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Editor’s Comment 

Comments to the Author: 
Dear Dr. Ma,  
 
Thank you for addressing many of the reviewers' concerns. 5 
 
The reviewers have pointed out the importance of clearly explaining how this model experiment is unique 
compared to previously published work. Unfortunately, if the experiments presented here are not different 
from Ma et al. (2015), it is difficult to understand how this can be published as Model Experiment 
Description paper. In response to Reviewer Report #2, please revise the manuscript to include the details 10 
needed for community users to replicate the model experiment, such as the methods described in your 
responses to the initial review from Reviewer #2. I see that a link is provided for a pdf titled 
"Documentation for Multi-year (1997-2012) CAPT Hindcast Output", but note that the document is dated 
1/11/2016, which I think supports two reviewers' concerns that there is not a clear distinction between 
this submitted manuscript and the Ma et al. (2015) study. In your revised version, please consider making 15 
the distinction of this model experiment from the previous work clear for reviewers, myself, and the 
readers.  
 
Also, please respond to concerns mentioned in Reviewer Report #3 regarding important caveats in 
interpreting model performance using this hindcast approach.  20 
 
Many thanks,  
Christina 
 
Response to Editor: 25 
We thank the Editor for the helpful comments.  
 
Regarding the differences between the present manuscript and the work in Ma et al. (2015 JAMES), 
the latter proposed a refined hindcast approach in improving the initial atmospheric aerosol profiles 
and initial land conditions. Based on the refined procedure, we proposed a ‘‘Core’’ integration (one-30 
year long) with the refined procedure for a simple, easily repeatable test that allows model developers 
to rapidly compute appropriate metrics for assessing the impacts of various parameterization changes 
on the fidelity of cloud-associated processes with available observations. In this manuscript, we applied 
the refined initialization strategy in Ma et al. (2015 JAMES) and performed this “new” suite of multi-
year (16) short-range hindcasts. These two are not the same experiments (one year vs sixteen years). 35 
Furthermore, we used ECMWF YOTC analysis as the initial conditions for Ma et al. (2015 JAMES), 
while we used ERA-Interim reanalysis as the initial conditions for these multi-year short-range 
hindcasts. Therefore, these two papers described two different sets of experiments for two different 
scientific topics.  
 40 
We indicated this in the introduction on Lines 66-71: 
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“In the present paper, we present a multi-year short-range hindcast experiment and its experimental 
design for better evaluating both the mean state and variability of atmospheric moist processes in 
climate models to facilitate model development using the CESM1 as the base model. This experiment 45 
provides an new opportunity to address several modeling issues associated with moist processes, which 
cannot be achieved from previous short Transpose AMIP II hindcasts (Williams et al. 2013), or one or 
two years of short-range hindcasts that we conducted in the past (Xie et al. 2012, Ma et al, 2013, Ma et 
al. 2015).” 
 50 
Regarding the “Documentation for Multi-year (1997-2012) CAPT Hindcast Output", this is a 
document for the hindcast output variables for these multi-year hindcasts. We first completed the multi-
year hindcasts back in Jan 2016, and we have been thinking of more ways on how to better utilize these 
hindcasts other than what we had planned for. Therefore, it took us a while to prepare this manuscript 
because we want to provide the community more ways on how to use this type of multi-year hindcast 55 
experiment. The simulations for Ma et al. (2015 JAMES) were completed much earlier in 2013, which 
are not the same as our multi-year hindcasts completed in 2016 for the present study.  
 
We also included more details on how to generate initial conditions and to perform the hindcasts in 
the revised manuscript in Section 2.1. We further indicated the location to all the initial conditions if 60 
one plan to perform the multi-year hindcasts with CAM5 in the revised manuscript on Lines 138-139: 
“The location to obtain all the model output and necessary initial conditions to conduct the multi-year 
hindcasts are described in the Code and data availability Section.”, and on Lines 391-392: “The initial 
conditions are located at 
(https://portal.nersc.gov/archive/home/h/hyma/www/CAPT/CAPT_Long/IC/).” 65 
 
A detailed step-by-step documentation and associated codes on how to generate initial conditions and 
how to perform hindcasts is on our GitHub page (https://github.com/PCMDI/CAPT). This information 
is on Line2 120-121 in Section 2.1.  
 70 
We also wanted to point out that anyone who wants to perform the hindcasts should already have some 
knowledge on how to perform CAM5 AMIP simulations or follow the procedure on the CESM website. 
As we indicated in the revision on Lines 122-123: “The way to conduct a single hindcast is the same 
as performing an AMIP simulation except we use the initial conditions from the procedure described 
above”. It is beyond the scope of this manuscript to describe on how to perform CESM AMIP 75 
simulations.  
 
For the comments from Reviewer #2 and #3, please see our responses below.  

 

 80 
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Anonymous Referee #2  

I have to say that I am torn about how to approach reviewing the authors' 
revised manuscript and associated comments. 
 
On one hand, I do think there is value in publishing a paper that describes 85 
the numerous details involved in carrying out such a hindcast experiment; and 
it is a worthwhile contribution that the authors have released the source code 
for this purpose. I would ultimately like to see this paper published. 
 
On the other hand, I cannot immediately see a path toward revising this paper 90 
such that it is suitable for publication: it appears to be fundamentally too 
duplicative of work already in the literature. Both Reviewer #3 and I raised a 
major concern about the uniquness of this manscript. The authors argue that 
this experiment is unqiue relative to the previous literature--and in 
particular relative to Ma et al. (2015)--because it describes a multi-year 95 
hindcast. That is a fair argument. However, Reviewer #3 and I both also 
raised the concern that the authors did not provide a variety specific details 
that would be necessary for another modeling group to replicate their 
experimental design. In this case, the authors' response was to argue that "We 
did not want to duplicate the information because the initialization technique 100 
is not the main focus of the manuscript and modeling groups who have the 
capability to conduct hindcast studies already have their own initialization 
strategy." (The authors did provide some--though not all--of these details in 
the revised manuscript.) 
 105 
In short, it sounds like the experimental design described in this manuscript 
is simply the Ma et al. (2015) method, except that it is run for multiple 
years. Is the addition of running for multiple years sufficently unique to 
warrant publication of a new experimental design? Perhaps, though that 
argument is weakend by the existence of other multi-year hindcast methods 110 
described in the literature. 
 
I would also like to note that the authors appear to have misunderstood my 
intention in the section of my previous review where I stated "Specifically, a 
number of questions come to mind that could impact the results from other 115 
modeling groups implementing this experiment." I raised these questions with 
the intent of suggesting that the manuscript should be revised to address the 
questions. There were a number of instances where the authors instead directly 
responded to me without actually modifying the manuscript. These were 
collectively part of my major concern that the manuscript did not provide 120 
sufficient technical detail for a "model experiment description paper," and I 
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would suggest that the authors revise the manuscript accordingly. 
 
In summary, I cannot recommend this manuscript for publication at this time. I 
am going to recommend that it again be returned for major revisions, in hopes 125 
that the authors can provide a revised manuscript that makes a much more compelling and 
impactful model experiment description. 
 
Response to reviewer: 
We thank the reviewer for all the comments. Those certainly helped to improve our manuscript. We 130 
understand that (1) a more detailed hindcast approach description and (2) the uniqueness of the 
manuscript and too duplicative of work already in the literature are the major concerns for the reviewer.  
 
