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Abstract. A numerical scheme to perform data assimilation of concentration measurements in Lagrangian models is pre-

sented, along with its first implementation called Ocean Plastic Assimilator, which aims at improving predictions of plastics

distributions over the oceans. This scheme uses an ensemble method over a set of particle dispersion simulations. At each step,

concentration observations are assimilated across the ensemble members by switching back and forth between Eulerian and

Lagrangian representations. We design two experiments to assess the scheme efficacy and efficiency when assimilating simu-5

lated data in a simple double gyre model. Analysis convergence is observed with higher accuracy when lowering observation

variance or using a more suitable circulation model
:::::::::
circulation

:::::
model

:::::
closer

::
to

:::
the

::::
real

:::::::::
circulation. Results show that the distri-

bution of plastic
::::::
plastics

:
mass in an area can effectively be approached

::::::::
improved with this simple assimilation scheme.

:::::
Direct

:::::::::
application

::
to

:
a
::::
real

:::::
ocean

::::::::
dispersion

::::::
model

::
of

:::
the

:::::
Great

:::::
Pacific

::::::::
Garbage

::::
Patch

::
is
::::::::
presented

::::
with

::::::::
simulated

:::::::::::
observations,

::::::
which

::::
gives

::::::::
similarly

::::::::::
encouraging

::::::
results.

:
Thus, this method is considered a suitable candidate for creating a tool to assimilate plastic10

::::::
plastics

:
concentration observations in real-world applications to forecast plastic

::::::
estimate

::::
and

:::::::
forecast

::::::
plastics

:
distributions in

the oceans. Finally, several improvements that could further enhance the method efficiency are identified.

1 Introduction

Plastic pollution reveals itself to be an urgent matter if humans are to preserve their oceans. Previous publications such as

Lebreton et al. (2018) reviewed how plastics are rapidly accumulating in the oceans and concentrate in oceanic gyres. As15

public and private ventures set out cleanup goals, accurate and regular forecasts of the state of plastics in the oceans become

necessary.

A modeling framework is currently undergoing development at The Ocean Cleanup towards this goal, as the company set

itself out to clean 90% of the oceans floating macroplastics by 2040. It is used to assess and improve our ability to perform the

largest cleanup in history.20

This framework, of which results are presented in Lebreton et al. (2018), is built upon the Pol3DD Lagrangian dispersion

model and presented in Lebreton et al. (2012). In this model, virtual particles representing plastics are generated and let drift

over time using currents data extracted from the oceanic circulation modeling system HYCOM (HYbrid Coordinate Ocean
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Model, see Bleck (2002)). Results from this model are compared with two other plastic forecast models in van Sebille et al.

(2015).25

While the Lebreton et al. (2012) modeling framework has already produced valuable results, it is not able to assimilate

observations and update forecasts accordingly yet. However, as the company prepares to release a number of systems to clean

the Ocean, it will soon dispose of numerous sources of data collecting devices measuring plastics concentration in the oceans.

Therefore, we believe it is timely to develop a method to assimilate incoming real-time observations.

Methods to assimilate plastics concentration observations over a Lagrangian dispersion model are in the early development30

stage (Lermusiaux et al. (2019)). However, earlier studies dealing with data assimilation applied to the atmospheric dispersion

of particles around polluting facilities, such as Zheng et al. (2007), have been published.

This paper introduces Ocean Plastic Assimilator v0.1
:
.2, a numerical scheme developed to assimilate plastic

::::::
plastics con-

centration data into 2D Lagrangian dispersion models. Section 2 formulates the method and section 3 then describes its initial

implementation and application. For this proof of concept
:::::::::::::
proof-of-concept

:
paper, we use a dispersion simulation generated35

with the OpenDrift framework in a controlled environment based on a double gyre analytical flow field. The assimilation results

are presented in section 4. Real-world application perspectives and future developments that could further improve the method

are discussed in section 5.
::::::
Finally,

::
in

::::::
section

::
6,

:::
we

::::::
present

:
a
:::::
direct

::::::::::
application

::
of

:::
the

::::::
method

::
to

:
a
:::::::::
dispersion

::::::
model

::
of

:::
the

:::::
actual

::::
Great

::::::
Pacific

::::::::
Garbage

:::::
Patch,

::::
with

::::::::
simulated

:::::::::::
observations

:::::::
sampled

::::
from

:::::::
another

:::::::::
simulation.

:

2 Method40

This section formulates our methodology to perform data assimilation of plastic
::::::
plastics

:
concentration (or density) observations

in any 2D Lagrangian dispersion model, using an Ensemble Kalman Filter (EnKF). This
::
It includes: the two representations

of data (Eulerian and Lagrangian) being used for this process, how we go back and forth between them
::
the

:::::::::::::
transformation

:::::::
between

:::::::
Eulerian

::::
and

::::::::::
Lagrangian

:::::
space, the ensemble assimilation method itself, and model ensemble initialization. The

Python implementation and its applications are described in the following section.45

2.1 Representations of data

The distribution of plastic
::::::
plastics mass in a Lagrangian dispersion model is represented through weighted particles drifting

according to a flow field in a 2D domain. Each virtual particle represents a drifting plastic
::::::
plastics

:
concentration. In turn,

virtual concentration measurements are collected at fixed locations (grid points) within the studied 2D domain, i.e. an Eulerian

representation of the plastics mass distribution.50

Our method aims to assimilate concentration observations collected in the Eulerian representation and update the Lagrangian

representation accordingly. One cycle of this process consists of projecting particle weights on the concentration grid, assim-

ilating observation data into the concentration grid, projecting grid cell concentration updates on particle weights, and finally

letting particles drift until the next assimilation time step. This procedure is summarized in figure 1.

