atmosphere

ru unit(E)−1 Sensitivity of uptake from atmosphere to cumulative uptake of agent since model initialisation

rT K−1 Sensitivity of uptake from atmosphere to model temperature change since initialisation

ra unit(E)−1 Sensitivity of uptake from atmosphere to current atmospheric burden of agent

Gu(t) unit(E) Cumulative uptake of agent since model initialisation

T K Model temperature change since initialisation

Ga(t) unit(E) Atmospheric burden of agent above pre-industrial levels

F (t) W m−2 Effective radiative forcing change since the pre-industrial period

f1 W m−2 Logarithmic concentration–forcing coefficient

f2 W m−2 unit(C)−1 Linear concentration–forcing coefficient

f3 W m−2 unit(C)
−1
2 Square root concentration–forcing coefficient

Sj(t) K Response of j th thermal box

qj K W−1 m2 Equilibrium response of j th thermal box

dj yrs Response timescale of j th thermal box

T (t) K Surface temperature response since model initialisation
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2 FaIRv2.0.0 model framework

As with the previous iteration, FaIRv2.0.0 is a 0D model of globally averaged variables. It models the GHG emission →
concentration→ effective radiative forcing (ERF), aerosol emission→ ERF, and ERF→ temperature responses of the climate125

system. Here we present the equations behind these responses, separating out the model into the key components.

2.1 The gas cycle

FaIRv2.0.0 inherits the GHG gas cycle equations directly from the carbon cycle equations within FaIRv1.5 (Smith et al.,

2018) and v1.0 (Millar et al., 2017). This carbon cycle adapts the 4 pool 4-timescale impulse-response function model in

Joos et al. (2013) for carbon dioxide in Joos et al. (2013) by introducing a state-dependent timescale adjustment factor, α. This130

factor scales the decay timescale timescales of atmospheric carboninto each of the 4 pools, allowing for the effective car-

bon sink from the atmosphere to change in strength. This allows FaIRv2.0.0 to represent non-linearities in the carbon-cycle

in a manner similar to Joos et al. (1996) or Hooss et al. (2001). In Millar et al. (2017)Joos et al. (1996) or Hooss et al. (2001)

. In Millar et al. (2017), α was calculated through a parameterisation of the 100-year integrated Impulse Response Function

(iIRF100, the average airborne fraction over a period of 100 years). In Millar et al. (2017), the iIRF100 was parameterised by a135

simple linear relationship with the quantity of carbon removed since initialisation Gu, and the current temperature T :

iIRF100 = r0 + ruGu + rTT ,

iIRF100 = r0 + ruGu + rTT , (1)

where r0 is the initial (pre-industrial) iIRF100, and ru and rT control how the iIRF100 changes as the cumulative carbon uptake140

and temperature increasesfrom the atmosphere and temperature change. This parameterisation was informed by the behaviour

of ESMs and remains consistent with the key feedbacks involved in the carbon cycle (?)(K. Arora et al., 2020). However, in

Millar et al. (2017), the root of a an implicit non-linear equation had to be found to update α at each model timestep. The

solution of this equation is approximately exponential in iIRF100 to a high degree of accuracy for a wide range of values, and

so in FaIRv2.0.0, α is calculated using the exponential form given belowin equation 4. We parameterise this carbon cycle to145

enable it to simulate a wide range of GHGs, as discussed belowin Section 2.1.1. The equations for the carbon cycle and all

other gas cycles are, in their most general form:
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dRi(t)
dt

= aiE(t)− Ri(t)

ατi

Ri(t)

α(t)τi
, (2)

C(t) = C0 +

n∑
i=1

Ri(t), and (3)150

α(t) = g0 · exp
(r0 + ruGu(t) + rTT (t) + raGa(t)

g1

)
; (4)

where Ga(t)=

n∑
i=1

Ri(t),

Gu(t)=

t∑
s=t0

E(s)−Ga(t);

and g1 =

n∑
i=1

aiτi
[
1−

(
1 + 100/τi

)
e−100/τi

]
,

and g0 = exp
(
−
∑n
i=1 aiτi[1− e−100/τi ]

g1

)
.155

Equations 2 and 3 describe a gas cycle with an atmospheric burden above the pre-industrial concentration, C0, formed of n

pools: each pool reservoirs: each reservoir corresponds to a different sink decay timescale from the atmosphere. Each poolThese

reservoirs do not correspond to any physical carbon stores, but qualitative analogies for them can be found in Millar et al. (2017)

. Each reservoir, Ri, has an uptake fraction ai and decay timescale ατi. At each timestep, the state-dependent adjustment, α, is160

computed and the pool reservoir concentrations are updated and aggregated to determine the new atmospheric burden. The new

atmospheric concentration is then simply the sum of the burden and the pre-industrial concentration. Here we emphasize that

although we have presented this equation set in its general form, with n reservoirs, in practice we set n= 4 for the carbon-cycle,

following Joos et al. (2013); and n= 1 emissions for all other gases within FaIRv2.0.0. For the case where n= 1, equations 2

and 3 can be simplified by dropping the index i entirely. α provides feedbacks to the gas lifetimes lifetime(s) based on the cur-165

rent timestep’s levels of accumulated emissions (Gu), global temperature (T ), and atmospheric gas burden (Ga).Ga is included

to enable FaIRv2.0.0 to emulate the sensitivity of the CH4 lifetime to its own atmospheric burden, as predicted by atmospheric

chemistry and simulated in chemical transport models (CTMs) (Holmes et al., 2013; Prather et al., 2015). We also find that

the emulation of the carbon-cycle of a number of CMIP6 models over the 1pctCO2 experiment is significantly improved if

Ga is included in the iIRF100 parameterisation; see 3.2. Section 3.2. In the default parameterisation of FaIRv2.0.0, this state170

dependence is only active for carbon dioxide and methane; for all other gases, α is constant. g0 and g1 are constants that set

the value and gradient of our analytic approximation for α equal to the numerical solution of the Millar et al. (2017) iIRF100

parameterisation at α= 1 , and are therefore determined by the final two equations above and not independent parameters.

for the carbon-cycle. An important point is that although we inherit the iIRF timescale of 100 years from Millar et al. (2017)

and Joos et al. (2013), this timescale does not affect the behaviour of the model, only the quantitative values of the parameters.175

Hence for a given emulation target (such as the C4MIP models in Section 3.2) the optimal model fit is independent of the
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length of this timescale, but the optimal parameter values are not. Maintaining this timescale at 100 years ensures that the r

coefficients found here are comparable to the previous iterations of FaIR (Smith et al., 2018; Millar et al., 2017). In the follow-

ing section, we discuss how we parameterise the gas cycle to enable FaIRv2.0.0 to simulate a wide range of GHGs using these

same three equations. Qualitative analogies for each parameter to aid understanding are given in table Table 1.180

Here we emphasize the advantage of using this common framework to simulate the response to all the different GHG and

aerosol emissions: if a user is able to understand the FaIRv2.0.0 carbon cycle, then they understand how the model will respond

to emissions of any other GHG or aerosol. This is because the carbon cycle carbon dioxide is the most complex parameterisa-

tion of the above equations(it is the only gas that is simulated : being the only species with more than one atmospheric pool185

as discussed below)decay timescale; and alongside methane one of the only two species to make use of the state-dependence

through α within the default parameterisation. This structural simplicity makes gaining familiarity with the model far easier

than if several different gas cycle formulations were used for different GHGs.

2.1.1 Parameterising the gas cycle for a wide range of GHGs

In this section, we consider how the above these equations can be parameterised to represent the gas cycles for many different190

GHGs. We also provide default parametersations for each GHG, given in full in table Table S2.

Carbon dioxide

As discussed above in Section 2.1, FaIRv2.0.0 retains the state-dependent formulation (Millar et al., 2017) of the 4-pool 4-

timescale impulse-reponse model from Joos et al. (2013)Joos et al. (2013); hence n= 4. We retain the same state-dependency

as in Millar et al. (2017)Millar et al. (2017), so the r parameters are non-zero with the exception of ra. The multi-model mean195

default a and τ coefficients from Joos et al. (2013) are used by defaultare the multi-model mean from Joos et al. (2013). De-

fault ru and rT parameters are taken as the mean of the parameter distributions inferred from CMIP6 models in section Section

4.2.1. Following Jenkins et al. (2018)Jenkins et al. (2018), we tune the default r0 parameter such that present-day (2018) cumu-

lative CO2 emissions match the Global Carbon Project (GCP) estimates (Friedlingstein et al., 2019) RCMIP emission protocol

(Nicholls et al., 2020a; Nicholls and Lewis, 2021) when historical concentrations (Meinshausen et al., 2017) are inverted back200

to emissions by equations 2, 3 and 4. Here we take the GCP dataset as a best-estimate RCMIP protocol as one estimate of

observed emissions, but it is important to note that using a different dataset (such as the RCMIP protocol emissions, which

are designed to match the data used in CMIP6 esm- runs) Global Carbon Project (Friedlingstein et al., 2019), would result in a

different value. The pre-industrial concentration is fixed at 278 ppm.

Methane205

We parameterise methane using a single atmospheric sink: n= 1. Although several individual mechanisms have been identified

for the removal of atmospheric methane – tropospheric OH, tropospheric Cl, stratospheric reactions and soil uptake (Prather
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et al., 2012; Holmes et al., 2013) – these can be aggregated into a single effective atmospheric lifetime. Through rT and ra,

we include the key lifetime feedback dependence on to its own atmospheric burden, and tropospheric air temperature and

water vapour mixing ratio (Holmes et al., 2013). We tune ra to match the sensitivity of the methane lifetime to its own atmo-210

spheric burden at the present-day found by Holmes et al. (2013). rT is tuned to match the sensitivity of the methane lifetime

to tropospheric air temperature and water vapour at the present-day found by Holmes et al. (2013). Since both tropospheric air

temperature and water vapour are closely related to surface air temperatures (they are often approximated by simple parame-

terisations of the surface air temperature, as in Holmes et al. (2013)), including these two sensitivities through a single surface

temperature feedback closely replicates lifetime behaviour if both are included separately. See Figure S2 for the evolution of215

the methane lifetime within default FaIRv2.0.0 over history and a future RCP8.5 pathway (Riahi et al., 2011). τ is then set such

that the mean emission rate since 2000 matches current estimates from the RCMIP database (Nicholls et al., 2020a) protocol

(Nicholls et al., 2020a; Nicholls and Lewis, 2021) when historical concentrations (Meinshausen et al., 2017) are inverted by

FaIRv2.0.0; and r0 is set such that α= 1 at model initialisation. The pre-industrial concentration is fixed at 720 ppmppb.

Nitrous oxide220

Nitrous oxide is parameterised with a single atmospheric sink, and no lifetime sensitivities: n= 1 and {ru, rT , ra}= 0. Al-

though there is evidence that nitrous oxide has a small sensitivity to its atmospheric burden (Prather et al., 2015), when

included in FaIRv2.0.0 this made very little difference to nitrous oxide concentrations, even under high emission scenar-

ios. We therefore do not include this additional complexity. τ is set tuned to match the best-estimate present-day residence

lifetime in Prather et al. (2015) of 109 yearscumulative RCMIP protocol emissions when historical concentrations are inverted225

by FaIRv2.0.0; and r0 is set such that α= 1 at model initialisation. The pre-industrial concentration is fixed at 270 ppm.

Halogenated gases

All other GHGs are treated as having a single atmospheric lifetime and no feedbacks: n= 1 and {ru, rT , ra}= 0. We take

lifetime estimates from WMO (2018). Pre-industrial concentrations (if non-zero) are set to the 1750 value from Meinshausen

et al. (2017). Inclusion of a temperature-dependent lifetime to represent changes to the Brewer-Dobson circulation (Butchart230

and Scaife, 2001), as in the MAGICC SCM (Meinshausen et al., 2011a), would be possible through a non-zero rT parameter.

We do not include a representation of this effect in our default parametersation parameterisation due to its small impact on

model output and increase in model complexity.