(1) Regarding the details of the hindcast approach, we apologize that we misunderstood the reviewer’s 
intention and did not include all our responses in the last revision of the manuscript. In this revision, 135 
we now included all the responses to all the comments relevant to hindcast technique in the section2 
in revised manuscript.   
 
The following are the sentences that we added in the revised manuscript: 
 140 
Lines 99-105: “We applied the bilinear interpolation for the horizontal remapping for all the state 
variables to the model grid. For vertical remapping, we follow the procedure used at ECMWF when 
initializing model with foreign analysis: Quadratic interpolation is used for temperature, linear 
interpolation is used for specific humidity, and a combination of linear and quadratic interpolation is 
used for zonal and meridional winds. To avoid spurious gravity waves associated with differences in 145 
topography between ERA-Interim and CAM5, we applied a spatial smoothing for the state variables 
(Gerrity and McPherson 1970). We also adjusted the surface pressure associated with differences in 
topography between ERA-Interim and CAM5 using hydrostatic approximation.” 
 
Lines 108-109: “During the nudging simulation, the reanalysis data are linear interpolated between 150 
two time steps to match model’s current time.” 
 
Lines 111-113: “We do not use land-surface conditions from the nudging simulation for the land-
surface initial condition in the hindcasts. This is because in a nudging simulation, biased precipitation, 
winds, and surface fluxes are allowed to pass to the land model, which will cause larger biases in the 155 
simulated soil moisture and temperature (Ma et al. 2015).” 
 
Line 116: “The default bilinear interpolation method is used to interpolate the forcing datasets to the 
CLM grid.” 
 160 
We further indicated the location to all the initial conditions if one plan to perform the multi-year 
hindcasts with CAM5 in the revised manuscript on Lines 138-139: “The location to obtain all the model 
output and necessary initial conditions to conduct the multi-year hindcasts are described in the Code 
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and data availability Section.”, and on Lines 391-392: “The initial conditions are located at 
(https://portal.nersc.gov/archive/home/h/hyma/www/CAPT/CAPT_Long/IC/).” 165 
 
A detailed step-by-step documentation and associated codes on how to generate initial conditions and 
how to perform hindcasts is on our GitHub page (https://github.com/PCMDI/CAPT). This information 
is on Lines 120-121 in Section 2.1.  
 170 
We also wanted to point out that anyone who wants to perform the hindcasts should already have some 
knowledge on how to perform CAM5 AMIP simulations or follow the procedure on the CESM website. 
As we indicated in the revision on Lines 122-123: “The way to conduct a single hindcast is the same 
as performing an AMIP simulation except we use the initial conditions from the procedure described 
above”. It is beyond the scope of this manuscript to describe on how to perform CESM AMIP 175 
simulations.  
 
 
(2) Regarding the comment about the uniqueness of the manuscript and too duplicative of work already 
in the literature, we take this comment very seriously and want to better address this issue. As we 180 
acknowledged in the manuscript, the hindcast technique is the same as Ma et al. (2015). However, our 
focus is on how we can use this set of multi-year hindcasts to explore science questions that we cannot 
address from the experiments in our previous studies, such as those experiments conducted in Ma et 
al. (2015). We indicated this in the introduction on Lines 66-71: 
 185 
“In the present paper, we present a multi-year short-range hindcast experiment and its experimental 
design for better evaluating both the mean state and variability of atmospheric moist processes in 
climate models to facilitate model development using the CESM1 as the base model. This experiment 
provides an new opportunity to address several modeling issues associated with moist processes, which 
cannot be achieved from previous short Transpose AMIP II hindcasts (Williams et al. 2013), or one or 190 
two years of short-range hindcasts that we conducted in the past (Xie et al. 2012, Ma et al, 2013, Ma et 
al. 2015).” 
 
Specifically, in Ma et al. (2015) we proposed a refined hindcast approach in improving the initial 
atmospheric aerosol profiles and initial land conditions. Based on the refined procedure, we proposed 195 
a ‘‘Core’’ integration (one-year long) with the refined procedure for a simple, easily repeatable test 
that allows model developers to rapidly compute appropriate metrics for assessing the impacts of 
various parameterization changes on the fidelity of cloud-associated processes with available 
observations. In this manuscript, we applied the refined initialization strategy in Ma et al. (2015 
JAMES) and performed this “new” suite of multi-year (16) short-range hindcasts. These two are not 200 
the same experiments (one year vs sixteen years). Furthermore, we used ECMWF YOTC analysis as 
our initial conditions for Ma et al. (2015 JAMES), while we used ERA-Interim reanalysis as our initial 
conditions for these multi-year short-range hindcasts. Therefore, these two papers described two 
different sets of experiments for two different scientific topics. The focus of this present study is on 
how to better utilize this multi-year hindcasts like the four topics given in the manuscript to address 205 
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several modeling issues associated with moist processes, which cannot be achieved from previous short 
Transpose AMIP II hindcasts. 
 
Regarding the issue of duplication of work already in the literature, we have never previously published 
studies on the four topics using multi-year hindcasts described in this study: (1) cloud regimes at the 210 
ARM SGP site, (2) model biases associated with MJO, (3) variations of moist processes associated with 
ENSO, and (4) robustness of systematic errors. It will be helpful if the reviewer can indicate which 
topic is duplicating existing work in the literature or in our previous studies, and we will revise it or 
remove the duplicated part entirely.  
 215 
 
 
 
 
 220 
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 240 
 
 
 
 
 245 
 
 



7 
 

Anonymous Referee #3 

The authors have provided clear responses to most of my comments and made appropriate revisions to 
the manuscript. 250 
 
However, I am still concerned about the interpretation of the MJO development and propagation in these 
hindcasts. In their response, the authors discussed how they formed the 16-year timeseries from hindcasts 
at a constant lead time (e.g., a 16-year timeseries of day-3 hindcasts). The construction of these timeseries 
was clear to me in the original manuscript. My concern is how the authors interpret errors in physical 255 
processes simulated in the model, based on these timeseries. The authors discuss the pre-conditioning of 
the active MJO phase by shallow convection, the transition from shallow to deep convection and the 
propagation of the MJO across the Maritime Continent. These are processes that require more than three 
days to develop, either in a model or in observations. Thus, I do not believe that the authors can conclude 
(from these timeseries) that the model fails to simulate these processes correctly, given that the timeseries 260 
is discontinuous (i.e., it is made up of one day from each of many hindcasts, stitched together). Any 
propagation in this timeseries, either for individual events or for the composite, is an artefact of 
concatenating parts of many different simulations together. The hindcasts do not have sufficient time to 
simulate the propagation across the Maritime Continent. These processes could be simulated in the 
nudged simulation, because that is a continuous simulation, which is why I suggested comparing the 265 
hindcasts to the nudged run. 
 
The authors need to discuss these caveats so that the reader does not treat the hindcast simulation as a 
continuous simulation, in which physical processes like pre-conditioning and moistening are simulated 
within a single integration of the model. 270 
 
Response to reviewer: 
We have added a paragraph to caution the readers about the caveats of using discontinuous time series 
from the hindcasts concatenating from series of short-range hindcasts in the revised manuscript on 
Lines 266-270: 275 
 
“While we examined the composites of the MJO phases using a pseudo time series from the multi-year 
hindcasts, caution should be exercised when interpreting the results with the discontinuous time series. 
Specifically, one should avoid examining those processes mentioned above within a single short 
hindcast. One could, however, perform longer hindcasts, like those in Klingaman et al., (2015) to 280 
investigate how model physics interact with the large-scale environment and influence the propagation 
and evolution of the MJO with longer lead times.”  
 
