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Abstract.

Physical processes within geoscientific models are sometimes described by simplified schemes known as parameterisations.

The values of the parameters within these schemes can be poorly constrained by theory or observation. Uncertainty in the

parameter values translates into uncertainty in the outputs of the models. Proper quantification of the uncertainty in model pre-

dictions therefore requires a systematic approach for sampling parameter space. In this study, we develop a simple and efficient5

approach to identify regions of multi-dimensional parameter space that are consistent with observations. Using the Parallel Ice

Sheet Model to simulate the present-day state of the Antarctic Ice Sheet, we find that co-dependencies between parameters pre-

clude the
:::
any

::::::
simple identification of a single optimal set of parameter values. Approaches such as large ensemble modelling

are therefore required in order to generate model predictions that incorporate proper quantification of the uncertainty arising

from the parameterisation of physical processes.10

1 Introduction

The aim of any geoscientific model is typically to replicate the state and behaviour of real-world systems as accurately as

possible, or at least with sufficient accuracy to generate useful insights into the problem being studied. This requires the

model to incorporate a sufficiently accurate description of the real world, as well as sufficiently accurate data to provide

boundary conditions and an initial state. However, geoscientific modelling inevitably involves making compromises in model15

design and implementation. Observational data
:
,
:::::
which

::
is
::::::::
typically

::::
used

::
to

:::::::
provide

::::
both

::::::
initial

:::
and

::::::::
boundary

:::::::::
conditions

::::
and

::
to

:::::::
evaluate

:::
the

:::::::
models, can also be limited in accuracy and spatial coverage. Model error can therefore result from a number

of sources, including missing or incomplete physics, missing or incomplete boundary conditions, and missing or incomplete

initial conditions. This study focuses upon the first of these three potential sources of error, aiming to explore the contribution to

model prediction error that arises from the simplifications made in the representation of physical processes within geoscientific20

models.
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Either through choice or through necessity, physical processes are sometimes described by simplified schemes known as

parameterisations (e.g. Hourdin et al., 2017). The values of the parameters within these schemes are often poorly constrained

by theory or observation. Uncertainty in the parameter values translates into uncertainty in the outputs of the models. This

uncertainty must be properly quantified in order to properly quantify the uncertainty in model predictions.25

There are a number of reasons why parameterisations are required, or why a decision might be made to use them. These

reasons include:

– Lack of physical understanding. If a process is insufficiently well understood to enable a complete physical description,

then it will need to be described in simplified terms.

– Computational constraints. Models can be computationally expensive, in terms of the number of processors required30

to run the model, the amount of memory required to run the model, and also in terms of the amount of time required

to complete a simulation. Computational costs are increased if the user wishes to employ large ensemble modelling

approaches (for example, to explore parameter space or to assess sensitivity to initial conditions). Even if a process is

fully understood from a physical perspective, simplified parameterisations might therefore be required simply for reasons

of computational efficiency
::::::::
feasibility.35

– Design choice. An intentional decision might be made to employ a parameterisation for the purposes of a process study.

The use of parameterisations rests upon a number of prior assumptions. These assumptions are usually made implicitly,

rather than being stated explicitly. Key assumptions include:

– That the underlying process can be adequately described by a parameterisation. The underlying model must be capable

of replicating the real world, at least to a desired degree of accuracy. A parameterisation must therefore be capable of40

adequately describing the process that it seeks to replicate.

– That optimal (true) parameter values exist. Optimal parameter values can only exist if the underlying model is capable

of adequately replicating the real world, not just for one particular state but for the full spectrum of physical states that

the model is designed to explore.

– That these optimal (true) parameter values can be located. Even if optimal parameter values do exist, a means must45

exist to actually find them. Parameter values can have a direct theoretical or observational basis; otherwise sufficient

observational data must exist, both to drive the model and to allow the model simulations to be evaluated. The model

must also have a stable reference state and it must be possible to locate this; one category of model for which this might

not be true is coupled atmosphere-ocean general circulation models, which are prone to drift (e.g. Sen Gupta et al., 2012)

and can potentially exhibit multiple stable states (e.g. Hawkins et al., 2011). Computational constraints might also be a50

factor: it must be feasible to run a sufficiently large number of simulations, and to run simulations of a sufficiently long

duration, to allow for adequate exploration of parameter space.
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Thus, even if optimal parameter values do exist, a number of factors can prevent them from being meaningfully located.

These factors include the availability of computational resources, which might constrain ensemble sizes and/or render it infea-

sible to integrate the model to a stable, equilibrium state; and the lack of sufficient, or sufficiently reliable, observational data to55

drive and evaluate the model. Interaction with other, possibly incomplete, parameterisations, or with finite model resolution and

numerics, might also lead to the determination of incorrect parameter values. This might arise through cancellation of errors or

through other more general error propagation mechanisms, such as the addition of errors or the selection of
::::::::
alternative

:
branches

through the model code. Finally, there are human constraints too: there may simply be too many interacting parameters for it

to be feasible to perform any comprehensive parameter optimisation exercise within a realistic timeframe.60

In practice, because of the time and effort required for parameter optimisation, the typical approach is simply to rely on prior

published values. This can be the case even if these values were derived using a different version of the model or a different

model configuration (for example, a different model resolution). This approach has the potential to result in inappropriate pa-

rameter choices, with the potential to introduce bias into model experiments. Using fixed parameter values
:
in
::::::
model

:::::::::
ensembles

will also mean that any uncertainties derived in the model predictions will not incorporate the contribution arising from the65

uncertainty in parameter values. This neglection of parameter uncertainty will result in an underestimation of the uncertainty

in the model predictions.

Despite the challenges involved, there is an increasing emphasis on quantifying uncertainty in geoscientific modelling. This

is apparent, for example, within the reports of the Intergovernmental Panel on Climate Change (e.g. Stocker et al., 2013). We

therefore contend that, despite the challenges involved, parameter optimisation and sampling of parameter uncertainty should70

be a routine part of the process of geoscientific modelling. These efforts should also be documented as part of the process of

publishing scientific results (e.g. Pittard, 2016).