The complete workflow requires:55
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Figure 1. Schematic depiction of the 4 steps of our method

– An assimilation method.

– A dispersion model along with the flow field used.

– Projections methods to go back and forth between Eulerian and Lagrangian representations.

– Prior estimates for model parameters and uncertainties.

2.2 Procedure60

This section presents our procedure on a set of Np particles drifting in a gridded domain. We divide this space ,
:
with a grid of

size (m,n), and use indices i, j to designate a grid cell. An Ensemble Kalman Filter works by running different simulations, or

ensemble members, simultaneously with variations in model parameters (e.g., initial conditions). We use Ne members in the

following.

2.2.1 Projecting weights on densities65

At each step t, we define:

– wft the forecast weights vector, of size Np, in kg.

– xft the forecast densities vector computed after projecting wft on the density grid, in kg.m−2.

– yt the density observations vector, in kg.m−2, with its error covariance matrix R.

– xat the analyzed densities vector computed by assimilating observations yt in xft via the Ensemble Kalman Filter, in70

kg.m−2.
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– wat the analysis weights vector computed by projecting on wft the corrections computed on xat , in kg.

– ∆i,j,t the set of particles present at step t in grid cell i, j.

To start, for grid cell i, j
:::
with

::::
area

::::
Ai,j , x

f
t is computed with the formula:

(xft )i,j =
∑

p∈∆i,j,t

(wft )p

∑
p∈∆i,j,t

(wft )p

Ai,j
:::::::::::::

(1)75

In the following, we omit sub-index t when all the operations are performed at the same time step t.

2.2.2 Assimilating with the
::::::::
Ensemble

:::::::
Kalman

::::::
Filter

:
(EnKF

:
)

Our assimilation step relies on the use of Ensemble Kalman Filtering, as described in Evensen (2003). This method is derived

from Kalman Filtering and notably suitable to situations in which the model is not an easily invertible matrix (used in Standard

:::::::
standard Kalman Filtering), and one cannot efficiently compute an adjoint (used in Extended Kalman Filtering).80

Standard Kalman Filtering allows computing the analysis state using a single equation. In standard Kalman Filtering, the

forecast state vector xf (in this case, the densities) and the analysis vector xa are linked with:

xa = xf +K(y−Hxf ) (2)

H is the observation matrix that maps the state xf to the observation space of y.

The Kalman gain matrix K is defined by the following equation:85

K = P fHT (HP fHT +R)−1 (3)

R is the observation error covariance matrix. P f is the forecast error covariance matrix. When using a Kalman Filter, P f is

in principle meant to be computed from the previous state by application of the forward integration matrix operator, but this

is generally too computationally expensive and impractical. Here, we use Ensemble Kalman Filtering, where the P f matrix

computation is approximated by relying on an ensemble of simulations.90

Ensemble members are different instances of our simulation with different initializations. For ensemble member k ∈ [|1,Ne|],
we write xfk the forecast state vector, and xf the ensemble average

xf =
1

Ne

Ne∑
k=1

xfk (4)
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Accordingly, the computation of P f can be accomplished using the formula:

P f =
1

Ne− 1

Ne∑
k=1

(xfk −x
f )(xfk −x

f )T (5)95

Each ensemble member k is then updated using equation 2 with xk instead of x.

2.2.3 Projecting the density updates on particles

Several ways of projecting the density updates (step 3 in figure 1) can be thought of. In this initial study
:::
the

::::::
Ocean

::::::
Plastic

:::::::::
Assimilator

::::
v0.2, we simply choose to update the weights by uniformly distributing the density correction ratio of a grid cell

i, j among the particles in the same box using this formula:100

∀p ∈∆i,j ,(w
a)p =

(xa)i,j
(xf )i,j

(wf )p (6)

In this equation, (xf )i,j cannot be null when a grid cell i, j contains particles (see equation 1), except if all particles have null

weights. While extremely unlikely (we did not encounter this phenomenon during our numerous tests), particles with exactly

null weights have to be taken out of the simulation.

This heuristic was chosen primarily for its simplicity and its computational efficiency. The multiplicative approach also tends105

to prevent computing negative weights if the density analysis is lower than the density forecast.

Finally, for step 4 in figure 1, since the dispersion model changes particles positions but not their weights when integrating,

the forecast weights at time t+ 1 are:

wft+1 = wat (7)

2.2.4 Initialization110

As stated by Evensen (2003) the Ensemble Kalman Filter requires the initial ensemble to sample the uncertainty in variables

that we want to update with data assimilation. In this article, we focus on our method’s ability to compute the correct total mass

of particles drifting. For this reason, we normally distribute the members’ initial total masses with a mean µe and standard

deviation σe. If we write Mk the initial total mass for ensemble member k, we thus have:

Mk ∼N(µe,σe) (8)115

Each particle is then attributed
::::::
Finally,

:::
we

:::::::
attribute an initial weight of Mk/Np :

to
:::::
each

::::::
particle.
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3 Implementation and test-case setup

This section presents the Python implementation of the aforementioned method, called Ocean Plastic Assimilator (v0.1
::
.2).