 

 285 
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A multi-year short-range hindcast experiment with CESM1 for 
evaluating climate model moist processes from diurnal to interannual 
time scales 
Hsi-Yen Ma1, Chen Zhou2, Yunyan Zhang1, Stephen A. Klein1, Mark D. Zelinka1, Xue Zheng1, 
Shaocheng Xie1, Wei-Ting Chen3, and Chien-Ming Wu3 290 
1Lawrence Livermore National Laboratory, Livermore, California, USA 
2School of Atmospheric Sciences, Nanjing University, Nanjing, China 
3Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan 

Correspondence to: Hsi-Yen Ma (ma21@llnl.gov) 

Abstract. We present a multi-year short-range hindcast experiment and its experimental design for better evaluation of both 295 

the mean state and variability of atmospheric moist processes in climate models from diurnal to interannual time scales and 

facilitate model development. We use the Community Earth System Model version 1 as the base model and performed a suite 

of 3-day hindcasts initialized every day starting at 00Z from 1997 to 2012. Three processes – the diurnal cycle of clouds during 

different cloud regimes over the Central U.S., precipitation and diabatic heating associated with the Madden-Julian Oscillation 

(MJO), and the response of precipitation, surface radiative and heat fluxes, as well as zonal wind stress to sea surface 300 

temperature anomalies associated with the El Niño-Southern Oscillation – are evaluated as examples to demonstrate how one 

can better utilize simulations from this experiment to gain insights into model errors and their connection to physical 

parameterizations or large-scale state. This is achieved by comparing the hindcasts with corresponding long-term observations 

for periods based on different phenomena. These analyses can only be done through this multi-year hindcast approach to 

establish robust statistics of the processes under well-controlled large-scale environment because these phenomena are either 305 

interannual climate variability or only happen a few times in a given year (e.g. MJO, or cloud regime types). Furthermore, 

comparison of hindcasts to the typical simulations in climate mode with the same model allows one to infer what portion of a 

model’s climate error directly comes from fast errors in the parameterizations of moist processes. As demonstrated here, model 

biases in the mean state and variability associated with parameterized moist processes usually develop within a few days, and 

manifest within weeks to affect the simulations of large-scale circulation and ultimately the climate mean state and variability. 310 

Therefore, model developers can achieve additional useful understanding of the underlying problems in model physics by 

conducting a multi-year hindcast experiment. 

 

 

 315 
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1 Introduction 

The representation of moist processes - clouds, convection, precipitation and the associated radiative perturbations - and their 

interactions with the large-scale circulation in Global Climate Models (GCMs) or Earth System Models (ESMs) remains one 

of the grand challenges for the modeling community (Bony et al. 2015). Aside from using high resolution cloud modeling 320 

(cloud-resolving models or large-eddy simulations) to study detailed cloud dynamics and physics and their interactions with 

large-scale environment, significant progress on process-level understanding of moist processes has also been achieved 

recently through the application of a climate model hindcast approach (Phillips et al. 2004; Williams et al. 2013) to gain 

insights relevant to the improvement of parameterizations in climate models. This progress has been made either through 

individual modeling studies (e.g., Xie et al. 2004, 2008; Klein et al. 2006; Barton et al. 2012, 2014; Medeiros et al. 2012; 325 

Hannah and Maloney 2014; Chandra et al. 2015; Van Weverberg et al. 2015; Zheng et al. 2016; 2017; Qin et al. 2018; Chen 

et al. 2019; Zhang et al. 2020), or through coordinated model intercomparison projects (Lin et al. 2012; Williams et al. 2013; 

Ma et al. 2014; Klingaman et al. 2015; Xavier et al. 2015; Morcrette et al. 2018; Ma et al. 2018; Van Weverberg et al. 2018).  

 

Earlier studies with climate model hindcast experiments usually focused on a relatively short period of time, such as those 330 

spanning Intensive Observation Periods or field campaigns. However, determining the robust aspects of certain cloud processes 

may not be achieved through these short simulations. Recent work in climate model studies has demonstrated the benefit of 

using multiple years of short-range hindcasts. For example, O’Brien et al. (2016) presented a direct comparison between 

observed and simulated weather events across multiple resolutions through the analysis of 5-day long hindcasts performed 

every day during a five-year period. This hindcast modeling framework allows them to assess the degree to which increased 335 

resolution improves the fidelity of extreme events in the model. Further, Phillips et al. (2017) studied the land-atmosphere 

coupling over the U.S. Southern Great Plains (SGP) using a suite of 16 years of short-range hindcasts as well as a free-running 

Atmospheric Model Intercomparison Project (AMIP, Gates 1992) simulation for the same period in comparison with the U.S. 

Department of Energy Atmospheric Radiation Measurement (ARM) observations. Although the surface climate state of the 

hindcasts deviates less from the observations in contrast to the AMIP simulation, they further identify that the model surface 340 

characteristics (e.g., vegetation cover) or physical parameterizations involving land-atmosphere coupling are more important 

factors than the performance of surface climate state in controlling the coupling behaviors. Chen et al. (2019) assessed 

precipitation biases in the Community Earth System Model version 1 (CESM1) during the abrupt onset of the South China 

Sea summer monsoon, a key precursor of the overall East Asia summer monsoon. A multi-year hindcast approach was utilized 

to obtain the well-constrained synoptic-scale horizontal circulation each year during the onset period. Their results highlighted 345 

the need for an appropriate representation of land-ocean-convection interactions over coastal areas in order to improve the 

simulation of monsoon onset. 
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The above examples indicate the benefit of using multiple years of short-range hindcasts for robust process-level modeling 

studies in comparison with long-term observations. Also, evaluating ensemble short-range hindcasts with the same climate 350 

model can complement the traditional way of conducting AMIP-type model evaluation. In the present paper, we present a 

multi-year short-range hindcast experiment and its experimental design for better evaluating both the mean state and variability 

of atmospheric moist processes in climate models to facilitate model development using the CESM1 as the base model. This 

experiment provides an new opportunity to address several modeling issues associated with moist processes, which cannot be 

achieved from previous short Transpose AMIP II hindcasts (Williams et al. 2013), or one or two years of short-range hindcasts 355 

that we conducted in the past (Xie et al. 2012, Ma et al, 2013, Ma et al. 2015). This is because these phenomena are either 

interannual climate variability or only happen a few times in a given year, and thus we need multi-years to robustly quantify 

the errors associated with these phenomena. We will demonstrate the unique value of diagnosing systematic model errors from 

diurnal to interannual time scales with this suite of multi-year short-range hindcasts paired with long-term observations, such 

as from various satellites or from major field programs like the U.S. Department of Energy ARM Program. Process-level 360 

understanding can be achieved by comparing hindcasts with observations for periods based on the phenomena of interest rather 

than the climatological mean state. Three processes – the diurnal cycle of clouds during different cloud regimes at the ARM 

SGP Site, precipitation and diabatic heating associated with the Madden-Julian Oscillation (MJO), and moist processes 

response to sea surface temperature (SST) anomalies associated with the El Niño-Southern Oscillation (ENSO) – are evaluated 

as examples to gain insights into model errors and their connection to physical parameterizations. We also demonstrate that 365 

systematic errors in the mean state of moist processes over the global scale are very robust and do not show significant 

interannual variations in either error magnitudes or patterns over large spatial domains. Our focus of this manuscript is to 

document this multi-year experiment as a model description paper and provide examples on how to better utilize this suite of 

hindcasts. The remainder of this manuscript is organized into three sections. Section 2 describes the hindcast experiment 

design, experiments performed and validation datasets. Section 3 presents three examples of how we can better utilize this 370 

suite of multi-year short-range hindcasts to evaluate the variability of moist processes over various time scales. Section 4 

presents a summary. 