The process of parameter optimisation is commonly referred to as “tuning” (e.g. Hourdin et al., 2017). Broadly speaking,

the process of tuning a model typically involves integrating it to an equilibrium state under given boundary conditions (which

are usually derived from observations, if suitable observations exist). The simulations are then evaluated against observational75

datasets, with the degree of model disagreement being quantified using a pre-defined cost function. Given knowledge of the

evolution of a system over time, for example if information is available on past climate states, this process can be generalised to

evaluate the ability of a model to evaluate
:::::::
simulate multiple different states (e.g. Forest et al., 2008; DeConto and Pollard, 2016) .

::::::::::::::::::::
(e.g. Forest et al., 2008) .

::
A

::::::
model

::
of

:::
the

::::::::
Antarctic

:::
Ice

::::::
Sheet,

:::
for

:::::::
example,

::::::
might

::
be

::::::::
evaluated

:::
for

:::
its

:::::
ability

:::
to

:::::::
simulate

::::
past

:::::
warm

::
or

::::
cold

:::::::
intervals

::::::::::::::::::::::::::::
(e.g. DeConto and Pollard, 2016) .

:
80

The techniques used to optimise geoscientific models can be grouped into four broad categories:

– Trial and error. This is the simplest technique and consists simply of running the model forwards multiple times, with

different combinations of parameter values. The parameters can be varied separately (single-parameter optimisation)

or simultaneously (multiple-parameter optimisation). Single-parameter approaches are simpler and more common (e.g.

Pittard, 2016). However, if interactions exist between the values of different parameters, then only multiple-parameter ap-85

proaches are capable of finding the optimal state of the model. Nonetheless, multiple-parameter optimisation can require

large ensemble sizes to be effective, particularly if a large number of parameters are being optimised (e.g. Järvinen et al.,
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2010; Gladstone et al., 2012; Pollard et al., 2016). The efficacy of multiple-parameter approaches is therefore potentially

limited by the computational resources available. Solutions include the application of adaptive sampling algorithms (e.g.

Solonen et al., 2012),
::::::::::::
particle-based

:::::::::
approaches

:::::::::::::::::::
(e.g. Lee et al., 2020) , or the construction of an emulator or metamodel90

(simple statistical models that seek to describe the behaviour of vastly more complex computational models e.g. O’Hagan, 2006; Neelin et al., 2010; Bellprat et al., 2012; Lee et al., 2013; McNeall et al., 2016; Williamson et al., 2017; Edwards et al., 2019)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(simple statistical models that seek to describe the behaviour of vastly more complex computational models e.g. O’Hagan, 2006; Neelin et al., 2010; Bellprat et al., 2012; Lee et al., 2013; Chang et al., 2014; McNeall et al., 2016; Williamson et al., 2017; Edwards et al., 2019; Gilford et al., 2020) .

– Bayesian techniques. These are statistical techniques that seek to incorporate prior knowledge on plausible parameter

values (e.g. Jackson et al., 2004; Rougier, 2007; Forest et al., 2008; Sexton et al., 2012). The application of Bayesian tech-

niques requires reformulation of the underlying models, which may be difficult for all but the simplest forward models.

For models with many parameters and processes, complete Bayesian models do not exist. This requires approximations to95

be made, which may undermine the benefits of Bayesian approaches
:::::::::
knowledge

::
of

:::
the

::::
prior

::::::::::
distributions

::
of

:::
the

:::::::::
parameter

::::::
values,

:::::
which

::
is

:::::::::
frequently

:::::::
unknown

::::
and

:::::
which

::::
may

::::::
require

::
a
::::::::
relatively

::::
large

:::::::
number

::
of

::::::::
ensemble

::::::::::
simulations

::::
even

:::
for

:::::::
relatively

::::::::::::::
low-dimensional

:::::::::
parameter

:::::
space

:::::::::::::::::
(Guillas et al., 2009) .

– Inversion. Inversion requires the derivative of the model to each key parameter, which is obtained either through re-

formulation of the model (a so-called adjoint model) or via an approximation of the derivative using methods such as100

finite differencing (e.g. Errico, 1997; Forget et al., 2015; Lyu et al., 2018). Inversion has the advantage that it enables

much larger parameter spaces to be explored. However, the resulting inversions may only be applicable for one very

specific model state, and may therefore under-predict the uncertainty in model projections. Examples of the application

of inversion using ice sheet models include PISM (van Pelt et al., 2012; Habermann et al., 2013), ISSM (Larour et al.,

2012) and SICOPOLIS (Heimbach and Bugnion, 2009).105

– Machine learning. Machine learning techniques aim to enumerate unspecified relationships between input and output

datasets, without requiring any understanding of the underlying physical processes (e.g. DeVries et al., 2017; Kim and

Nakata, 2018). This allows for the discovery and utilisation of previously-unknown relationships, but does raise questions

regarding the applicability for states that lie outside the range spanned by the training datasets.

In this study, because of the potential limitations associated with the alternatives, we adopt the first of these four approaches110

(trial and error). We attempt to reduce the computational cost of multi-parameter optimisation by developing a simple and

efficient iterative approach to identify regions of multi-dimensional parameter space that are consistent with observations. We

then demonstrate the application of this technique by using the Parallel Ice Sheet Model to simulate the present-day state of

the Antarctic Ice Sheet. The methods are described in Section 2, while the results are presented and discussed in Section 3.

Finally, conclusions are presented in Section 4.115

2 Methods

2.1 Optimisation process

The iterative parameter optimisation process that we develop in this study consists of five key steps:
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1. Identify the parameters to be optimised.

2. Select the initial ranges for each parameter.120

3. Construct and run a perturbed-physics ensemble.

4. Evaluate each member of the ensemble against observations and determine which regions of parameter space, if any, can

be rejected.

5. Repeat Steps 3 and 4 until the process has converged i.e. until no further changes are made to the ranges of any of the

parameters.125

Steps 1 and 2 will be informed by existing knowledge of the model and of the system being simulated. This might include

theory, observations, prior published work and even preliminary modelling experiments that involve exploring the behaviour

of individual parameters.

