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Abstract. Permafrost, soil that remains below 0 ◦C for two or more years, currently stores more than a fourth of global soil

carbon. A warming climate makes this carbon increasingly vulnerable to decomposition and release into the atmosphere in

the form of greenhouse gases. The resulting climate feedback can be estimated using Earth system models (ESMs), but the

high complexity and computational cost of these models make it challenging to use them for estimating uncertainty, exploring

novel scenarios, and coupling with other models. We have added a representation of permafrost to the simple, open-source5

global carbon-climate model Hector, calibrated to be consistent with both historical data and 21st century ESM projections of

permafrost thaw. We include permafrost as a separate land carbon pool that becomes available for decomposition into both CH4

and CO2 once thawed; the thaw rate is controlled by region-specific air temperature increases from a pre-industrial baseline.

We found that by 2100 thawed permafrost carbon emissions increased Hector’s atmospheric CO2 concentration by 10-15% and

the atmospheric CH4 concentration by 10-20%, depending on the future scenario. This resulted in around 0.5 °C of additional10

warming over the 21st century. The fraction of thawed permafrost carbon available for decomposition was the most significant

parameter controlling the end-of-century temperature change and atmospheric CO2 concentration in the model and became

increasingly significant over even longer timescales. The addition of permafrost in Hector provides a basis for the exploration

of a suite of science questions, as Hector can be cheaply run over a wide range of parameter values to explore uncertainty and

easily coupled with integrated assessment models to explore the economic consequences of warming from this feedback.15

1 Introduction

Permafrost—soil that continuously remains below 0◦C for at least two consecutive years—underlies an area of 22 (± 3)

million km2, roughly 17% of the Earth’s exposed land surface (Gruber, 2012), and is estimated to contain 1460-1600 Pg of

organic carbon (Schuur et al., 2018). Recent increases in global air temperature (Stocker et al., 2013), which are amplified

at high latitudes (Pithan and Mauritsen, 2014), have resulted in widespread permafrost thaw (Romanovsky et al., 2010), and20

simulations from variety of climate and land surface models across a wide range of scenarios suggest that this trend will

continue into the future (Koven et al., 2013; Chadburn et al., 2017).
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As permafrost thaws, this carbon becomes available to microbes for decomposition, resulting in the production of carbon

dioxide (CO2) and methane (CH4) (Treat et al., 2014; Schädel et al., 2014; Schädel et al., 2016; Bond-Lamberty et al., 2016)

that could lead to further warming (Koven et al., 2011; Schuur et al., 2015). Accounting for this permafrost carbon-climate25

feedback generally increases projections of greenhouse gas concentrations and global temperatures (Schuur et al., 2015; Burke

et al., 2020) and increases estimates of the economic impact of climate change (Hope and Schaefer, 2015; Yumashev et al.,

2019; Chen et al., 2019). However, the magnitude of this feedback is still highly uncertain, due to limited data availability and

missing process-based understanding (Burke et al., 2020). The potential impact ranges from negligible to large, with stronger

effects possible particularly over longer time horizons (Schuur et al., 2015).30

Land surface models, like the Community Land Model (CLM) and JULES, use process-based representations of permafrost

and can explicitly model relevant components such as soil heat flux, soil moisture, hydrology, and vegetation and can output

thaw extent and depth, as well as emissions from permafrost soils (Chadburn et al., 2015; Lawrence et al., 2012). However,

these high complexity models require large numbers of inputs and are computationally expensive, making it challenging to use

them for uncertainty quantification.35

Conversely, simple climate models such as MAGICC (Meinshausen et al., 2011) and Hector (Hartin et al., 2015) sacrifice

spatiotemporal resolution and de-emphasize process realism in favor of conceptual simplicity and fast execution time. As a

result they can be used to explore permafrost effects over a wide range of parameters and to analyze the relative significance of

various permafrost controls. Similar models models have previously been used to explore permafrost processes such as abrupt

thaw that are not yet included in Earth system models (Turetsky et al., 2020) and to understand structural and parametric40

uncertainty (Schneider von Deimling et al., 2015; Chadburn et al., 2017; Koven et al., 2015b). Simple climate models can also

be calibrated to emulate the mean global behavior of ESMs to a high degree of accuracy (Meinshausen et al., 2011).

Here we describe the addition of permafrost thaw to the simple carbon-climate model Hector, with the goal of providing a

long-term platform for addressing a suite of science questions. Hector has been used for a wide range of analyses including

climate effects on hydropower (Arango-Aramburo et al., 2019), ocean acidification (Hartin et al., 2016), and global building45

energy use (Clarke et al., 2018), and for exploring the effects of observational constraints on estimates of climate sensitivity

(Vega-Westhoff et al., 2019). Including a representation of permafrost in this model will allow for the consideration of per-

mafrost in future such analyses with Hector, and will be particularly important to evaluating regional impacts of climate change

in high latitudes.