We then describe the Lagrangian dispersion model (OceanDrift) used to generate double gyre dispersion simulations and the

experiments created with it to observe how our method performs in a controlled environment.120

3.1 Python implementation of the Ocean Plastic Assimilator

This first implementation is coded in Python (see Peytavin (2021a) for the repository). It is meant as a standalone program,

using as input a dispersal model output data, formatted as a netCDF4 dataset containing particle coordinates in a given space

and time domain, along with their weights. It is assumed that the advection scheme of
:
in

:
the dispersion model does not depend

on particle masses. In the more general case, one would have to regenerate the particle trajectories
:::
run

:::
the

::::::
model

::::
again

:
after125

each assimilation time step,
::
as

::
a

::::::
change

::
of

:
a
:::::::
particle

::::
mass

:::::
could

::::::
change

:::
its

:::::
future

::::::::
trajectory.

Once loaded, the input weights are duplicated in Ne arrays, and the program runs the assimilation scheme presented in the

previous section in a time loop, taking observations from an input data frame at each time step. The Assimilator can also take

one additional dispersion simulation output from which it samples observations to assimilate at each time step. This is the

approach used in the following test-case.130

This implementation leverages the use of arrays and the fact that we only use one simulation for all ensemble members to

perform vectorized computations for the computation of P f , equations 1 and 6. It also allows computing ∆i,j,t only once for

all ensemble members. Some parts of the algorithm are also executed with the just-in-time compiler numba (see Lam et al.

(2015)) in order to run faster.

This implementation allows our algorithm to perform each following test-case, repeated assimilation of 2 observation points135

during 2000 timesteps in a (60,40) gridded domain, in less than a half-hour on a modern laptop, using about 3GB of storage

and 2GB of RAM.

Running the Assimilator on a dispersion output and not inside a dispersion model allows it to work on outputs from different

models, as long as the data is appropriately formatted. Future implementations could also offer the option of running online

(i.e., embedded inside a dispersion model), which could allow more flexibility and possibilities, as discussed in section 6.2.3.140

3.2 Double gyre plastic dispersion using the OceanDrift model

In order to create our test cases, we first need a dispersion model and a flow field. We chose the OceanDrift model from the

Norwegian Lagrangian trajectory modeling framework OpenDrift (see Dagestad et al. (2018)). It was chosen mainly for its

simplicity and the fact that OpenDrift embeds a module to generate a dispersion based on a 2D double gyre flow field.

This field consists of two gyres moving closer then farther away periodically in an enclosed area. It’s a simple field but145

complex enough to stir and disseminate particles and is regularly used as a standard case to study time-varying flows, for
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Figure 2. Generated particles (left panel) in a double gyre flow field with OpenDrift, and the corresponding plastic
:::::
plastics

:
concentration

field, in particles per grid area (right panel). The domain grid size is 60× 40.

example in Guo et al. (2018). The evolving currents are generated using an analytical field1. The equations generating this 2D,

time-varying, deterministic field are:

u=−dφ
dy

=−πAsin(πf(x,t))cos(πy)

v =
dφ

dx
= πAcos(πf(x,t))sin(πy)

df

dx
(9)150


f(x,t) = a(t)x2 + b(t)x

a(t) = εsin(ωt)

b(t) = 1− 2εsin(ωt)

(10)

The dimensionless domain size for these equations is [0,2]× [0,1].

Parameter A is the circulation amplitude, ω is the frequency of oscillation of the gyres, and ε is the amplitude of the gyres

oscillation relative to the steady-state.

Particles are then generated and advected using the OceanDrift lagrangian model from the Norwegian trajectory modeling155

framework OpenDrift (Dagestad et al. (2018)). Figure 2 shows such a dispersion and the associated concentration field.

Thus, we can generate different dispersion simulations by changing the initial particle positions seed, which changes the

distribution of particles trajectories and the initial masses of the particles. We can also change the flow field parameters A, ω

and ε.

In the following section, we use these possibilities
:::::
modify

::::
the

::::
flow

::::
field

::::::::::
parameters

:::
and

::::
the

::::::
particle

::::::::
positions

:::::
seeds

:
to160

create assimilation test cases that use two simulations: a reference and a forecast. By assimilating concentration observations

1https://shaddenlab.berkeley.edu/uploads/LCS-tutorial/examples.html#Sec7.1
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Figure 3. Schematic depiction of a test case using a reference and a forecast simulation

sampled from the first inside the second, we can mimic assimilating particles
:::
We

::::
then

::::::
sample

::::::::::
observations

:::::
from

:::
the

::::::::
reference

:::::::::
simulation,

:::
and

:::::::::
assimilate

::::
them

:::::
inside

:::
the

:::::::
forecast

::::::::::
simulation.

