editage

Editing Certificate

This document certifies that the manuscript listed below has been edited to ensure language and grammar accuracy and is error free in these aspects. The edit was performed by professional editors at Editage, a division of Cactus Communications. The author's core research ideas were not altered in any way during the editing process. The quality of the edit has been guaranteed, with the assumption that our suggested changes have been accepted and the text has not been further altered without the knowledge of our editors.

MANUSCRIPT TITLE

Turbidity maximum zone index: A novel model for remote extraction of turbidity maximum zone in different estuaries

AUTHORS

Chongyang Wang, Li Wang, Danni Wang, Dan Li, Chenghu Zhou, Hao Jiang, Qiong Zheng, Shuisen Chen, Kai Jia, Yangxiaoyue Liu, Ji Yang, Xia Zhou and Yong Li

> ISSUED ON June 30, 2021

> > JOB CODE GYGCH_2

Vikas Navang

Vikas Narang Chief Operating Officer - Editage

editage

GLOBAL :

(833) 979-0061 request@editage.com

Editage, a brand of Cactus Communications, offers professional English language editing and publication support services to authors engaged in over 1300 areas of research. Through its community of experienced editors, which includes doctors, engineers, published scientists, and researchers with peer review experience, Editage has successfully helped authors get published in internationally reputed journals. Authors who work with Editage are guaranteed excellent language quality and timely delivery.

> CHINA : 400-120-3020 | fabiao@editage.cn

CACTUS.

Reviewer #2:

General comments

This paper describes a new approach to identify turbidity maximum zone using an index (TMZI) that combines observations of Chla and turbidity (TSS), and applies the index to 3 estuaries in Guangdong, China. A key hypothesis is that TSS affects primary production and is thus highly correlated with Chla, which is mostly valid. The manuscript is very poorly prepared and importantly, I have some serious reservation on the claims, and recommend rejection. Response:

Dear reviewer, thanks a lot for reviewing our manuscript and giving the valuable comments. These thoughtful suggestions are all critical for the improvement of the study.

We agree with you on the points, especially the validation and evaluation issues of the model, and language problems.

The main aims of the study is to develop a new approach, which could distinguish turbidity maximum zone (TMZ) in different estuaries and different seasons, and **provide a new reference** and **fresh perspective** for the study of TMZ.

Following your suggestion, we have revised the manuscript very carefully. The lists below are the responses to each comment and all the revising have been marked in RED in the marked-up mode (lines 17-20, 27-30, 34-38, 42-46, 53-57, 64-69, 75-92, 94, 113-115, 123-124, 126-128, 135-136, 139-141, 146-156, 169-175, 187-196, 200-201, 206-208, 215-217, 220-222, 228-232, 236-239, 246, 248-249, 255-256, 260-263, 268, 271-275, 277-279, 285-286, 295-297, 301-303, 306-311, 319-321, 337-338, 343, 356-358, 382-384, 387-389, 395-401, 416-417, 422-428, 436-438, 442-448). It is expected that the quality of the revised manuscript has been improved significantly and meet the demand of journal.

Major comments

As the authors alluded to, estuarine TMZ's vary greatly in different estuaries, and I think this site specificity is for good reason. As the definition of TMZ suggests, it's not the absolute values of turbidity but local maxima (attributed to physical or biological processes) that lead to TMZ, and the latter should be site specific and potentially not comparable across systems. I suggest they first give a rigorous definition for TMZ, as this underpins the significance (or lack thereof) of the claims. Phrased in another way, how can one measure the accuracy of any method that quantifies TMZ (as they repeatedly use 'accuracy', 'good consistency', 'good performance', 'more natural', 'agreed better with reality' in the texts)? Unless this key issue is addressed, there is no way to assess if the new method is actually better than previous approaches. I found the 'validation' sections have a lot of hand-waving claims, and lack rigor for scientific journal. Better-than-previous study-results is not sufficient (not to mention that 'better' is ill defined here).

Short of a rigorous metric to measure accuracy, an alternative would be to use pattern recognition technique to quantify the 'better performance', but we still need a definition of 'ground truth'. **Response:**

The studies of estuarine TMZ has a long history of over 80 years since it was proposed in the last century (Glangeaud 1938). The current definition of TMZ has been widely accepted and recognized across the world (Page 3, lines 53-57). As far as we are concerned, it is a **much very** challenging task for us to give a **more** rigorous and quantified definition for TMZ.

As you point out, measuring the accuracy of corresponding results **is absolutely critical issues** for the assessment of any methods. Following your thoughtful suggestion, the common accuracy measures of object extraction from remote sensing imageries, **area-based accuracy measures** (Cai et al. 2018), has been added to evaluate and compare the performance of the different methods (*Section 2.4*; Page 11, lines 187-196; Page 16, lines 271-275; Page 19, lines 306-307; Page 24, lines 398-400; Page 26, lines 425-428).

Suppose that A_E is the area of the extracted TMZ, A_C is the correct part of A_E , and A_R is the reference TMZ (ground truth). Then the quality (*Q*) of the TMZ extraction results in the study could be defined as follow.

$$Q = \frac{A_C}{A_E + A_R - A_C}$$

The range of Q is 0 to 1. The bigger Q the value, the higher the accuracy of TMZ extraction results and the better performance of the method.

It should be noted that **the visual interpretation TMZ results** of the Pearl River estuary (PRE) (Pages 17-18; lines 277-278, 301; Figs. 7a and 8c), derived from two scientific and peer-reviewed journals, *Journal of Coastal Research* (<u>https://meridian.allenpress.com/jcr</u>) and *Chinese Science* Bulletin (<u>https://www.sciengine.com/publisher/scp/journal/CSB?slug=abstracts</u>), had been defined as 'ground truth' in the study.

In the PRE, all the TMZ extraction results based on TMZI and previous approaches has been assessed by the visual interpretation TMZ results ('ground truth') and the new added accuracy assessment measures. In order to illustrate the evaluation and comparison process better, some figures (Figs. 7, 8c, 8d and 11) in the manuscript are restructured to a sketch map here.

113°48'0"E

Landsat 5 TM sensor

PRE

Landsat 8 OLI sensor

113°36'0"E continue.....

114°0'0"1

of Coastal Research and

A sketch map of comparison.

In the third row of the sketch map, **regions indicated by yellow dashed frames** are the visual interpretation TMZ results and defined as 'ground truth'.

In the fourth row, **regions indicated by mango colors** are the TMZ extraction results based on TMZI method. Fifth row shows the **same** results, but with the true color imagery as base map.

In the sixth and seventh rows, **regions indicated by cyan colors** and **yellow colors** are the TMZ extraction results based on Shi et al. (2017) and Wai et al. (2004), respectively.

On the one hand, the TMZ extraction results by TMZI and previous approaches have big difference, which could provide an intuitive and rough comparison. On the other hand, the **quantitative accuracy assessment** also showed TMZI model has a better performance. The quality of the TMZ extraction results by the methods of TMZI, Shi et al. (2017) and Wai et al. (2004) are 0.8429, 0.4238 and 0.1046 in low-flow season, and 0.8171, 0.4770 and 0.1661 in high-flow season, respectively (Page 16, lines 271-275; Page 19, lines 306-307; Page 24, lines 398-400; Page 26, lines 425-428).

The main aims of the studies in the Hangjiang River estuary (HRE) and Moyangjiang River estuary (MRE) are to further assess the applicability of TMZI. The observation is also one of the most basic methods in geography and remote sensing research fields. Given few specialized studies in the two estuaries, the TMZ extraction results in the HRE and MRE were assessed mainly based on remote sensing imageries and the corresponding retrieved results.

We have revised the figures, results validation part, relevant contents and statements in the manuscript carefully (Page 11, lines 187-196; Pages 16-19, lines 271-279, lines 285-286, lines 301-303, lines 306-311; Pages 20-22, lines 326-329, lines 356-358; Pages 24-26, lines 398-400, lines 404-409, lines 422-428).

References:

Cai, L., Shi, W., Miao, Z., & Hao, M. (2018). Accuracy Assessment Measures for Object Extraction from Remote Sensing Images. *Remote Sensing*, 10, 303.