2 Hector Model Design50

Hector (Hartin et al., 2015, 2016) is an open source, object-oriented simple carbon-climate model that can emulate the global-

scale behavior of more sophisticated climate models. Hector’s simplicity and modular design make it easy to tweak or substan-

tially change Hector’s internal structure, while its fast computation time ( 1-2 seconds) allows for easier interpretation of model

behavior and facilitates sensitivity and uncertainty analyses, as well as prototyping of new submodules and features. Another

significant advantage of Hector is ease-of-use due to low memory requirements, ease-of-compilation, and an R interface for55
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Figure 1. Hector’s default carbon cycle showing fluxes (arrows) between each carbon pool. The terrestrial carbon cycle pools can be split

into multiple groups, such as biomes or regions, so these are shown with multiple boxes. In darker green we show the addition of our novel

permafrost representation in Hector. As carbon is exchanged in a variety of forms in Hector, the carbon flux arrows do not correspond to any

particular carbon compound except where specified for land emissions. Vegetation, detritus, soil all emit CO2, while thawed soil produces

both CO2 and CH4 emissions.

setting inputs and parameters and retrieving model outputs. We focus here on Hector’s carbon cycle as relevant to the addition

of a permafrost carbon pool, but for a detailed description of the structure, components, and functionality of the base version

of Hector see Hartin et al. (2015). For subsequent updates, see the Hector repository https://github.com/JGCRI/hector.

Ocean carbon in Hector is exchanged between the atmosphere and four carbon pools that model both physical circulation

and chemical processes in the ocean. Carbon is taken up from the atmosphere in the high latitude surface box, which transfers60

some portion of this carbon to the deep ocean carbon pool. Carbon from there circulates up to the intermediate ocean layer

and finally up to the high and low latitude surface pools. Carbon is then outgased back to the atmosphere from the low latitude

surface pool (Figure 1).

Hector’s default terrestrial carbon cycle includes three land carbon pools: vegetation, detritus and soil, which can each be

separated across multiple user-defined groups (that can correspond to divisions like biomes, latitude bands, or political units),65

each with their own set of parameters. The vegetation pool takes up carbon from the atmosphere as net primary productivity

(NPP), some of which is tranferred into the detritus pool, which can be decomposed and enter the soil carbon pool. All three
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land carbon pools separately emit carbon back to the atmosphere from land use change, and soil and detritus release additional

carbon through decomposition-driven microbial respiration (Figure 1).

The annual change in atmospheric carbon in Hector, dCatm

dt , at time t is given by:70

∆Catm
dt

(t) = FA(t) +FLC(t)−FO(t)−FL(t) (1)

where FA is the flux of anthropogenic industrial and fossil fuel emissions, FLC is land use change emissions, FO is the net

atmosphere-ocean carbon flux, and FL is the land-atmosphere carbon flux. FL is the sum of NPP and heterotrophic respiration

fluxes across all user-defined groups, i:

FL(t) =
n∑

i=1

NPPi(t)−
n∑

i=1

RHi(t) (2)75

Heterotrophic respiration for group i at time t (RH[i, t]) includes contributions from both soil and detritus decomposition:

RH[i, t] =RHs[i, t] +RHd[i, t] (3)

RHd[i, t] =
1
4
CdQ10[i]T [i,t]/10 (4)

RHs[i, t] =
1
50
CsQ10[i]T200[i,t]/10 (5)

where T [i, t] is the change in annual mean temperature (K) since the initial model period in group i at time t (modeled80

as the globally averaged mean annual temperature at time t multiplied by a group-specific warming factor). Detritus and soil

heterotrophic respiration are both proportional to the sizes of their respective carbon pools (Cd andCs, both in Pg C), with a rate

that increases exponentially with temperature according to a region-specific temperature sensitivity parameter (Q10). Detritus

respiration increases with region-specific air temperature change (T [i, t]), while soil respiration increases with the 200-year

running mean of air temperature (T200[i, t]), a smoothing used in Hector as a proxy for soil temperatures. This dampens the85

variability and produces a slower response in soil warming compared to air temperatures. Note that in Eqns. 3-5 respiration

fluxes include only CO2 emissions.