Aerosols

Aerosols have considerably shorter lifetimes than the timescales generally considered by SCMs (Kristiansen et al., 2016). In235

FaIRv2.0.0, as in previous iterations (Smith et al., 2018) and other SCMs (Meinshausen et al., 2011a), they are therefore con-

verted directly from emissions to radiative forcing. In FaIRv2.0.0, this can be achieved by setting n= 1, τ = 1, and providing

a unit conversion factor of 1 between emissions and “concentrations”.
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2.1.2 Historical and SSP concentration trajectories

Here we compare the default parameterisation gas cycle model in FaIRv2.0.0-alpha to a previous version, FaIRv1.5 (Smith240

et al., 2018), and to MAGICC7.1.0-beta (Meinshausen et al., 2019), highlighting any differences. All three models are run under

the fully emission-driven “esm-allGHG” RCMIP protocol (Nicholls et al., 2020a); in the case of FaIRv2.0 we use data from the

Global Carbon Project (Friedlingstein et al., 2019) for the input CO2 emissions(Nicholls et al., 2020a; Nicholls and Lewis, 2021)

. FaIRv2.0.0 matches trajectories from both its previous iteration and the more comprehensive MAGICC closely for all GHGs.

We note some discrepancies in the timeseries for halogenated gases between FaIRv2.0.0 and MAGICC, possibly due to the245

incorporation of a state-dependent OH abundance and representation of changes to the Brewer-Dobson circulation which mod-

ulate the lifetimes of these gases (Meinshausen et al., 2011a). We note that for these gases we could have matched historical

concentrations closer by tuning the lifetimes to the RCMIP emission protocol data and historical concentration timeseries

(Nicholls et al., 2020a; Meinshausen et al., 2017), but argue that taking the best-estimate lifetimes from WMO (2018) is defen-

sible; it is more transparent and avoids emission source dependent source-dependent parameters (if a different emission dataset250

were used, the resulting tuned lifetimes would be different). The lower CO2 concentration projections in FaIRv2.0.0 compared

to FaIRv1.5 are due to weaker temperature and cumulative carbon uptake feedbacks (lower ru and rT ) as inferred from the

CMIP6 carbon cycle tunings performed in section 3.2. Section 3.2.
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Figure 2. Comparison of historical and future concentration trajectories over a range of SSPs. Units for all GHGs are ppb with the exception

of CO2 which is plotted in ppm. Inset panels for CO2, CH4 and N2O show the historic period.
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Specification of natural emissions

In FaIRv2.0.0 we have chosen to formulate the gas cycle equations in terms of a perturbation above the pre-industrial (natural255

equilibrium) concentration. By definition, this assumes a time-independent quantity of natural emissions for each gas (which

can be derived from the pre-industrial concentration and lifetime of the gas). This differs from Meinshausen et al. (2011a) and

Smith et al. (2018), who (when driving the respective models with emissions and with the exception of CO2) require a quantity

of natural emissions to be supplied in addition to any anthropogenic emissions by default (though the models can also be run in

a fully emission-driven mode as in figure Figure 2). Over the historical period, these emissions are chosen such that they “close260

the budget” between total anthropogenic emissions, and observed concentrations (Meinshausen et al., 2011a; Smith et al.,

2018). This procedure of balancing the budget over history is analogous to driving the model with concentrations up to the

present day, and then switching to driving the model with emissions afterwards. While this methodology has the advantage of

ensuring the model simulates present-day concentrations that match observation exactly, it loses consistency between the way in

which the model simulates the past and the future. If care is not taken when running these models, this loss of consistency could265

lead to discontinuities at the present-day (when the model switches from concentration- to emission-driven). As present-day

trends are crucial for the estimation of many policy and scientifically relevant quantities such as TCR, TCRE and remaining

carbon budgets (Leach et al., 2018; Tokarska et al., 2020; Jiménez-de-la Cuesta and Mauritsen, 2019), we have chosen to

enforce a consistent model (ie. emission- or concentration-driven) over the entire simulation period in FaIRv2.0.0. We note

that replicating this budget closing procedure is possible in FaIRv2.0.0 by inverting observed concentrations to emissions and270

then joining these inverse emission timeseries to any future scenarios manually. In this study, FaIRv2.0.0 is run in emission-

driven mode unless stated otherwise.

2.2 Effective radiative forcing

FaIRv2.0.0 uses a simple formula to relate atmospheric gas concentrations to effective radiative forcing. This equation, below5,

includes logarithmic, square-root, and linear terms; motivated by the concentration-forcing relationships in Myhre et al. (2013)275

of CO2, CH4 and N2O, and all other well-mixed GHGs respectively. For most agents, the concentration- (or for aerosols,

emission-) forcing relationship can be reasonably approximated by one of these terms in isolation, however if there is sub-

stantial evidence the relationship deviates significantly from any one term, others are able to be included to provide a more

accurate fit. Fext is the sum of all exogenous forcings supplied. These may include natural forcing agents or forcing due to

albedo changes.280

F (t) =

forcing agents∑
x

{
fx1 · ln

[
Cx(t)

Cx0

]
+ fx2 · [Cx(t)−Cx0 ] + fx3 ·

[√
Cx(t)−

√
Cx0

]}
+Fext. (5)

14



2.2.1 Parameterising the forcing equation

Carbon dixoide, nitrous oxide and methane

We assume the forcing relationship for carbon dioxide is well approximated by the combination of a logarithmic and square

root term (Ramaswamy et al., 2001), fCO2
2 = 0; both the methane and nitrous oxide concentration-forcing relationships are285

approximated by a square root term only, fCH4,N2O
1,2 = 0. Although overlaps between the spectral bands of these gases mean

more complex function forms including interaction terms represent our current best approximation to the observed relationship

from spectral calculation (Etminan et al., 2016), inclusion of these interaction terms significantly increases the structural com-

plexity of the model. These overlap terms are most significant for very high concentrations of these gases, and we find that the

more simple relationships used here are sufficiently accurate within the context of the uncertainties associated with such high290

concentration scenarios. We fit the non-zero f coefficients to the Oslo-line-by-line (OLBL) data from Etminan et al. (2016).

Our resulting fits have a maximum absolute error of 0.115 W m−2 when compared to the OLBL data, though this is for the most

extreme-high concentration data point; and the associated relative error is 1.1%. Figure S1 provides a complete comparison of

how the fit relationships used here compare to the OLBL data, and to the simple formulae which include interaction terms in

Etminan et al. (2016).295

Halogenated GHGs

Following other simple models (Smith et al., 2018; Meinshausen et al., 2011a), we assume concentrations of halogenated gases

are linearly related to their direct effective radiative forcing, fx1,3 = 0. The conversion coefficient for each gas is its radiative

efficiency, which we take from WMO (2018).

Aerosol-radiation interaction300

We follow Smith et al. (2020), parameterising the ERF due to aerosol radiation interaction as a linear function of sulphate,

organic carbon and black carbon aerosol emissions:

ERFari = fSO2
2 ESO2 + fOC2 EOC + fBC2 EBC . (6)

Default parameters are taken as the mean of parameters tuned to 10 CMIP6 models in (Smith et al., 2020, see section 3.3)

central estimate from the CONSTRAINED ensemble described in Section 4.305

Aerosol-cloud interaction

ERF due to aerosol-cloud interactions is parameterised following a modification of Smith et al. (2020), as a logarithmic function

of sulphate aerosol emissions, and a linear function of organic carbon and black carbon aerosol emissions:

ERFaci = faci1 ln
(

1 +
ESO2

CSO2
0

)
+ faci2 (EOC +EBC). (7)
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Here CSO2
0 effectively acts as a shape parameter for the logarithmic term. We fit this functional form to the ERFaci component310

in 10 CMIP6 models derived by the Approximate Partial Radiative Perturbation method (Zelinka et al., 2014) in section 3.3.

The default value for the OC+BC coefficient is taken as the mean of the CMIP6 fits. For the logarithmic coefficient and

shape parameter, which appear to have highly skewed distributions due to some models displaying linear and others displaying

logarithmic behaviour against sulphate emissions, we calculate default parameters as the mean of the CMIP6 fits, assuming the

underlying distribution is lognormally distributed. Section 3.3. Default parameters are taken as the central estimate from the315

CONSTRAINED ensemble described in Section 4.

Tropospheric ozoneOzone

Tropospheric ozone Ozone is parameterised following (Stevenson et al., 2013) Thornhill et al. (2021), as a linear function of

methane, nitrous oxide and ODS concentrations, and nitrate aerosol, carbon monoxide , and volatile organic compound emis-

sions. For the methane component, default coefficients are taken from Holmes et al. (2013). For the others, default coefficients320

are found by dividing the attributed forcing in (Myhre et al., 2013) by the 2011 emission rate from the Community Emissions

Data System (CEDS) inventory (Hoesly et al., 2018).

Stratospheric ozone

Stratospheric ozone ERF is parameterised as a linear function of the concentration of ozone depleting substances (ODSs).

We assume that the cumulative ERF of a gas over its lifetime is proportional to its ozone depletion potential (WMO, 2018)325

. The best-estimate AR5 value for stratospheric ozone ERF of -0.05 W m−2 and observed concentrations of each ODS

(Meinshausen et al., 2017) in 2011 then allows us to calculate default linear coefficients for each gasThis parameterisation

is tuned such that the overall ozone forcing timeseries re-produces Skeie et al. (2020). The contribution of individual ODSs to

their total is based on their estimated equivalent effective stratospheric chlorine (Newman et al., 2007; Velders and Daniel, 2014; Smith et al., 2018)

, with fractional release factors from Engel et al. (2018).330

Stratospheric water vapour

Stratospheric water vapour is assumed to be a linear function of methane concentrations (Smith et al., 2018) due to its small

magnitude. The default coefficient is derived from the indirect forcing components in Holmes et al. (2013): 5.5× 10−5 5th

Assessment Report forcing estimate (Myhre et al., 2013) and historical methane concentrations (Meinshausen et al., 2017):

4.37× 10−5 W m−2 ppb−1.335

Black carbon on snow

ERF due to light absorbing particles on snow and ice remains a linear function of black carbon emissions (Smith et al., 2018).

In AR5, the best estimate of its associated ERF was 0.04 W m−2 (Myhre et al., 2013). However, this value is very uncertain,

and the efficacy of black carbon on snow may at least double this value (Bond et al., 2013). We therefore calculate our default
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forcing efficiency by dividing an adopted value of -0.08 W m−2 by the CEDS RCMIP protocol emission rate: 0.011 0.0116 W340

m−2 MtBC−1.

Contrails

Combined ERF due to contrails and contrail-induced cirrus is modelled as a linear function of aviation-sector NOx emissions.

The default coefficient is calculated by dividing the best-estimate present-day contrail ERF (Lee et al., 2021) by the CEDS

RCMIP protocol emission rate: 0.011 0.0164 W m−2 MtNOx
−1.345

Albedo shift due to land-use change

In this study we prescribe ERF due to land-use change externally. However, it could be incorporated in a manner identical to

FaIRv1.5 by supplying a time-series of cumulative land-use change CO2 emissions, and scaling linearly by a coefficient of

-0.00114 W m−2 GtC−1 (Smith et al., 2018).

2.3 Default parameter metric values for comparison350

Table S3 contains default parameter calculated values for the global warming potential (Lashof and Ahuja, 1990) of each

emission type simulated in FaIRv2.0.0. These values are intended to aid comparison between FaIRv2.0.0 and other SCMs and

do not represent any new analysis.

2.4 Temperature response

The final component of the model calculates the surface temperature response to the changes in ERF. A common representation355

of this physical process is the energy balance model outlined by Geoffroy et al. (2013). Here we consider the three-box energy

balance model, including the ocean heat uptake efficacy factor introduced by Held et al. (2010). Recent literature has suggested

that a two-box energy balance model is insufficient to capture the full range of behaviour observed in CMIP6 models (Tsutsui,

2020, 2017; Cummins et al., 2020). The three-box model can be written in state-space form as:

360

Ẋ(t) =AX(t) +bF (t), (8)

Y= CdX;where X(t) =
(
T1(t) T2(t) T3(t)

)
T ,

A=


−(λ+κ2)/C1 κ2/C1 0

κ2/C2 −(κ2 + εκ3)/C2 εκ3/C2

0 κ3/C3 −κ3/C3

 ,
Y and b = ,

(
1/C1 0 0

)
T andCd=.