Glangeaud, L. (1938). Transport of Sedimentation Chlans 1 estuare et 1 embouchure de La Girronde. *Bulletin of Geological Society of France*, 8, 599-630.

It's also not sufficient to demonstrate that TMZI works for 2 other estuaries in the same province. A variety of estuaries with different physical and biological characteristics is needed to truly support the claim. There are systems that other organic matters than Chla are dominant. Response:

It is right that the more validation and assessment, the better a new method. In this study, although the PRE, HRE and MRE are all in Guangdong Province, the three rivers and estuaries have significantly difference and its own characteristics (Pages 6-8, lines 123-124, lines 135-141).

The PRE is a horn-shaped estuary. The source of Pearl River is in Yunnan-Kweichow Plateau, southwest China. Pearl River is the fourth longest (2320 km) in China with a drainage area of $4.53 \cdot 10^5$ km², and its annual runoff ($3.26 \cdot 10^{11}$ m³) is only smaller than Yangtze River. The sediment load of Pearl River is $7.53 \cdot 10^7$ ton/year.

The HRE is a forking-shaped estuary. The source of Hanjiang River is in Zijin County, east of Guangdong. Hanjiang River has a length of 470 km and has the second largest drainage area $(3.01 \cdot 10^4 \text{ km}^2)$ in Guangdong Province. The annual mean surface runoff of Hanjiang River is $2.45 \cdot 10^{10} \text{m}^3$ with sediment load is $6.93 \cdot 10^6$ ton/year.

The MRE is a calabash-shaped estuary. The source of Moyangjiang River is in Cloud Mountains, west of Guangdong. Moyangjiang River has a length of 199 km and a drainage area of more than $6\cdot10^3$ km². The annual mean surface runoff of Moyangjiang River is $8.21\cdot10^9$ m³ and sediment load is $3.27\cdot10^5$ ton/year.

Based on the characteristics of the three rivers and estuaries, it could be found that the source, length, drainage area, shape, runoff and sediment discharge of them are different from each other, Which has a certain representativeness in the study of estuary.

On the other hand, considering that the study of TMZ has long been **a hot topic in many fields**, such as estuary and coast, hydrology, ocean, ecology, environment, geography and remote sensing, it would be better and more persuasiveness if the model could be further validated and assessed by other researchers worldwide.

Minor comments

TSS usually includes CDOM and Chla, so there may be auto-correlation between TSS and Chla, especially for systems dominated by organic matters. This needs to be explored. Response:

It is no doubt that there exists a **connection** between total suspended solids (TSS) and chlorophyll a (Chla), even other water parameters or color components (CDOM). We have modified the relevant expressions to make it more precise (Page 2, lines 27-30; Page 5, lines 94-102; Pages 13-14, lines 220-222; lines 236-239).

In fact, the **defined relationship** among the water parameters is still in the study and discussion, particularly in estuarine regions of dynamic changes (Zhang and Blomquist., 2018; Hu et al., 2013; Chen et al., 2011; Zhao et al., 2009). It is expected that more detail results and conclusion could be found in the future study and research.

References:

- Chen, S., Fang, L., Li, H., Chen, W., & Huang, W. (2011). Evaluation of a three-band model for estimating chlorophyll-a concentration in tidal reaches of the Pearl River Estuary, China. *ISPRS Journal of Photogrammetry and Remote Sensing*, 68, 356-364.
- Zhang, Q., & Blomquist, J.D. (2018). Watershed export of fine sediment, organic carbon, and chlorophyll-a to Chesapeake Bay: Spatial and temporal patterns in 1984–2016. *Science of the Total Environment*, 619-620, 1066-1078.
- Zhao, J., Cao, W., Wang, G., Yang, D., Yang, Y., Sun, Z., Zhou, W., & Liang, S. (2009). The variations in optical properties of CDOM throughout an algal bloom event. *Estuarine, Coastal and Shelf Science*, 82, 225-232.
- Hu, S., Cao, W., Li, J., Yang, Y., Wang, G., & Zhou, W. (2013). Spectral absorption properties of colored dissolved organic matter along 6 N transect of tropical eastern Indian Ocean. *Journal of Tropical Oceanography*, 32, 13-21.

Can't Eq (1) be simplified, as exp and log cancel out? **Response:**

In equation 1, the bases of the exponent and logarithm are 'e' and '10', respectively. We are sorry for the unclear statement in the previous version. Following your suggestion, the equation have been revised (Page 11, line 182).

Chla =
$$a * e^{b*Log_{(10)}[(\frac{1}{R_1} - \frac{1}{R_2})*\frac{1}{R_3}]}$$

There are also very extensive syntax errors and confusing sentences throughout the texts, and below is an incomplete list. The authors should go over the text very carefully. There are also mentions of geographic names (Neilingding etc) that should be illustrated in plots.

Ln 54: 'within limits'; ln 58: 'progress'; sentence on ln 84; ln 88: 'latent'; ln 133: 'famous'; ln 168: expected; ln 217: while; ln 224: referring to; ln 235: 'null' (near zero is different from null); ln 242: read; ln 256 (sentence); ln 275: extracting; ln 279: season; ln 289 (sentence); ln 298: similar; ln 307: indicated; ln 386-7 (sentences)....

Response:

Dear reviewer, Following you and another reviewer's suggestions, we have asked for native English writers (a professor of Florida State University and an associated professor of National University of Singapore) helping us to pick up grammatical errors and revise the text very carefully. Besides, we also asked the professional English language services, **Editage** (<u>www.editage.cn</u>), to further polish the English writing and grammar.

All the revising have been marked in red in the current version (lines 17-20, 27-30, 34-38, 42-46, 53-57, 64-69, 75-92, 94, 113-115, 123-124, 126-128, 135-136, 139-141, 146-156, 169-175, 187-196, 200-201, 206-208, 215-217, 220-222, 228-232, 236-239, 246, 248-249, 255-256, 260-263, 268, 271-275, 277-279, 285-286, 295-297, 301-303, 306-311, 319-321, 337-338, 343, 356-358, 382-384, 387-389, 395-401, 416-417, 422-428, 436-438, 442-448).

Once again, thank you very much for your valuable comments and suggestions for the improvement of the manuscript.

Stay healthy and best wishes,

Chongyang Wang

1	Turbidity maximum zone index: A novel model for remote
2	extraction of turbidity maximum zone in different estuaries
3	Chongyang Wang ^{1[‡]} , Li Wang ^{1[‡]} , Danni Wang ² , Dan Li ^{1,3} , Chenghu Zhou ^{1,3,4} , Hao
4	Jiang ^{1,3} , Qiong Zheng ¹ , Shuisen Chen ¹ , Kai Jia ¹ , Yangxiaoyue Liu ^{1,3} , Ji Yang ^{1,3} , Xia
5	Zhou ¹ and Yong Li ^{1,3}
6	¹ Guangdong Open Laboratory of Geospatial Information Technology and Application, Key Lab of
7	Guangdong for Utilization of Remote Sensing and Geographical Information System, Guangzhou
8	Institute of Geography, Guangdong Academy of Sciences, Guangzhou 510070, China
9	² Guangzhou Xinhua University, Guangzhou 510520, China
10	³ Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou
11	511458, China
12	⁴ State Key Laboratory of Resources and Environmental Information System, Institute of
13	Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing
14	100101, China
15	‡ Equally contributed to this work
16	Correspondence: Dan Li (lidan@gdas.ac.cn); Chenghu Zhou (zhouch@lreis.ac.cn)
17	Abstract. An efficient recognition and extraction of the estuarine turbidity maximum
18	zone (TMZ) is important for studying terrestrial hydrological processes. Although
19	many studies relevant to TMZ have been conducted worldwide, the extraction methods
20	and criteria used to describe TMZ vary significantly both spatially and temporally. To
21	improve the applicability of the methods adopted in previous studies and to develop a