2.1 Permafrost Submodel

We added permafrost to Hector as an additional soil carbon pool that does not decompose or otherwise interact with the rest

of Hector’s carbon cycle until it thaws. Following previous modeling approaches, we focus on only the top 3 m of permafrost90

(Kessler, 2017; Koven et al., 2015b), which is also consistent with other soil carbon pools in Hector. At each time step, a

temperature-controlled fraction of permafrost carbon is exchanged between the permafrost and thawed permafrost carbon

pools. In the thawed permafrost pool carbon is available for decomposition into CO2 and CH4. Primarily carbon moves from

the permafrost pool to the thawed pool as temperatures rise in the future, but refreeze of thawed carbon is also possible in

scenarios where emissions reductions allow for potential cooling.95
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For a permafrost carbon pool at time t, Cperm[t], and a thawed permafrost carbon pool, Cthawed[t], (both in units of Pg C),

permafrost carbon in Hector is exchanged as:

Cperm[t] = Cperm[t− 1] + ∆Cperm[t] (6)

Cthawed[t] = Cthawed[t− 1] + ∆Cperm[t] +Fthawed−atm (7)

where ∆Cperm[t] is the change in the permafrost carbon pool at time t due to permafrost thaw or refreeze. Assuming a100

uniform permafrost carbon density, ∆Cperm[t] is given by:

∆Cperm[t] = (Φ[t]−Φ[t− 1]) ·Cperm[t− 1] (8)

where Φ[t] is the fraction of permafrost remaining at time t.

To a first approximation, Φ[t] can be estimated as a function of mean air temperature (global or adjusted by a biome-

specific warming factor). We calculate Φ at each timestep in Hector following the model reported by Kessler (2017), but we105

recalibrated the model to use high latitude temperatures, THL, instead of global mean surface temperatures, and we use a

lognormal cumulative distribution function instead of a linear model in order to allow for slower thaw in deeper permafrost

and to bound the output by zero and one.

Φ[t] = 1−NCDF(log(∆THL)|µ,σ) (9)

where NCDF is the normal cumulative distribution function and µ and σ are the mean and standard deviation of the110

lognormal distribution. These two parameters control the frozen fraction of permafrost as a function of temperature and can be

interpreted as follows: eµ is the temperature at which 50% of the permafrost is thawed, while σ controls how sudden the thaw

is around the mean relative to lower and higher temperatures. Technically, permafrost area could increase in the case of cooling

temperatures, and therefore the area fraction could be greater than one. However, because even the most aggressive climate

action scenarios show future temperatures that stabilize above early 21st century temperatures, we assume that permafrost area115

will never grow more than the starting value.

2.1.1 Permafrost Carbon Emissions

Even after thaw, only a fraction of permafrost carbon is available to decompose, while the remainder is inert. This non-labile

fraction of carbon, fstatic, is removed from the thawed permafrost carbon pool at each time step before decomposition. Of the

remaining labile fraction, most decomposes aerobically to CO2 from microbial respiration, while a small fraction generates120

CH4 emissions from anaerobic respiration. Heterotrophic respiration emissions from Hector’s thawed permafrost carbon pool

are partitioned between CO2 and CH4 based on a CH4 respiration fraction, fCH4.

With the addition of permafrost in Hector, the total heterotrophic respiration flux of CO2 (RH[i, t]) for biome i at time t is

the sum of heterotrophic respiration in detritus (RHd), soil (RHs), and thawed permafrost (RHpf ):

RH[i, t] =RHs[i, t] +RHd[i, t] +RHpf [i, t] (10)125

5

https://doi.org/10.5194/gmd-2020-377
Preprint. Discussion started: 8 January 2021
c© Author(s) 2021. CC BY 4.0 License.



Figure 2. Lognormal permafrost-temperature relationship (red) in Hector with µ= 1.80 (eµ=6.05) and σ = 0.917, compared with our high

latitude temperature-adjusted form of the linear model in Kessler (2017) (black). The shaded area shows the upper and lower bounds given

by plus or minus one standard deviation from our adjusted version of the best estimate model in Kessler.

The thawed permafrost CO2 repiration flux, RHpf , is proportional to the size of the thawed pool, Cthawed, based on the

non-labile fraction of carbon in that pool, fstatic, and to the fraction of emissions released as CH4, and increases exponentially

with the 200-year running mean of temperature, following the formulation from Hector’s default soil pool.

RHpf [i, t] = (1− fstatic) · (1− fCH4) ·Cthawed ·Q10[i]T200[i,t]/10 (11)

The CH4 respiration flux from thawed permafrost is estimated similarly, but is added to natural CH4 emissions in Hector,130

which are prescribed at 300 Tg year−1 (Hartin et al., 2015) to affect atmospheric CH4 concentrations.

RHCH4[i, t] = (1− fstatic) · (fCH4) ·Cthawed ·Q10[i]T200[i,t]/10 (12)

While there are other processes occurring (see Discussion) these are thought to be the major processes controlling decadal

permafrost dynamics (Schuur et al., 2015).

2.2 Configuration and Tuning135

To run Hector with permafrost we separated the land component of the model into permafrost and non-permafrost regions

(groups). In the permafrost region all parameters were set to the values given in Table 1, and we allocated 10% of the initial
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global vegetation carbon (equivalent to 55 Pg C McGuire et al. 2018), 2% of the initial detritus carbon ( 1 Pg C), and 13%

of the global soil carbon (equivalent to 308 Pg C, following Hugelius et al. 2014) to this region. Initial permafrost carbon in

Hector was set to 825 (± 150) Pg C based on the 727 Pg C estimate for near-surface (<3 m depth) permafrost by Hugelius140

et al. (2014) and scaled up based on historical thaw in the model so that the resulting modern value is close to 727 Pg C. We

did not use the full 1035 Pg C reported in Hugelius et al. (2014) here, as this includes both frozen and non-frozen soil, and we

instead allocated the remaining 308 Pg C to non-permafrost soil in the permafrost region.