365

Here, each box i has a temperature Ti and heat capacity Ci. F is the prescribed radiative forcingand N is the observed
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top-of-atmosphere energy imbalance. Heat exchange coefficients κ represent the strength of thermal coupling between boxes

i and i− 1. λ is the so-called climate feedback parameter. ε is the efficacy factor that enables the energy balance model to

account for the variations in λ during periods of transient warming observed in GCMs. T1 represents the surface temperature

change relative to a pre-industrial climate. For many users of SCMs, the key variable of interest is T1, the surface tempera-370

ture response. Calculating To allow parameters of this energy-balance model to be fit to finite-length CMIP6 experiments with

any degree of certainty, Cummins et al. also take advantage of the following relationship with the top of atmosphere flux,N(t):

N(t) = F (t)−λT1(t) + (1− ε)κ3[T2(t)−T3(t)] (9)

375

However, calculating the surface temperature response to radiative forcing within the energy-balance model can be simplified

by diagonalising equation 8, resulting in an impulse-response in T1 (henceforth referred to as T ), giving the thermal response

form in Millar et al. (2017) (Tsutsui, 2017):

dSj(t)
dt

=
qjF (t)−Sj(t)

dj
(10)380

and T (t) =

3∑
j=1

Sj(t). (11)

The response timescales, di, are given by −1
ei

, where ei are

We can relate the energy-balance model matrix representation to the impulse-response parameters as follows. If we let Φ be

the matrix that diagonalises A such that Φ−1AΦ =D, where D is a diagonal matrix with the eigenvalues of Aij;2≤i,j≤4, and

the response coefficients, qi, are given by the product of ei with the first element of the associated right and left eigenvectors385

of Aij;2≤i,j≤4A on the diagonals, then the response timescales are di =−1/Dii (Geoffroy et al., 2013). The response coef-

ficients are qi = diΦ
−1
i,0Φ0,i/C1. In FaIRv2.0.0, we use this three timescale impulse response form due to its simplicity and

flexibility. Two common measures of the climate sensitivity, the equilibrium climate sensitivity (ECS) and transient climate

response (TCR) (Collins et al., 2013) are easily expressed in terms of the impulse response parameters:

390

ECS = F2×CO2 ·
∑

i=1j=1
3qij (12)

TCR = F2×CO2
·
∑

i=1j=1
3

{
qij

(
1− di

70

dj
70

[
1− e−

70
di

− 70
dj

])}
. (13)

The default thermal response parameters in FaIRv2.0.0 are derived as follows. d1, d2, d3 and q1 d1 = 0.903, d2 = 7.92, d3 =

355 and q1 = 0.180 are taken as the central value of their central value within the CONSTRAINED ensemble in Section395

4.3, which do not differ significantly from the CMIP6 inferred distributions described in section 4.2.3. q2 and q3 distribution
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described in Section 4.2.3. q2 = 0.297 and q3 = 0.386 are then set by equations 12 and 13 such that the default parameter set

response has climate sensitivites (ECS and TCR) equal to the central values of the constrained ensemble described in section

Section 4: ECS = 3.2 3.24 K and TCR = 1.8 1.79 K.

3 Emulating complex climate models400

In this section we demonstrate the ability of FaIRv2.0.0 to emulate the more complex models from CMIP6 (Eyring et al., 2016)

in a limited set of experiments. Due to constraints on data availability, we have focussed on tuning the key components of the

model: the carbon cycle; the thermal response; and the aerosol ERF relationships. We use the abrupt-4xCO2 and 1pctCO2

CMIP6 experiments to tune the carbon cycle and thermal response. The highly idealised nature of these experiments means

that parameters arising from these tunings will not necessarily be able to emulate complex model response to more realistic405

scenarios due to processes that FaIRv2.0.0 cannot represent. In the near future we hope to be able to tune to the historical and

SSP CMIP6 experiments in order to validate the tunings given here.

3.1 Tuning the thermal response

We follow the statistically rigorous methodology of Cummins et al. (2020) to tune thermal response parameters to 40 28

CMIP6 models. This involves fitting parameters to the energy balance model above outlined in equation 8 by recursively410

computing the likelihood via the a Kalman filter; the optimal parameters are those that maximise the computed likelihood.

We then transform the calculated optimal energy balance parameters into the impulse response form used in FaIRv2.0.0. We

obtain model data from the “abrupt-4xCO2”, “1pctCO2” and “piControl” experiments for the top-of-energy imbalance and

surface temperature response from ESGF (Cinquini et al., 2014). We calculate anomalies and correct for model drift in the

abrupt-4xCO2 and 1pctCO2 experiments using output from the piControl experiment, based on the CMOR parent branch415

time metadataThese data are normalised as described in Nicholls et al. (2021). To reduce noise internal variability in the input

datatimeseries used to fit parameters, we average over all available ensemble members for each model. For full details of

this anomaly-correction procedure, see the supplementThe number of ensemble members per model is stated in Table S4.

The Cummins et al. (2020) methodology uses surface temperatures and top-of-atmosphere energy imbalances (as related by

equation 9) from the abrupt-4xCO2 experiment to return all the parameters of the energy balance modelabove, plus the radiative420

forcing arising from the quadrupling of carbon dioxide concentrations. While this would fully specify both the thermal response

and the concentration-forcing relationship if concentration-forcing was a pure logarithmic relationship, several models display

significant deviations from a pure logarithmic concentration-forcing relationship (Tsutsui, 2020, 2017). We account for this

within the FaIR FaIRv2.0.0 framework by assuming that the concentration-forcing relationship can be reasonably approximated

by the sum of a logarithmic and square-root term. Best-estimate fCO2
1 and fCO2

3 parameters are found by first deriving the425

TCR of each model using the 1pctCO2 experiment. We can use the tuned impulse-response parameters and TCR to then

calculate the forcing at a doubling of carbon dioxide using the relationship abovein equation 13. The forcings at carbon dioxide

doubling and quadrupling uniquely specify fCO2
1 and fCO2

3 values for use in FaIRFaIRv2.0.0. The best-estimate impulse-
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response and f parameters, climate sensitivities, and forcings at carbon dioxide doubling and quadrupling are given belowin

Table 2. Corresponding energy balance model parameters are given in the supplementTable S5. Figure 3 shows the emulated430

and original responses to the abrupt-4xCO2 and 1pctCO2 experiments for each model.

20



Table 2. Tuned CMIP6 thermal response parameters.

modeld1 d2 d3 / yrs q1 q2 q3 / K W−1 m2F_2x F_4x / W m−2 ECS TCR / K ACCESS-CM2 0.8140 8.980 339.0 0.168000 0.508 0.810000

3.18 7.20 4.72 2.18 ACCESS-ESM1-5 0.6380 6.010 342.0 0.119000 0.447 0.865000 3.53 6.55 5.05 2.15 AWI-CM-1-1-MR 1.1600 6.950

170.0 0.222000 0.296 0.337000 3.96 7.85 3.39 2.16 BCC-CSM2-MR 1.2200 7.230 225.0 0.176000 0.341 0.566000 3.28 6.16 3.55 1.83

BCC-ESM1 2.0100 9.880 282.0 0.289000 0.305 0.539000 3.18 6.25 3.60 1.92 CAMS-CSM1-0 0.3360 4.230 132.0 0.072500 0.297

0.166000 4.61 8.74 2.47 1.79 CESM2 4.1300 81.700 929.0 0.676000 0.644 1.120000 2.58 5.52 6.28 2.28 CESM2-FV2 0.5670 4.600 427.0

0.093900 0.448 1.280000 3.35 7.39 6.09 2.04 CESM2-WACCM 0.3180 4.740 330.0 0.052700 0.470 0.872000 3.71 8.06 5.17 2.14

CESM2-WACCM-FV2 0.6350 6.220 469.0 0.140000 0.461 1.190000 2.99 6.74 5.34 1.92 CIESM 1.1600 7.600 242.0 0.152000 0.424

0.867000 3.91 8.38 5.64 2.51 CNRM-CM6-1 1.5900 25.700 1160.0 0.352000 0.401 0.045400 3.25 8.74 2.59 1.98 CNRM-CM6-1-HR

1.1700 11.600 233.0 0.235000 0.454 0.293000 3.92 7.94 3.85 2.55 CNRM-ESM2-1 1.7300 11.200 367.0 0.280000 0.542 0.683000 2.59

6.01 3.90 2.04 CanESM5 1.1600 11.300 296.0 0.232000 0.571 0.770000 3.43 7.42 5.39 2.71 E3SM-1-0 0.9690 11.300 275.0 0.203000

0.698 0.832000 3.52 7.00 6.10 3.10 EC-Earth3-Veg 0.8550 7.570 119.0 0.201000 0.400 0.587000 3.59 7.47 4.27 2.51 GFDL-CM4 0.0298

2.370 253.0 0.000024 0.427 0.558000 4.20 8.95 4.14 2.03 GFDL-ESM4 1.1300 7.890 292.0 0.227000 0.253 0.154000 3.39 7.87 2.15 1.58

GISS-E2-1-G 0.9460 5.610 369.0 0.202000 0.226 0.233000 4.28 8.14 2.83 1.83 GISS-E2-1-H 1.5400 35.500 1.11e8 0.318000 0.278

0.000075 4.61 8.38 2.75 2.15 GISS-E2-2-G 0.8250 9.900 896.0 0.209000 0.235 0.038500 4.04 8.20 1.95 1.65 HadGEM3-GC31-LL 0.8600

9.310 279.0 0.167000 0.604 0.863000 3.30 7.22 5.39 2.60 HadGEM3-GC31-MM 1.1200 12.300 237.0 0.276000 0.477 0.762000 3.36 7.20

5.10 2.58 INM-CM4-8 1.0700 6.190 79.3 0.207000 0.224 0.201000 2.83 5.93 1.79 1.35 INM-CM5-0 1.1300 7.330 165.0 0.217000 0.235

0.185000 2.92 6.29 1.86 1.33 IPSL-CM6A-LR 1.0600 13.500 366.0 0.316000 0.504 0.634000 3.06 6.98 4.46 2.38 KACE-1-0-G 0.0318

6.260 345.0 0.029900 0.480 0.867000 3.68 7.11 5.07 2.02 MIROC-ES2L 3.5700 19.400 552.0 0.324000 0.168 0.113000 3.84 7.89 2.33

1.68 MIROC6 1.1000 8.470 440.0 0.268000 0.178 0.246000 3.56 7.80 2.46 1.56 MPI-ESM1-2-HR 1.7200 9.630 254.0 0.298000 0.167

0.378000 3.52 7.82 2.97 1.70 MPI-ESM1-2-LR 2.4600 72.700 6.72e6 0.375000 0.172 0.032000 4.19 9.48 2.43 1.77 MRI-ESM2-0 1.1100

5.280 247.0 0.163000 0.286 0.444000 3.48 7.47 3.11 1.68 NESM3 1.2400 22.900 445.0 0.472000 0.345 0.267000 3.75 7.86 4.06 2.70

NorCPM1 2.5000 42.500 1.77e8 0.334000 0.246 0.065500 3.60 7.82 2.33 1.61 NorESM2-LM 0.2310 0.938 1350.0 0.000073 0.250

1.080000 5.47 11.70 7.30 1.50 NorESM2-MM 0.4290 1.210 302.0 0.000088 0.292 0.217000 4.19 10.80 2.13 1.30 SAM0-UNICON 0.8180