::
By

:::::
doing

:::
so,

:::
we

:::::
mimic

:::::::::::
assimilating

:::
real concentration data into

an uncertain flow field in the presence of model error.

3.3 Assimilation experiments setup165

In order to assess and quantify the efficacy of the Assimilator in different cases, we designed two experiments.

The first one aims at verifying that, when the forecast flow field reproduces the reference flow field accurately, our im-

plemented scheme can correct an incorrect total mass guess. It also intends to check that the estimate gets better when the

observation error gets lower, as one would generally expect.

The second experiment aims to assess the Assimilator’s behavior and efficacy when the forecast flow field is slightly different170

from the reference by changing the double gyre parameters A and ε.

In both experiments, we will run several test cases to assimilate observations taken from a reference simulation into a forecast

simulation using the Assimilator. Then, we will compute metrics and
:::::::
compute

:::
the

::::
total

::::::
plastics

:::::
mass

:::::::::
estimation

::::
error

::::
and

:::
the

:::::::::::
concentration

::::
field

::::::
RMSE

::
to assess how close the assimilated forecast gets to the reference situation. This procedure is depicted

in Figure 3.175

In each test case, the Ocean Plastic Assimilator is executed over the course of 2000 timesteps. The double gyre size, which

is [0,2]× [0,1] is dimensionless, which means that the timestep is dimensionless too. However, if the flow field was the size of

the great pacific garbage patch, then with A= 0.1 the timestep would be of the order of a day.
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Over the double gyre, we define a gridded domain of size (60,40) and select two observation points, fixed, to run each

assimilation test case. This sampling pattern can be thought of as representing a set of moorings that one may deploy in the180

real Ocean. H is defined as a matrix that subsets (x)i,j to 2 points of observations.

For the i-th point, the measurement is simulated by adding a random error to xi such as :

yi = max(xi +N(0,σrelxi),0) (11)

To compute matrixR, we choose to model the observation error as a sum of an additive error σ0 and a multiplicative, relative

error σrel. As such, with yi the value measured at the i-th observation point:185

R= diag(σ2
0 + (σrely1)2,σ2

0 + (σrely2)2) (12)

In the following, unless specified otherwise, we use Ne = 10, σe = 0.05, Np = 25000, σ0 = 0.1 and σrel = 1%. The 2

observation points coordinates are the following pairs: (12,4),(55,27).

4 Results

4.1 Estimating the forecast
::::
total

::::::
plastics

:
mass

:
in

:::
the

::::::::
forecast190

In this first experiment, we want to assess the ability of our newly implemented scheme to estimate the total mass of plastics

in the reference simulation correctly.

First, we generate a reference situation using ε= 0.25, A= 0.1 and ω = 2π/10. We input the same parameters to integrate

the particles trajectories in the forecast simulation. By doing so, we are in a position where we understand the flow of the

reference situation correctly, but we do not know the total mass of plastics drifting. In the following, Mref = 25000 is the195

constant, total mass of the reference situation.

We initiate 5 different forecasts with µe = 0.25Mref , 0.5Mref , Mref , 2Mref and 5Mref . Observations are collected (and

later assimilated) at each time step on 2 observation points which could for example represent a pair of moored instruments.

Figure 4 shows the evolution of the forecast total mass for each simulation. Forecasts starting with an initial
:::
total

:
mass lower

than approximately 0.82Mref have their total mass rise while those starting with higher
:::
total

:
mass have their total mass fall.200

Final forecast masses
:::
total

:::::::
plastics

:::::
mass

::
in

:::
the

:::::::
forecast

:
after 1900 steps of assimilation for each simulation are presented in

table 1 . Overall, the forecasts total masses seem to converge towards a similar value of approximately 0.82Mref , from which

we can conclude that in this situation, the method makes an 18% error.

Another indicator of the correctness of a simulation can be computed from the concentration field at each step. For one of

the forecasts (with µe = 2), we analyze the distribution of concentration errors, over the gridded domain, and through time205
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Figure 4. Evolution of forecast
:::
total mass over time for 5

:::
five different assimilation

::::::
forecast

:
simulations with 5

::
five

:
different initial total

masses (Tab. 1) over 100
:::::::::
assimilation

:
iterations (top) and 2000 iterations (bottom). The reference

::::
total mass

::::::
evolution

::
of
:::

the
::::::::

reference

::::::::
simulation is indicated in

:
by

::
a solid

:::
line.

µe FTM / Mref RMSEf RMSE∅

0.25 0.833 4.626 8.661

0.5 0.818 4.660 6.467

1 0.820 4.656 4.675

2 0.822 4.652 12.944

5 0.836 4.619 45.714
Table 1. Final Total Masses

::::
Mass

:::::
(FTM)

::::::
relative

::
to

:::::
Mref and Concentration Field

::
the

::::::::::
concentration

::::
field RMSE for 5 different assimilation

::::::
forecast simulations with 5 different initial total masses µe. RMSEf and RMSE∅ are the Concentration Field

::::::::::
concentration

:::
field

:
RMSE at

the end of simulations, with and without assimilating
:::::::::
assimilation

::
of

::::::::::
observations.
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Figure 5. Evolution of the percent error
:::
field between the reference concentration field and the forecast concentration field,

:
in
:::::::

percent,

for µe = 2. At each timestep, the percent error field is computed and its
::
the

:
distribution

:
of
:::

the
:::::::

absolute
:::::
errors

::
in

::::
each

::::
cell,

::
in

::::::
percent

:
of
::::

the
:::
cell

:::::::
reference

::::::::::::
concentration, is then depicted using

:
in
:

the boxplot method from the seaborn library (https://seaborn
:::
box

::::
plots.

pydata.org/generated/seaborn.boxplot.html). Dots outside whiskers represent outliers and the green triangle is the mean.