To illustrate the application of this process using a real-world geoscientific model, we will now present a demonstration

using the Parallel Ice Sheet Model to simulate the present-day state of the Antarctic Ice Sheet (AIS).130

2.2 Modelling framework

In this study, we use version 0.7.3 of the Parallel Ice Sheet Model (PISM), a highly-parallel, open-source model that is suit-

able for large ensemble modelling and the simulation of large-scale marine ice sheets. Computational efficiency is achieved

by employing a hybrid stress balance model to calculate ice velocities. PISM is described, and evaluated for Antarctica, by

Winkelmann et al. (2011), Martin et al. (2011) and Albrecht et al. (2015).135

The model is written in C++ with MPI used for distributed-memory parallelism. The Portable, Extensible Toolkit for Scien-

tific Computation (PETSc; Balay et al., 1997, 2015) is used to solve the model equations. Timestepping is explicit and adaptive.

PISM has more than 200 user-configurable parameters, with the values set via command-line options (Albrecht et al., 2015).

The following is an outline summary of the key model physics. Specific aspects that form the target of the parameter

optimisation are discussed in further detail later in this section. This description also reflects the specific configuration of the140

model used in this study, and may not therefore accurately describe the configurations used in other studies.

Grid: The model is configured to simulate the present-day state of the entire AIS, with a horizontal resolution of 15×15 km

and 101 quadratically-spaced vertical levels.

Ice dynamics and thermodynamics: The two prognostic model variables are ice temperature and ice thickness. A hybrid

approach is used to calculate the stress balance within the ice sheet, with the ice velocity being calculated by the superposition145

of two shallow stress balance approximations (Winkelmann et al., 2011). The Shallow Ice Approximation (SIA) describes

planar flow by shear parallel to the surface, while the Shallow Shelf Approximation (SSA) describes membrane-type flow of

floating ice or grounded ice sliding over a weak base (MacAyeal, 1989; Weis et al., 1999; Schoof, 2006). The SIA and SSA

are both shallow approximations based on the assumption of a small thickness-to-width ratio for the ice sheet, and are more

computationally efficient than higher-order full-Stokes models. The flow law, which describes the relationship between the150
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applied stress and the resulting deformation or strain rate, is described by the isotropic, polythermal scheme of Paterson and

Budd (1982), Lliboutry and Duval (1985) and Aschwanden et al. (2012). An energy-conserving enthalpy-based model is used

to calculate the ice temperature (Aschwanden and Blatter, 2009; Aschwanden et al., 2012).

Subglacier: PISM assumes that the ice sheet rests on a layer of till (Clarke, 2005). A spatially- and temporally-variable

basal yield stress is determined by modelling a saturated subglacial till (Schoof, 2006; Bueler and Brown, 2009). The till155

friction angle is determined heuristically as a function of bed elevation, based on the hypothesis that till with a marine history

should be weaker than till without such a history (Winkelmann et al., 2011; Martin et al., 2011; Aschwanden et al., 2013). A

pseudo-plastic power law model is used to calculate the basal shear stress, and therefore to determine where sliding occurs. The

subglacial hydrology model calculates the effective thickness of the layer of liquid water in the till, which is used to compute

the effective pressure on the till, on a purely local basis (Tulaczyk et al., 2000; Bueler and Brown, 2009). No model of glacial160

isostatic adjustment is used in this study, as it is restricted to equilibrium simulations of the present-day state of the ice sheet.

Marine ice sheets: The lateral boundaries of the ice sheet are free to evolve (Winkelmann et al., 2011). Subgrid parameterisa-

tions are used to describe the positions of the ice shelf calving fronts (Albrecht et al., 2011) and the grounding lines (Gladstone

et al., 2010; Feldmann et al., 2014). Calving is described using the physically-based two-dimensional parameterisation of

Levermann et al. (2012).165

Boundary conditions: The topography follows Bedmap2 (Fretwell et al., 2013). Geothermal heat flow is taken from An et al.

(2015). Climatological air temperature and precipitation for the period 1979–2014 are taken from the RACMO2.3 regional

model (Van Wessem et al., 2014). The positive degree-day scheme of Calov and Greve (2005) is used to calculate the rate of

surface melt. Following Pollard and DeConto (2012), Golledge et al. (2015) and DeConto and Pollard (2016), an atmospheric

lapse rate correction of 8 K km−1 is used. The boundary-layer ocean model of Hellmer et al. (1998) and Holland and Jenkins170

(1999) is used to calculate the melt rate and temperature at the base of the floating ice shelves.

2.3 Steps 1: Parameter selection

Through reading prior published work and the model documentation, ten parameters are selected for optimisation on the basis

that they describe key physical processes and that their values are not well constrained by either theory or observations. Six

of the ten parameters relate to the description of basal sliding, which is highly parameterised and involves parameters that are175

particularly poorly constrained (Albrecht et al., 2015). Two parameters relate to the description of the internal stress balance

within the ice sheet, while the final two parameters relate to the description of calving. Table A1 provides the command-line

options used by PISM to specify the values of each parameter, as well as a brief description. For ease of readability, the

descriptive names provided in Table A1, rather than the names of the command-line options, will be used throughout this

manuscript.180

2.4 Step 2: Selection of initial ranges

The selection of initial parameter ranges is based on prior knowledge. PISM is distributed with a number of pre-configured

experiments (Albrecht et al., 2015), with the configuration that forms the basis of this study being the Sea-level Response to Ice
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Sheet Evolution experiment (SeaRISE; Bindschadler et al., 2013). The default parameter values specified for this experiment,

as well as the values employed in previous studies that have used PISM to model the AIS, are provided in Table 1. These185

previous studies have modelled either the entire AIS or individual sectors, and have used PISM to simulate the past, present

and future states of the ice sheet:

– Martin et al. (2011) simulate the present-day state of the AIS using a horizontal resolution of 19.98 km.

– Golledge et al. (2015) simulate the present and future states of the AIS using horizontal resolutions of 20 km and 10 km.

– Pittard (2016) simulates the present and future states of the Lambert-Amery glacial system using a horizontal resolu-190

tion of 5 km. Single-parameter perturbation experiments are used to select parameter values, with the ranges used for

optimisation, and the final values selected, shown in Table 1.