4.580 308.0 0.105000 0.405 0.459000 4.57 8.33 4.43 2.42 TaiESM1 1.1600

6.750 274.0 0.152000 0.428 0.553000 4.07 8.15 4.61 2.45 UKESM1-0-LL 0.7530 10.200 277.0 0.210000 0.552 0.769000 3.60 7.38 5.51 2.76

parameter d1 d2 d3 q1 q2 q3 f1 f2 f3 ECS TCR F2×CO2 F4×CO2

model

ACCESS-CM2 0.635 7.76 319 0.131 0.495 0.794 -0.799 0 0.515 4.32 1.98 3.04 7.58

ACCESS-ESM1-5 2.34 66.6 1040000000 0.445 0.426 2.45e-06 4.83 0 0.00086 2.92 1.99 3.35 6.71

AWI-CM-1-1-MR 1.09 6.29 163 0.203 0.306 0.335 4.3 0 0.117 3.2 2.05 3.79 7.93

BCC-CSM2-MR 0.976 5.78 208 0.192 0.23 0.402 0.821 0 0.408 2.82 1.58 3.42 8.02

BCC-ESM1 2.21 15.2 353 0.373 0.328 0.519 2.07 0 0.171 3.21 1.76 2.63 5.76

CAMS-CSM1-0 0.577 4.92 135 0.0991 0.284 0.154 6.26 0 0.00235 2.34 1.73 4.36 8.72

CESM2-FV2 0.531 4.37 417 0.0862 0.448 1.26 2.0 0 0.278 5.97 2.01 3.32 7.45

CESM2-WACCM 0.328 4.88 326 0.0516 0.482 0.864 0.0334 0 0.468 4.6 1.93 3.29 7.94

CESM2-WACCM-FV2 0.621 6.51 458 0.132 0.485 1.16 3.17 0 0.132 5.54 2.04 3.12 6.62

CMCC-CM2-SR5 1.54 29.3 567000 0.337 0.368 0.00106 3.83 0 0.178 2.75 2.17 3.89 8.3

CNRM-CM6-1 1.8 24.7 754 0.324 0.442 5.81e-06 0.591 0 0.465 2.8 2.23 3.66 8.66

CNRM-CM6-1-HR 1.72 15.6 296 0.265 0.445 0.19 4.61 0 0.11 3.57 2.48 3.97 8.25

CNRM-ESM2-1 0.914 8.27 317 0.133 0.694 0.724 -1.04 0 0.429 3.53 1.86 2.28 5.79

CanESM5 1.22 11.1 289 0.227 0.602 0.779 2.06 0 0.257 5.18 2.63 3.22 7.19

E3SM-1-0 0.973 11.0 272 0.202 0.673 0.847 3.7 0 0.117 5.83 2.94 3.39 7.11

FGOALS-g3 0.88 5.03 240 0.15 0.307 0.34 0.403 0 0.422 2.57 1.54 3.23 7.67

GISS-E2-1-G 0.528 5.24 713 0.223 0.222 0.0535 2.44 0 0.341 2.03 1.75 4.07 9.12

GISS-E2-1-H 1.49 31.2 24900000 0.33 0.311 0.0343 4.23 0 0.107 2.49 1.88 3.68 7.67

GISS-E2-2-G 0.872 10.7 514 0.198 0.229 0.0114 7.3 0 -0.0931 1.94 1.72 4.41 8.55

HadGEM3-GC31-LL 0.756 8.59 269 0.143 0.592 0.851 1.2 0 0.343 5.13 2.46 3.23 7.45

HadGEM3-GC31-MM 1.01 11.2 244 0.209 0.51 0.731 3.81 0 0.136 5.21 2.62 3.59 7.58

MIROC-ES2L 0.935 12.8 3400 0.199 0.232 7.18e-06 0.351 0 0.526 1.68 1.51 3.91 9.34

MIROC6 1.13 47.6 94700000 0.302 0.155 0.0037 3.76 0 0.231 1.94 1.56 4.22 9.1

MPI-ESM1-2-HR 2.16 54.0 842000000 0.344 0.237 3.37e-06 1.71 0 0.37 2.19 1.65 3.76 8.6

MPI-ESM1-2-LR 1.18 6.15 256 0.156 0.244 0.237 3.33 0 0.316 2.87 1.83 4.51 9.94

MRI-ESM2-0 0.917 7.13 254 0.197 0.404 0.558 2.2 0 0.161 3.07 1.66 2.65 5.76

NorCPM1 1.47 7.1 282 0.172 0.254 0.457 2.41 0 0.264 3.1 1.58 3.52 7.79

SAM0-UNICON 0.828 4.61 298 0.106 0.408 0.453 6.42 0 -0.0386 4.05 2.24 4.18 8.26
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Figure 3. FaIRv2.0.0 emulation of CMIP6 model response to the abrupt4xCO2 abrupt-4xCO2, abrupt-2xCO2, abrupt-0p5xCO2, and

1pctCO2 experiments. Small Black line shows FaIRv2.0.0-alpha emulation, orange and blue dots show drift-corrected line shows CMIP6

model surface temperature anomaly output for data where available. Emulation parameters were fit using the abrupt-4xCO2 and 1pctCO2

experiments respectively. Dashed black lines show corresponding FaIRv2.0 emulationso the abrupt-2xCO2 and abrupt-0p5xCO2 simulations

can be considered as verification experiments for the models where the data for these experiments is available. Large orange Filled and blue

unfilled dots over the y-axis indicate the assessed model ECS and TCR respectively (see table Table 2).
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We found that optimal parameters found over the first 150 years of the abrupt-4xCO2 experiment were not able to well-reproduce

the remainder of the experiment for those models that continued the experiment past 150 years (CESM2 and NorESM2-LM).

These models appear to exhibit particularly high ocean heat uptake efficacy, resulting in a sharp “elbow” feature in their Gregory

plots (see figure S2), which tends to be underestimated by the maximum likelihood procedure when tuning to abbreviated data.435

Without longer runs from more models, it is difficult to predict whether the projection issues with tuning parameters to the first

150 years observed in these two models would apply more generally. Rugenstein et al. (2020) suggests that the inclusion of an

ocean heat uptake efficacy in the fit should alleviate this issue to a limited extent.

3.2 Tuning the carbon cycle response

We tune the carbon cycle using CMIP6 data from the C4MIP (Jones et al., 2016) fully coupled and biogeochemically cou-440

pled 1pctCO2 runs (?)(K. Arora et al., 2020). Since constraining the response coefficients ai and timescales τi requires pulse-

emission experiments such as carried out by Joos et al. (2013), here we only fit the r feedback parameters and keep the response

coefficients, a, and timescales, τ , equal to the multi-model mean from Joos et al. (2013). The inclusion of both the fully coupled

and biogeochemically coupled runs in the procedure allows us to constrain ru, ra, and rT independently. We use equations 2

and 3 to diagnose the values of α required to reproduce the C4MIP emissions from the corresponding concentrations within the445

FaIRv2.0.0 carbon-cycle impulse-response framework. We then use equation 4 to convert α into iIRF100 timeseries. Finally, we

use an ordinary least squares estimator to calculate r parameters by regressing the C4MIP cumulative uptake, temperature and

atmospheric burden timeseries against the diagnosed iIRF100 timeseries. r0 is taken as the intercept of the estimator. We include

the atmospheric burden as a predictor (and hence obtain non-zero rA values) due to a significant reduction in regression residual

for several models when included. We find that all the C4MIP models display an exceptionally high, rapidly decreasing initial450

airborne fraction. In terms of the FaIRv2.0.0 equations, this corresponds to an α value that decreases initially before reaching

a minimum, representing a carbon sink that initially increases in strength when concentrations start to rise before decreasing

as the concentrations and temperatures rise further. FaIRv2.0.0 is unable to fully capture this initial adjustment, and as such in

our tunings we prioritise emulating the long-term behaviour and carry out the regression over the final 75 years of the C4MIP

datafrom year 60 onwards. It would be possible to better capture the initial adjustment by including additional terms in equation455

4, but since it remains to be seen whether this behaviour is apparent in scenarios where concentrations do not rise suddenly and

rapidly from a pre-industrial level as is the case in the 1pctCO2 experiment (such as a historical emission scenario), we do not

do so here. Tuned parameters are given below, with figure in Table 3, with Figure 4 showing diagnosed C4MIP emissions and

the FaIRv2.0.0-alpha emulation. We note that these tunings suggest that the pre-industrial sink strength (which is encapsulated

by r0) in all but one of the 7/11 models is higher than the historically observed best-estimate found here (2.1.1), and in a460

previous study (Jenkins et al., 2018). r0 ru rT ra ACCESS-ESM1-5 32.8 0.048200 3.4400 -0.00627 BCC-CSM2-MR 27.7

0.001590 4.5200 0.00873 CESM2 41.3 0.007510 1.1900 0.00626 CNRM-ESM2-1 38.5 -0.000362 2.4400 0.01030 CanESM5

35.9 -0.007120 -0.0847 0.01910 GFDL-ESM4 35.8 0.017700 4.5100 -0.00156 IPSL-CM6A-LR 34.8 0.009360 0.9340 0.01560

MIROC-ES2L 34.3 0.010400 3.2900 0.00574 MPI-ESM1-2-LR 35.7 0.020800 1.2600 0.00357 NorESM2-LM 41.3 0.005590

1.4500 0.00757 UKESM1-0-LL 38.5 0.018100 2.5800 0.00287465
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Table 3. Tuned CMIP6 carbon-cycle parameters.

parameter r0 ru rT ra

model

ACCESS-ESM1-5 36.7 0.035 3.04 -0.00066

BCC-CSM2-MR 25.6 0.00598 5.2 0.00439

CESM2 40.7 0.0107 1.28 0.00421

CNRM-ESM2-1 38.1 0.000581 2.47 0.00978

CanESM5 35.7 -0.00596 -0.104 0.0181

GFDL-ESM4 34.3 0.0219 4.86 -0.00424

IPSL-CM6A-LR 32.2 0.0166 1.07 0.0123

MIROC-ES2L 33.4 0.0131 3.46 0.00399

MPI-ESM1-2-LR 33.3 0.031 1.5 -0.00257

NorESM2-LM 40.7 0.00947 1.56 0.00489

UKESM1-0-LL 37.9 0.0201 2.67 0.00181
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Figure 4. FaIRv2.0.0 emulation of CMIP6 model carbon cycle response to the C4MIP 1pctCO2 experiments. Orange and blue dots show

model annual and cumulative emissions for the experiments specified above the figure. Dashed black lines show corresponding Black line

shows FaIRv2.0.0-alpha emulation, and orange line shows C4MIP model data. Red dots in the right-hand column show Top row shows

diagnosed emission rates, middle row cumulative emissionsarising from radiation feedback directly from , and bottom row airborne fraction.

Solid line indicates the radiatively-coupled 1pctCO2 experimentfully coupled C4MIP runs, while blue dots dashed lines show cumulative

emissions calculated as the difference between the equivalent fully- and biogeochemically-coupled experimentsbiogeochemically coupled

runs (emulated in FaIRv2.0.0-alpha by setting rT = 0).
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3.3 Tuning aerosol ERF

Aerosol forcing relationships are tuned to ERF data from 10 CMIP6 models and emission data from the RCMIP proto-

col (Nicholls et al., 2020a) (Nicholls et al., 2020a; Nicholls and Lewis, 2021) following Smith et al. (2020). For each CMIP6

model, aerosol-radiation and aerosol-cloud interaction components of the ERF are calculated by the Approximate Partial Ra-

diative Perturbation (APRP) method. For additional details on the exact procedure, see Smith et al. (2020) and Zelinka et al.470

(2014). For each model, we fit the f coefficients in equation 6 to the ERFari component using an ordinary least squares es-

timator. The resulting coefficients are almost identical to those from Smith et al. (2020), with differences arising only due to

the emission data used. We then fit the f coefficients and CSO2
0 in equation 7 to the ERFaci component by minimising the

residual sum of squares using a simplex algorithm (Nelder and Mead, 1965). The tuned parameters are given belowin Table 4.

Figure 5, following figure Figure 2 of Smith et al. (2020), shows the parameterised fits compared to the APRP derived model475

ERF components. fBC2 fOC2 fSO2
2 faci1 CSO2

0 faci2 CanESM5 0.03260 -0.000347 -0.002490 -0.387 23.8 -0.015200 E3SM

0.02480 -0.012600 -0.000942 -1.640 113.0 -0.014200 GFDL-CM4 0.02690 -0.002090 -0.002610 -2.230 427.0 -0.008030

GFDL-ESM4 0.10200 -0.030400 -0.002640 -57.600 17000.0 -0.015300 GISS-E2-1-G 0.14600 -0.044100 -0.006680 -0.156

16.8 -0.017600 HadGEM3-GC31-LL 0.00196 0.004150 -0.002910 -0.783 66.9 -0.006910 IPSL-CM6A-LR -0.05610 0.008850

-0.000748 -0.951 306.0 -0.001730 MIROC6 0.03870 -0.014200 -0.001780 -0.392 46.6 -0.012400 NorESM2-LM 0.00302480

-0.003400 -0.001260 -68.600 10300.0 -0.012300 UKESM1-0-LL 0.00255 0.000063 -0.002390 -0.740 38.9 -0.000265
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Table 4. Tuned CMIP6 aerosol forcing parameters.

source ERFari ERFaci

parameter fSO2
2 fBC

2 fOC
2 f aci

1 CSO2
0 f aci

2

model

CanESM5 -0.00249 0.0326 -0.000347 -0.387 23.8 -0.0152

E3SM -0.000942 0.0248 -0.0126 -1.64 113 -0.0142

GFDL-CM4 -0.00261 0.0269 -0.00209 -2.23 427 -0.00803

GFDL-ESM4 -0.00264 0.102 -0.0304 -57.6 17000 -0.0153

GISS-E2-1-G -0.00668 0.146 -0.0441 -0.156 16.8 -0.0176

HadGEM3-GC31-LL -0.00291 0.00196 0.00415 -0.783 66.9 -0.00691

IPSL-CM6A-LR -0.000748 -0.0561 0.00885 -0.951 306 -0.00173

MIROC6 -0.00178 0.0387 -0.0142 -0.392 46.6 -0.0124

NorESM2-LM -0.00126 0.00302 -0.0034 -68.6 10300 -0.0123

UKESM1-0-LL -0.00239 0.00255 6.32e-05 -0.74 38.9 -0.000265
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Figure 5. Top row shows entire CMIP6 model ensemble compared to the FULL and CONSTRAINED FaIRv2.0parameter ensembles

described in 4. All other figures show FaIRv2.0 emulation of individual CMIP6 models. Orange dots show CMIP6 model output derived

using APRPaerosol forcing. Black dashed lines show line shows FaIRv2.0.0-alpha emulation, and orange dots show CMIP6 model data. All

series displayed are relative to zero effective radiative forcing in 1850.
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4 Constraining probabilistic parameter ensembles

The computational efficiency of SCMs makes them an ideal tool for carrying out large ensemble simulations from which

probabilistic projections can be derived. Smith et al. (2018) carried out such a large ensemble, and produced projections

based on constraining the ensemble members to fall within the 5-95% uncertainty range in observed warming to date from the485

Cowtan and Way dataset (Cowtan and Way, 2014). Here we replicate this procedure with the new model, but with an additional

constraint on the current rate of warmingusing a new constraint methodology, and updated prior parameters distributions.