22	novel model to accurately extract TMZ in multiple estuaries and different seasons from
23	remote sensing imageries, this study estimated the total suspended solids (TSS) and
24	chlorophyll a (Chla) concentrations in three estuaries. These were the Pearl River
25	Estuary (PRE), the Hanjiang River Estuary (HRE), and the Moyangjiang River Estuary
26	(MRE) of Guangdong Province, China. The spatial distribution characteristics of the
27	TSS and Chla concentrations were analyzed. A nearly opposite association was found
28	between the TSS and Chla concentrations in the three estuaries, particularly in the PRE.
29	The regions with high (low) TSS concentrations had relatively low (high) Chla
30	concentrations and therefore, a turbidity maximum zone index (TMZI), defined as the
31	ratio of the difference and sum of the logarithmic transformation of the TSS and Chla
32	concentrations, was firstly proposed. By calculating the TMZI values in the PRE on
33	November 20, 2004 (low-flow season), it was found that the criterion (TMZI > 0.2)
34	could be used to identify the TMZs of the PRE effectively. The TMZ extraction results
35	were generally consistent with the visual interpretation results. The area-based accuracy
36	measures showed that the quality (Q) of the extraction reached 0.8429. The same
37	criterion was applied in the PRE on October 18, 2015 (high-flow season), and high
38	accuracy and consistency across seasons were observed ($Q = 0.8171$). The western
39	shoal of the PRE was the main distribution area of TMZs. Extracting TMZs by the
40	newly proposed index performed well in different estuaries and on different dates (HRE
41	on August 13, 2008 in the high-flow season and MRE on December 6, 2013 in the low-
42	flow season). Compared to the previous fixed threshold of TSS or turbidity methods,

43	extracting TMZ using TMZI had higher accuracy and better applicability (Q: 0.1046–
44	0.4770 vs. 0.8171–0.8429). Evidently, this unified TMZI is potentially an optimized
45	method for the global monitoring and extraction of TMZs of estuaries from different
46	satellite remote sensing imageries. It can be used to help the understanding of the spatial
47	and temporal variation of TMZs and estuarine processes at regional and global scales,
48	as well as improve the management and sustainable development of regional society
49	and the natural environment.

Keywords: turbidity maximum zone; turbidity maximum zone index; total suspended
solid; chlorophyll a; remote sensing; estuary

52 **1 Introduction**

53 The turbidity maximum zone (TMZ) is the dynamic turbid water area within an 54 estuary, where the suspended solid concentrations, namely, sediment and matter, are consistently and significantly higher than landward and seaward (Shen, 1995; Gebhardt 55 et al., 2005; Yu et al., 2014; Li et al., 2019). It is a special phenomenon of suspended 56 57 sediment movement and migration in estuaries worldwide (Schubel, 1968; Shi et al., 58 1993; Mitchell et al., 2012; Wang et al., 2021). The spatial distributions and dynamic 59 changes of TMZs not only have a deep and wide impact on the formation and 60 development of estuary morphology, channels, shoals, and sandbars (Asp et al., 2018; 61 Azhikodan and Yokoyama, 2019; Li et al., 2019), but also significantly affect the physics and geochemical and biogeochemical processes of natural estuarine 62

environments, as well as social production activities (Gebhardt et al., 2005; Jalón-Rojas
et al., 2016; Kitheka et al., 2016; Toublanc et al., 2016; Yan et al., 2020). TMZ has long
been a popular area for scientific study and engineering innovations among researchers,
government agencies, engineering corporations, and communities (Shen et al., 2001;
Shi et al., 2017; Jiang et al., 2019; Wang et al. 2021).

68 Previous studies have examined TMZ from various aspects based on different data 69 resources and methods, such as the characteristics and dynamics of total suspended 70 solids (TSS) concentrations in TMZ (Yang et al., 2014; Wan and Wang, 2017; Grasso 71 et al., 2018), the mechanisms and formation of TMZ (Brenon and Hir, 1999; Wai et al., 72 2004; Yu et al., 2014; Toublanc et al., 2016), the location, distribution, and change of 73 TMZ across time (Jiang et al., 2013; Jalón-Rojas et al., 2016; Li et al., 2019; Yan et al., 74 2020), the interaction with other factors, and its long-term trend (Gebhardt et al., 2005; 75 Chen et al., 2016; Li et al., 2019). The location of TMZ in an estuary is a fundamental 76 question and an important aspect of studying TMZ. It was found that there were two 77 major ways to obtain the locations and distributions of TMZs (Wang et al., 2021). One 78 was a relatively approximate description, such as TMZ locations corresponding to the 79 front of the salinity wedge and moving range of stagnation points, or a distance from coastlines (Feng et al., 2002; Mitchell, 2013; Kitheka et al., 2016; Liu et al., 2016; 80 81 Toublanc et al., 2016; Gong et al., 2017; Zhang et al., 2019; Yan et al., 2020). The other 82 was a relatively quantitative result. The thresholds of TSS concentrations or turbidity 83 criteria were used to extract the distribution of TMZs (Jiang et al., 2013; Yang and Liu,

84 2015; Chen et al., 2016; Jalón-Rojas et al., 2016; Shi et al., 2017; Li et al., 2019). However, the fixed threshold method has potential drawbacks. It is a challenging task 85 86 to precisely generate TMZ extraction results at different times using a fixed threshold 87 of TSS concentration because TSS concentrations showed significant variations in 88 different seasons. Moreover, the threshold values are difficult to transfer from local 89 regions to other regions because research and a scientific basis are lacking. The threshold method and criteria vary significantly in different estuaries, in different 90 regions of the same estuary, in the same estuary at different times, and by different 91 92 studies, demonstrating considerable subjectivity. The results were not comparable (Wang et al., 2021). 93

94 TSS concentrations in the TMZs and adjacent waters vary significantly (Uncles et al., 2000; Park et al., 2008; Mitchell, 2013; Wang et al., 2018). Many studies have 95 96 shown that suspended solids can affect the growth of chlorophyll a (Chla) through 97 absorption and sunlight scattering in water (Pozdnyakov et al., 2005; Chen et al., 2015; Montanher et al., 2014; Wang et al., 2017a; Wang et al., 2020b). Therefore, it was 98 99 concluded that there is a relationship between TSS concentrations and Chla 100 concentrations and different characteristics in TMZ and normal water bodies in 101 estuaries. This relationship might be used to overcome the drawbacks of previous 102 methods of extracting TMZ and distinguish and recognize TMZ effectively.

Based on this analysis, the objectives of this study are to propose a new modelwith better adaptability and robustness for distinguishing and extracting TMZ in

105 different estuaries and in different seasons. To achieve this goal, the TSS and Chla concentrations in the Pearl River Estuary (PRE), Hanjiang River Estuary (HRE), and 106 Moyangjiang River Estuary (MRE) were first estimated. The different spatial 107 108 characteristics were analyzed and compared. Subsequently, the corresponding relationship and special features of TSS and Chla concentrations were used to develop 109 110 a turbidity maximum zone index (TMZI). Finally, the TMZs in these estuaries were 111 extracted at different times by the model (TMZI) and validated and assessed for 112 accuracy.

113 The remainder of this paper is organized as follows. The study areas, in situ data, 114 satellite imagery, TSS concentration data, Chla retrieval model, and its calibration and validation are described in Section 2, as well as the TMZ extraction accuracy 115 116 assessment measures. The spatial analysis of TSS concentration, Chla concentration, 117 and the corresponding relationship between them are presented in Section 3.1. The 118 establishment of TMZI and its application and assessment in different estuaries and at 119 different times are shown in Sections 3.2-3.5. The summary and conclusions are 120 presented in Section 4.

- 121 **2 Dataset and methods**
- 122 **2.1 Study areas**

123 The study areas include the Pearl, Hanjiang, and Moyangjiang River Estuaries of124 Guangdong Province, South China (Figs. 1, 4, and 7-10). The PRE (horn-shaped) is

Fig. 1. Study areas (PRE, HRE, and MRE) and the locations of the in-situ data indicated by blackdots and blue triangles.