Table 1. Hector configuration of permafrost-related parameters and initial values based on literature review. Ranges shown are used for the

sensitivity analysis. Cperm(t= 0) was estimated by scaling up 727 Pg C (Hugelius et al., 2014) based on the fraction of permafrost lost by

2010. The soil and vegetation carbon initial values refer to non-permafrost carbon in the permafrost region, and µ and σ are tuned parameters

estimated by optimizing the model against results from Koven et al. (2013).

Parameter Hector Nomenclature Value Estimated Range Reference Description

µ pf_mu 1.80 1.80-2.13 tuned to Kessler (2017) Permafrost-thaw parameter

σ pf_sigma 0.917 0.90-1.03 tuned to Kessler (2017) Permafrost-thaw parameter

fstatic fpf_static 0.40 0.13-0.60 Burke et al. (2012, 2013) Non-labile permafrost fraction

Cperm(t= 0) permafrost_c 825 Pg C 675-975 Pg C Hugelius et al. (2014) Initial permafrost carbon

Csoil(t= 0) soil_c 308 Pg C — Hugelius et al. (2014) Initial non-permafrost soil in the

permafrost region

Cveg(t= 0) veg_c 55 Pg C — McGuire et al. (2018) Initial vegetation stock in the per-

mafrost region

wf warmingfactor 2.0 1.75-2.25 Pörtner et al. (2019) High-latitude warming factor

fRH_CH4 rh_ch4_frac 0.023 0.01-0.03 Schuur et al. (2013);

Schneider von Deimling

et al. (2015)

Fraction of thawed permafrost car-

bon decomposed as CH4

We also amplified warming in the permafrost region as a constant multiple of global mean temperatures in Hector, to account

for increased rates of warming at high latitudes. We set this warming factor to 2.0 (Pörtner et al., 2019).145

We used the upper and lower bounds (± one standard error from the best estimate in Kessler) to recalibrate the model

in Kessler (2017) to high latitude temperatures and then fitted our lognormal distribution parameters µ and σ to the upper

and lower bounds of this adjusted model version. We then used these parameter ranges to tune the permafrost module against

CMIP5 multi-model mean output, using the "L-BFGS-B" method from the optim function in the R stats package. We tuned

based on the fraction of permafrost lost over the historical period, and from 2005-2100 in RCP4.5 and RCP8.5 as reported in150

Koven et al. (2013). We were able tune to closely match future projections, but in order to keep µ and σ within the bounds from

Kessler (2017), we sacrificed some accuracy in historical permafrost change, underestimating this loss by around 35% in our

best model (Koven et al. 2015b, Table 2). The final tuned value of σ that we used as our default baseline in this analysis was
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Table 2. Values used for tuning Hector’s parameters (column 4) compared against final values in Hector after tuning (column 5). The modern

permafrost value in Hector was taken from the year 2010. Koven et al. (2013) values are from the top 50% of CMIP5 models reported in

that analysis based on accuracy of modern permafrost area. As we do not consider deep permafrost in the model, values for the remaining

permafrost area in each time period only include permafrost at less than 3 m depth.

Scenario Source Variable Value Hector

— Hugelius et al. (2014) Modern Permafrost Carbon 0-3m (Pg C) 727 767.0

RCP4.5 Koven et al. (2013) Remaining Permafrost Area 1850-2005 (%) 84 89.6

RCP4.5 Koven et al. (2013) Remaining Permafrost Area 2005-2100 (%) 58 58.6

RCP8.5 Koven et al. (2013) Remaining Permafrost Area 2005-2100 (%) 29 33.3

0.917, while the tuned value of µ was 1.80, which is at the lowest end of the available range. To give a more intuitive sense of

this number, eµ, or 6◦C, corresponds to the high latitude temperature difference since pre-industrial at which only 50% of all155

shallow permafrost will remain.

Estimates of the fraction of inert carbon (not vulnerable to decomposition) vary widely but we use a mean of 0.40 (0.13-

0.60) based on estimates by Burke et al. (2012, 2013). Estimates from Schädel et al. (2014) found this fraction to be even

higher, close to 70% of permafrost carbon. The partitioning between CH4 and CO2 emissions from thawed permafrost carbon

systems depends on soil drainage and anoxia and is highly uncertain (Knoblauch et al., 2018; Schädel et al., 2016; Schuur et al.,160

2013). We set the share of CH4 to be 2.3% of total emissions, from (Schuur et al., 2013), although a more recent meta-analysis

indicates that it could be around 4.3% (Schädel et al., 2016).