σrel FTM / Mref RMSEf RMSE∅

0.5 % 0.895 4.546 12.944

1.0% 0.822 4.652 12.944

2.5 % 0.728 4.981 12.944

10 % 0.611 5.640 12.944
Table 2. Parameters and metrics for assimilation simulations with different values of σrel, with µe = 2. FTM is the Final Total Mass,

RMSEf and RMSE∅ are the Concentration Field RMSE at the end of simulations, with and without assimilating.

(figure 5). We observe a decrease in the mean absolute
:::::::::
percentage error and a decrease in absolute

:::::::::
percentage errors’ standard

deviation. We also observe that this distribution does not contain overly large values.

We also compute the concentration field Root Mean Square Error RMSEf at the end of the simulation after assimilating,

and RMSE∅ at the end of a simulation with no assimilation. Values in Table 1 indicate a clear improvement of the RMSE when

the initial
::::
total mass was erroneous and a stable one compared to no assimilation when the initial

::::
total mass was correct.210

Overall, this points to an improvement in the forecast concentration field over time, thanks to data assimilation.

Finally, in order to assess the method accuracy depending on observation errors, we set µe = 2 and run simulations with

different values of σrel. FTM and RMSE are then computed and presented in Table 2.

11



Figure 6. Flow fields at t= 2.5s for two double-gyre simulations with (a) ε= 0.1 and (b) ε= 0.5

We find that decreasing σrel increase the final forecast mass
::::::::
increases

:::
the

::::
final

::::
total

::::
mass

::
of
:::
the

:::::::
forecast, getting it closer to

1 while the RMSE decreases. This demonstrates that the forecast bias can be reduced by decreasing the observation error, as215

one would usually expect of a data assimilation method.

4.2 Impact of physical model errors

In this second experiment, we change the parameters used to generate the currents of the reference simulation double gyre. For

example, the impact of a modification of ε on the generated flow field is illustrated in Figure 6. By assimilating observations

from reference situations with different double-gyre parameters, we can observe the effects of having an erroneous physical220

dispersion model when assimilating data.

We initiate the forecast with an erroneous initial
::::
total mass of 2Mref and expect that the best total mass predictions will

arise from assimilation simulations with the closest flow field.

The forecast simulation is generated using εref = 0.25, Aref = 0.1 and ωref = 2π/10.

We then generate different reference simulations with different values of A and ε, and try assimilating observations sampled225

from each of them into the forecast.

We find that data assimilation remains effective and that simulations run with values of ε and A closer to εref and Aref lead

to better estimations of the total mass and concentration field after some time as one might expect (Figure 7 and Table 3).

This result illustrates that the assimilation method can be robust to unknown model errors.

5
::::::::::
Application

::
to

:::
the

::::::
Great

::::::
Pacific

::::::::
Garbage

:::::
Patch230

::
In

:::
this

:::::::
section,

:::
we

::::::
present

::
an

::::::::::
application

::
to

:::::::::
real-world

:::::
global

:::::::::
dispersion

:::::::
models.

::
As

::::::
before,

:::
we

::::::
sample

:::::::::::
observations

::::
from

::::
one

::::::::
simulation

::::
and

::::::::
assimilate

:::::
them

:::
into

:::::::
another

::
in

:::::
order

::
to

:::::
mimic

:::
the

::::::::::
assimilation

:::
of

::::::::::
observations

::::
that

:::::
could

::
be

::::::::
collected

::::
daily

:::
by

:
a
::::
pair

::
of

::::::::
moorings

::::::::
deployed

::
in

:::
the

:::
real

::::::
Ocean.

:::
We

::::
just

:::
use

::
an

::::::::
estimate

::
of

:::
real

:::::
ocean

:::::::
currents

::
in
:::::
place

::
of

:::
the

:::::::::
simplified

::::::
double

::::
gyre

::::::
defined

::
in

:::::::
equation

::
9.
:
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A ε FTM / Mref RMSEf RMSE∅

0.1 0.25 0.822 4.652 12.944

0.105 0.25 0.810 4.871 13.037

0.11 0.25 0.752 5.249 13.204

0.125 0.25 0.744 5.658 13.455

0.1175 0.25 0.733 5.718 13.444

0.1 0.25 0.822 4.652 12.944

0.1 0.3 0.781 5.507 13.293

0.1 0.5 0.770 5.170 13.402

0.1 1.0 0.738 5.897 13.789

0.1 0.0 0.276 29.241 30.856
Table 3. Parameters and metrics for simulations with different values of A and ε for the reference simulation. FTM is the Final Total Mass,

RMSEf and RMSE∅ are the Concentration Field RMSE at the end of simulations, with and without assimilating.