2 Model experiments and validation data 

2.1 Model and experiment design 

All simulations were conducted with the CESM1 using the active atmospheric and land model components (version 375 

cesm1_0_5, FC5 compset, Neale et al. 2012). The atmospheric model component is the CAM5 with the finite volume 

dynamical core at a horizontal resolution of 0.9° latitude by 1.25° longitude and 30 vertical levels. The land model component 

is the Community Land Model version 4.0 (CLM4) with the same horizontal resolution. The ocean and sea ice components 

are prescribed with the National Oceanic and Atmospheric Administration (NOAA) Optimum Interpolation weekly SSTs and 

sea ice (Reynolds et al. 2002). 380 
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The hindcast procedure is based on Ma et al. (2015). In summary, we applied the horizontal velocities, temperature, specific 

humidity and surface pressure from the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-Interim 

Reanalysis (Dee et al. 2011) for the initial atmospheric states. We applied bilinear interpolation for the horizontal remapping 

for all the state variables to the model grid. For vertical remapping, we follow the procedure used at ECMWF when initializing 385 

model with foreign analysis: Quadratic interpolation is used for temperature, linear interpolation is used for specific humidity, 

and a combination of linear and quadratic interpolation is used for zonal and meridional winds. To avoid spurious gravity 

waves associated with differences in topography between ERA-Interim and CAM5, we applied a spatial smoothing for the 

state variables (Gerrity and McPherson 1970). We also adjusted the surface pressure associated with differences in topography 

between ERA-Interim and CAM5 using the hydrostatic approximation. A nudging simulation (horizontal velocities nudging 390 

only following Zhang et al. 2014) with CAM5/CLM4 was also performed to acquire other necessary variables (e.g., cloud and 

aerosol fields), which are not available from the ERA-Interim Reanalysis for the atmospheric initial conditions. The nudging 

simulation started from January 1st, 1996 and stopped at December 31st, 2012 with a 6 h relaxation time scale. During the 

nudging simulation, the reanalysis data are linearly interpolated between two time steps to match the model’s current time.  

 395 

We do not use land-surface conditions from the nudging simulation for the land-surface initial condition in the hindcasts. This 

is because in a nudging simulation, biased precipitation, winds, and surface fluxes are allowed to pass to the land model, which 

will cause larger biases in the simulated soil moisture and temperature (Ma et al. 2015). Instead, land initial conditions are 

taken from an offline land model simulation (I_2000 compset) forced by reanalysis and observations including precipitation, 

surface winds, and surface radiative fluxes (CRUNCEP, N. Viovy 2013, unpublished data) rather than coupled it to an active 400 

atmospheric model. The default bilinear interpolation method is used to interpolate the forcing datasets to the CLM grid. The 

offline land model simulation started from 1990 to 2012 and we performed five cycles (1990 to 2012) for the offline simulation 

to allow proper spin-up of the land conditions. The carbon and nitrogen cycles in this particular CLM4 setup are not active. 

After that, we continued the offline land model simulation to the desire starting date and use the land model restart file (.r file) 

as the land initial condition. We have published a documentation and relevant scripts in generating initial conditions on GitHub 405 

(https://github.com/PCMDI/CAPT), which includes the initialization generation procedure, the nudging procedure, and land-

surface spinup procedure. The way to conduct a single hindcast is the same as performing an AMIP simulation except we use 

the initial conditions from the procedure described above. The multi-year hindcast experiment is a suite of 3-day long hindcasts 

starting at 00Z every day for the years of 1997 to 2012 (Figure 1) using the initial conditions obtained from the procedure 

described above. We concatenated each hindcast from 24-48 (48-72) hours lead time to form a pseudo Day 2 (Day 3) time 410 

series of 16-year duration from 1997 to 2012. Day 1 data are not analyzed to minimize the impact of model spin-up (Ma et al. 

2013; 2014).  
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We also conducted a 16-year long AMIP simulation with the same model for the same period. In this AMIP simulation, the 

state of the atmosphere evolves freely without constraints. Note that the nudging simulation mentioned above has the same 

model configuration as the AMIP simulation with the exception of the nudging terms. Also, the greenhouse gas and solar 

forcing is based on the setup of the CESM1 FC5 compset, which corresponds to the year 2000 level for all the simulation 

period. This is because the CMIP5 forcing data does not go beyond 2005. We also want to exclude the impact of the interannual 420 

variations in the solar and greenhouse gas forcings to our simulations so that we can better identify possible causes of model 

biases associated with parameterizations. To compare with high-temporal frequency observations collected at the ARM 

permanent sites as well as at various major field campaign locations within the simulation period, we have additionally 

generated output for every model timestep (30 minutes interval) in additional to output for the entire global domain. Figure 2 

and Table 1 identify their geographical locations and output grids. The location to obtain all the model output and necessary 425 

initial conditions to conduct the multi-year hindcasts are described in the Code and data availability Section.  

2.2 Strategy on performing the multi-year hindcasts on a high performance computing system 

Since each hindcast is independent and can be completed very fast from less than half an hour to two hours depending on the 

speed of the high performance computing (HPC) system, one can easily bundle as many hindcasts as possible into one job 

submission on a HPC system. This is the concept of submitting multiple parallel jobs simultaneously in a single batch script. 430 

Most HPC systems nowadays have this capability and even encourage people to submit large jobs with discount on the charge 

of computer hours. For example, a single hindcast takes one hour to complete with 5 computer nodes. One can then request 

1,825 nodes for performing short-range hindcasts for one year period in a single job submission. The queue time may require 

a longer wait but the entire hindcasts will finish within an hour. One can submit multiple jobs in the queue for multiple years 

of hindcasts. One issue to keep in mind is the storage space for model output. There is usually a disk quota for scratch space 435 

on a HPC system. Therefore, a script or code to save model output to a long-term storage system, such as a High Performance 

Storage System (HPSS), may be necessary to prevent reaching the scratch disk quota while the model is running.    

2.3 Comparison datasets 

Daily global observational precipitation is adopted from the Global Precipitation Climatology Project Version 1.2 (GPCP, 

Adler et al. 2003). Absorbed shortwave flux at top of atmosphere (SWAbs), outgoing longwave radiation (OLR) as well as net 440 

surface shortwave and longwave fluxes are obtained from Clouds and the Earth's Radiant Energy System (CERES) Energy 

Balanced And Filled (EBAF) observations (Loeb et al. 2009; Kato et al. 2013, Edition 2.8). Total cloud fraction is from the 

International Satellite Cloud Climatology Project (ISCCP) D2 dataset (Rossow et al. 1999). Global winds and surface turbulent 

heat fluxes are from the ERA-Interim Reanalysis. Vertical profiles of cloud fraction at the ARM SGP site are from the ARM 

Best Estimate (ARMBE; Xie et al. 2010) Active Remote Sensing of Clouds data (ARSCL; Clothiaux et al. 2000, 2001). The 445 

available time period of the dataset is listed in Table 2. We interpolated all the datasets onto model’s grid for better comparison.  
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3 Example analysis 