– Kingslake et al. (2018) simulate the evolution of the AIS over the past 205,000 years using a horizontal resolution of

15 km. An ensemble approach is used to sample uncertain parameters, with the ranges used for optimisation, and the

final reference state selected, shown in Table 1.195

Shallow ice enhancement factor

The shallow ice enhancement factor is a flow enhancement factor for the non-sliding Shallow Ice Approximation, which is

used to model grounded ice (Payne et al., 2000; Bueler et al., 2007). The factor sets the value of esia in Equation 1, where Dij

is the strain rate tensor,
::
F

::
is

::
the

::::::::
function

:::
that

::::::::
describes

:::
the

::::
flow

::::
law, σ′ij is the stress deviator tensor, T is the ice temperature,

ω is the liquid water fraction, P is the pressure, and σ2 = 1
2σ
′
ijσ
′
ij defines the second invariant σ of the stress deviator tensor200

(Albrecht et al., 2015).

Dij = esiaF (σ,T,ω,P )σ
′
ij (1)

Previous studies have used values of the shallow ice enhancement factor in the range 1.0–5.0 (Table 1). We therefore use

this range as the initial range in this study.

Shallow shelf enhancement factor205

The shallow shelf enhancement factor is a flow enhancement factor for the Shallow Shelf Approximation (Weis et al., 1999).

This approximation is used to model floating ice, and is also used by PISM to describe ice streams and the sliding of grounded

ice (Bueler and Brown, 2009). The enhancement factor sets the value of essa in Equation 2, where ν is an effective viscosity,

D2 = 1
2D
′
ijD
′
ij , and the other terms have the same meaning as in Equation 1 (Albrecht et al., 2015).

σ′ij = e
− 1

3
ssa 2ν(D,T,ω,P,d)Dij (2)210
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Most previous studies have used values of the shallow shelf enhancement factor in the range 0.4–0.8; however, Pittard (2016)

used values as large as 1.6 (Table 1). We use the full range 0.4–1.6 as the initial range in this study.

Exponent of basal resistance model

PISM uses a pseudo-plastic power law model to describe basal resistance (Albrecht et al., 2015). The exponent of the basal

resistance model sets the value of q in Equation 3, where τ b is the basal shear stress, τc is the yield stress, u is velocity, and215

uthreshold is a parameter with a fixed value of 100 m a−1. Sliding occurs when the shear stress reaches the yield value.

τ b =−τc
u

uqthreshold|u|1−q
(3)

Theoretically, the value of the exponent must lie in the range 0< q < 1. Previous studies have used values that span the

whole of this range. We therefore use the full range 0–1 as the initial range in this study.

Effective till pressure scaling factor220

The yield stress τc in Equation 3 is calculated as a function of a till friction angle φ and an effective till pressure Ntil (Albrecht

et al., 2015):

τc = (tanφ)Ntil (4)

The effective till pressure scaling factor sets the value of δ in Equation 5, where Po is the ice overburden pressure,Wtil is the

effective thickness of water in the till, and Wmax
til is the maximum amount of water in the till (Tulaczyk et al., 2000; Albrecht225

et al., 2015). The default values of e0 = 0.69 and Cc = 0.12 are based on laboratory experiments (Tulaczyk et al., 2000).

Ntil = δPo10
(e0/Cc)(1−Wtil/W

max
til ) (5)

We are only aware of one previous study that has varied the effective till pressure scaling factor parameter: Kingslake et al.

(2018) explored values in the range 0.02–0.05, with a reference value of 0.04. We use the range 0.01–0.05 as the initial range

in this study. This spans the published range of 0.02–0.05, but with a reduced lower bound of 0.01 chosen so that we sample230

values both above and below the default value in PISM of 0.02.

Calving rate scaling factor

PISM uses the calving scheme of Levermann et al. (2012). The calving rate scaling factor sets the value of K in Equation 6,

where c is the calving rate and ε̇+/ε̇− are the horizontal strain rates (Albrecht et al., 2015).

c=Kε̇+ε̇− (6)235
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The units of c,K and ε̇+/ε̇− are m s−1, m s and s−1 respectively. Levermann et al. (2012) find that values ofK & 1×109 m a

[& 3.2× 1016 m s] are required in order to maintain a stable grounding line, while a value of K ≈ 5× 109 m a [≈ 1.6× 1017

m s] is found to give the best agreement with observations. Previous studies have used values of the calving rate scaling factor

in the range 1015–1019 m s (Table 1). We therefore use this range as the initial range in this study.

Minimum thickness of floating ice shelves240

The calving scheme in PISM removes any ice at the calving front that is thinner than a specified minimum thickness (Albrecht

et al., 2015).

Previous studies have used values in the range 200–225 m. However, observations suggest a wider plausible range of 150–

250 m (Albrecht et al., 2015). We use this wider range as the initial range in this study.

Till friction angle parameters245

PISM calculates the till friction angle φ in Equation 4 as the function of four parameters (Albrecht et al., 2015):

φ(x,y) =


φmin, b(x,y)≤ bmin

φmin +(b(x,y)− bmin)M, bmin < b(x,y)< bmax

φmax, bmax ≤ b(x,y)

(7)

Here, φmin and φmax are the minimum and maximum till friction angles, bmin and bmax are the elevations of the minimum

and maximum till friction angles, b(x,y) is the bed elevation, and M = (φmax−φmin)/(bmax− bmin). By definition, φmin ≤
φmax and bmin ≤ bmax.250

Previous studies have used values for φmin and φmax in the ranges 1–15◦ and 20–40◦ respectively. For φmin, we use the

initial range 1–20◦ so that we include the full published range and sample values both above and below the default value in

PISM of 15◦. For φmax, we use the initial range 20–40◦. Although this means that we do not sample values larger than the

default value of 40◦, observations do not support values larger than this upper limit (Cuffey and Paterson, 2010).

Previous studies have used values for bmin and bmax in the ranges -1500 to -500 m and -500 to 500 m respectively. For bmin,255

we use the published range -1500 to -500 m as the initial range in this study. While this range excludes the default value in

PISM of -300 m, this is unavoidable given the constraint bmin ≤ bmax. For bmax, we use the initial range -500 to 1000 m. This

includes the full published range and samples values both above and below the default value of 700 m.

2.5 Step 3: Ensemble construction and integration

For each iteration a
::
A

:
100-member perturbed-physics ensemble is constructed.