:::
We

:::::::
generate

:::
two

::::::
global

:::::::::
dispersion

::::::::::
simulations

::::
with

:::
the

:::::::::
Lagrangian

::::::::::
Dispersion

:::::
Model

:::::::::
presented

::
by

::::::::::::::::::
Lebreton et al. (2012)

:
.235

::
In

::::
both

:::::
cases,

:::
the

:::::::::
circulation

:::::
model

::::
uses

::::::
output

::::
from

:::
the

:::::::
HYbrid

:::::::::
Coordinate

::::::
Ocean

:::::
Model

::::
(see

:::::::::::
Bleck (2002)

:
),
::::::::
available

:::::
every

:
6
:::::
hours

::
at

::::
0.08

:::::::
degrees.

::::
This

:::::::
estimate

::::::::
includes

::::::
Ekman

::::::::
transport

:::
and

::::
their

:::::::::::
convergence,

::
as

::::
well

:::
as

::::::::
mesoscale

::::::
eddies.

::::
The

::::
first

::::::::
simulation

::::
has

:::::::
particles

::::::
seeded

:::::
along

:::
the

:::::
coasts

:::
of

:::
192

::::::::
countries

:::::::::
depending

:::
on

:::::::
reported

:::::::
garbage

::::
input

:::::::::
estimates.

::::
The

::::::
second

::::::::
simulation

::::
has

:::::::
particles

::::::
seeded

::
at

:::::
rivers

::::::
mouths

:::::
only,

:::::
based

::
on

::::::::
estimates

::
of

:::::
their

::::::
plastics

:::::::
outflow.

:::::
Both

::::::::
generation

:::::::
models

:::
are

::::::::
described

::
in

:::
the

::::::::::::
supplementary

::::::::
materials

::
of

::::::::::::::::::
Lebreton et al. (2018).

::
A
::::::
model

::::::
spin-up

::::
was

::::
done

:::::
from

::::
1993

::
to

:::
the

::::
end

::
of

:::::
2011.240

:::
We

:::::::
initialize

::::::
plastic

:::::::
particles

:::::::
masses

::::::::
generated

::
in

:::
the

:::::::
coastal

::::::
seeded

:::::
model

:::::::::
depending

:::
on

::::
their

::::::
release

:::::
year.

::
If

:
x
::::

the
::::
time

::::
spent

:::
(in

:::::::
fraction

::
of

:::::
years)

:::::
since

:::
the

::::::::
beginning

::
of

:::
the

:::::::::
simulation,

::::
then

:::::::::::::::::::::::::::
wp = 1 +x+ 1

2π sin(π(2x+ 1))
::
is

::
the

:::::
mass

::
of

::::::::
particles,

::
in

::::::
tonnes,

::::::
seeded

::
at

::::
time

:::
x.

::::
This

:::::::
formula

:::::::::
increments

:::::::
particle

::::::
masses

:::
by

:
1
::::::

tonne
::::
each

::::
new

::::::
release

::::
year,

:::::
with

:::::
some

:::::::
periodic

:::::::::
variability.

:::
The

::::::::
particles

::::::
masses

::
in

:::
the

:::::::::::
rivers-seeded

:::::::::
simulation

:::
are

:::::::::
initialized

::
to

::
1
:::::
tonne

:::::::::
regardless

::
of

::::
their

::::::
release

:::::
date.

:::
By

:::::
doing

::
so,

:::
we

::::::
mimic

:
a
::::::::
situation

:::::
where

:::
we

:::::::::::
underestimate

:::
the

::::::
yearly

:::::::
increase

::
of

:::::::
plastics

::::
mass

:::::
input

:::
into

:::
the

::::::
ocean.245

:::
The

:::::::
gridded

:::::::
domain

:::
has

:
a
:::::::::

resolution
::
of

::::
0.5

:::::::
degrees,

::::
with

:::
80

::
by

:::
44

::::::
points,

:::::
going

:::::
from

::::
165°

:::
W

::
to

:::::
125°

::
W

::::
and

::::
from

::::
23°

:
N
:::

to
:::
45°

:::
N.

::::::::::
Throughout

:::::
2012,

:::
we

::::::
sample

::::
two

:::::::::::
observations

:::
per

:::
day

::
at
::::::::

positions
::::::

152.5°
:::
W,

::::
29°

::
N

:::
and

:::::
140°

:::
W,

:::
35°

::
N

:::::
from

::
the

:::::::::::::
coastal-seeded

::::::::
dispersion

:::::::::
simulation

::::
and

::::::::
assimilate

:::::
them

::
in

::
the

::::::::::::
rivers-seeded

::::::::
dispersion

::::::
model.

:::
We

:::
use

::::::::
Ne = 10,

::::::::
σe = 50,

::::::::::
Np = 25000,

::::::::
σ0 = 0.1

:::
and

::::::::::
σrel = 1%.

:::
Our

:::::::
method

::
is

:::
able

::
to
:::::::

predict
:::
the

::::
total

::::
mass

::
of

:::::::
floating

:::::::
plastics

::::
with

:
a
::::
17%

:::::
error,

::::
and

::
to

:::::
divide

:::
by

:
4
:::
the

::::::::::::
concentration

::::
field250

:::::
RMSE

::::::
(figure

:::
8).