4.1 The current level and rate of warming

We determine the current level and rate of warming following the Global Warming Index methodology (Haustein et al., 2017).

This takes into account multiple sources of uncertainty: observational, forcing, earth system response (through parameter vari-490

ation in an identical thermal climate response model to the one used in FaIRFaIRv2.0.0) and internal variability. We find that

a 90% credible interval on the 2014 level of warming relative to 1861-1880 is 0.75 - 1.26 K; and on the 2010-2014 rate of

warming is 0.18 - 0.40 K decade−1. We use 2014 as the year in which our constraint is applied as this is With this methodology,

we obtain an estimate of the distribution of the final year for which historical aerosol emissions – usedin the calculation of the

forcing timeseries – are available (Hoesly et al., 2018). We could extend the calculation to the present day using the SSP2-4.5495

emission scenario as was done in Smith et al. (2020), but the rapid reduction in sulfate emissions following 2014 in this scenario

current (2010-19) level and rate of the anthropogenic contribution to global warming (the anthropogenic warming index dis-

tribution). A key choice within this estimate is the observational data product used. There are six widely-used products available

(Lenssen et al., 2019; Cowtan and Way, 2014; Vose et al., 2012; Morice et al., 2011; Rohde et al., 2013; Morice et al., 2020). Here

we average over the distributions implied by each product to obtain our final distribution used to constrain our FaIRv2.0.0 en-500

semble. This choice clearly projects significantly onto the rate of warming constraint and this decline does not appear to reflect

observed aerosol forcing trends from atmospheric reanalyses (Bellouin et al., 2020a). We note that the interval obtained for the

level of warming here is larger than previous estimates (Haustein et al., 2017; Leach et al., 2018); this is largely due to updates

to the aerosol forcing timeseriesour results, so we provide results for each dataset in turn in Section 4.3.5 to demonstrate the

sensitivity of our analysis to the choice of dataset. For full details of the this calculation, see the supplement.505

4.1.1 Definition of global mean temperature

Recent studies (Richardson et al., 2016, 2018) have shown that the definition of globally averaged surface temperature used

is important when comparing observations to climate model output, and is relevant when exploring policy-relevant quanti-

ties such as the carbon budget (Tokarska et al., 2019). Discrepancies arise since observations blend air temperatures over

land and sea ice with water temperature over ocean, and do not have full global coverage (they are blended-masked); while510

climate model surface temperature output is globally complete, and always measured as the air temperature 2m above the

surface of the Earth. It has been shown both historically, and over future climate scenarios (Richardson et al., 2018), that

the blended-masked temperature definition (GMST) may be cooler than the globally complete 2m air temperature definition

29



(GSAT). In our Global Warming Index calculation , we use the mean of 5 (4.1), we combine 6 temperature observation datasets

(Lenssen et al., 2019; Cowtan and Way, 2014; Vose et al., 2012; Morice et al., 2011; Rohde et al., 2013) following the IPCC Special515

Report on 1.5°C warming (IPCC, 2018)(Lenssen et al., 2019; Cowtan and Way, 2014; Vose et al., 2012; Morice et al., 2011; Rohde et al., 2013; Morice et al., 2020)

; this implies that our constrained ensemble will broadly measure surface temperatures using the GMST definition. This will

may lead to slightly lower model estimates of surface temperature than if we used the GSAT definition. We can estimate the

difference between our definition of GMST and GSAT by regressing the 5-dataset 6-dataset mean used here against GSAT

from ERA5 (Hersbach et al., 2020). A least squares estimator [confidence calculated using a block-bootstrap (Wilks, 1997)]520

suggests that our GMST definition is 3.4 ± 0.01 4.6 [0.4 , 10.8] % smaller than GSAT2.

4.2 Sampled prior distributions

4.2.1 Carbon cycle parameters

While including the atmospheric burden is necessary to well-emulate the carbon-cycle behaviour of individual C4MIP models,

parameterising the iIRF100 as a linear function of just cumulative carbon uptake and temperature is sufficient to capture the525

spread of the model ensemble. Correlations between parameters also complicate sampling from the inferred parameter dis-

tributions derived from table Table 3. We therefore repeat the parameter tuning procedure described in section Section 3.2,

but exclude the atmospheric burden as a predictor for the C4MIP iIRF100 timeseries. The resulting r0, ru and rT parameter

samples are uncorrelated. We sample these parameters by applying scaling factors inferred from the CMIP6 tunings to the

default parameter values (for ru and rT this is equivalent to sampling directly from the distribution inferred from the CMIP6530

tunings). The underlying uncorrelated scaling factor distributions are given below. parameterdefault value scaling factor, Xr0

30.4 X ∼N (1,0.122) ru 0.0177 ln(X)∼N (0,0.116) rT 2.64 X ∼N (1,0.613) in Table 5.

Table 5. Carbon-cycle parameter sampling.

default value scaling factor, X

parameter

r0 33.9 X ∼N (1,0.154)

ru 0.0188 ln(X)∼N (0,0.442)

rT 2.67 X ∼N (1,0.615)

2square brackets indicate a 90% credible interval
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4.2.2 Forcing parameters

Uncertainty in effective radiative forcing is included by grouping individual forcing agents into broader forcing classes (IPCC

et al., 2013), and applying a randomly sampled scaling factor to all the f parameters within each class (with the exception535

of aerosol forcings, which we discuss immediately below). Scaling factors between forcing classes are uncorrelated. The

scaling factor distributions are given belowused for each forcing class are given in Table 6. Uncertainty in aerosol forcing is

included as follows. ERFari f coefficients (equation 6) are first drawn from a multivariate normal distribution inferred from

the CMIP6 tuned parameters in Table 4. We then apply a quantile map to scale the resulting coefficients such that the 1850

to 2005-2015 mean ERFari distribution matches the process based assessment in Bellouin et al. (2020b). For ERFaci, faci2540

coefficients (equation 7) are drawn from a normal distribution inferred from the CMIP6 tuned parameters in Table 4. faci1

and CSO2
0 coefficients are drawn from a multivariate log-normal distribution; this ensures we sample the full range of ERFaci

shapes provided by CMIP6 models. As with the ERFari coefficients, we then apply a quantile map to scale these coefficients

such that the sampled 1850 to 2005-2015 mean ERFaci distribution matches Bellouin et al. (2020b). The underlying scaling

factor distributions used for each forcing class (excluding aerosol forcing) are given below.forcing categoryscaling factor, X545

5-95% uncertainty (%)CO2 X ∼N (1,0.122) ±20 CH4 X ∼N (1,0.170) ±28 N2O X ∼N (1,0.122) ±20 other WMGHGs

X ∼N (1,0.122) ±20 tropospheric ozone X ∼N (1,0.304) ±50 stratospheric ozone X ∼N (1,1.22) ±200 stratospheric

H2O from CH4 X ∼N (1,0.438) ±72 black carbon on snow ln(X)∼N (0,0.457) - contrails X ∼N (1,0.456) ±75 land

use change X ∼N (1,0.456) ±75 volcanic X ∼N (1,0.304) ±50 solar X ∼N (1,0.608) ±100

Table 6. ERF parameter sampling.

scaling factor, X 5-95% uncertainty (%)

forcing category

CO2 X ∼N (1,0.122) ±20

CH4 X ∼N (1,0.170) ±28

N2O X ∼N (1,0.122) ±20

other WMGHGs X ∼N (1,0.122) ±20

ozone X ∼N (1,0.304) ±50

stratospheric H2O from CH4 X ∼N (1,0.438) ±72

black carbon on snow ln(X)∼N (0,0.457) -

contrails X ∼N (1,0.456) ±75

land use change X ∼N (1,0.456) ±75

volcanic X ∼N (1,0.304) ±50

solar X ∼N (1,0.608) ±100
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4.2.3 Thermal response parameters550

Uncertainty in thermal response is incorporated by sampling response parameters directly from distributions inferred from

the CMIP6 tunings in section Section 2, taking correlations between parameters into account. Referring to parameters as in

equations 10, 11, 12 and 13, we draw parameters from the following distributions. d1, d2 and q1 are highly correlated, and

we therefore sample ln(d1), ln(d2) and q1 from a multivariate normal distribution with covariances and means taken from the

values in section Section 2. d3 is not strongly correlated with any other parameter, and so we sample ln(d3) from a normal555

distribution. We then independently sample the TCR and the TCR/ECS ratio, : the Realised Warming Fraction (RWF), ; as

it has been shown that the TCR and RWF are much more weakly correlated than any other combination of ECS, TCR and

RWF (Millar et al., 2015). We draw TCR samples from a normal distribution, TCR∼N (2,0.608), truncating the distribution

at a distance of ±3σ from the central value of 2. We draw RWF samples from a normal distribution RWF∼N (0.55,0.15),

again truncating at ±3σ. The 90% credible interval of the sampled TCR and RWF distributions closely, but not exactly, match560

the ranges inferred from the parameters in table Table 2. Using equations 12 and 13, we then calculate q2 and q3. We reject

any samples in which any of the q parameters are unphysical (negative). The quantiles of the underlying prior ECS and TCR

distributions used are given belowin Table 7.

4.3 The constrained ensemble

Taking historical CO2 emissions from GCP (Friedlingstein et al., 2019), and all other historical and future SSP (Riahi et al.,565

2017) emissions from the RCMIP protocol (Nicholls et al., 2020a)(Nicholls et al., 2020a; Nicholls and Lewis, 2021); and land

use change, volcanic, and solar forcing from the SSP effective radiative forcing timeseries (Smith, 2020), we run a 1,000,000

member emission-driven ensemble (FULL), sampling uncertainty in the carbon cycle, effective radiative forcing and thermal re-

sponse as described above. We then constrain this ensemble (CONSTRAINED) based on the assessed 90% credible intervals of

the 2014 in Sections 4.2.1, 4.2.2, and 4.2.3. This FULL ensemble is then constrained by setting the selection probability of each570

member equal to the likelihood of its simulated present-day level and rate of the Global Warming Index (Haustein et al., 2017)

as above (4.1) anthropogenic warming within the anthropogenic warming index distribution. These likelihoods are calculated

using a binning procedure at a resolution of 0.01 K (level) and 0.001 K year−1 (rate). Finally, we subsample the FULL en-

semble based on these selection probabilities to generate the CONSTRAINED ensemble. This procedure retains 9.6 % of the

FULL ensemble. Table 7 gives outlines the results of this analysis in terms of the quantiles of key variables. metrics: the model575

climate sensitivity and present-day radiative forcing.
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Table 7. Constrained ensemble results for climate sensitivities and current ERF. ERF in 2019 is based on following an SSP2-4.5 pathway

from 2014 onwards.