Previous studies have reported that the sediment loads of the Pearl, Hanjing and Moyangjiang Rivers were $7.53 \cdot 10^7$, $6.93 \cdot 10^6$ and $3.27 \cdot 10^5$ ton per year, respectively (Wang et al., 2017a, b; Wang et al., 2020a). It was found that the three rivers and estuaries have different characteristics, and much associated research has been conducted in these regions for a long time.

142 **2.2 In-situ and satellite data**

The 89 in-situ samples, including water surface reflectance and Chla 143 concentrations, were collected from the PRE (Fig. 1, Table 1). Sixty of these samples 144 145 were also used in a previous study by the current authors (black dots) (Chen et al., 2011). 146 The present study included 29 new samples (blue triangles). Here, these samples were 147 used to recalibrate and validate a Landsat-based Chla concentration retrieval model. 148 In addition, four scenes of good quality Landsat imageries were used. Two images from TM and OLI (path/row = 122/44) were captured on November 20, 2004 149 (ProductID: LT05_L1TP_122044_20041120_20161129_01_T1), and October 18, 150 2015 (LC08_L1TP_122044_20151018_20170403_01_T1), respectively, covering the 151 152 PRE (Figs. 7a and 8c). The image from TM (path/row = 120/44) was captured on 153 August 13, 2008 (LT05_L1TP_120044_20080813_20161030_01_T1), covering the 154 HRE (Fig. 9c). The final image from OLI (path/row = 123/45), was captured on 155 December 6, 2013 (LC08_L1TP_123045_20131206_20170428_01_T1), covering the 156 MRE (Fig. 10c).

Table 1

158 The 89 in-situ data.

Date	Samples	Measurements	
Dec 9, 2006	16	Reflectance, Chla	
Dec 21, 2006	12	Reflectance, Chla	Same as
Dec 27, 2007	15	Reflectance, Chla	Chen et al. (2011)
Dec 31, 2007	17	Reflectance, Chla	
Nov 2, 2012	18	Reflectance, Chla	Nasalas a dala d
Sep 10, 2013	11	Reflectance, Chla	inewly added

Fig. 2. Remote sensing reflectance of surface water of the 89 in situ data.

2.3 Total suspended solids data and chlorophyll a data

163 The aim of this study was to establish and develop a new model (TMZI) based on164 TSS concentrations and Chla concentrations, and further extract TMZs in three

165	estuaries of Guangdong Province. Therefore, the TSS and Chla concentrations in the
166	study areas were first calculated. The TSS concentration data were obtained from
167	previous work of the current authors (Wang et al., 2017a, b; Wang et al., 2018; Wang et
168	al., 2020a). The corresponding Chla data required retrieval using Landsat imagery.
169	Consequently, a Landsat-based Chla concentration retrieval model was expected to be
170	suitable for different estuaries. Many models have been developed to estimate Chla
171	concentration from different remote sensing data (Gregg and Casey, 2004; Chen et al.,
172	2011; Kim et al., 2016a, b; Attila et al., 2018). Following the features and forms of
173	some typical chlorophyll a retrieval models (Le et al., 2009; Chen et al., 2011; Le et al.,
174	2013; Song et al., 2013), a three-band Landsat-based chlorophyll a model using the 89
175	in-situ samples was recalibrated and validated (Fig. 3; Equation 1). The model, based
176	on Landsat TM and OLI sensors, explained approximately 80% of the Chla
177	concentration variation (Chla: 1.92-92.6 mg/m ³ , N=60, P-value<0.01) and had an
178	acceptable validation accuracy (Chla: 2.33-36.8 mg/m ³ , RMSE \leq 3.76 mg/m ³ , N=29).

180 Fig. 3. The calibration (a) and validation (b) results of the Chla retrieval models based on 89 in situ

¹⁸¹ data for Landsat sensors.

$$Chla = a * e^{b*Log_{(10)}[(\frac{1}{R_1} - \frac{1}{R_2})*\frac{1}{R_3}]}$$
(1)

183 where R_1 , R_2 and R_3 represent the blue, green, and red band of theTM and OLI 184 sensors, respectively. The parameters *a* and *b* corresponding to the TM and OLI sensors 185 are 0.008907, 2.308593 and 0.00765, 2.353329, respectively. The unit of chlorophyll a 186 concentration is in mg/m³.

187 **2.4 Accuracy assessment measures**

188 To evaluate TMZI extraction accuracy and compare the performances of the 189 different methods, the common accuracy measures of object recognition in remote 190 sensing, area-based accuracy measures (Cai et al., 2018), was used.

191 Suppose that A_E is the area of the extracted TMZ, A_C is the correct part of A_E , and 192 A_R is the reference TMZ. Then the quality (*Q*) of the TMZ extraction results in the study 193 could be defined as follows (equation 2).

194
$$Q = \frac{A_C}{A_E + A_R - A_C}$$
(2)

195 The range of Q is 0 to 1. The bigger the Q value, the higher the accuracy of the 196 TMZ extraction results, and the better performance of the method.

197 **3 Results and discussion**

3.1 The spatial characteristics of TSS and Chla concentrations in
estuaries

200 Chla concentrations in each estuary were estimated using the Chla concentration 201 retrieval model that was developed (Fig. 3). The different spatial distribution 202 characteristics of the TSS and Chla concentrations were analyzed. Taking the PRE as 203 an example, TSS concentrations in the low-flow season of the PRE (November 20, 204 2004) have a large variation ranging from 1.37 mg/L to more than 200 mg/L (Fig. 4a). Due to the strong interaction between runoff and tide, the main region of high TSS 205 206 concentrations is in the west shoal of the PRE (Wang et al., 2018), where concentrations 207 of more than 100 mg/L were frequently found. In addition, TSS concentrations in parts 208 of the east shoal and Neilingding island adjacent waters were also relatively higher. The 209 other areas of the PRE have low TSS concentrations, where the maximum value is 210 generally not more than 40 mg/L, particularly in the Hong Kong coastal water bodies 211 (Fig. 4a).

Fig. 4. The estimated TSS concentrations (a) and Chla concentrations (b) in the PRE on November

214 20, 2004.

In contrast to the TSS concentration results, the Chla concentrations in the PRE
have significantly lower values of less than 20 mg/m³ in almost the entire PRE (Fig.
4b). The results concord with the findings of Liu et al. (2017) and Huang et al. (2005),

who found that Chla concentrations ranged from 0.24 mg/m³ to 21.5 mg/m³ in the PRE at different times. Furthermore, Chla concentrations in the PRE show almost opposite spatial characteristics to TSS concentrations. Apart from the eastern Lidao district coastal water bodies, the regions of relatively high (low) Chla concentrations are the regions of relatively low (high) TSS concentrations. These corresponding features are apparent in the four waterways, namely, Humen, Jiaomen, Hongqimen, and Hengmen waterways and the shoals, and channels of the PRE (Fig. 4).

225 To further analyze and assess the corresponding relationship between TSS and 226 Chla concentrations in the estuaries, three rows of TSS and Chla concentration values in the PRE were extracted (Fig. 7a; pink lines; rows 1200, 1600, and 1900, columns 227 from 800 to 1300). The results for row 1600 are shown in Fig. 5(a). A correlation 228 229 analysis showed a significant negative correlation between TSS and Chla concentrations. For the original TSS and Chla concentrations, the correlation 230 231 coefficient was -0.6531. The correlation coefficient reaches approximately -0.9 for its 232 trend lines (Fig. 5a).

233 **3.2 Establishment and application of TMZI**

Based on the analysis and corresponding features between TSS and Chla concentrations, it is considered that the transform results derived from the two water color elements may help to better distinguish and extract TMZ. In this study, TMZI was defined as the ratio of the difference and sum of logarithmic transformation of TSS 238 concentrations and Chla concentrations (equation 3), which is similar to the normalized

239 difference vegetation index (NDVI).

240

241

$$TMZI = [Log(TSS) - Log(Chla)] / [Log(TSS) + Log(Chla)]$$
(3)

Fig. 5. The corresponding spatial relationship between the TSS concentrations, indicated by black
dots and red trend line, and Chla concentrations, indicated by green triangles and orange trend line
of row 1600 (a), the true color imagery (b) and the corresponding values of TMZI (c).