2.3 Evaluation

We ran Hector with and without permafrost feedbacks using forcings from each of four Representative Concentration Pathways

(RCPs), RCP2.6, RCP4.5, RCP6.0, and RCP8.5 (Moss et al., 2010). We chose these scenarios to broadly demonstrate the165

impacts of a wide range of future climate conditions on permafrost thaw and permafrost-driven carbon emissions and for ease

of comparison with other results. The only difference between our model runs with and without permafrost feedbacks is that

the baseline (no-permafrost) configuration of Hector is initialized with Cperm(t= 0) set to 0 to turn off permafrost feedbacks.

Our analysis focused on the 21st century, but we also show some longer term effects of permafrost out to 2300. Hector has

not been calibrated over this period, however, and these findings should be taken as provisional. We also ran the model with170

and without active CH4 emissions to estimate the separate contributions of permafrost-driven CO2 and CH4 emissions to the

permafrost climate feedback.

Given that much uncertainty remains surrounding permafrost controls, we evaluated the sensitivity of three key climate

and carbon cycle outcomes (temperature anomalies and atmospheric CO2 and CH4 concentrations) to changes in each of the

permafrost-specific parameters in Hector across their estimated ranges from the literature (Table 1). The parameters we include175

are the permafrost thaw parameters, µ and σ; the initial size of the shallow permafrost pool available for thaw (Cperm(t= 0));
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the fraction of thawed permafrost that is not available for decomposition (fstatic); and the fraction of thawed permafrost

carbon emissions that decomposes to CH4 (fRHCH4). From these parameters we generated priors by sampling from normal

distributions centered on the default values of each parameter from Table 1. We then ran Hector with 500 parameter sets drawn

from the prior distributions. Based on the effects on temperature and atmospheric CO2 and CH4 in 2100 in each of these180

model runs, we estimated the coefficient of variation, elasticity, prediction variance and partial variance of each paramter. We

follow the approach of LeBauer et al. (2013), except that while LeBauer et al. (2013) fit a cubic spline interpolation through

each parameter-output combination, we used a multivariate generalized additive model regression. This allowed us to calculate

partial derivatives across the median of each parameter, making for simpler computation and easier interpretation.

3 Results185

This Hector implementation of permafrost thaw and loss reproduced the magnitude and general temporal trajectory of globally

averaged permafrost thaw simulated by ESMs and by simpler permafrost thaw models (Koven et al., 2015a; Burke et al., 2017;

Schuur et al., 2015; McGuire et al., 2018). In RCP 4.5, 6.0, and 8.5, permafrost losses reached 300-400 Pg C by 2100 and

mostly leveled off after this point (Figure 3a). RCP2.6 is unique in that strong emissions mitigation in this scenario leads to

cooling temperatures, which allowed for permafrost recovery (i.e., re-freeze of carbon from the thawed permafrost pool) to190

begin by the end of the century in Hector. In all scenarios, the thawed permafrost carbon pool increased to a peak around

mid-century, at which point losses to CH4 and CO2 from heterotrophic respiration began to outpace the carbon inputs from

new permafrost thaw. Over longer timescales, carbon stocks of thawed permafrost carbon dropped to zero.

The influence of permafrost on the net land-atmosphere carbon flux in Hector was strongest while respiration emissions

from permafrost thaw were at their peak, around mid-century, resulting in a peak increase of up to 3 Pg C yr-1. This almost195

entirely offset the existing land sink, such that the net land-atmosphere flux in our permafrost run remained near zero through

2100 in all scenarios but RCP8.5. This influence of permafrost reduced almost to zero by 2300 (Figure 3c) since warming, and

thus permafrost thaw, flattened soon after the end of the 21st century in all scenarios. On the other hand, the changes in the non-

permafrost land-atmosphere flux due to permafrost in Hector increased until the end of the century, after which they declined

and resulted in net losses by 2300, driven by higher temperatures and thus increasing losses of soil carbon from heterotrophic200

respiration.

We found that including CH4 emissions in the model, set to the default fraction of 2.3% of emissions from thawed permafrost

carbon, increased the strength of the effect of the permafrost feedback on global mean temperatures by 25%, adding around

0.1°C of warming by 2100 in RCP4.5. The relatively short lifetime of CH4 in the atmosphere (estimated as 9.1 years by

Stocker et al., 2013) means that the effects of the permafrost carbon feedback on atmospheric CH4 concentrations across the205

RCPs followed a similar trajectory to that of thawed permafrost carbon, though lagged by a few years. As the thawed permafrost

carbon pool shrank and CH4 emissions from this pool declined, permafrost-driven changes in atmospheric CH4 also dropped

off, falling to zero by 2300 (Figure 3b,d).
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Figure 3. Effect on key climate and carbon outputs of including permafrost in Hector, shown as the difference between a model run with

and without active permafrost processes under the default model configuration across RCP2.6, RCP4.5, RCP6.0, and RCP8.5. Results are

shown through 2100 (solid lines) as the calibrated period of Hector, but are extended to 2300 (dashed lines) to illustrate potential long term

dynamics. The net land carbon flux is the sum of the land-atmosphere carbon fluxes: soil, detritus, and thawed permafrost respiration fluxes

of CO2, thawed permafrost CH4 emissions, land use change, and net primary productivity, and is defined as positive into the atmosphere.