::::
The

:::::::::::
computations

::::
take

:::::
about

::
an

::::
hour

::
to

:::
run

:::
on

:
a
::::::::
standard

::::::
laptop.

:::
The

:::::::
updates

::
to

:::
the

:::::::::::
concentration

::::
field

:::
are

:::::::::
presented

::
in

:::::
figure

::
9,

:::::
which

::::::
shows

::::
that,

::
as

::::::::
expected,

:::
the

::::::::::
assimilated

:::::::
forecast

:::
has

::::::::
increased

::::::::::::
concentrations.

:

::::::
Further

:::::::::::::
experimentation

::::
will

:::
be

:::::::
required

::
to

:::::
assess

:::
the

:::::::
benefits

::
of

:::::
using

::::
this

::::::
method

::
in

:::::::::
real-world

:::
use

::::::
cases,

::::
with

:::
real

:::::
data.

::::::::
However,

::::
these

::::::
results

:::::::
confirm

:::
the

:::::::
potential

::::
skill

::
of

:::
our

:::::::
method,

:::::
even

::
in

:::
the

:::::::
presence

::
of

::::::
sizable

::::::
model

:::::
error.255
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Figure 7. Evolution of the total forecast
:::::
plastics

:
mass

:
in

:::
the

::::::
forecast

::::::::
simulation for 5 different simulations

:::
runs

:
with varying values of double

gyre parameters A and ε, along with the reference
::::
total

:::::
plastics

:
mass they are to predict

:
in
:::
the

:::::::
reference

:::::::::
simulation.

6 Discussions and perspectives

6.1 Towards an application to real-world data

In this proof-of-concept paper, we placed ourselves in a controlled environment
:
to

::::::
assess

:::
the

:::::::
efficacy

::
of

:::
the

:::::::
method. In the

future, our goal is
::::
will

::
be to eventually apply the method to real data by replacing the simulated reference situation observations

with real-world observations, and the previous results can help in understanding what might happen in assimilating real-world260

data.
::::
The

:::
fact

::::
that

::::::::
replacing

:::
the

:::::::
analytic

:::::::::
circulation

::::
field

:::
by

:
a
:::::::::
real-world

:::
one

:::
(in

:::::::
section

::
5)

:::
did

:::
not

:::::::
prevent

:::
the

::::::
method

:::::
from

::::::::
improving

:::
the

:::::::
forecast

::
is

::::::
viewed

::
as

:::
an

::::::::::
encouraging

::::
first

:::
step

::
in
::::
that

::::::::
direction.

:

In figures 7 (a) and (b) we observed that the more accurate the underlying dispersion model is, the more accurate the

assimilation result is. For our method to be applied successfully to a real global plastic
::::::
plastics assessment model, its dispersion

prediction would have to be accurate enough.
:::::::
Ongoing

::::
work

::::::
which

::
is

::::::
focused

:::
on

:::::::::
identifying

::::::
model

::::
error

:::::::
sources

:::
and

:::::::
refining265
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Figure 8.
:::
Top

:
:
:::::::
Evolution

::
of
::::
total

::::::
plastics

::::
mass

::
in

::
the

::::::
domain

::::::
through

::::
2012,

:::
for

:::
the

:::::::
reference

::::::::
simulation

:::
and

::
the

::::::
forecast

:::::::::
simulation.

::::::
Bottom

:
:
:::::::
Evolution

::
of

:::
the

::::::::::
concentration

::::
field

:::::
RMSE

::
in

::
the

::::::::::
assimilation

:::::
domain

::::::
through

::::
year

::::
2012.

Figure 9.
::::::::::
Concentration

::::
field

::::::
updates

::
at

:::
the

:::
end

::
of
:::

the
::::::::::

assimilation
:::::
cycle,

:::
with

:::
the

::::
two

:::::::::
observation

:::::::
locations

::
in

::::
blue.

::::
This

::::
field

::
is

:::
the

:::::::
difference

:::::::
between

::
the

::::::
forecast

:::::::::::
concentration

:::
field

::
at
:::
the

:::
end

::
of

::
the

::::
year

::::
2012

::::
with

:::::::::
assimilation,

:::
and

:::
the

::::
same

::::::
without

::::::::::
assimilation.
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::::::::
statistical

:::::
priors

::::::
should

::::::
benefit

:::
the

:::::::
planned

::::::::::
application

::
to

::::
real

::::
data

::::
(e.g.

:::::::::::::::::::::
Maximenko et al. (2012),

::::::::::::::::::::
van Sebille et al. (2020)

:
,

::::::::::::::::
Meijer et al. (2021)

:
).

Conveniently, we observed that the forecast total mass gets higher when the dispersion model is more accurate, thus acting,

in a way, like a score. As a result, we might discriminate between dispersion models based on this method’s output by selecting

the ones that output the highest total mass.270

6.2 Future Developments

Amongst the potential applications of the presented method, one might highlight the evaluation and design of real observational

strategies. Here we considered one hypothetical, albeit plausible, scenario which might represent the deployment of a few

relatively accurate moorings. In future studies it would be interesting to investigate how data coverage in space and time

may affect forecast skill in more detail, for example, or use this data assimilation system as a benchmark for proposed field275

campaigns. Several directions to further develop the method and make it more accurate also seem worth considering, as outlined

below.