According to the definition and equation, this study calculated TMZI values (Figs. 5c, 6b and d). Taking the results of row 1600 as an example (Fig. 5b and c), the row pixels can be mainly divided into one TMZ (columns 800-975), normal water bodies (columns 975-1110), and another TMZ (columns 1110-1300) from left to right. The null

values located in columns 1180-1200 and 1220-1235 are Neilingding Island (Figs. 5 and 7a). Through a comparison with the results of TMZI, it is found that all the values of TMZI corresponding to TMZ pixels are larger than 0.2, while the values corresponding to normal water body pixels are all smaller than 0.2, except for a few blurry pixels (Figs. 5b and c). For the results of rows 1200 and 1900, similar corresponding characteristics between TMZ and TMZI and the same criterion were also found (Fig. 6). Therefore, TMZI showed a significant feature and had the potential to

^{259 1900 (}c and d).

260	The TMZI of the entire Landsat TM imagery was subsequently calculated, and
261	TMZs in the PRE were extracted. Fig. 7(b) shows the spatial distribution results of
262	TMZ in the PRE on November 20, 2004. TMZ is widely distributed throughout the
263	PRE, accounting for more than half of the water areas in the imagery. Among them, the
264	main TMZ is located within an average distance of 11 km from the Panyu, Nansha,
265	Zhongshang, and Zhuhai coasts, which approximately corresponds to the west shoal in
266	the PRE. In the western Dongguan and Shenzhen coastal water bodies, an
267	approximately rectangular TMZ develops approximately 5 km from the coastline,
268	which indicates the location of the east shoal of the PRE (Wang et al., 2018). In addition,
269	a third main TMZ in the PRE located from surrounding Neilingding Island to western
270	Hong Kong water bodies is found, although TSS concentrations in TMZ are lower than
271	those of the former TMZs (Figs.4a and 7b). Compared to the visual interpretation of
272	TMZ results in previous works by the current authors (Fig.7 a) (Wang et al., 2020b,
273	2021), the area-based accuracy measures show that the quality of extraction achieves
274	0.8429. The good TMZ extraction results and the high validation accuracy by TMZI in
275	this study indicate a more effective way to recognize TMZs in estuaries (Figs. 6-7).

Fig. 7. False color imagery (USGS 1982; NASA 2001) and the visual interpretation TMZ results
(regions indicated by yellow dashed frames) (Wang et al., 2020b, 2021) (a), and the extracted TMZ
results, indicated by mango colors (b) in the PRE on November 20, 2004 (low-flow season).

3.3 Validation of the accuracy of TMZI in different seasons

281	Due to the complexity of hydrodynamic environments, the estuarine factors and
282	water color elements show significant variations in different seasons, even in the same
283	estuary at different times of the day. Therefore, this study further validated the accuracy
284	of TMZI for extracting TMZ in the PRE during the high-flow season (October 18, 2015).
285	Fig. 8(a) and (b) demonstrate the retrieved TSS and Chla concentration results in
286	the high-flow season of PRE. The results in different seasons are significantly different
287	(Figs. 4 and 8). On October 18, 2015, TSS concentrations in the PRE had wider
288	variables, ranging from 2.23 to 286.6 mg/L. However, the water bodies with high TSS
289	concentrations (more than 80 mg/L) were mainly in the outlets of four waterways,
290	namely, the Humen, Jiaomen, Hongqimen, and Hengmen waterways. The other regions

291 of the PRE have significantly lower TSS concentrations of generally less than 20 mg/L 292 (Fig. 8a). Similar to the corresponding features between TSS and Chla concentrations 293 in the low-flow season, the almost opposite spatial characteristics remain in the high-294 flow season. For regions with relatively high (low) Chla concentrations there are 295 relatively low (high) TSS concentrations (Figs. 8a and b). Notably, the eastern Lidao 296 district coastal water bodies are an exception, with the same results in the low-flow season (Fig. 4). Both TSS and Chla concentrations in the zone are relatively low (Figs. 297 298 4 and 8).

Fig. 8. The estimated TSS concentrations (a), Chla concentrations (b), false color imagery (USGS
1982; NASA 2001), and the visual interpretation TMZ results (regions indicated by yellow dashed
frames) (Wang et al., 2020b) (c), and extracted TMZ results, indicated by mango colors mango
colors (d) in the PRE on October 18, 2015 (high-flow season).

304 Using the results of TSS and Chla concentrations of the PRE on October 18, 2015, 305 the TMZI was calculated and TMZs of the PRE were extracted in the high-flow season 306 (Fig. 8d). Compared with the visual interpretation TMZ results (Fig. 8 c) (Wang et al., 307 2020b), the area-based accuracy measures show that the quality of extraction is 0.8171. 308 It is also indicated that an acceptable accuracy is obtained by TMZI in the high-flow season of the PRE. In addition, only one main TMZ remains along the west coast of the 309 310 PRE (Fig. 8d), which is similar to one of the main TMZs in the low-flow season of 311 2004 (Fig. 7b). However, clear differences remain in different seasons, such as TMZs 312 in the Hongqimen and Hengmen waterways and the eastern Zhuhai coasts (Figs. 7b and 313 8d). The other TMZs in the high-flow season of 2015 are mainly located in the 314 surrounding Dachanwan Wharf of Shenzhen and Neilingding Island. The distributions 315 are less apparent than those in the low-flow season of 2004 (Fig. 7b). Besides, two 316 relatively small isolated TMZs can be found on the two artificial islands of the Hong Kong-Zhuhai-Macao Bridge (Fig. 8d), which may imply the associated influence of 317 318 human activities.

According to the analysis of the PRE results on October 18, 2015, it is demonstrated that the TMZI and the criterion (TMZI > 0.2) also perform well in extracting esturaine TMZ in different seasons using Landsat OLI imagery.

322 **3.4 Assessment of the applicability of TMZI in different estuaries**

- To further assess the applicability of TMZI in different estuaries, as for the PRE, the corresponding TMZ results in the HRE and the MRE were also calculated and
 - (b)a) Beixi Beixi Haishan Haishan Xixi Xix Dongxi Dongxi 23°30'0"N Nan ao Nan ao Waishahe Waishahe 23°24'0"N Meixi Meixi Xinjinhe Xinjinhe 23°18'0"N 116°50'0"E 116°50'0"E 116°43'30"E 116°43'30"E 116°56'30"E 116°56'30"E TSS 20 40 80 100 60 150 200 300 mg/L Chla 2 4 10 15 20 30 mg/m^3 6 8 (d) 23°30'0"N 23°24'0"N 23°18'0"N 116°50'0"E 116°56'30"E 116°50'0"E 116°43'30"E 116°43'30"F 116°56'30"E
- 325 validated.

Fig. 9. The estimated TSS concentrations (a), Chla concentrations (b), true color imagery (USGS
1982; NASA 2001) (c), and extracted TMZ results, indicated by mango colors (d) in the HRE on
August 13, 2008 (high-flow season).

330 Fig. 9 (a) and (b) indicate the results of TSS and Chla concentrations in the HRE 331 on August 13, 2008. The TSS concentrations downstream and in the estuary of the HRE 332 are significantly higher than the outer shelf area, particularly in the downstream of the 333 Dongxi River and Xinjinhe River waterways of the Hanjiang River, with a mean value in excess of 300 mg/L (Fig. 9a). TSS concentrations in the offshore area (South China 334 335 Sea) are frequently less than 20 mg/L. Therefore, a significant decreasing trend of TSS concentration is found from the northwest to southeast in the HRE (Fig. 9a). 336 337 Furthermore, the Chla concentrations in the HRE show opposite spatial distributions 338 characteristics, which resembles the findings in the PRE (Figs. 4 and 8). Relatively low 339 Chla concentrations are mainly generally found in the downstream and estuary, and the 340 outer shelf area has high values (Fig. 9b). The Chla concentrations in the HRE range from 4.1 to 37.3 mg/m³ (Fig. 9b), which is slightly higher than that of the PRE (Figs. 4 341 342 and 8).