:::::
Each

:::
of

:::
the

:::
ten

::::::::::
parameters

::
is
:::::::::

perturbed260

:::::::::::
independently, using a Latin hypercube approach (e.g. Helton and Davis, 2003) to sample the ranges of possible valuesin

each of the ten parameters. Latin hypercube sampling is employed here as, for a given ensemble size, it provides the most
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efficient representation of the variability spanned by the underlying parameter space.
::
In

:::
the

:::::::
absence

::
of

:::
any

::::::::::
information

:::
on

:::
the

:::::::::
distribution

::
of

:::::
prior

:::::::::::
probabilities,

:
a
:::::::
uniform

:::::::::
probability

::::::::::
distribution

::
is

::::
used

:::
for

::::
each

:::::::::
parameter.

The specific set of parameter values used is generated using the lhs function, which is part of the pyDOE package (https://265

pythonhosted.org/pyDOE/). Each member of the ensemble is integrated to equilibrium under present-day boundary conditions,

by employing the following four-stage spin-up procedure:

1. The model is run for one year in bootstrapping mode (Albrecht et al., 2015) to initialise model fields. The initial geometry

of the ice sheet is provided by Bedmap2 (Fretwell et al., 2013).

2. The model is run for 100 years, with basal sliding disabled, to smooth the surface of the ice sheet.270

3. The model is run for 250,000 years, with fixed geometry (basal sliding and mass conservation disabled), in order to

improve the enthalpy field.

4. Finally, the model is run for 100,000 years with full physics. This period is chosen to allow the simulated ice sheet to

come into equilibrium with the boundary conditions, and thus to lose the memory of its initial state.

Stages 1–3 are fast and typically account for only ∼10% of the total run time.275

For this study, PISM is run on a Huawei E9000 cluster with each ensemble member using 224 cores. The queueing system

for the cluster imposes a time limit of 48 hours for each job, which is deemed to be sufficient as simulations typically take

∼6–12 hours to complete. However, during each iteration, a small number of ensemble members can fail to complete. There

are two reasons for this:

– PISM uses an adaptive timestepping scheme controlled by both the maximum diffusivity and the solutions to the mass280

conservation and energy conservation equations (Bueler et al., 2007; Bueler and Brown, 2009; Albrecht et al., 2015). This

can result in large decreases in the timestep (and hence large increases in the computational time required to complete

a simulation) if numerical instabilities arise. The duration of the timestep depends upon model resolution, the geometry

of the ice sheet and the ice dynamics (and thus on the parameter choices). In a small number of cases involving extreme

parameter values, ensemble members can therefore fail to complete within the time limit of 48 hours.285

– Ensemble members can fail to complete the simulation because of numerical errors.

The total number of ensemble members to complete successfully for each iteration is shown in Table 2.

2.6 Step 4: Model evaluation

Each ensemble member is evaluated to determine whether the simulated state of the AIS is realistic. Two error metrics are

calculated, as follows:290

EA =
100

Aobs

∫ ∫
|Mmod−Mobs|dxdy (8)
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EV =
100

Vobs

∫ ∫
|Hmod−Hobs|dxdy (9)

EA measures the error in the two-dimensional geometry of the ice sheet, and therefore measures errors in the locations of

the grounding lines and
::::::
location

::
of

:::
the

:::
ice

:::::::
margin

::::::::
(including

:
the calving fronts of the floating ice shelves

:
). Mmod and Mobs

are masks, for the simulated and observed ice sheet respectively, and are set equal to 1 where ice is present and 0 where it is295

not. EA is normalised by the observed area of the ice sheet Aobs and is then multiplied by 100 to convert it to a percentage. EA

is equal to zero when the model is in perfect agreement with observations, with larger values representing increasing errors in

the two-dimensional geometry of the simulated ice sheet.
:::::::
Equation

::
8
::::
does

:::
not

:::::::::
distinguish

::::::::
between

::::::::
grounded

:::
and

:::::::
floating

:::
ice.

:

EV measures the error in the three-dimensional geometry of the ice sheet, and therefore measures errors in the simulated

ice thickness. Hmod and Hobs are the simulated and observed ice thickness, respectively, with EV being normalised by the300

observed volume of the ice sheet Vobs and then multiplied by 100 to convert it to a percentage. EV is equal to zero when

the model is in perfect agreement with observations, with larger values representing increasing errors in the three-dimensional

geometry of the simulated ice sheet.

To determine whether each individual ensemble member can be considered to be “realistic”, it is necessary to define critical

values of EA and EV . In the absence of any objective criterion that can be applied, the critical values are determined at each305

iteration of the parameter optimisation process by selecting the top tercile of ensemble members. Specifically, the critical value

Ecrit
A is determined by selecting the one-third of ensemble members with the smallest values of EA; similarly, the critical

value Ecrit
V is determined by selecting the one-third of ensemble members with the smallest values of EV . This allows the skill

metrics to evolve during the parameter optimisation process, guided by the potential skill of the model being optimised. The

values of Ecrit
A and Ecrit

V for each iteration are shown in Table 2.310

To determine whether part of the range for each parameter can be rejected, it is necessary to perform a statistical test. For

parameter X , let the range of values used to generate the ensemble be XA to XB . Let N members of the ensemble satisfy the

criteria EA ≤ Ecrit
A and EV ≤ Ecrit

V , and let the maximum value of X for these members be Xmax. Under the null hypothesis

that all values of X in the range XA to XB are equally plausible, the probability that all N members will have X ≤Xmax

simply through random chance is given by315

p=

(
Xmax−XA

XB −XA

)N

(10)

If the probability p is less than a pre-determined critical value pcrit, the null hypothesis can be rejected. In this case, XB is

replaced with Xmax for the next iteration.

Similarly, if the minimum value of X for these N ensemble members is Xmin, the probability that all N members will have

X ≥Xmin simply through random chance is given by320

p=

(
XB −Xmin

XB −XA

)N

(11)

11



If p is less than pcrit, the null hypothesis can be rejected and XA is replaced with Xmin for the next iteration..