The much longer lifetime of atmospheric CO2 (300 to 1000 years; Stocker et al. 2013), meant that the permafrost-driven

increases remained over the entire model run time, long after actual permafrost emissions dropped to zero. Permafrost emissions210

also drove a steady increase in temperature over the 21st century, which leveled off as emissions declined. Consistent with

previous findings (e.g., Burke et al., 2017; MacDougall et al., 2012, 2013), the influence of permafrost on temperature was

less significant in higher RCPs (declining from a 30% increase in RCP2.6 to a 9% increase in RCP8.5 at 2100) (Table 3). This

meant that although total temperature change in Hector over the 21st century was highest in RCP8.5, the change in temperature

due to permafrost was lowest in this scenario compared to the other RCPs (Figure 3f).215
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Table 3. Permafrost results across all RCP scenarios at 2100 for several key carbon and climate outputs. All results are global and summed

across permafrost and non-permafrost regions. The ’total’ columns are generated by running Hector with the configuration in Table 1, while

the ’change’ columns give the percent change from a baseline model run without active permafrost.

Scenario

RCP26 RCP45 RCP60 RCP85

Output Total Change (%) Total Change (%) Total Change (%) Total Change (%)

Remaining Permafrost Carbon (Pg C) 578.5 -29.9 507.1 -38.5 487.7 -40.9 464.9 -43.7

Net Permafrost CO2 Emissions (Pg C) 196.8 0 237.4 0 240 0 267.8 0

Atmospheric CO2 (ppm) 431.2 13.7 571.5 14.6 722 12.4 982.9 11.1

Net Permafrost CH4 Emissions (Pg C) 4.6 0 5.6 0 5.7 0 6.3 0

Atmospheric CH4 (ppbv) 1335.6 12.5 1924.5 15.8 2117.9 18.4 4683.9 9.1

Non-Permafrost Soil Carbon (Pg C) 1873.6 0.7 1934.7 0.5 1968.6 0.3 1979.1 -0.1

Detritus Carbon (Pg C) 61.6 2.7 64.8 2.3 67.3 1.6 69.6 0.9

Vegetation Carbon (Pg C) 580.4 3.4 617.7 3.2 637.9 2.8 675.2 2.5

Temperature Anomaly (K) 2 29.5 3 19.4 3.6 14.3 5.1 8.7

3.1 Permafrost effects on carbon pools

Across the four RCP scenarios, between 133 and 283 Pg C (in RCP2.6 and RCP8.5, respectively) of permafrost carbon was

thawed by 2100 when all permafrost parameters were set to their default values in Table 1. Between 2000 and 2100 this newly

available carbon moved from the thawed pool to the atmosphere and then into the ocean and non-permafrost land carbon pools

(Figure 4). In RCP8.5 69% (197 Pg C) was decomposed and emitted to the atmosphere as CO2 and CH4 by the end of the220

century. Of that 69%, around 140 Pg C remained in the atmosphere, while 30 Pg C was taken up by the ocean and 10 Pg C

each were taken up by the non-permafrost soil and vegetation pools. The effect on the detritus pool was less than 1 Pg C.

Over longer timescales, the fraction of thawed permafrost carbon emitted to the atmosphere through respiration grew to nearly

100% by 2300, and a larger fraction (close to a quarter) of that respired permafrost carbon was taken up by the ocean from the

atmosphere. The higher temperatures also drove net losses in soil carbon by 2300 relative to a model run without permafrost225

(Figure 4).

While scenarios with lower radiative forcing thawed less permafrost carbon overall, a higher fraction of that carbon ended

up released into the atmosphere by the end of the century (86% in RCP2.6). Relatively more of this carbon was also taken

up by the ocean in this scenario (25% by 2100 and over 90% by 2300) thanks to lower mean global temperatures increasing

the solubility of CO2 in seawater and reducing stratification, while only 42% (56 Pg C) remained in the atmosphere by 2100230

(Figure 4).
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Figure 4. Changes in carbon stocks in a permafrost-active model run compared to a run without permafrost at 2050, 2100, and 2300 across

all RCPs. The sum of each bar is the total carbon lost from the permafrost pool by that year in each RCP. Results for 2300 should be taken

as provisional since Hector is not calibrated over this period. While more carbon moves from the thawed pool into the atmosphere, and then

into the ocean across the three periods shown, a relatively larger fraction of carbon remains in the atmosphere in higher warming scenarios.