Our goal here is to demonstrate the usefulness of the multi-year hindcasts in providing a different perspective on several long-

standing moist processes errors in GCMs through three examples. Note that identifying causes for individual model issue 

requires further investigation and is beyond the current scope of this model experiment description paper. For sensitivity tests 450 

to various parameter choices for a specific scheme or parameterization, it is not necessary to perform this suite of multi-year 

hindcast experiment once the issue has been identified. Instead, one could perform a “core experiment” (i.e., series of short-

range hindcast over one-year period) as we proposed in Ma et al. (2015), or perform a set of hindcasts just for the set of key 

dates with the phenomena of interest (e.g. days with sallow cumulus at ARM SGP, or phase 3 of various MJOs, which we will 

introduce in the following text).  455 

3.1 Cloud regimes at the ARM SGP site 

One common application of hindcasts for model evaluation is during major field campaigns where intensive observations are 

available at very high temporal scale. However, field campaigns are usually confined to a certain short period and cannot 

determine the robust aspects of certain cloud processes, which are available only from long-term monitoring as provided by 

satellites or permanent ground-based sites. From over ten years of cloud radar observations at the ARM SGP site, Zhang and 460 

Klein (2010) computed the diurnal cycle of cloud vertical structure for four distinct cloud regimes: daytime clear sky, daytime 

shallow convection, afternoon deep convection and nighttime convection (Figure 3 a-d). They are defined in as: (1) daytime 

clear sky day: precipitation rate = 0 mm day-1 at all hours of the day and cloud fraction ≤ 5% at all levels between 0800 and 

1600 local standard time (LST), (2) daytime shallow convection day: precipitation rate = 0 mm day-1 at all hours of the day, 

and shallow cumulus clouds are identified by Berg and Kassianov (2008), who first selected cumulus clouds based on fine 465 

temporal resolution ARSCL data at ARM SGP and then manually scrutinized cloud images taken by the Total Sky Imager 

(available online at http://www.arm.gov/ instruments/tsi) to eliminate low cloud types other than shallow cumulus, (3) 

afternoon deep convection day: the diurnal maximum hourly precipitation rate ≥1 mm day-1 and occurs between 1500 and 

2000 LST and is at least twice more than the precipitation rate at any other hour of the day outside of 1500-2000 LST) and (4) 

nighttime deep convection day: the diurnal maximum hourly precipitation rate ≥1 mm day-1 and occurs between 0000 and 470 

0700 LST. Each composite consists of somewhere between 79 and 229 days spanning the warm seasons for a 10-year period. 

We also created the same model composites (Figure 3 e-h) from the model grid box nearest the SGP site (Figure 2), for the 

exact same days from the Day 2 hindcasts. We use the model cloud fraction for this comparison because the variables for using 

a radar simulator (Zhang et al. 2018; 2019) were not saved at the time the hindcasts were done. This analysis, which cannot be 

achieved from the usual AMIP simulations, is a more precise way of model parameterization evaluation because it minimizes 475 

the impact of erroneous large-scale states on the clouds. This is because the atmospheric large-scale state is closer to 

observations during each diurnal cycle of the hindcasts than it is in the AMIP simulation. Furthermore, multi-year hindcasts 
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provide a sufficient number of events to make a meaningful comparison with observations so that conclusions from such 

studies are more statistically robust.  

 480 

In Figure 3, the model overestimates high clouds regardless of cloud regimes, even for clear sky condition. For clear sky 

condition, the model also shows middle- and low-level clouds. One possible explanation is that the deep convection scheme 

in the model is triggered whenever the convective available potential energy (CAPE) is larger than 70 J kg-1. During the 

daytime in the warm seasons, CAPE is usually larger than the threshold and deep convection is easily triggered, resulting in 

the transport of water vapor and detrainment of cloud condensates. For the shallow convection regime, the model overestimates 485 

middle-level clouds by ~4-6% but underestimates shallow clouds by ~10%. For afternoon deep convective cloud regime, the 

model cannot simulate the transition from shallow to deep convective clouds. The deep convection clearly starts too early from 

around 11 local time rather than 15 in the afternoon. Also, the model underestimates both shallow and middle-level cloud 

fraction by ~10%. The model completely misses the nighttime convection regime, and only shows some deep convection 

starting around noon. The too early afternoon convection and the lack of nocturnal convection over land are common model 490 

problems as reported in previous studies (e.g., Dai 2006; Jiang et al. 2006; Covey et al. 2016). The missing nocturnal 

precipitation is likely related to the incapability of the model to capture elevated convection that often occurs at night at 

Southern Great Plains (Xie et al. 2019). We do realize that there are already small errors in the Day 2 large-scale state and they 

can also contribute to the errors in the simulated cloud fields. Nevertheless, their impact is still much smaller compared to the 

errors due to parameterization deficiencies in convection. 495 

 

With multi-year hindcasts and long-term cloud observations to build up robust statistics, these comparisons help identify 

specific cloud regime deficiencies under very similar large-scale meteorological conditions, and model developers can further 

focus on improving specific processes represented in the cloud and convection parameterizations. 

3.2 Model biases associated with MJO 500 

The MJO (Madden and Julian 1971, 1972) is the dominant mode of intraseasonal variability in the tropics. MJO has significant 

impacts on the global water cycle as it can interact with many weather and climate phenomena (Zhang 2013). Nevertheless, 

contemporary GCMs still simulate poor MJO including its weak amplitude and lack of eastward propagation (Jiang et al.2015, 

Ahn et al. 2017). Recent studies suggest that the instability and propagation of the MJO are regulated by various feedback 

processes including cloud-radiation and wind-evaporation feedbacks (Sobel and Maloney 2012, 2013; Adams and Kim 2016; 505 

Ciesielski et al. 2017). These feedback processes may contribute to better MJO simulations if they are well represented in the 

GCMs. A particularly relevant process responsible for the eastward propagation of the MJO is the “pre-conditioning” process 

consisting of low-level moistening and shallow convective heating structure at the eastern edge of MJO deep convection (e.g., 

Jiang et al. 2011; Johnson and Ciesielski 2013; Powell and Houze 2013; Xu and Rutledge 2014). This process destabilizes the 

environment encouraging subsequent development of deep convection.   510 
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As each MJO event is unique from one another, one can take advantage of the multi-year hindcasts to composite precipitation, 

winds and diabatic heating profiles based on observed MJO phases with the focus on identifying robust model biases associated 

with the MJO. The diabatic heating rate or apparent heating of large-scale motion system (Q1) consists of the heating due to 

radiation, the release of latent heat by net condensation, and vertical convergence of the vertical eddy transport of sensible heat 515 

(Yanai et al. 1973). In CESM1/CAM5, Q1 can be calculated through summing up all the tendency terms of all the diabatic 

processes. Figure 4 presents the observed composites of November to April 20-100 day band-pass filtered NOAA Interpolated 

Outgoing Longwave Radiation (OLR) anomalies and horizontal wind anomalies at 850mb from ERA-Interim, as a function 

of the eight phases of the MJO (Wheeler and Hendon 2004). The observed MJO shows a core of deep convection (center of 

negative OLR anomalies) over the Indian Ocean around 80°E associated with low-level convergence in winds during Phase 2. 520 

The core of deep convection slowly propagates eastward, and the intensity of convection decreases (with OLR anomalies 

increasing) after the core of MJO crosses over the Maritime Continent and reaches the central Pacific (Phases 6-8). Figure 5 

shows composites of November to April precipitation and horizontal wind biases from Day 3 hindcasts as a function of the 

eight phases of the MJO. We find that there is a dry bias in Day 3 hindcasts over the core of deep convection (center of negative 

OLR anomalies in Figure 4) associated with MJO, and a wet bias to the east over the region of suppressed convection (center 525 

of positive OLR anomalies in Figure 4) for all the phases as the MJO moves eastward. The dry bias is largest over Indian 

Ocean during Phase 2 with magnitude ~ -6 mm day-1, and the wet bias is largest over western Pacific during Phase 8 with 

magnitude ~5-6 mm day-1. The dry bias is usually attributed to the lack of organized convection in the model (Moncrieff et al. 