ensemble FULL CONSTRAINED

percentile 5% 16.6% 50% 83.3% 95% 5% 16.6% 50% 83.3% 95%

climate sensitivities / K
ECS 1.80 2.45 3.69 5.66 8.05 1.94 2.36 3.24 4.74 6.59

TCR 1.14 1.48 2.03 2.60 3.01 1.30 1.48 1.79 2.15 2.44

2019 ERF components / W m−2

CO2 1.61 1.81 2.12 2.45 2.69 1.67 1.86 2.15 2.46 2.70

CH4 0.45 0.52 0.62 0.73 0.80 0.45 0.52 0.62 0.72 0.79

N2O 0.16 0.17 0.20 0.22 0.24 0.16 0.17 0.20 0.22 0.24

other WMGHGs 0.29 0.32 0.36 0.40 0.43 0.29 0.32 0.36 0.40 0.43

ozone 0.24 0.33 0.47 0.61 0.70 0.23 0.33 0.47 0.60 0.70

stratospheric H2O from CH4 0.01 0.03 0.05 0.07 0.09 0.01 0.03 0.05 0.07 0.09

aerosol-radation interaction -0.60 -0.47 -0.30 -0.15 -0.03 -0.59 -0.47 -0.31 -0.16 -0.06

aerosol-cloud interaction -2.28 -1.48 -0.70 -0.26 -0.05 -1.16 -0.90 -0.55 -0.27 -0.10

total aerosol -2.63 -1.81 -1.02 -0.53 -0.27 -1.47 -1.22 -0.88 -0.57 -0.36

black carbon on snow 0.04 0.06 0.09 0.14 0.19 0.04 0.06 0.09 0.13 0.18

contrails 0.01 0.03 0.06 0.08 0.10 0.01 0.03 0.06 0.08 0.10

albedo from land use change -0.35 -0.29 -0.20 -0.11 -0.05 -0.35 -0.29 -0.20 -0.11 -0.05

total anthropogenic 1.01 1.86 2.73 3.39 3.81 2.19 2.47 2.90 3.35 3.68

climate sensitivity 5% 17% 50% 83% 95% 5% 17% 50% 83% 95% ECS 1.91 2.55 3.73 5.43 7.26 1.94 2.36 3.17 4.45 5.84 TCR 1.18 1.53

2.06 2.62 3.02 1.25 1.45 1.77 2.13 2.41 2019 ERF relative to 1750 / W m−2 CO2 1.62 1.80 2.08 2.37 2.58 1.67 1.84 2.11 2.38 2.59 CH4

0.45 0.53 0.63 0.73 0.81 0.45 0.52 0.63 0.73 0.80 N2O 0.16 0.18 0.20 0.22 0.24 0.16 0.18 0.20 0.22 0.24 other WMGHGs 0.29 0.32 0.36

0.40 0.43 0.29 0.32 0.36 0.40 0.43 tropospheric O3 0.20 0.28 0.40 0.51 0.59 0.20 0.28 0.39 0.51 0.59 stratospheric O3 -0.14 -0.10 -0.05

0.01 0.05 -0.14 -0.10 -0.05 0.01 0.05 stratospheric H2O from CH4 0.02 0.04 0.06 0.09 0.11 0.02 0.04 0.06 0.09 0.11 total WMGHGs 3.14

3.36 3.69 4.02 4.27 3.18 3.39 3.71 4.03 4.27 ERFari -0.59 -0.46 -0.30 -0.14 -0.02 -0.58 -0.46 -0.31 -0.16 -0.05 ERFaci -2.26 -1.46 -0.69

-0.26 -0.05 -1.25 -1.00 -0.63 -0.30 -0.11 total aerosols -2.59 -1.79 -1.00 -0.52 -0.26 -1.56 -1.32 -0.95 -0.60 -0.37 black carbon on snow 0.04

0.05 0.09 0.13 0.18 0.04 0.05 0.08 0.13 0.18 contrails 0.01 0.02 0.04 0.06 0.07 0.01 0.02 0.04 0.06 0.07 total anthropogenic 0.90 1.73 2.59

3.22 3.63 1.98 2.25 2.67 3.13 3.46
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4.3.1 Current effective radiative forcing

The constraint applied only significantly affects the estimated ranges of ERFaci, total aerosol and anthropogenic forcings in

2019 (based on an SSP2-45 pathway following 2014). ERFaci is constrained from -0.69 -0.70 [-2.26 -2.28 , -0.05] 3 to -0.63

to -0.55 [-1.25 , -0.11-1.16 , -0.10]; total aerosol forcing from -1.00 -1.02 [-2.59 , -0.26-2.63 , -0.27] to -0.95 -0.88 [-1.55580

, -0.37-1.47 , -0.36]; and total anthropogenic forcing from 2.59 2.73 [0.90 , 3.631.01 , 3.81] to 2.67 2.90 [1.98 , 3.462.19 ,

3.68]. These results are consistent with a recent study that used similar methods but concentrated on aerosol forcing and used

a constraint based on observed warming and Earth energy uptake (Smith et al., 2020). Other forcing categories are not affected

by the constraint due to their relatively smaller magnitude and/or prior uncertainty.

4.3.2 Climate sensitivities585

We find that the TCR is constrained from 2.06 2.03 [1.18 , 3.021.14 , 3.01] to 1.77 1.79 [1.25 , 2.411.30 , 2.44] and the ECS from

3.73 3.69 [1.91 , 7.261.80 , 8.05] to 3.17 3.24 [1.94 , 5.846.59]. These results are relatively consistent with several recent studies

that have used emergent constraint techniques (Nijsse et al., 2020; Jiménez-de-la Cuesta and Mauritsen, 2019; Tokarska et al., 2020)

(Nijsse et al., 2020; Jiménez-de-la Cuesta and Mauritsen, 2019; Tokarska et al., 2020; Brunner et al., 2020; Ribes et al., 2021, Figure 6)

or drawn on multiple lines of evidence (Sherwood et al., 2020); our constrained likely range of TCR exactly matches Sherwood et al.590

to two significant places. The largest discrepancies with these studies occur at the upper tails of the constrained distributionsECS

distribution; the constraint applied here is unable to rule out some higher values of the ECS which some of these other studies

have done, though we note that the 95th percentile of the CONSTRAINED ECS distribution is only slightly above the robust

upper bound in Sherwood et al. (2020). The CONSTRAINED RWF distribution does not differ significantly from the FULL

distribution of 0.55 [0.3 , 0.8].595

3square brackets indicate a 90% credible interval
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Figure 6. Climate sensitivities of our FULL , CONSTRAINED and ALTERNATIVE CONSTRAINED ensembles in the context

of other studies. Black line indicates median values; grey shading likely range; unfilled bars 5-95% range. Studies included are:

Nijsse et al. (2020); Tokarska et al. (2020); Jiménez-de-la Cuesta and Mauritsen (2019); Sherwood et al. (2020)Brunner et al. (2020, B20)

, Jiménez-de-la Cuesta and Mauritsen (2019, C19), Nijsse et al. (2020, N20), Ribes et al. (2021, R21), Sherwood et al. (2020, S20),

Tokarska et al. (2020, T20). CMIP6 indicates climate sensitivities derived from the energy balance model fits calculated above in Section

3.1 (including ocean heat uptake efficacy), CMIP6* indicates climate sensitivities derived using the Gregory method (Gregory et al., 2004)

over the first 150 years of the abrupt-4xCO2 experiment.
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4.3.3 Correlations between climate sensitivities and ERF

There are significant correlations between key variables in the CONSTRAINED ensemble, consistent with previous studies

(Smith et al., 2018; Millar et al., 2015; Sanderson, 2020; Forest et al., 2002; Marvel et al., 2016). These are shown in the

contour plots in figure Figure 7.
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Figure 7. Corner plot depiction of key quantities within the FULL and CONSTRAINED ensembles, based on following a historical trajectory

to 2014 and SSP2-45 thereafter. Diagonal plots show marginal probability density functions of each key variable; FULL shown in grey,

CONSTRAINED in black, and FULL constrained by the current level of warming only in red. Subdiagonal plots show contour plots of

gaussian kernel density estimates of joint probability density function. Contours show shown indicate regions containing 95, 67normalised

likelihoods of 5, 33, 66 and 5 95 %of the ensemble members. Purple crosses and lines indicate the positions of individual CMIP6 models.

The temperature and ERF variables are based 2010-2019 warming rate for CMIP6 models is calculated as the slope of a linear regression

over 2000-2029 due to internal variability projecting strongly on following an SSP2-45 trajectory from 2014 onwardsthe slope estimate and

error if a shorter period is used.
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4.3.4 Sensitivity to prior response parameter distributions600

Previous work has shown that posterior marginal distributions of ECS and TCR depend strongly on the assumed prior dis-

tributions (Bodman and Jones, 2016). Here we test the sensitivity of our CONSTRAINED results to the response parameters

sampled in FULL by replacing the TCR and RWF sample distributions stated in Section 4.2.3 with: TCR∼ U (0.5,3.5) and

RWF∼ U (0.2,0.85). The actual prior distributions of TCR and RWF differ slightly from those stated here due to the rejection

of unphysical response parameter sets, which tends to occur more often for lower values of TCR and higher values of RWF: the605

quantiles of the ALT input TCR and ECS distributions are 2.24 2.17 [0.87 0.85 , 3.37] and 4.11 4.03 [1.44 , 10.551.38 , 10.46]

respectively. The posterior distributions of TCR and ECS after applying the constraint (ALTERNATIVEALT-CONSTRAINED)

described in 4.1 are 1.69 Section 4.1 are 1.73 [1.15 , 2.541.21 , 2.59] and 3.14 3.28 [1.74 , 7.421.82 , 7.63]. The resulting

marginal posterior distributions are wider than in the CONSTRAINED ensemble; though not considerably so for the TCR es-

timate. The upper end of the ALTERNATIVE ALT-CONSTRAINED ECS distribution is most affected by the change in prior,610

suggesting that the current level and rate of warming does not provide an exceptionally tight constraint on the upper bound of

the ECS. The ALTERNATIVE ALT-CONSTRAINED TCR distribution is not significantly different from CONSTRAINED,

differing only by 0.1 K over the range of the distribution, demonstrating the close relationship between the TCR and historical

warming (Sanderson, 2020) that enforces a tight constraint even with a significantly less informed prior. An analogous figure

to figure 7 but for the ALTERNATIVE ensemble is in the Supplement (figure S3).

Table 8. Results for the key metrics under a less informed climate sensitivity prior.

ensemble ALT ALT-CONSTRAINED

percentile 5% 16.6% 50% 83.3% 95% 5% 16.6% 50% 83.3% 95%

climate sensitivities / K
ECS 1.38 2.18 4.03 7.08 10.46 1.82 2.23 3.28 5.42 7.63

TCR 0.85 1.25 2.17 3.06 3.37 1.21 1.40 1.73 2.18 2.59

2019 ERF components / W m−2

CO2 1.61 1.81 2.12 2.45 2.70 1.67 1.85 2.15 2.46 2.69

CH4 0.45 0.52 0.62 0.72 0.80 0.45 0.52 0.62 0.72 0.80

N2O 0.16 0.17 0.20 0.22 0.24 0.16 0.17 0.20 0.22 0.24

other WMGHGs 0.29 0.32 0.36 0.40 0.43 0.29 0.32 0.36 0.40 0.43

ozone 0.23 0.33 0.47 0.61 0.70 0.23 0.33 0.47 0.61 0.70

stratospheric H2O from CH4 0.01 0.03 0.05 0.07 0.09 0.01 0.03 0.05 0.07 0.09

aerosol-radation interaction -0.60 -0.47 -0.30 -0.15 -0.03 -0.59 -0.46 -0.31 -0.16 -0.05

aerosol-cloud interaction -2.28 -1.48 -0.70 -0.26 -0.05 -1.19 -0.90 -0.53 -0.24 -0.07

total aerosol -2.63 -1.81 -1.02 -0.53 -0.27 -1.51 -1.23 -0.85 -0.53 -0.32

black carbon on snow 0.04 0.06 0.09 0.14 0.19 0.04 0.06 0.09 0.14 0.19

contrails 0.01 0.03 0.06 0.08 0.10 0.01 0.03 0.06 0.08 0.10

albedo from land use change -0.35 -0.29 -0.20 -0.11 -0.05 -0.35 -0.29 -0.20 -0.11 -0.05

total anthropogenic 1.01 1.86 2.73 3.39 3.82 2.16 2.47 2.93 3.40 3.73

615
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4.3.5 Sensitivity to observational dataset

As stated in Section 4.1, the choice of observational dataset used in the Global Warming Index calculation may project sig-

nificantly onto our results. Here we carry out an identical constraining procedure to that described in Section 4.3, but with

the distribution of present-day level / rate calculated for each observational product in turn. Constrained values of the ECS,

TCR and projected 2100 warming under an SSP2-45 pathway are shown in Table 9. This sensitivity analysis demonstrates how620

important the chosen observational dataset is: projections under an SSP2-45 pathway can vary by over 0.2 K depending on the

dataset used to determine the constraint.