The value of pcrit should be chosen carefully: if it is too large, there will be an excessive number of false positives and regions

of parameter space that are capable of generating skilful simulations will be rejected unnecessarily. However, if the value is

too small, the iterative optimisation process will not be useful at refining the ranges for each parameter. We suggest therefore325

that the value of pcrit should be chosen such that the expected number of false positives at each iteration is no greater than 0.5.

If n parameters are being optimised, then 2n significance tests will be performed at each iteration (one for the minimum value

of each parameter, and one for the maximum value). In this case, the value of pcrit is given by

pcrit = 1− 0.52n (12)

In this study n= 10 and Equation 12 therefore gives a value of pcrit = 3.41%.330

2.7 Step 5: Convergence

Table 2 shows the progression of the iterative parameter optimisation process. Convergence is achieved after five iterations,

during which the ranges for six
::
at

:::::
which

:::::
point

:::
the

::::::::
statistical

::::
tests

::::::::
described

::
by

:::::::::
Equations

::
10

::::
and

::
11

:::
do

:::
not

:::::
result

::
in

:
a
::::::::
rejection

::
of

:::
the

::::
null

:::::::::
hypothesis

:::
for

::::
any of the ten parametersare refined. The .

:::
No

:::::::
further

:::::::
changes

:::
are

::::::::
therefore

:::::
made

::
to

::::::
either

:::
the

::::::::
minimum

::
or

:::::::::
maximum

:::::
values

:::
for

::::
each

:::::::::
parameter.335

::::::
During

:::
the

:::::::::::
optimisation

:::::::
process,

:::
the

:
ranges for all four of the parameters used to determine the till friction angle re-

main unchanged.
:::::::
However,

:::
for

::::
the

::::
other

::::
six

::::::::::
parameters,

:::
the

::::::
ranges

:::
are

:::::::
reduced

::
in
::::::

width
:::
by

:::::::
between

::::::
14.5%

::::
(the

:::::::
shallow

::
ice

::::::::::::
enhancement

::::::
factor)

::::
and

::::::
44.0%

::::
(the

::::::::
exponent

::
of

::::
the

:::::
basal

::::::::
resistance

::::::::
model).

:::::::
Overall,

:::
the

:::::::
volume

:::
of

:::
the

:::::::::
parameter

::::
space

::::
has

::::
been

:::::::
reduced

::
to

::::
just

::::::
14.6%

::
of

:::
the

:::::::
original

::::
size,

:::::::
meaning

::::
that

::::::
85.4%

::
of

:::
the

:::::::
possible

:::::::::
parameter

:::::::::::
combinations

:::::
have

::::
been

::::::::::
eliminated.

:::
We

::::
note

::::
that

:::
the

::::::::::
application

::
of

::::
the

::::::::
technique

:::::::::
described

::
in

::::
this

:::::::::
manuscript

::::::::
involves

::
a

:::::::
trade-off

::::::::
between340

:::::::::::
computational

::::::::
expense

:::
(as

::::::::::
determined

:::
by

:::
the

::::::::
ensemble

:::::
size)

::::
and

::::::::
precision

:::
(as

:::::::::
measured

:::
by

:::
the

::::::::
reduction

:::
in

:::::::::
parameter

::::::::::
uncertainty).

:::::::::
Increasing

:::
the

::::::::
ensemble

:::
size

::::::
might

::::
allow

::
a
::::::
greater

::::::::
reduction

::
in

:::
the

::::::
volume

::
of

:::::::::
parameter

:::::
space,

:::
but

::
at

:::
the

:::::::
expense

::
of

::::::::
increased

::::::::::::
computational

::::
cost.

The final ranges for two of the parameters are noteworthy within the context of previous work. We find that values of the

shallow shelf enhancement factor smaller than 0.68 are not consistent with observations, or at least not for the specific version345

and specific configuration of the model used here. This excludes both the default value used by PISM (0.6) and the final values

used in all previous studies with the exception of Pittard (2016). We also reject values of the calving rate scaling parameter

smaller than 3.70× 1016 m s, which is consistent with the finding of Levermann et al. (2012) that values & 3.2× 1016 m s are

required to produce a stable grounding line.
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3 Results and discussion350

For the final iteration of the optimisation process, 91 of the 100 ensemble members complete successfully (i.e. they do not

fail because of numerical errors or because of exceeding the time limit). Of these members, by definition, one-third satisfy

the criterion EA ≤ Ecrit
A (Equation 8) and one-third satisfy the criterion EV ≤ Ecrit

V (Equation 9). Only 14 of the original

100 ensemble members satisfy both of these criteria. This reflects the use of model-guided evaluation metrics during the

optimisation process and does not mean that the other ensemble members are not useful. Nonetheless, we can examine these355

14 members to gain insights into the performance of the model and the relationships between the model parameters.

The simulated ice thickness for each of the 14 ensemble members is shown in Figure 1, while the errors relative to obser-

vations are shown in Figure 2. The simulated states of the AIS are extremely similar, with all members having ice sheets that

are too thick in coastal areas and along the Antarctic Peninsula. This suggests systematic errors arising from either from the

basic physics of the model, or from the boundary conditions applied (for example, excessive precipitation). The simulated ice360

sheet is also generally too thin in inland areas, although it can be slightly too thick in some ensemble members (particularly

ensemble members 63 and 83).

The parameter combinations used in each ensemble member, as well as the values of EA and EV , are shown in Table 3. For

all 10 parameters, the values are distributed throughout the range. We can use these 14 sets of parameter values to determine

the degree of covariance between parameters, within the set of model configurations that can be considered to be realistic. The365

Pearson correlation coefficient between each possible pair of parameters is shown in Table 4. Using bootstrapping to determine

statistical significance, there are three pairs for which it is possible to reject the null hypothesis of no relationship at the p= 0.01

probability level. These relationships are examined in Figure 3.

In each case, there are plausible physical explanations for the relationships.

– Elevation of maximum till friction angle versus shallow ice enhancement factor: Increasing the elevation of the maximum370

till friction angle (bmax in Equation 7) will tend to reduce the till friction angle φ and hence reduce the yield stress τc

(Equation 4). Reducing the shallow ice enhancement factor (e in Equation 1) will tend to compensate for this by reducing

ice flow, accounting for the negative relationship.