2017), and the wet bias is consistent with the too frequently triggered deep convection scheme even under suppressed large-

scale condition. Further, there is a persistent dry bias over Borneo and part of Sumatra and wet bias around the Maritime 530 

Continent for all the phases indicating a possible local effect of diurnal cycle of convection. The dry bias is more significant 

during Phase 4 and 5 as the MJO crosses over the Maritime Continent. The 850 mb winds show a biased low-level convergence 

near the Equator consistent with the excessive precipitation bias to the east over the region of suppressed convection.  

 

During Phases 2 and 3 when the MJO is over the Indian Ocean, the anomalous Q1 profiles reveal that the magnitude of shallow 535 

heating is very weak (<0.4 K day-1) to the east over the region of suppressed convection between 100°E and 120°E in Phase 2 

and the heating is not restricted to low levels between 120°E and 150°E in Phase 3. Instead, there is an anomalous heating 

associated with deep convection in Phase 3, which is not evident in the observations as indicated from many previous studies 

(e.g., Figure 5a of Jiang et al. 2011). This suggests that the model fails to simulate the pre-conditioning moistening processes 

by shallow convection and the gradual transition from shallow to deep convection in Phase 3 of Day 3 hindcast composites. 540 

Figure 6 presents Hovmöller diagrams (longitude versus time in lag days) of rainfall anomalies along an equatorial band based 

on the lag correlation over an Indian Ocean box for both GPCP and Day 3 hindcasts. The model shows an eastward propagation 

of precipitation anomalies associated with the MJO. However, the slightly lower correlation coefficients in the hindcasts (~0.3 

vs ~0.4 in observation) east of 105°E is consistent with the weakening of MJO eastward propagation particularly over the 
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Maritime Continent. Previous studies have identified Maritime Continent as a “barrier” for MJO propagation and most MJO 545 

episodes in the models fail to propagate across it due to several possible reasons, such as interactions of convection, clouds, 

surface fluxes and local circulation within a diurnal cycle, land-sea contrast, terrain effect, or east-west low-level moisture 

gradient (Hagos et al. 2016; Jiang 2017; Zhang and Ling 2017). Although further diagnosis is required to fully understand the 

underlying problems for MJO propagation, our analysis with multi-year hindcasts indicates issues in the early development of 

biases in the shallow and deep convections associated with the MJO, as well as their interactions with the diurnal cycle of 550 

convection over the Maritime Continent.  

 

While we examined the composites of the MJO phases using a pseudo time series from the multi-year hindcasts, caution should 

be exercised when interpreting the results with the discontinuous time series. Specifically, one should avoid examining those 

processes mentioned above within a single short hindcast. One could, however, perform longer hindcasts, like those in 555 

Klingaman et al., (2015) to investigate how model physics interact with the large-scale environment and influence the 

propagation and evolution of the MJO with longer lead times. 

3.3 Interannual variations of moist processes 

3.3.1 Variations of moist processes associated with ENSO 

Being the leading mode of interannual variability in the tropics and extra-tropics, ENSO has significant impact on both regional 560 

and global temperature, circulation, and moist processes through teleconnections. To gain insights into whether or not errors 

in the response of these fields to SST anomalies can be attributed to parameterization errors or whether errors in the circulation 

response to SST anomalies also contribute, one can further contrast the multi-year hindcasts with the behavior of a companion 

AMIP simulation with the same boundary conditions (SST and sea ice). This question cannot be addressed before with one-

year short-range hindcasts as we proposed in Ma et al. (2015). To this end, we first selected several fields to compute their 565 

monthly anomalies and then regressed these anomalous fields onto the Nino 3.4 index. Figure 7 shows the regression maps of 

precipitation, SWAbs, surface net flux (from atmosphere to the surface), and the surface zonal wind stress from observations, 

Day 2 hindcasts and the AMIP simulation (pattern statistics are shown in Table 3). The motivation for selecting these fields is 

because the tropical response of precipitation represents the atmospheric diabatic heating that forces circulation anomalies. On 

the other hand, surface radiation, turbulent heat fluxes, and wind stress provide critical heat and momentum forcings for SST 570 

anomalies and govern the ENSO behavior. The performance of these fields from an uncoupled atmospheric GCM is considered 

to be highly relevant for evaluation when it couples to an ocean model (Sun et al. 2006; Guilyardi et al. 2009).  

 

The responses of these fields from Day 2 hindcasts show a better agreement both in the spatial patterns and magnitude with 

observations compared to the AMIP response (right column in Figure 7). This is especially evident for precipitation, absorbed 575 

shortwave flux and zonal wind stress over the Western North Pacific, South Pacific Convergence Zone and Indian Ocean. The 
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remote teleconnections may be chaotic or poorly done by the model, causing a poor simulation in the AMIP mode. The large-

scale state is well constrained in the hindcasts and the response of those fields to SST anomalies in Figure 7 is much superior. 

This shows that remote errors are mostly the result of errors in circulation on long-term time scales although the errors in 580 

circulation may be caused by model physics in the first place and deteriorates through feedback processes with time. This is 

evident as there are still biases in the hindcasts indicating problems from parameterizations in representing those response to 

SST changes even over local Nino 3.4 region. 

 

Surface net flux and zonal wind stress also show a greater change between hindcast and AMIP response compared to 585 

precipitation and SWAbs. It is reasonable for the latter two moist processes to show less changes as they are fast processes 

and the biases associated with model parameterizations usually develop within a few days of model integration (Xie et al. 

2012; Ma et al. 2014). It is also reasonable for zonal wind stress to show greater change as the low-level winds are well 

constrained for the hindcasts. For surface net heat flux, the errors are contributed from various flux terms including radiation 

and turbulent heat fluxes, which are affected by both model physics and dynamics. Therefore, the net heat flux shows the 590 

lowest spatial correlation and larger root mean square errors in both hindcasts and the AMIP simulation compared to other 

fields. 

3.3.2 Robustness of systematic errors 

One question raised from earlier studies (Xie et al. 2012 and Ma et al. 2014) of the correspondence between short- and long-

time-scale errors is whether systematic errors of moist processes show significant interannual variation in the mean state biases. 595 

Figure 8 shows the pattern statistics between errors from the individual annual means in the hindcasts or AMIP simulation, 

and errors in the 16-year mean of the AMIP simulation (the reference fields) for precipitation, total cloud fraction (from the 

ISCCP cloud simulator), SWAbs, and OLR. Compared to the long-term mean errors in the AMIP simulations, annual mean 

errors of the individual years for these fields show very similar magnitude in correlation and the normalized spatial standard 

deviation from the hindcasts at either time lag. This is also the case for individual AMIP years although the correlations and 600 

standard deviations show slightly larger spread. Compared to Day 2 hindcasts, the correlations and standard deviations from 

Day 3 hindcasts are closer to those from the AMIP simulations indicating the bias growth toward the AMIP bias with hindcast 

lead time. We further find that the magnitude of correlations for annual mean errors between individual hindcast years and the 

long-term AMIP simulations are not sensitive to the ENSO phase in a given year for these fields. This is also the case if 

seasonal means are compared (Figures not shown here). These results suggest that mean errors in the moist processes are very 605 

robust and do not show significant interannual variations. Indeed, averaging the hindcast errors over many years (indicated by 

“2” or “3” in Figure 8) only slightly improves the agreement with the AMIP reference field. Thus, one may identify robust 

model errors in the mean state from only one year of hindcasts with enough ensemble members (with ensemble members 

greater than 15, Ma et al. 2014). A similar conclusion with multiple years of short AMIP-type simulations was also suggested 
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by Wan et al. (2014). These results suggest that relatively short simulations will be effective at identifying the systematic moist 610 

process errors of a very high-resolution climate model which is too expensive to regularly perform multi-year simulations. 