Table 9. Sensitivity of results for the key metrics to the choice of observational dataset used in the Global Warming Index calculation.

quantity ECS / K TCR / K 2100 warming relative to 1995-2014 / K

percentile 5% 16.6% 50% 83.3% 95% 5% 16.6% 50% 83.3% 95% 5% 16.6% 50% 83.3% 95%

dataset

HadCRUT5 2.03 2.45 3.35 4.90 6.78 1.37 1.54 1.84 2.21 2.50 1.28 1.53 2.00 2.64 3.20

HadCRUT4 1.80 2.19 3.03 4.45 6.18 1.21 1.38 1.67 2.02 2.32 1.12 1.35 1.79 2.39 2.93

NOAA 1.97 2.38 3.25 4.77 6.61 1.32 1.50 1.80 2.15 2.43 1.24 1.49 1.95 2.56 3.10

GISTEMP 1.99 2.41 3.30 4.81 6.63 1.34 1.52 1.81 2.17 2.46 1.26 1.51 1.97 2.59 3.14

CW 1.89 2.29 3.16 4.63 6.42 1.27 1.44 1.74 2.10 2.40 1.18 1.42 1.88 2.49 3.04

BERKELEY 2.01 2.43 3.33 4.88 6.73 1.36 1.53 1.83 2.20 2.48 1.27 1.52 1.99 2.62 3.18
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4.4 Constrained idealised experiments

Here we carry out standard CMIP6 experiments used in diagnosing the key properties of the climate - the abrupt-4xCO2

and 1pctCO2 experiments - with the FULL and CONSTRAINED parameter ensembles. This represents a test of whether625

our parameter sampling methods are sufficient to ensure that the range of carbon cycle and climate system responses are

sampled from (as informed by the CMIP6 ensemble). We see in fig Figure 8a, b that the FULL 90% credible interval closely

matches spans the CMIP6 model ensemble range. The most significant discrepancy between the FULL ensemble and the

CMIP6 model ensemble is apparent in figures 8d, e, f; the FULL ensemble carbon cycle does not completely span the range

of 11 C4MIP models, particularly at the high end of airborne fraction. This occurs due to the use of a lower central r0 value,630

consistent with historical observations, in the FULL parameter sample, rather than taking the central value as the mean of

the C4MIP model tunings, though with a longer lower tail. The FULL ensemble does span also spans the range of carbon-

cycle radiation feedback behaviour found in the behaviour in 11 C4MIP models (?, fig 8g)on decadal timescales in Figures

8d, e, f, including radiation feedbacks (K. Arora et al., 2020, Figure 8g). The CONSTRAINED ensemble, as expected from

the climate sensitivity results abovein Section 4.3, is significantly less spread than the CMIP6 model ensemble. It precludes635

both models with high and low climate sensitivities. Although our constraint does not significantly affect the carbon-cycle

parameters, it does preclude some FULL ensemble members with a high airborne fraction, more apparent towards the end of

the experiments. The CONSTRAINED ensemble implies a likely range (fig Figure 8c) for the (CO2-only) TCRE (Matthews

et al., 2009; Allen et al., 2009; Zickfeld et al., 2016; MacDougall, 2016) of 1.17 1.27 - 1.811.85, with a central estimate of 1.45

1.53 and 5-95% range of 1.00 1.11 - 2.13 2.12 K TtC−1, based on the temperature response at a cumulative CO2 emission of640

1000 GtC. If instead we estimate the TCRE at a cumulative emission of 3000 GtC, this estimate is reduced by around 12% due

to the The slight non-linearity in the temperature–cumulative emission relationship results in the best-estimate instantaneous

TCRE reducing by around 15 % per additional 1000 GtC. These estimates are consistent with recent estimates based on the

observational record (Millar and Friedlingstein, 2018; Gillett et al., 2013); though our best-estimate is slightly higher and the

range less spread. This tighter range may be due to the noise reduction from using an idealised experiment and model with no645

representation of internal variability. It is important to note that our TCRE estimates hold the same sensitivity to the choice of

observational dataset used in the Global Warming Index calculation as the TCR (Table 9).
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Figure 8. Idealised CMIP6 experiments with FULL and CONSTRAINED FaIRv2.0.0-alpha ensembles. Thin black lines show drift-corrected

CMIP6 model data. Light-grey shading indicates FULL ensemble 5-95 % range. Dark-grey shading indicates CONSTRAINED ensemble

likely (17-83 %) range. Thick black line shows central CONSTRAINED series. Dashed grey line in d shows airborne fraction for the most

recent decade estimated from the most recent Global Carbon Project data (Friedlingstein et al., 2019)Budget (Friedlingstein et al., 2020),

calculated by dividing the atmospheric carbon flux by the mean CO2 emission rate over this period (see Friedlingstein et al. Figure 9). Thin

red lines in g show data directly from the radiatively-coupled C4MIP experiment, while thin black lines show an estimate of the radiation

feedback on carbon sink strength as the difference between the fully- and biogeochemically-coupled C4MIP experiments.
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4.5 Constrained scenario projections

We use our CONSTRAINED parameter ensemble to project end-of-century warming and ERF in FaIRv2.0. Taking CO2

emissions until 2014 from the Global Carbon Project (Friedlingstein et al., 2019), all other emissions from the RCMIP protocol,650

and land-use change and natural ERF timeseries from the SSP ERF timeseries database (Smith, 2020) , we run both the FULL

and CONSTRAINED ensembles for each SSP (Riahi et al., 2017). The FULL ensemble should not be used for projection and

is included only to demonstrate the impact of the constraint.2100 warming relative to 1861-1880 / K 5 17 50 83 95 5 17 50

83 95 ssp119 0.749 1.02 1.49 2.10 2.67 0.848 1.00 1.27 1.63 1.96 ssp126 0.984 1.33 1.92 2.65 3.32 1.100 1.29 1.63 2.05

2.44 ssp245 1.550 2.08 2.97 4.03 4.93 1.800 2.08 2.56 3.12 3.60 ssp370 2.150 2.91 4.18 5.65 6.84 2.720 3.08 3.67 4.31 4.81655

ssp370-lowNTCF-aerchemmip 2.460 3.25 4.53 6.01 7.19 2.790 3.20 3.89 4.67 5.29 ssp370-lowNTCF-gidden 2.060 2.74 3.86

5.17 6.23 2.370 2.72 3.32 4.01 4.55 ssp434 1.150 1.55 2.24 3.10 3.87 1.360 1.57 1.93 2.38 2.78 ssp460 1.790 2.39 3.39 4.57

5.56 2.100 2.41 2.93 3.53 4.02 ssp534-over 1.140 1.54 2.24 3.14 3.96 1.280 1.50 1.90 2.41 2.88 ssp585 2.880 3.80 5.29 6.99

8.33 3.250 3.73 4.54 5.46 6.18 2100 anthropogenic ERF / W m−2 ssp119 1.700 1.89 2.16 2.45 2.67 1.760 1.93 2.18 2.45

2.64 ssp126 2.260 2.50 2.85 3.22 3.50 2.330 2.55 2.87 3.20 3.45 ssp245 3.710 4.14 4.73 5.33 5.79 3.960 4.30 4.80 5.33 5.71660

ssp370 5.240 6.10 7.18 8.20 8.92 6.020 6.55 7.34 8.16 8.75 ssp370-lowNTCF-aerchemmip 6.190 6.79 7.65 8.53 9.19 6.440

6.97 7.74 8.54 9.11 ssp370-lowNTCF-gidden 5.120 5.70 6.54 7.40 8.05 5.380 5.88 6.63 7.39 7.95 ssp434 2.640 2.96 3.41 3.86

4.21 2.850 3.10 3.46 3.85 4.13 .0 for each SSP (Riahi et al., 2017). In Figures 9 & 10 we also compare our CONSTRAINED

FaIRv2.0.0 projections to the default setup of MAGICC7.1.0-beta. The two models exhibit some notable differences, partic-

ularly in radiative forcing projections due to aerosol emissions and ozone concentrations. For a complete comparison of the665

CONSTRAINED ensemble with the probabilistic setup of MAGICC7, see Nicholls et al. (2021).

ssp460 4.320 4.80 5.48 6.18 6.69 4.630 5.01 5.58 6.17 6.60

ssp534-over 2.500 2.78 3.19 3.64 3.99 2.590 2.85 3.22 3.62 3.92 The apparent slight warm bias at the present-day arises due

to a combination of natural variability, in particular the so-called “hiatus” period (Trenberth and Fasullo, 2013), and a too-high

response to natural forcings. As the CONSTRAINED ensemble is selected on the basis of the contributions of anthropogenic670

forcings to global warming only (via the anthropogenic warming index), any bias in the response to natural forcings will

project onto the total temperature response. Although the estimated contribution of natural forcings to the present-day level of

warming is observational dataset dependent, the mean contribution over all six datasets calculated within our global warming

index methodology (ie. scaled by the optimal fingerprinting regression coefficients) is 0.03 K lower than within our CON-

STRAINED ensemble relative to the 1850-1900 baseline period, suggesting that the climate response to natural forcings is675

slightly too high. This could be resolved by scaling the prescribed natural forcing data (Smith, 2020) by the average estimated

optimal fingerprinting coefficient. However, we do not do this here, instead using the raw data for transparency. The selected

1850-1900 baseline period exacerbates this high response due to the significant volcanic activity during this period.

ssp585 7.260 7.95 8.95 9.97 10.70 7.530 8.15 9.06 10.00 10.70

The projections of future warming are comparable to other recent studies that have used various methodologies to constrain680

future warming (Brunner et al., 2020; Tokarska et al., 2020; Ribes et al., 2021). Overall, our central estimates agree very well
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with Tokarska et al. (2020); Ribes et al. (2021), lying a little below those from Ribes et al. (2021). The lower quantiles of our

projections generally lie between the estimates from Tokarska et al. (2020) and Ribes et al. (2021). Our upper quantiles (specif-

ically 95 %) agree well with the estimates given in Ribes et al. (2021). Overall, we find that our projections are comparable to

other recent studies, though in general a little less tightly constrained. Here we have used one relatively straightforward method-685

ology to perform these constrained projections, but we expect that it would be possible to constrain these further through the

use of more sophisticated methods or by adding in additional information to the constraint (such as the present level of CO2

concentrations, or an estimate of the total ocean heat uptake - though this would require the energy balance model formulation

of the FaIRv2.0.0 climate response to be used). A reasonable next step to improve the probabilistic projections from FaIRv2.0.0

might be to switch to a Markov chain Monte-Carlo approach, as used by other SCMs (Meinshausen et al., 2011b, 2019).690
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Table 10. Global warming and radiative forcing projections from the FaIRv2.0.0-alpha CONSTRAINED ensemble under the SSPs. Table

S6 displays these warming projections relative to a pre-industrial baseline of 1850-1900.

percentile 5% 16.6% 50% 83.3% 95%

2081-2100 warming relative to 1995-2014 / K

ssp119 0.16 0.30 0.57 0.96 1.33

ssp126 0.45 0.63 0.95 1.41 1.83

ssp245 1.18 1.42 1.85 2.42 2.91

ssp370 2.01 2.29 2.76 3.37 3.88

ssp370-lowNTCF-aerchemmip 2.03 2.35 2.93 3.67 4.31

ssp370-lowNTCF-gidden 1.61 1.90 2.41 3.07 3.64

ssp434 0.75 0.93 1.26 1.72 2.14

ssp460 1.48 1.73 2.18 2.76 3.26

ssp534-over 0.72 0.94 1.34 1.90 2.42

ssp585 2.51 2.89 3.56 4.43 5.15

peak warming relative to 1995-2014 / K

ssp119 0.44 0.54 0.76 1.08 1.41

ssp126 0.57 0.72 1.02 1.46 1.88

ssp534-over 1.08 1.29 1.67 2.17 2.63

2100 anthropogenic ERF / W m−2

ssp119 1.86 2.05 2.34 2.65 2.89

ssp126 2.45 2.70 3.07 3.48 3.80

ssp245 4.20 4.58 5.16 5.79 6.25

ssp370 6.38 6.97 7.85 8.75 9.42

ssp370-lowNTCF-aerchemmip 6.69 7.27 8.13 9.02 9.67

ssp370-lowNTCF-gidden 5.65 6.21 7.04 7.92 8.56

ssp434 3.00 3.27 3.70 4.15 4.50

ssp460 4.85 5.28 5.94 6.62 7.13

ssp534-over 2.76 3.04 3.49 3.98 4.36

ssp585 7.80 8.48 9.49 10.53 11.28
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Figure 9. ERF timeseries in W m−2 by category for a range of SSP pathways using the FaIRv2.0.0-alpha CONSTRAINED parameter

ensemble. Solid lines indicate central estimate and shading shows the 5-95% range. Dashed lines show default projection projections from a

development version of the MAGICC SCMMAGICC7.1.0-beta from RCMIP (Nicholls et al., 2020a).