– Minimum thickness of floating ice shelves versus effective till pressure scaling factor: Increasing the minimum thickness

of the floating ice shelves will increase the calving rate and hence tend to result in a smaller ice sheet
::
an

:::
ice

::::
sheet

::::
with

::
a375

::::::
smaller

::::::
volume. Increasing the effective till pressure scaling factor (δ in Equation 5) will tend to compensate for this by

increasing the yield stress τc (Equation 4) and hence reducing ice flow, accounting for the positive relationship.

– Elevation of maximum till friction angle versus maximum till friction angle: Varying the elevation of the maximum

till friction angle and the maximum till friction angle (bmax and φmax, respectively, in Equation 7) together will leave

the value of the till friction angle φ unchanged throughout most of the vertical range. This accounts for the positive380

relationship.
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Nonetheless, the existence of such relationships indicates that there is no single configuration of the model that can be

considered to be optimal, at least on the basis of the evaluation conducted in this study.

We have shown that the optimal ranges for each parameter can be dependent on other variables. We have also shown that

regions of parameter space exist that cannot be meaningfully reduced in volume any further, given constraints arising from the385

availability of data and
:::::
While

:::
we

::::
have

::::
been

::::
able

::
to
:::::::::::

substantially
::::::
reduce

:::
the

:::::::
volume

::
of

::::::::
plausible

::::::::
parameter

::::::
space, limitations

on our understanding of the underlying physical system . Therefore, to
::::::
ensure

:::
that

:::
the

::::::::
plausible

::::::
ranges

::::::
remain

::::
large

:::
for

:::::
some

:::::::::
parameters.

::::::
Using

::::::::
additional

::::::::::::
observational

:::
and

::::::::::::
palaeoclimate

:::::::
datasets

::
to

:::::::
evaluate

:::
the

::::::
model,

::::
such

::
as

:::
the

:::::::
surface

:::
ice

:::::::
velocity

:::
and

::::::
vertical

:::::::
profiles

::
of

::::::::::
temperature

:::
and

::::
age

::::
from

:::
ice

:::::
cores,

:::::
might

:::::
allow

:::
us

::
to

:::::::
constrain

:::
the

:::::::::
parameter

::::::
ranges

::::::
further.

::::::::::
Nonetheless,

::
to

:
sample equally from amongst all plausible model configurations requires the systematic sampling of param-390

eter space. Different sampling strategies might be superior to others, with the application of these strategies (for example, the

size of Latin hypercube ensembles) being potentially constrained by computational considerations.
::::
The

:::
size

:::
of

:::
the

::::::::
ensemble

::::::::
presented

::
in

::::
this

:::::
study

:::::
(100)

::
is

::::::::
relatively

::::::
small,

::::::::::
particularly

:::::
given

:::
the

:::::
large

:::::::
number

:::
of

:::::::::
parameters

:::::
being

:::::::::
optimised

:::::
(10).

::::::::::::::::::::
Chang et al. (2014) show

::::
that

:
a
:::::::::::
100-member

:::::
Latin

:::::::::
Hypercube

:::::::::
ensemble

::::::
cannot

:::::::::
adequately

::::::
resolve

:::
the

::::::::::
interactions

::::::::
between

:::::::::
parameters

::
in

::
an

:::
ice

:::::
sheet

::::::
model,

:::::
even

::::
when

::::::
being

::::
used

::
to

:::::
study

:
a
::::::::::::::

five-dimensional
:::::::::
parameter

::::::
space.

::::::
Ideally,

:::
our

:::::::::
technique395

:::::
would

::::::::
therefore

:::
use

:
a
:::::
larger

::::::::
ensemble

::::
size

::
or

:::::
would

:::
be

::::
used

::
to

:::::
target

:
a
:::::::
smaller

::::::
number

::
of

::::::
model

::::::::::
parameters.

:::::
While

:::
the

::::::
former

:::::
would

:::::::
increase

:::
the

::::::::::::
computational

::::
cost,

:::::
either

::
of

:::::
these

:::::::::::
modifications

::::::
should

:::::
allow

:::
for

::::::
greater

:::::::::
refinement

::
of

:::::::::
parameter

::::::
ranges.

Fundamentally, however, the systematic sampling of parameter space requires the application of large ensemble modelling

approaches.

Furthermore, we
:::
We

::::
also

:
emphasise the importance of such modelling approaches when generating projections. Proper400

ensemble design is necessary not just to quantify uncertainty around the mean or median response of the system, but also to cor-

rectly identify the mean or median response itself.
:::
The

:::::::::
importance

::
of

:::::
these

:::::
points

::
is

:::::::::::
demonstrated

::
by

:::::::::::::::::::::::::::
DeConto and Pollard (2016) and

::::::::::::::::::
Edwards et al. (2019) ,

::::
who

::::
find

::::
that

:::::::::
parameter

:::::::::
uncertainty

::::
and

::::::::
ensemble

::::::
design

::::::::
influence

:::
the

::::::::::
probability

:::::::::::
distributions

:::
for

:::::::::
projections

::
of

:::::
future

:::
sea

:::::
level

::::
rise.

::
In

::::::::
particular,

:::::::::::::::::::::::::
Edwards et al. (2019) emulate

::
an

:::
ice

:::::
sheet

:::::
model

:::
and

::::
find

::::
that

::
the

::::::::::
probability

::::::::::
distributions

:::
are

::::::
skewed

:::::::
towards

:::::
lower

::::::
values;

::::::
failure

::
to

::::
take

:::
this

::::
into

:::::::
account

:::::
might

::::
lead

::
to

::::::::::::
over-estimates

::
of

:::
the

:::::
most

:::::
likely405

:::
rate

::
of

:::
sea

:::::
level

:::
rise

::::::
during

:::
the

::::::
coming

::::::::
centuries.