6.2.1 Improving the filter

Throughout the last two decades, the Ensemble Kalman Filter has been extensively developed and improved, with numerous

variants published in the scientific literature. Using different ensemble sampling strategies or a square-root algorithm was280

described as a way to improve accuracy in Evensen (2004). Other solutions include inflating the ensemble before assimilating

(see Anderson (2007)), resampling the ensemble, or using a method to assimilate observations locally by adding a Schur

product with a so-called correlation matrix in the computation of the Kalman gain in equation 3 (see Houtekamer and Mitchell

(2002)). Assimilating locally around observation locations could also have the advantage of further improving the geography

of the concentration field, which would translate in reduced values of RMSEf .285

6.2.2 Decoupling the ensemble members particles positions

The method presented here uses the same dispersion simulation
:
as

::
a

::::
base for all the ensemble members . While this approach

allows fast computation
:::::::
particles

::::::::::
trajectories.

:::
In

:::
all

::::::::
members,

:::
the

::::::::
particles

::::::::
positions

:::::::
through

::::
time

::::
are

:::
the

:::::
same,

:::
the

:::::
only

:::::::
variables

::::
that

::::
differ

:::
are

:::
the

:::::::
particles

:::::::
masses.

::
In

:::::::::
particular,

:::
the

:::::::
particles

:::::::::
trajectories

:::
are

:::
the

::::
same

::
in
:::::
each

:::::::
member.

::::
This

::::::::
approach

::::::
reduces

::::::
greatly

:::
the

::::::
storage

::::
cost

:::
and

::::::::
increases

:::::::::::
computation

:::::
speed.

:
290

:::::::
However, it significantly lowers the diversity of the ensemble.

:
,
::
so

::
in

:::::
future

:::::
work

:::
one

::::::
might

::::
want

::
to

::::::::
decouple

:::
the

::::::::
ensemble

:::::::
members

::::::::::
trajectories,

:::
i.e

::::
have

:::
for

:::::
each

:::::::
member

:
a
::::::
unique

:::
set

:::
of

::::::::::
trajectories. We anticipate that extending the method to use

an ensemble with diverse particle simulations should help the forecast converge towards a concentration field closer to the

reference one. We regard this possibility as a leading candidate to make the method even more accurate.
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6.2.3 Studying other projection operators295

In section 2.2.3, we presented a simple way to update particles weights after assimilating density observations through the

equation 6. Different possibilities of performing this step have been thought of, some of which we think may be worth investi-

gating further. Another simple approach would be to apply an additive correction, instead of the multiplicative correction used

in equation 6:

∀p ∈∆i,j ,(w
a)p = (wf )p +

((xa)i,j − (xf )i,j)

card(∆i,j)
(13)300

This approach was not favored in this first study, as it seemed more likely to generate negative weights more often.

Another alternative would be to generate new particles so that their weights sum up to the updated density, possibly fewer

or more particles. This could be more technically challenging to implement and require implementing the assimilation scheme

directly inside the dispersion model loop. However, it could also have the advantage of conveniently increasing resolution

where there are high plastic
::::::
plastics concentrations.305

7 Conclusions

This paper has presented
:::::::
presents a simple yet readily effective method to assimilate concentration observation

::::::::::
observations

::
of

::::::
plastics

:::::::::::
concentration

:
data into a Lagrangian dispersion model, and its first implementation called the Ocean Plastic Assimilator

(v0.1
::
.2). We applied

::::
apply it in a controlled environment to assess its efficacy. We studied

::::
study

:
the impact of observation errors

on the prediction accuracy and changed some of the dispersion parameters (A and ε) to evaluate the impacts of model errors.310

::::::
Finally,

:::
we

:::::
apply

:::
the

::::::
method

::
to

::
a
::::
more

:::::::
realistic

::::
case

::::
with

::
a

::::::::
real-world

:::::::::
circulation

:::::
field

:::
and

::::
find

:::
that

:::
the

::::::
method

::::
still

::::::::
performs

::::
well.

:
The encouraging results indicate that it is an excellent candidate to perform data assimilation with real-world data over

ocean gyres.

Thus, it
::
the

::::::
Ocean

:::::
Plastic

::::::::::
Assimilator

:
will be further developed at The Ocean Cleanup to assimilate plastic

::::::
plastics concen-

tration data from the oceans and improve our cleanup operations in oceanic gyres. This method will undergo more research to315

develop its features and assess its efficacy on
::::
when

:::::
using

:
real-world observations. We expect it to be used to assess in real-time

the cleanup operations of The Ocean Cleanup.

The simplicity of the developed data assimilation method means that it should be easy to generalize to various other popular

open-source lagrangian frameworks such as OceanParcels (Delandmeter and van Sebille (2019)) or MITgcm (Campin et al.

(2020)). Porting the data assimilation procedure to the Julia language is also being envisioned whereby one could leverage the320

newly developed IndividualDisplacements.jl package to carry out Lagrangian simulation of plastic concentrations (?
::::::
plastics

::::::::::::
concentrations

::::::::::::
(Forget (2021)).
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