45



1850 1900 1950 2000 2050 2100
year

0

1

2

3

4

5

6

7

te
m

pe
ra

tu
re

 a
no

m
aly

 re
lat

ive
 to

 1
85

0-
19

00
 / 

K

ssp119
ssp126
ssp245
ssp370
ssp585
historical
observed GMST
MAGICC7.1.0.beta

Figure 10. Surface temperature response projections for a range of SSPs with the FaIRv2.0.0-alpha CONSTRAINED parameter ensemble.

Solid lines indicate central projection. Shading indicates a 5-95% range. Dashed line indicates default projection from a development version

of the MAGICC SCMMAGICC7.1.0-beta from RCMIP (Nicholls et al., 2020a). Dots show the mean of 5 6 observational datasets. Bars on

the right-hand side of the figure show end-of-century (2081-2100) warming. Filled bars show CONSTRAINED best-estimate, and likely and

5-95% ranges. Unfilled bars show CMIP6 median, and likely and minimum–maximum range. The number of CMIP6 models used in each

scenario is given in table Table S4.
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5 The response of simple climate models

The IPCC Special Report on 1.5°C warming (IPCC, 2018) included results from two SCMs, FaIRv1.3 (Smith et al., 2018) and

MAGICC6 (Meinshausen et al., 2011a). One point of discussion following the report was the difference in results between

these two models, with FaIRv1.3 tending to project a lower temperature response than MAGICC6 (Huppmann et al., 2018).

This has resulted in a widely-held belief that FaIRv1.3 is intrinsically “cooler” than MAGICC6 in general, a belief that some695

of these authors have unintentionally contributed to previously (Leach et al., 2018). This belief is unfounded: the response of

an SCM is a function of the parameters used. Although some parameters may be chosen to be consistent with geophysical

observation or theory, in general SCM parameters are tuned such that they emulate, or reproduce, either the output of more

complex models, or observations of the Earth. Relating this to the models used in SR15, the FaIRv1.3 ensemble was tuned

such that the model response lay within observed changes in global mean surface temperature since pre-industrial (Smith et al.,700

2018; Cowtan and Way, 2014); the MAGICC6 ensemble was constrained to observations up until 2009 (Meinshausen et al.,

2009). The two different tuning targets naturally leads to differences in the response of FaIRv1.3 and MAGICC6. Here we

emphasize that the differences between the models’ output is not systematic – it is the parameters used, and how these are

selected (which is often a subjective decision on the part of the modellers), that determines the model response.

705

6 Uses of FaIRv2.0.0

We envisage that FaIRv2.0.0 will primarily be used for similar assessments as are carried out with the current SCMs, such

as providing probabilistic projections of atmospheric concentrations, radiative forcings and temperature anomalies for wide

ranges of scenarios, such as in the SR15 scenario explorer (Huppmann et al., 2018). FaIRv2.0 could also easily be coupled710

to integrated assessment models (IAMs) to explore impacts of climate policy optionscurrent SCMs. One advantage that

FaIRv2.0has it .0 has is that it was built with performance in mind, hence is easily vectorised. It can be vectorised in a

programming language designed for array operations (such as Fortran, MATLAB, or the NumPy Python module) and hence

FaIRv2.0.0 is extremely quick to run. For example, using its present the alpha Python implementation, FaIRv2.0.0 can compute

the 1 million member FULL ensemble (emission driven for 52 gases, 78 81 forcing components, over the period 1750-2100)715

in under 30 40 minutes 3. This speed provides significant advantages when computing large probabilistic ensembles, or when

optimizing parameters. An important consideration for users computing probabilistic ensembles will be the memory required

by FaIRv2.0.0 output, as this is more likely to be the limiting factor on a modern computer, rather than the model runtime. A

related point is that the minimal equation set that FaIRv2.0can be run in programs for analysis of tabular data, including (but

not limited to ) .0 is composed of is easily transcribed into other programming languages. Although we would recommend720

using the official Python FaIR release4 where possible, there are many cases where it might be required for FaIRv2.0.0 to be

3on a laptop with 31GB RAM and an Intel(R) Core(TM) i7-8750H@2.2GHz, 12 cores
4https://github.com/OMS-NetZero/FAIR
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converted into another language - such as GAMS, for use in integrated assessment models. We believe that the relative sim-

plicity of FaIRv2.0.0 lends itself to this purpose. Of particular note is that FaIRv2.0.0, in its entirety, is able to be run in Excel.

This opens up climate system exploration and experimentation to a large group of potential new users who are familiar with

spreadsheets, but not formal scientific programming languages. We suggest that the speed, simplicity and transparency The725

user-base of Excel is estimated to be around 100 times larger than that of Python 5. To aid with implementation in alternative

languages where required, we have provided a brief set of notes on our own Python implementation of the development ver-

sion of FaIRv2.0lends it to use in undergraduate and high-school education in addition to scientific research.It can be used to

explain (and demonstrate) important features of both the carbon (or other GHG) cycle and Earth’s thermal response to radiative

forcing, and is simple enough to use that students could themselves carry out experiments (such as a CO2 doubling) easily with730

no prior experience and only basic computing skills. .0 in the supplement.

In terms of possible academic uses of FaIRv2.0can also .0, we have demonstrated two of the main ones: emulation of more

complex models and probabilistic scenario projections. FaIRv2.0.0 can be used to rapidly investigate differences between

ESMs, by tuning FaIRv2.0to emulate different full .0 to emulate these complex models and comparing differences between735

the tuned parameter sets to identify which aspects of the models differ most, as was done with MAGICC in Meinshausen et al.

(2011a, b). The ability to tune FaIRv2.0.0, as demonstrated here and in other work (Tsutsui, 2017; Joos et al., 2013; Millar

et al., 2017), to more complex models also allows estimation of complex model response to a particular scenario or experi-

ment without having to expend computer power to run the model itself; which could allow climate system uncertainties to be

introduced more fully into integrated assessment studies by emulating the full CMIP6 ensemble within IAMs (providing some740

of the capability demonstrated by Meinshausen et al. (2011a) with a simpler model). The probabilistic scenario projection we

demonstrated in Section 4 is a potentially more policy-relevant academic use of FaIRv2.0.0, since CMIP6 model emulations

do not necessarily represent the best-estimate of some key properties of the real-life Earth system when historical observations

are taken into account (Tokarska et al., 2020; Gillett et al., 2021). The speed of FaIRv2.0.0 allows very large parameter ensem-

bles to be run rapidly, enabling all regions of plausible parameter space to be explored without requiring large quantities of745

computing resource. Although here we have performed one relatively simple methodology for the creation of an observation-

ally constrained large ensemble, there are many possible ways to do this, for example using the Markov chain Monte-Carlo

methods employed in several other SCMs (Nicholls et al., 2020b; Meinshausen et al., 2019, 2011b). A third academic use of

FaIRv2.0.0, which we are interested in, is its incorporation into integrated assessment models (IAMs). Its simplicity and com-

putational efficiency may make implementation within existing IAMs relatively more straightforward than for other SCMs,750

even if the whole model was required to be built up from scratch in whatever format would be required by the particular IAM.

Outside of academia, we propose that FaIRv2.0.0 could be used for emission climate impact accounting in industry. The

UNFCCC standard for the reporting of greenhouse gas emissions is to account for emissions of all gases as a CO2 equiva-

lent quantity via the 100-year Global Warming Potential (GWP). However, GWPs do not adequately capture the behaviour755

5https://info.cambridgespark.com/latest/python-vs-excel
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of short-lived climate pollutants such as methane (Cain et al., 2019), leading to the development of alternative metrics such

as GWP*. We suggest that such warming impacts could potentially instead be simulated using a simple climate model as an

improvement upon the use of any of these metrics. Although this does represent a step-up in complexity, we believe that the

relative simplicity of FaIRv2.0.0, when compared to other SCMs, makes it a strong candidate for this usage. In particular, the

ability of FaIRv2.0.0 to be run in Excel could encourage this particular use-case. We suggest that the speed, simplicity and760

transparency of FaIRv2.0.0 also lends it to use in undergraduate and high-school education. It can be used to explain (and

demonstrate) important features of both the carbon (or other GHG) cycle and Earth’s thermal response to radiative forcing, and

is simple enough to use that students could themselves carry out experiments (such as a CO2 doubling) easily with no prior

experience and only basic computing skills.

765

7 Conclusions

In this paper we have presented a significant update to the FaIRv1.3 FaIR SCM (Smith et al., 2018), focussed on reducing the

structural complexity of the model as much as possible. The updated model, FaIRv2.0.0, uses the five equations of the AR5

impulse response model (Myhre et al., 2013) plus just one additional equation to allow the model to represent non-linearities770

in the carbon-cycle. We demonstrate that this reduction in complexity does not come at the cost of the model’s ability to repro-

duce globally-averaged observations or output of more complex models from CMIP6 (Eyring et al., 2016). After demonstrating

the ability of the model in emulating more complex models, we show how the model can be used for climate projection by

constraining a large parameter ensemble.

775

There are many potential uses for FaIRv2.0.0 as a result of its simplicity and transparency. In addition to being available

for the same probabilistic scenario assessment as is carried out by SCMs in reports such as SR15 (IPCC, 2018), it could be

very easily implemented into IAMs; and likely improves improve computational efficiency due to its vectorisation and re-

sulting extremely rapid runtime. We encourage policy-makers to use FaIRv2.0.0 in order to directly assess whether warming

implications are aligned with the intended outcomes of mitigation policies; since GHG accounting metrics used at present such780

as GWP do not provide accurate results for targets such as Net-Zero CO2 due to the short life of some GHGs (Allen et al.,

2018). To aid this use of FaIRv2.0.0, we will provide an Excel file containing the model with its default parameter set, ensuring

FaIRv2.0as .0 is available for all interested parties, even those unfamiliar with computer programming languages. The Excel

version of the model could also be used to assist teaching of climate change and climate processes; and could even allow stu-

dents access to an easy-to-understand model that they could use themselves to explore future scenarios and the relative impacts785

of future emissions of different greenhouse gases; or demonstrate the importance of climate sensitivity in an interactive manner.

We aim to be able to provide complete gas-cycle parameter sets tuned to each of the CMIP6 ESMs in the near future, such
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FaIRv2.0.0 sits at the very low end of complexity within the broad spectrum of currently available simple climate models.

It is a very highly parameterised model for simulating globally averaged relationships between greenhouse gas and aerosol790

emissions, atmospheric greenhouse gas concentrations, radiative forcing and surface temperature response. We have shown

that despite its simplicity, it is able to span the wide range of behaviours exhibited by much more complex models, and that

inferred from observations. In addition, we have provided some basic comparisons to both the previous version of FaIR(v1.5),

and the widely used MAGICC SCM (Meinshausen et al., 2011a, b, 2019). More detailed comparisons are outside the remit

of this paper, but RCMIP (Nicholls et al., 2020b, a) covers this topic comprehensively. We expect that FaIRv2.0is able to be795

used to emulate the full CMIP6 ensemble and to improve understanding of how these models differ in a single consistent

framework. We hope that such parameter sets may also provide users in otherrelated fields, such as climate policy, who do not

have experience with climate models, access to a robust emulation of complex climate models with little learning curve.0 is

very close to as simple as an SCM could get without losing a significant proportion of this representation ability. However,

it does not explicitly simulate the physical processes behind these variables, which may preclude it from some applications800

where other, more complex SCMs such as MAGICC would be usable. Overall, however, we hope that FaIRv2.0.0 will be an

important contribution to the available set of SCMs given its wide range of potential use-cases and may open up climate system

modelling to a wide range of novel users in both industry and education.
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