 

It is also of interest to compare the absolute magnitude of errors in individual years to that of the long-term systematic error in 

the AMIP simulation. To do so, we calculated the annually-averaged cloud error metrics proposed in Klein et al. (2013) in 

Figure 9. These metrics are scalar measures of performance in simulating the space-time distribution of several cloud measures, 615 

with better performance indicated by smaller E values. ETCA measures the error in total cloud amount, and ECTP-t measures the 

errors in the frequency of optically intermediate and thick clouds at high, middle, and low-levels of the atmosphere. ESW and 

ELW measures the errors in the impacts on top-of-atmosphere shortwave and longwave radiation in the same cloud-top pressure 

and optical depth categories used for ECTP- t, respectively. It is not surprising that the hindcasts show better performance in all 

the cloud metrics as the large-scale circulation and state are not too far from the reanalysis. This is also true for the interannual 620 

variations in global mean cloud radiative effect at the top of the atmosphere (Figure 10). We find that all the metrics and the 

cloud radiative effect show interannual variations indicating that the circulation and state anomalies make a significant 

contribution to interannual variations although these metrics or errors in the cloud radiative effect are not sensitive to ENSO 

phase. We further find that there is a larger difference between hindcasts and AMIP in the total cloud amount error metric 

(ETCA) implying that errors in the large-scale circulation and state make a larger contribution to errors in ETCA than cloud 625 

radiative properties (Figure 10). 

4 Summary 

In this study, we present a multi-year short-range hindcast experiment and its experiment design for better evaluating both the 

mean state and variability of atmospheric moist processes in climate models from diurnal to interannual time scales to facilitate 

model development. We also demonstrate that one can obtain unique understanding into robust GCM systematic moist 630 

processes errors by diagnosing these processes with corresponding observations for periods based on different phenomena. 

The present experiment also demonstrates that it is now feasible to systematically evaluate climate model moist processes in 

deterministic weather-prediction mode just as the moist processes in weather prediction models are often evaluated in analyses 

or re-analyses (Jakob 1999, Yang et al. 2006). This experiment can also provide a very useful avenue to diagnose and 

understand critical processes regulating various climate and weather phenomena by taking advantage of detailed model output 635 

with a largely realistic representation of the large-scale state in hindcasts. 

 

Three processes – the diurnal cycle of clouds during different cloud regimes at the ARM SGP Site, precipitation and diabatic 

heating associated with the MJO, and the response of moist processes to ENSO SST anomalies – are evaluated as examples of 

using this multi-year hindcast experiment to gain insights into robust model errors and their connection to physical 640 

parameterizations and large-scale state. These analyses can only be done through this multi-year hindcast experiment to 

establish robust statistics of the processes under well-controlled large-scale environment because these phenomena are either 
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interannual climate variability or only happen a few times in a given year (e.g. MJO, or cloud regime types). These comparisons 

identify specific model deficiencies that subsequent parameterization development should focus on. Results from the multi-

year hindcasts also suggest that systematic errors in the mean state of moist processes are very robust and do not show 645 

significant interannual variation in error magnitude or patterns over large spatial domain. Although we only showed examples 

relevant to moist processes, other processes related to planetary boundary layer or radiation schemes can also be examined 

through this suite of experiments. The proposed experiment and evaluation method also complement the existing ways of 

climate model evaluation, such as performing GCM simulations in the AMIP, or nudging mode. Comparison among the multi-

year hindcasts, AMIP and nudging simulations may provide more insights into these issues mentioned above.  650 

 

In addition to processes indicated above, further studies on monsoon variability (e.g., South American and Asian monsoons, 

Chen et al. 2019), land-atmosphere interactions (Phillips et al. 2017), or detailed MJO studies with longer hindcast duration 

(Klingaman et al. 2015), are currently being explored with these hindcasts. As demonstrated in previous studies and here, 

model mean biases associated parameterized moist processes usually develop within a few days and manifest within weeks to 655 

affect the simulations of large-scale circulation and ultimately the climate mean state and variability. Therefore, model 

developers can achieve useful understanding of the underlying problems in model physics by conducting multiple years of 

hindcasts as demonstrated in the present work. Although newer version of the CAM and CLM is now available 

(CAM6/CLM5), similar systematic errors associated with moist processes remain present in the latest model version. 

Therefore, it is still worthwhile to study these hindcasts and compare the results to hindcasts with newer model version. In the 660 

meantime, we also plan to conduct another suite of multi-year hindcasts with the latest DOE Exascale Energy Earth System 

Model (E3SM, Golaz et al. 2019). We will also compare the results from E3SM to CESM1 to understand the impact of 

parameterization and model changes to the performance of moist processes since the atmospheric component of E3SM was 

originally branching form CAM5.3, which has very similar performance as CAM5 (Xie et al. 2018, Rasch et al. 2019). Note 

that E3SM version 1 has a new set of atmospheric physical parameterizations that are very similar to CAM6, the latest CAM. 665 

The hindcasts will also be available to the community once available. 

 

Finally, the multi-year hindcast approach presented in this study is also intended as one of the experiment protocols which will 

be used in the Diurnal Cycle of Precipitation (DCP, https://portal.nersc.gov/cfs/capt/diurnal/) model intercomparison project 

under the Global Energy and Water cycle Exchanges (GEWEX) Global Atmospheric System Studies (GASS). This project is 670 

aimed to understand the processes that control the diurnal and sub-diurnal variations of precipitation over different climate 

regimes in observations and in models. The project will also identify the deficiencies and missing physics in current GCMs to 

gain insights for further improving the parameterization of convection. 
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Code and data availability  

The model code is the CESM1 (cesm1_0_5, FC5 compset, F09_F09 resolution) and is available at 675 

http://www.cesm.ucar.edu/models/cesm1.0/. All model necessary input files are available at https://svn-ccsm-

inputdata.cgd.ucar.edu/trunk/inputdata/. The boundary conditions of SST and sea ice data are available at 

https://www.esrl.noaa.gov/psd/data/gridded/data.noaa.oisst.v2.html, The simulations are available online through the NERSC 