:

Finally, we note that, whereas the approach developed in this study allows for the rigorous quantification of uncertainty

in model parameters, and therefore the quantification of uncertainty in model projections,
:::
the

::::::::
technique

::::::::
presented

::::
here

:::::
does

:::
not

:::::
allow these uncertainty ranges cannot

::
to be interpreted in probabilistic terms. Such interpretation would require rigorous

probabilistic knowledge of the uncertainty inherent in all aspects of
::::::::
Extending

:::
our

::::::::
approach

::
to

:::::::
generate

:::::
future

::::::::::
projections

::::
with410

::::::::
associated

::::::::::
probability

::::::::::
distributions

::::::
would

::::::
require

:::::
larger

:::::::::
ensembles

:::
and

::::::
further

::::::::::::
understanding

:::
of

:::
the

::::::::::
uncertainties

::::::::
inherent

::
in

the physical system, including
:
.
::::
This

:::::
would

:::::::
include

::::::::::
uncertainties

::
in
:
our physical understanding of that system,

:
in
:
the numerical

representation of that physical understanding within the modeland ,
::::
and

::
in

:
the boundary conditions applied to the model. All

of these uncertainties would also need to be rigorously propagated through to the resulting projections.
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4 Conclusions415

We have developed a simple and efficient iterative technique for optimising parameters in geoscientific models. Specifically,

our approach is able to eliminate regions of parameter space that are inconsistent with observations.
:::::
While

::
it

::
is

:::::::::
analogous

::
to

::::
other

:::::::::
techniques

::::
that

:::
use

:::::
large

::::::::
ensemble

::::::::
modelling

:::
to

:::::
refine

::::::::
parameter

::::::
ranges

::::::::::::::::::::::::::::::::::::
(e.g. Solonen et al., 2012; Lee et al., 2020) ,

::
the

::::::::
approach

:::::::::
developed

::::
here

::
is
:::::::::::
considerably

:::::::
simpler

:::
and

::::::
should

::::::::
therefore

:::
be

::::
more

:::::::::
accessible

::
to

:::
the

:::::::::::
geoscientific

:::::::::
modelling

:::::::::
community.

:
420

We have demonstrated the application of this
:::
our technique by using PISM to simulate the present-day state of the AIS. After

five iterations, we were able to refine the ranges of six out of ten parameters. Most significantly, we find that multiple different

parameter combinations are able to generate equally skillful simulations. This suggests that, at least for the model and for the

experiments used in this study, ice sheet models have no single optimal configuration and therefore cannot be meaningfully

“tuned”. Using single model configurations to generate predictions is therefore likely to underestimate the magnitude of the425

uncertainty around the best estimates. The solution to this is to use large ensemble modelling approaches with perturbed

parameters.

Given the existence of parameter uncertainty, exploring parameter space is essential. However, the behaviour of the model

may depend upon the parameter values in non-trivial (and, in particular, non-linear) ways: this requires systematic exploration

of parameter space. Identifying implausible regions of parameter space allows for more efficient exploration of those regions430

that are potentially consistent with observations.

Correct values for geoscientific model parameters may be unknown, or may not even exist given that parameterisations by

their very nature represent simplifications of real-world processes. It is of critical importance to explore the extent to which

the parameter uncertainty
:::
The

:::::::::
parameter

:::::::::::
uncertainties identified in this studyrepresents

:
,
:::
and

:::
in

::::
other

::::::
studies

::::
that

::::
have

:::::
used

::::::::
analogous

::::
large

::::::::
ensemble

:::::::::
modelling

:::::::::
approaches

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Chang et al., 2014; Edwards et al., 2019; Gilford et al., 2020; Lee et al., 2020) ,435

:::::::
represent

:
a source of uncertainty in future climate projections. Such an investigation

::::::
Further

:::::::::
exploration

::
of

:::::
these

:::::::::::
uncertainties

should form the basis of further work.
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Figure 1. The simulated ice thickness (m) for the 14 ensemble members that are in best agreement with observations. The observed ice

thickness (Bedmap2; Fretwell et al., 2013) is also shown for comparison.
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Figure 2. The error in the simulated ice thickness (m) relative to Bedmap2 (Fretwell et al., 2013) for the 14 ensemble members that are in

best agreement with observations. The Bedmap2
:::::::
ensemble

:::::
mean

:::
and

:::::::
ensemble

::::::
standard

::::::::
deviation

::
of

::
the

::::
error

::
in

:::
the

:::::::
simulated ice thickness

(m) is
::
are also shown for comparison

:::::
(bottom

:::::
right).
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Figure 3. Scatter plots of the relationships between the three pairs of physical parameters identified in Table 4: (a) elevation of maximum

till friction angle versus shallow ice enhancement factor; (b) minimum thickness of floating ice shelves versus effective till pressure scaling

factor; and (c) elevation of maximum till friction angle versus maximum till friction angle. Values are shown for all 91 ensemble members

that completed the final iteration successfully. The larger dots indicate the 14 ensemble members that are in best agreement with observations.
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Table 4. The Pearson correlation coefficients between each pair of the 10 physical parameters, for the 14 ensemble members that are in best

agreement with observations. Bold text indicates that the correlation coefficient is statistically significant at the p= 0.01 probability level.

For the name of each parameter, see Tables 1 or 2.

2 3 4 5 6 7 8 9 10

1 +0.28 -0.22 +0.25 +0.06 -0.16 +0.34 -0.27 -0.17 -0.59

2 +0.57 -0.33 -0.07 -0.32 +0.14 -0.27 -0.22 -0.51

3 -0.60 +0.22 -0.30 -0.17 -0.10 -0.46 -0.28

4 +0.24 +0.57 -0.05 -0.24 +0.28 +0.25

5 -0.21 -0.24 -0.44 -0.62 -0.10

6 -0.07 +0.14 +0.25 +0.49

7 -0.06 0.00 -0.27

8 +0.20 +0.60

9 +0.28
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Table A1. The 10 physical parameters that are varied in this study: the command-line option used by PISM and a descriptive name. The

descriptive names are used throughout the manuscript.

Command-line option Descriptive name

1 -sia_e Shallow ice enhancement factor

2 -ssa_e Shallow shelf enhancement factor

3 -pseudo_plastic_q Exponent of basal resistance model

4 -till_effective_fraction_overburden Effective till pressure scaling factor

5 -eigen_calving_K Calving rate scaling factor

6 -thickness_calving_threshold Minimum thickness of floating ice shelves

7 -topg_to_phi phimin Minimum till friction angle

8 -topg_to_phi phimax Maximum till friction angle

9 -topg_to_phi bmin Elevation of minimum till friction angle

10 -topg_to_phi bmax Elevation of maximum till friction angle
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