3.2 Sensitivity of Temperature Effects to Permafrost Parameters

Based on the effects on end-of-century temperature change and atmopsheric CO2 and CH4 concentrations, we found that the

most significant permafrost control in Hector was the non-labile fraction. This accounted for 30-45% of the variance across all

three outcomes (Figure 5), followed by the initial permafrost pool size (17-22% of the variance). The effect of the permafrost235

thaw mean parameter showed a wider range across the outcomes, responsible for only 10% of the atmospheric CH4 variance,

and 23% of atmospheric CO2. Similarly, adjusting the permafrost thaw standard deviation also had a much smaller effect on

the variance of atmospheric CH4 (3%) and a larger effect on atmospheric CO2 and temperature (11 and 13%, respectively).

Atmospheric CH4 concentrations in 2100 were most affected by the CH4 fraction parameter, while this had no significant effect

on atmospheric CO2 and only a small effect on temperature.240
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Coefficient of 
Variation

Prediction 
Variance

Frozen Permafrost 
Fraction Mean

Frozen Permafrost 
Fraction STDEV

Initial Permafrost 
Pool Size (Pg C)

Methane Fraction 
from Thaw Decomp.

Non-labile Fraction

0.008 0.001
0.010 14
0.008 299

0.010 0.000
0.009 7
0.009 77

37 0.001
35 14
36 514

0.003 0.000
0.003 0.16
0.004 1290

0.057 0.001
0.072 27
0.066 874

Figure 5. Sensitivity analysis of the effect of key permafrost controls on end-of-the-century atmospheric CH4 (orange) and CO2 (grey) con-

centrations as well as temperature anomalies (dark red), following LeBauer et al. (2013) and forced with RCP4.5 emissions. The coefficient

of variation is the ratio between the input parameter mean and variance and reflects the parameter’s relative uncertainty, elasticity is the

normalized sensitivity of the model to a change in a particular parameter, the prediction variance is the variance in the model output, and

finally the partial variance, or the fraction of variance in the model output that is explained by the given parameter, integrates the elasticity

and prediction variance to give the overall sensitivity of the model to each parameter.

Over longer timescales out to 2300 the influence of the non-labile pool size was even stronger, while the effect of the thaw

parameter σ and the CH4 partitioning dropped to nearly zero. The negligible influence of CH4 over longer timescales can be

expected given that all carbon emissions from thawed permafrost carbon have dropped to zero by 2300 and the much shorter

lifetime of CH4 in the atmosphere compared to CO2 means that the effect fades soon after emissions drop off.

4 Discussion and Conclusions245

Including permafrost in Hector significantly increased end-of-century atmospheric CO2 and warming, and had a shorter-term

influence on atmospheric CH4 and the land-atmosphere flux. The parameter with the most significant effects on these out-

comes was the fraction of permafrost available for decomposition, or the non-labile fraction. This suggests that future research

constraining this parameter may be important for reducing uncertainty in permafrost estimations moving forwards. However,
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given the simplicity of the permafrost represenation in Hector, the relevance of this parameter might change with a model that250

uses more detailed physically-based representations of the processes involved.

4.1 Model Limitations

While we attempted to use reasonable values for our model parameters and calibrated Hector to emulate the behavior of

permafrost thaw in global climate models, these results should be taken as demonstrative of this model’s capabilities, rather than

conclusive projections, as model parameter values can be adjusted as needed to reflect the latest understanding of permafrost255

characteristics, and this was not our focus here. What is more important is to acknowlege the permafrost dynamics that are not

captured in this model’s structure.

Hector’s permafrost module parameterizes gradual permafrost thaw, following previous development on simple climate

models (Kessler, 2017), but leaves off consideration of abrupt thaw, which has been found to be a potentially significant

contributor to future permafrost emissions (Turetsky et al., 2020), increasing the overall permafrost soil carbon emissions by260

125-190% above that from gradual thaw according to a recent analysis (Anthony et al., 2018). Abrupt thaw is also missing

from current Earth system models, so our tuning to these models would not account for this mechanism, and it may mean that

Hector is somewhat underestimating the permafrost carbon feedback.

Hector’s permafrost module also only accounts for carbon stored in the top three meters of soil, as this shallow permafrost

is the most vulnerable to both thaw and decomposition (Kessler, 2017). However, analysis accounting for abrupt thaw found265

higher contributions from deep carbon when including these abrupt thaw processes (Schneider von Deimling et al., 2015).

Previous modeling results have found that a mean of around 2 Pg C may be emitted over the next century from this deeper

permafrost (Koven et al., 2015b), or an additional 3% of total permafrost-driven carbon emissions over that time period, but

this study also neglected abrupt thaw processes. There may also be a larger contribution from this pool over longer term results

since warming would have more time to reach these deposits, although warming in Hector levels off beyond the end of the270

century.