Science Gateways (https://portal.nersc.gov/archive/home/h/hyma/www/CAPT/CAPT_Long). The initial conditions are 

located at https://portal.nersc.gov/archive/home/h/hyma/www/CAPT/CAPT_Long/IC/. Detailed documentation for this 680 

experiment and variable list is at 

https://portal.nersc.gov/archive/home/h/hyma/www/CAPT/CAPT_Long/CAPT_Long_output_cesm1_0_5_v5.pdf. 
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Table 1: Locations of model patch/site output associated with major field campaigns or DOE ARM sites. 
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Locations Longitude Latitude grids 
1.Niamey-1 357E-359E 14N-17N 10 
2.Niamey-2 0-9E 5N-18N 120 
3.DYNAMO 70E-83E 10S-9N 231 
4.China-Shouxian 114E-119E 31N-34N 25 
5.Darwin 129E-133E 14S-10S 20 
6.Manus 146E-149E 4S-1S 12 
7.Nauru 166E-169E 2S-1N 15 
8.SHEBA 190E-220E 74N-78N 125 
9.MAGIC-1 201E-214E 16N-25N 121 
10.MAGIC-2 207E-232E 24N-30N 147 
11.MAGIC-3 221E-243E 29N-36N 162 
12.NSA 202E-206E 70N-73N 16 
13.CARE 238E-240E 37N-39N 9 
14.SGP 261E-264E 35N-38N 12 
15.Vocals 272E-291E 23S-17S 112 
16.Amazonia 296E-301E 13S-9S 25 
17.Manaus 298E-302E 5S-1S 25 
18.Azores-Graciosa 329E-334E 38N-41N 20 
19.Barbados 291E-301E 10N-20N 108 
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Table 2: List of observation datasets. 
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Observations Analyzed period References 
GPCP Precipitation V1.2 1997-2012 Adler et al. 2003 

CERES EBAF Radiation Edition 
2.8 

2000-2012 Loeb et al. 2009; Kato et al. 2013  

ISCCP D2 Cloud 1997-2009 Rossow et al. 1999 
ERA-Interim Reanalysis 1997-2012 Dee et al. 2011 
ARMBE ARSCL Cloud 1997-2007 Xie et al. 2010; Clothiaux et al. 

2000, 2001 
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Table 3. Pattern statistics of regression maps of selected fields onto the Niño 3.4 index between observations and 
model simulations (Day 2 hindcasts or AMIP).  950 
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Spatial Correlation 

Coefficient 
RMSE 

Normalized Spatial 

Standard Deviation 

 Day 2 AMIP Day 2 AMIP Day 2 AMIP 

Precipitation 0.94 0.81 0.25 0.44 1.02 0.97 

ISCCP Total 

Cloud Fraction 
0.83 0.68 2.11 2.84 0.91 0.82 

MODIS Total 

Cloud fraction 
0.85 0.72 2.12 2.74 1.03 0.94 

Absorbed 

Shortwave 

Radiation 

0.87 0.74 2.70 3.62 1.08 1.02 

Outgoing 

Longwave 

Radiation 

0.95 0.82 1.97 3.34 1.09 0.97 

Net Surface 

Fluxes 
0.79 0.61 4.42 6.19 0.90 0.98 

TAUX 0.91 0.72 3.49 5.84 0.80 0.81 

OMEGA500 0.94 0.80 2.40 4.18 1.00 0.96 

U850 0.99 0.88 0.14 0.40 1.08 1.08 

U200 0.99 0.89 0.23 1.16 0.98 0.81 
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 955 

Figure 1: Schematic diagram for the multi-year hindcast procedure (modified from Ma et al. 2015) applied to series of three-day 
hindcasts from 1997 to 2012. Each hindcast is initialized with ERA Interim Reanalysis and the starting time is 00Z every day. 
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Figure 2: Locations of model patch/site output associated with major field campaigns or U.S. Department of Energy Atmospheric 960 
Radiation Measurement (ARM) sites. See Table 1 for detailed longitude and latitude information. 
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Figure 3: Diurnal cycle of cloud fraction composites (%) from May to August in the years of 1997 to 2007 from (a)–(d) ARMBE 
ARSCL and (e)-(h) Day 2 hindcasts for different convection regimes: (a)(e) clear-sky regime, (b)(f) fair-weather shallow cumulus 965 
regime, (c)(g) late-afternoon deep convection regime, and (d)(h) nighttime deep convection regime. Figures (a)-(d) were modified 
from Figure 3 in Zhang and Klein (2010). 
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 970 
Figure 4: Composites of November to April 20-100 day band-pass filtered NOAA Interpolated Outgoing Longwave Radiation 
anomalies (color shades and contours, W m-2) and horizontal wind anomalies (vectors, m s-1) at 850mb from ERA-Interim, as a 
function of the eight phases of the MJO (Wheeler and Hendon 2004). Number of days for composites are indicated on the top of each 
panel. Years of analysis are from 1997 to 2012. 
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 975 

 
Figure 5: Composites of November to April precipitation bias (color shades, mm day-1), 850 mb horizontal wind biases (vectors, m 
s-1), and anomalous 20-100 day band-pass filtered Q1 vertical profiles (averaged over 10ºS to 10ºN, K day-1) from Day 3 hindcasts, 
as a function of the eight phases of the MJO (Wheeler and Hendon 2004). The number of days comprising each composite are 
indicated on the top of each panel. The observed precipitation and winds are from GPCP and ERA-Interim, respectively. Only 980 
precipitation biases that are significant at the 95% confidence level are shaded. The Q1 profiles are computed directly from model’s 
tendency terms with all the diabatic processes. 
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Figure 6: Time-longitude anomalous rainfall correlation Homvöller diagram along the Equator (10ºS - 10ºN) based on GPCP and 
Day3 hindcasts. The rainfall anomalies associated with the MJO are derived based on lag-correlation over an Indian Ocean box 985 
(75º-85ºE; 5ºS-5ºN) for northern winter (November-April) of 1997 to 2012. 
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Figure 7: Regression maps of precipitation (mm day-1 K-1), absorbed shortwave radiation (W m-1 K-1), net surface heat flux (W m-1 
K-1), surface zonal wind stress (N m-2 K-1) onto the Niño 3.4 index from observations (left panels), Day 2 hindcasts (middle panels), 
and AMIP simulation (right panels). 990 
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Figure 8: Spatial pattern statistics of the bias errors (with respect to observations) of annual mean precipitation, ISCCP total cloud 995 
fraction (with tau > 1.3), absorbed shortwave radiation, and outgoing longwave radiation from the multi-year CAM5 hindcasts and 
an AMIP simulation. These statistics are illustrated with a Taylor diagram (Tayler et al. 2001) that shows the level of agreement of 
a given field to a common reference. The reference fields (REF) are the correspondent multi-year mean bias errors from the AMIP 
simulation. Each “x”, “+”, or “o” represents the Day 2, Day 3 or AMIP annual mean bias for individual years between 1997 and 
2012 whenever the observations are available, and “2” and “3” represents the Day 2 and Day 3 hindcast mean biases averaged over 1000 
all available years, respectively. 
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Figure 9: Cloud metrics as defined using the ISCCP simulator in Klein et al. (2013) for Day 2 and 3 hindcasts, as well as the AMIP 
simulation. These metrics are scalar measures of performance in simulating the space-time distribution of several cloud measures, 1005 
with better performance indicated by smaller E values. ETCA measures total cloud amount, and ECTP-t measures cloud-top pressure 
and optical depth in different categories of optically intermediate and thick clouds at high, middle, and low-levels of the atmosphere. 
ESW and ELW measure the impacts on top-of-atmosphere shortwave and longwave radiation in the same categories used for ECTP-t, 
respectively. The markers with errorbars show the average and 1-s interannual variation in these error metrics. The square symbols 
are the error metrics computed by comparing model and observed monthly-resolved climatological means.  MODIS cloud amount 1010 
for ETCA is plotted as a measure of observational uncertainty. 
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Figure 10: Time series of monthly anomalies of global mean cloud radiative effect from CERES, Day 2 and 3 hindcasts, as well as 
from the AMIP simulation. The correlation coefficient between the model and observation is shown in the upper right portion of 1015 
each panel. 
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