The TMZ extraction results for the HRE are shown in Fig. 9(d). The TMZs are distributed in all the downstream and estuaries of the Hangjiang River. They can be divided into four main TMZs based on different waterways, namely, the Beixi, Dongxi, Waishahe, Xinjinhe, and Meixi waterways of the Hanjing River. The maximum TMZ is located within an average distance of 3 km from the Beixi estuary, western Haishan 348 coast, and the coastlines between the Beixi and Dongxi estuaries. The second largest 349 TMZ of the HRE is distributed from the Meixi to the Xinjinhe estuaries. The region of 350 the main TMZ of the Xinjinhe estuary appears knife-shaped, which is mainly caused 351 by the runoff of the Xinjinhe waterway and the flow guiding line connected to Longhu 352 District, Shantou City (Fig. 9 d) (Wang et al., 2017a). The other two relatively smaller 353 TMZs are distributed in the Dongxi and Waishahe estuaries, respectively. The results 354 indicate that the TMZ distribution in the HRE is mainly related to tide, runoff, estuarine 355 topography, and human activity.

356 In the MRE, the region of high TSS concentrations is mainly distributed at an average distance of 1.2 km from the Yangjiang coastlines, particularly in the eastern 357 358 Hailingdati dike water bodies, with a mean value of more than 150 mg/L (Fig. 10a). 359 The outer shelf area has significantly lower TSS concentrations of generally less than 35 mg/L. The Chla concentrations in most regions of the MRE are more than 4 mg/m^3 , 360 361 except for the southwestern Dongping town coastal water bodies, where Chla concentrations mainly range from 2 to 4 mg/m³. The Chla concentrations in the 362 363 Moyangjiang River downstream, Fuchang town coast, and outside of the Shouchanghe River estuary have relatively high values of frequently greater than 8 mg/m^3 (Fig. 10b). 364 Compared to the PRE and the HRE, the corresponding relationship between TSS and 365 366 Chla concentrations in the MRE is slightly weak. However, a trend of high (low) TSS 367 concentrations in water bodies with relatively low (high) Chla concentrations remains 368 (Figs. 10a and b).

Fig. 10. The estimated TSS concentrations (a), Chla concentrations (b), true color imagery (USGS
1982; NASA 2001) (c), and extracted TMZ results, indicated by mango colors (d) in the MRE on
December 6, 2013 (Low-flow season).

Figs. 10 (c) and (d) indicate the true color imagery of the MRE and the TMZs 373 extraction results. There are two main TMZs in the MRE on December 6, 2013. The 374 375 first TMZ is mainly distributed from the inside and outside of the Moyangjiang River 376 estuary to the Shouchanghe River estuary, with a distance of approximately 1.8 km from the coastlines (Fig. 10d). The distribution of TMZ in this region is mainly 377 attributed to the interaction of tide and runoff. Another main TMZ is in the regions 4 378 379 km from the Hailingdati dike, and is mainly caused by obstruction against ocean 380 currents (Fig. 10d). In addition, several small, long, and narrow TMZs are accuracy 381 extracted through TMZI with the same criterion as that in the PRE and the HRE.

The results of the three estuaries and the comparison and accuracy assessment indicate that extracting TMZ based on TMZI and the criterion (TMZI > 0.2) has a high applicability in multiple eatuaries and different seasons.

385 3.5 Comparison with the previous methods

386 Previous studies have extracted TMZ based mainly on the threshold of TSS 387 concentrations or turbidity. For example, Jalón-Rojas et al. (2016) used thresholds of 500 mg/L (300 NTU) and 1000 mg/L (600 NTU) to define moderately concentrated 388 TMZ and highly concentrated TMZ in the Loire Estuary in France; Jiang et al. (2013) 389 390 and Li et al. (2019) defined TMZ as the areas with TSS values larger than 700 mg/L in 391 Yangtze Estuary and Hangzhou Bay. For TMZ in the PRE, it was found that TSS values 392 in studies by Shi et al. (2017) and Wai et al. (2004) were more than 89.4 mg/L and 393 about 150 mg/L, respectively. Based on the two criteria (TMZ: TSS > 89.4 mg/L or TSS > 150 mg/L), this study calculated and extracted TMZs in the PRE (Fig. 11c-f). 394 395 Compared to the visual interpretation TMZ results (Figs. 7a and 8c), the TMZ extraction results in the PRE based on the criterion of Shi et al. (2017) are superior to 396 397 those of Wai et al. (2004), on November 20, 2004 (Fig. 11c vs. Fig. 11e, low-flow 398 season) or October 18, 2015 (Fig. 11d vs. Fig. 11f, high-flow season). The extraction 399 quality based on the criteria of Shi et al. (2017) and Wai et al. (2004) are 0.4238, 0.4770 400 and 0.1046, 0.1661, respectively. The primary reason may be that the time of the data 401 source in Shi et al. (2017) was closer to the present study than that in the study by Wai

402 et al. (2004). This means that the criterion of Shi et al. (2017) was more suitable for this

113°48'0

November 20, 2004 (low-flow season) October 18, 2015 (high-flow season)

405 Fig. 11. The true color imagery (USGS 1982; NASA 2001) and TMZ extraction results in the PRE
406 at different time (a, c, e: November 20, 2004; b, d, f: October 18, 2015) based on the TMZI method
407 of this study (a and b, regions indicated by mango color, as in Fig. 7b and Fig. 8d), the criterion by

408

409

Shi et al. (2017) (c and d, regions indicated by cyan color), and the criterion by Wai et al. (2004) (e and f, regions indicated by yellow color).

410 It was also found that a relatively good result was obtained in the west shoal of the 411 PRE on November 20, 2004, according to the criterion of Shi et al. (2017) (Fig. 11c). 412 The extracted TMZs are almost consistent with the reality compared to the true color 413 imagery and the visual interpretation TMZ results (Wang et al., 2020b, 2021). However, 414 the accuracy in the east shoal and surrounding Neilingding Island of the PRE is lower than in the west shoal, where obvious distributions of TMZs are not recognized 415 416 effectively (Fig. 11c). Furthermore, the same criterion does not work well in the western shoal of the PRE at different times (Fig. 11c vs. Fig. 11d). Almost one-third of the 417 distributions of TMZs in the western shoal of the PRE during the high-flow season are 418 419 not distinguished and extracted (Fig. 11d). The results based on the criteria of previous 420 studies, indicate that fixed thresholds have a distinct disadvantage when extracting 421 TMZ at different times or in estuaries.

422 Based on the evaluation and analysis of all the above results (Figs. 7-11), TMZI 423 could be widely and effectively applied for the accurate extraction of estuarine TMZ, 424 regardless of the significant variations in hydrodynamic environments, TSS and Chla concentrations in different estuaries and seasons. Compared to previous studies and the 425 426 results from fixed thresholds, it is concluded that TMZI has significant potential to develop into a unified model for distinguishing and extracting TMZ effectively and 427 accurately in many other estuaries globally (Q: 0.8171-0.8429 vs. 0.1046-0.4770). 428

429 **4 Summary and Conclusions**

430 This study established and developed a novel model (turbidity maximum zone index) based on TSS and Chla concentration, to distinguish estuarine turbidity 431 432 maximum zone from Landsat imageries. It was found that both TSS and Chla concentrations showed significant variations and different characteristics in the PRE, 433 434 the HRE and the MRE in different times (Figs. 4 and 8-10). A corresponding relationship between TSS and Chla concentrations in the three estuaries of Guangdong 435 Province remains. In this study, the Chla and TSS concentrations showed almost 436 opposite spatial distribution characteristics, where relatively high (low) Chla 437 concentrations corresponded exactly to the relatively low (high) TSS concentrations 438 439 (Figs. 4-5 and 8-10). Therefore, here, the turbidity maximum zone index (TMZI) was defined and designed as the ratio of the difference and sum of the logarithmic 440 441 transformation of TSS and Chla concentrations.

442 Compared with the true (false) color imagery and the visual interpretation TMZ 443 results, it was found that the TMZ extraction results by TMZI were consistent with the 444 reality (Figs. 7-10; Q: 0.8171-0.8429). Notably, the criterion used for extracting TMZs 445 in different estuaries and seasons was the same (TMZI > 0.2). In addition, reasonable 446 accuracy and a better performance were obtained by TMZI compared with the previous 447 fixed TSS concentration or turbidity threshold (Fig. 11; Q: 0.8171-0.8429 vs. 0.1046-448 0.4770), demonstrating that TMZI has a higher adaptability and robustness. The results of this study indicate that there is significant potential for optimizing TMZI to distinguish and extract TMZs from multi-source satellite remote sensing, such as Sentinel, Aqua & Terra-MODIS, Envisat MERIS and SeaWiFS. This will also assist in establishing and developing a global unified criterion for extracting TMZs effectively in different estuaries and at different times.

454 Code and data availability

All the Landsat remote sensing imageries are fully available at
https://glovis.usgs.gov/ (USGS 1982; NASA 2001).

457 Author Contribution

The individual contributions and responsibilities of the authors are listed as follows: Chongyang Wang and Li Wang designed the research and wrote the paper; Chenghu Zhou and Dan Li guided the research process; Danni Wang, Qiong Zheng, Hao Jiang, Kai Jia and Yangxiaoyue Liu collected and analyzed the data; Shuisen Chen, Ji Yang, Xia Zhou and Yong Li revised the manuscript, provided some comments and helped edit the manuscript. All authors have read and agreed to the published version of the manuscript.

465 **Competing interests**

466 The authors declare that they have no conflict of interest.

467 Acknowledgements

This work was funded jointly by National Natural Science Foundation of China 468 (41801364), Natural Science Foundation of Guangdong Province (2021A1515012579), 469 Key Special Project for Introduced Talents Team of Southern Marine Science and 470 Engineering Guangdong Laboratory (Guangzhou) (GML2019ZD0301), 471 Scientific Research Project approved by Department of Education of Guangdong Province 472 473 (2019KQNCX209), Guangdong Innovative and Entrepreneurial Research Team 474 Program (2016ZT06D336) and GDAS' Project of Science and Technology Development (2020GDASYL-20200104006, 2020GDASYL-20200302001, 475 2019GDASYL-0503001, 2019GDASYL-0301001 and 2019GDASYL-0501001). We 476 477 would also like to thank USGS for providing the Landsat remote sensing imageries.

478 **References**

	479	Asp, N.E.,	Gomes,	V.,	Schettini,	C.A.F.,	Filho,	P.W.S.,	Siegle,	Е.,	Ogston,	А	s.
--	-----	------------	--------	-----	------------	---------	--------	---------	---------	-----	---------	---	----

- 480 Nittrouer, C.A., Silva, J.N.S., Nascimento, W.R., Jr, Souza, S.R., Pereira, L.C.C.,
- 481 Queiroz, M.C., 2018. Sediment dynamics of a tropical tide-dominated estuary:
- 482 Turbidity maximum, mangroves and the role of the Amazon River sediment load.
 483 Estuarine, Coastal and Shelf Science.
- 484 Attila, J., Kauppila, P., Kallio, K.Y., Alasalmi, H., Keto, V., Bruun, E., Koponen, S.,
- 485 2018. Applicability of Earth Observation chlorophyll-a data in assessment of

- 486 water status via MERIS-With implications for the use of OLCI sensor. Remote
 487 Sensing of Environment. 212, 273-287.
- Azhikodan, G., Yokoyama, K., 2019. Seasonal morphodynamic evolution in a
 meandering channel of a macrotidal estuary. Science of the Total Environment.
 684, 281-295.
- Brenon, I., Hir, P.L., 1999. Modelling the Turbidity Maximum in the Seine Estuary
 (France): Identification of Formation Processes. Estuarine, Coastal and Shelf
 Science. 49, 525-544.
- Cai, L., Shi, W., Miao, Z., & Hao, M. (2018). Accuracy Assessment Measures for
 Object Extraction from Remote Sensing Images. Remote Sensing, 10, 303.
- 496 Chen, S., Fang, L., Li, H., Chen, W., Huang, W., 2011. Evaluation of a three-band

model for estimating chlorophyll-a concentration in tidal reaches of the Pearl River

- 498 Estuary, China. ISPRS Journal of Photogrammetry and Remote Sensing. 68, 356-499 364.
- 500 Chen, S., Han, L., Chen, X., Li, D., Sun, L., Li, Y., 2015. Estimating wide range Total

497

- 501 Suspended Solids concentrations from MODIS 250-m imageries: An improved 502 method. ISPRS Journal of Photogrammetry and Remote Sensing. 99, 58-69.
- 503 Chen, X., Shen, Z., Yang, Y., 2016. Response of the turbidity maximum zone in the
- 504 Yangtze River Estuary due to human activities during the dry season.
- 505 Environmental Science and Pollution Research. 11, 1-16.

506	Feng, H., Cochran, J.K., Hirschberg, D.J., 2002. Transport and sources of metal
507	contaminants over the course of tidal cycle in the turbidity maximum zone of the
508	Hudson River estuary. Water Research. 36, 733-743.
509	Gebhardt, A.C., Schoster, F., Gaye-Haake, B., Beeskow, B., Rachold, V., Unger, D.,
510	Ittekkot, V., 2005. The turbidity maximum zone of the Yenisei River (Siberia) and
511	its impact on organic and inorganic proxies. Estuarine, Coastal and Shelf Science.
512	65, 61-73.
513	Gong, S., Gao, A., Lin, J., Zhu, X., Zhang, Y., Hou, Y., 2017. Temporal-spatial
514	distribution and its influencing factors of suspended particulate matters in

- 515 Minjiang lower reaches and estuary. Journal of Earth Sciences and Evironment. 516 39(6), 826-836.
- 517 Grasso, F., Verney, R., Hir, P.L., Thouvenin, B., Schulz, E., Kervella, Y., Fard, I.K.P.,
- 518 Lemoine, J.-P., Dumas, F., Garnie, V., 2018. Suspended Sediment Dynamics in the
- 519 Macrotidal Seine Estuary (France) Part 1: Numerical Modeling of Turbidity
- 520 Maximum Dynamics. Journal of Geophysical Research: Oceans. 123, 558-577.
- 521 Gregg, W.W., Casey, N.W., 2004. Global and regional evaluation of the SeaWiFS
 522 chlorophyll data set. Remote Sensing of Environment. 93, 463-479.
- 523 Huang, B., Hong, H., Ke, L., Cao, Z., 2005. Size-fractionated phytoplankton biomass
- and productivity in the Zhujiang River Estuary in China. Acta Oceanologica Sinica.
- 525 27, 180-186.

526	Jalón-Rojas, I., Schmidt, S., Sottolichio, A., Bertier, C., 2016. Tracking the turbidity
527	maximum zone in the Loire Estuary (France) based on a long-term, high-
528	resolution and high-frequency monitoring network. Continental Shelf Research.
529	117, 1-11.
530	Jiang, J., He, Q., Zhu, L., Lin, J., 2019. Analysis of hydrodynamic features of the North
531	Passage in the turbidity maximum, Changjinag Estuary. Haiyang Xuebo. 41(1),
532	11-20.
533	Jiang, X., Lu, B., He, Y., 2013. Response of the turbidity maximum zone to fluctuations
534	in sediment discharge from river to estuary in the Changjiang Estuary (China).
535	Estuarine, Coastal and Shelf Science. 131, 24-30.
536	Kim, H.H., Ko, B.C., Nam, J.Y., 2016a. Predicting chlorophyll-a using Landsat 8 OLI
537	sensor data and the non-linear RANSAC method -a case study of Nakdong River,
538	South Korea. International Journal of Remote Sensing. 37, 3255-3271.
539	Kim, W., Moon, JE., Park, YJ., Ishizaka, J., 2016b. Evaluation of chlorophyll
540	retrievals from Geostationary Ocean Color Imager (GOCI) for the North-East
541	Asian region. Remote Sensing of Environment. 184, 482-495.
542	Kitheka, J.U., Mavuti, K.M., Nthenge, P., Obiero, M., 2016. The turbidity maximum
543	zone in a shallow, well-flushed Sabaki estuary in Kenya. Journal of Sea Research.
544	110, 17-28.

- 545 Le, C., Hu, C., Cannizzaro, J., English, D., Muller-Karger, F., Lee, Z., 2013. Evaluation
- of chlorophyll-a remote sensing algorithms for an optically complex estuary.
- 547 Remote Sensing of Environment. 129, 75-89.
- 548 Le, C., Li, Y., Zha, Y., Sun, D., Huang, C., Lu, H., 2009. A four-band semi-analytical
- 549 model for estimating chlorophyll a in highly turbid lakes: The case of Taihu Lake,
- 550 China. Remote Sensing of Environment. 113, 1175-1182.
- 551 Li, L., Ye, T., Wang, X., Xia, Y., 2019. Tracking the multidecadal variability of the
- surface turbidity maximum zone in Hangzhou Bay, China. International Journal ofRemote Sensing. 1-22.
- Liu, H., Huang, L., Tan, Y., Ke, Z., Liu, J., Zhao, C., Wang, J., 2017. Seasonal variations
- of chlorophyll a and primary production and their influencing factors in the PearlRiver Estuary. Journal of Tropical Oceanography. 36, 81-91.
- 557 Liu, R., Wang, Y., Gao, J., Wu, Z., Guan, W., 2016. Turbidity maximum formation and
- its seasonal variations in the Zhujiang (Pearl River) Estuary, southern China. Acta
- 559Oceanologica Sinica. 35, 22-31.
- 560 Mitchell, S., 2013. Turbidity maxima in four macrotidal estuaries. Ocean & Coastal
 561 Management. 79, 62-69.
- 562 Mitchell, S., Akesson, L., Uncles, R., 2012. Observations of turbidity in the Thames
- 563 Estuary, United Kingdom. Water and Environment Journal. 26, 511-520.
- 564 Montanher, O., Novo, E., Barbosa, C., Renno, C., Silva, T., 2014. Empirical models for
- 565 estimating the suspended sediment concentration in Amazonian white water rivers

- using Landsat 5/TM. International Journal of Applied Earth Observation andGeoinformation, 29, 67-77.
- 568 Park, K., Wang, H.V., Kim, S.-C., Oh, J.-H., 2008. A Model Study of the Estuarine
- 569 Turbidity Maximum along the Main Channel of the Upper Chesapeake Bay.
 570 Estuaries and Coasts. 31, 115-133.
- 571 Pozdnyakov, D., Shuchman, R., Korosov, A., Hatt, C., 2005. Operational algorithm for
- 572 the retrieval of water quality in the Great Lakes. Remote Sensing of Environment.
- 57397, 352-370.
- Schubel, J., 1968. Turbidity maximum of the northern chesapeake bay. SCIENCE. 161,
 1013-1015.
- Shen, H., 1995. New understanding on the study of the maximum turbidity zone in
 estuaries of China. Advence in Earth Sciences. 10, 210-212.
- 578 Shen, H., He, S., Mao, Z., Li, J., 2001. On the turbidity maximum in the Chinese
- 579 estuaries. Journal of Sediment Research. 1, 23-29.
- 580 Shi, W., Shen, H., Li, J., 1993. Review on the formation of estuarine turbidity maximum.
- 581Advence in Earth Sciences. 8, 8-13.
- 582 Shi, Z., Xu, J., Huang, X., Zhang, X., Jiang, Z., Ye, F., Liang, X., 2017. Relationship
- 583 between nutrients and plankton biomass in the turbidity maximum zone of the
- 584 Pearl River Estuary. Journal of Environmental Sciences. 57, 72-84.
- 585 Song, K., Li, L., Tedesco, L.P., Li, S., Duan, H., Liu, D., Hall, B.E., Du, J., Li, Z., Shi,
- 586 K., Zhao, Y., 2013. Remote estimation of chlorophyll-a in turbid inland waters:

587 Three-band model versus GA-PLS model. Remote Sensing of Environment. 136,588 342-357.

- 589 Toublanc, F., Brenon, I., Coulombier, T., 2016. Formation and structure of the turbidity
- 590 maximum in the macrotidal Charente estuary (France)_ Influence of fluvial and
 591 tidal forcing. Estuarine, Coastal and Shelf Science. 169, 1-14.
- 592 Uncles, R.J., Bloomer, N.J., Frickers, P.E., Griffiths, M.L., Harris, C., Howland, R.J.M.,
- 593 Morris, A.W., Plummer, D.H., Tappin, A.D., 2000. Seasonal variability of salinity,
- 594 temperature, turbidity and suspended chlorophyll in the Tweed Estuary. The
- 595 Science of the Total Environment. 251/252, 115-124.
- 596 Wai, O.W.H., Wang, C.H., Li, Y.S., Li, X.D., 2004. The formation mechanisms of
- 597 turbidity maximum in the Pearl River estuary, China. Marine Pollution Bulletin.598 48, 441-448.
- 599 Wan, Y., Wang, L., 2017. Numerical investigation of the factors influencing the vertical
- profiles of current, salinity, and SSC with in a turbidity maximum zone.International Journal of Sediment Research. 32, 20-33.
- Wang, C., Chen, S., Li, D., Wang, D., liu, W., Yang, J., 2017a. A Landsat-based model
- for retrieving total suspended solids concentration of estuaries and coasts in China.
 Geoscientific Model Development. 10, 4347-4365.
- Wang, C., Chen, S., Yang, J., Li, Y., Zhou, X., Li, D., Wang, D., 2020a. Monitoring total
- suspended solids concentrations in estuaries based on remote sensing. Beijing:
- 607 China Water & Power Press.

608	Wang, C., Li, D., Wang, D., Chen, S., 2017b. Detecting the Temporal and Spatial
609	Changes of Suspended Sediment Concentration in Hanjiang River Estuary During
610	the Past 30 Years Using Landsat Imageries. Research Journal of Environmental
611	Science. 11, 143-155.
612	Wang, C., Li, W., Chen, S., Li, D., Wang, D., Liu, J., 2018. The spatial and temporal
613	variation of total suspended solid concentration in Pearl River Estuary during
614	1987–2015 based on remote sensing. Science of the Total Environment. 618, 1125-
615	1138.
616	Wang, C., Wang, D., Yang, J., Fu, S., Li, D., 2020b. Suspended Sediment within

- 617 Estuaries and along Coasts: A Review of Spatial and Temporal Variations based
 618 on Remote Sensing. Journal of Coastal Research. 36, 1323-1331.
- 619 Wang, C., Zhou, C., Chen, S., Xie, Y., Li, D., Yang, J., Zhou, X., Li, Y., Wang, D., Liu,
- Y., 2021. Retrospect and perspective of the estuarine turbidity maximum zone
 researches. Chinese Science Bulletin. 66, 2328-2342.
- Yan, D., Song, D., Bao, X., 2020. Spring-neap tidal variation and mechanism analysis
 of the maximum turbidity in the Pearl River Estuary during flood season. Journal
 of Tropical Oceanography. 39, 20-35.
- 625 Yang, J., Liu, W., 2015. Characteristics of the maximum turbidity zone in the
- 626 lingdingyang-Pearl river estuary during the flood season in the recent 30 years.
- 627 Pearl River Water Transport. 16, 58-62.

628	Yang, Y., Li, Y., Sun, Z., Fan, Y., 2014. Suspended sediment load in the turbidity
629	maximum zone at the Yangtze River Estuary: The trends and causes. Journal of
630	Geographical Sciences. 24, 129-142.

- 631 Yu, Q., Wang, Y., Gao, J., Gao, S., Flemming, B., 2014. Turbidity maximum formation
- 632 in a well-mixed macrotidal estuary: The role of tidal pumping. Journal of633 Geophysical Research: Oceans. 119, 7705-7724.
- 634 Zhang, X., Chen, X., Dou, X., Zhao, X., Xia, W., Jiao, J., Xu, H., 2019. Study on
- 635 formation mechanism of turbidity maximum zone and numerical simulations in
- the macro tidal estuaries. Advances in Water Science. 30, 84-92.