We additionally assume all thawed permafrost carbon decomposes at the same rate as soil carbon in Hector, though previous

studies have drawn distinctions between rapid (residence time of <1 yr) and more slowly decaying pools (residence time of 6-9

years) (Schädel et al., 2014). This implies that permafrost decomposition may occur more slowly than is represented by Hector

and thus emissions from thawed permafrost may continue longer into the 22nd century or beyond.275

Thawing permafrost can affect geometry and drainage patterns of the landscape, including creating thaw lakes which are

persistent sources of both CH4 and CO2 (Vonk et al., 2015; Matveev et al., 2016). Hector does not include hydrological

processes that could account for this effect, and this additional consequence of permafrost thaw on emissions would not have

been captured through tuning to CMIP5 models because we only tuned Hector against the fraction of permafrost thaw in each.

While we found that permafrost emissions from Hector’s thawed pool quickly dropped to zero as the thawed pool decomposed,280

the model is missing this longer-term affect of permafrost thaw on CH4 and CO2 emissions in the region.

The absence of hydrological processes in Hector also means the model misses interactions between permafrost thaw and

soil moisture. Soil moisture has been found to play a critical role in the rate of release of thawed permafrost carbon, as drier
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soils release carbon much faster than wetter soils (Elberling et al., 2013). Thawing permafrost itself impacts soil moisture,

although predicting these effects is difficult (Wickland et al., 2006). Moisture also affects the balance of aerobic and anaerobic285

decomposition, determining the ratio of CO2 to CH4 release (Turetsky et al., 2002). For example, Lawrence et al. (2015) found

that permafrost thaw increased soil drying, reducing the CH4 fraction of permafrost emissions to the extent that the global

warming potential of emissions from the permafrost region was reduced by 50%. Projections of drying soils due to permafrost

thaw are also supported by the analysis in Andresen et al. (2020).

While other mechanisms are included in ESMs and some of their effects on permafrost thaw can be implicitly captured290

through calibration, not explicitly modeling these effects can still impact temporal dynamics and the relative strength of partic-

ular outcomes. A key difference between Hector and ESMs is spatial representation. While ESMs are spatially explicit, Hector

is primarily global, although with separate calculations for land biomes or other subdivisions. In the case of the results shown

here, only a single permafrost "biome" was used; this combines high latitude and high elevation permafrost, although in reality

these may be differently affected by climate. Future analyses with this model may choose to further sub-divide the permafrost295

"biome" into more specific regions or categories to better address these different dynamics.

We also made the simplifying assumption that thawed permafrost carbon does not interact with the vegetation or detritus

pools, and that newly thawed permafrost carbon does not affect the potential size of the vegetation and detritus pools in the

permafrost region. This means our results exclude any potential changes in plant productivity as a result of permafrost thaw,

though the sign of these effects is highly uncertain (Frost and Epstein, 2014).300

Finally, we do not include any insulating effect from snow and vegetation, which can protect permafrost from warmer air

temperatures (Shur and Jorgenson, 2007). However, this effect may be small on the global scale, as including such protected

permafrost was not found to substantially alter the amount of permafrost thaw over the next century of warming according to

a 2017 analysis by Chadburn et al..

Of these limitations, we consider the most significant and likely influential on the magnitude of our results to be the lack of305

abrupt thaw processes, including the effects of abrupt thaw on deeper permafrost carbon. Results from Anthony et al. (2018)

suggest our model may be underestimating the permafrost carbon feedback by as much as 20-50%, though there are still only

limited estimates of these effects in the literature. The other significant effect on permafrost emissions estimates in Hector is

the lack of hydrological processes, which would potentially generate longer term increases in emissions from permafrost thaw

due to lake formation. Other mechanisms affecting rates of permafrost thaw are included in CMIP models and thus we expect310

to have captured the net end-of-century effects of these mechanisms through tuning to CMIP5 outputs.

4.2 Comparison to Previous Work

While our permafrost model is necessarily limited in complexity by Hector’s structure and by the need for computational

efficiency, we are able to reasonably reproduce previous results from both simple and more sophisticated models (Table 4).

Permafrost CO2 emissions by 2100 in RCP8.5 fall within one standard deviation of the value found by Schuur et al. (2015),315

and within the range given by Koven et al. (2015b) (Table 4). The values given in Schuur et al. (2015) include the entire
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Table 4. Comparison of Hector’s results to values from previous studies. Since Hector does not account for permafrost in terms of area, we

estimated the values for comparison to McGuire et al. (2018) based on the fraction of permafrost lost over this time period, multiplied by the

initial permafrost area in McGuire et al. (2018).

Scenario Source Variable Value Hector

RCP8.5 Burke et al. (2020) Permafrost Remaining 2005-2100 (%) 37 33

RCP4.5 McGuire et al. (2018) Permafrost Lost 2010-2299 (x106 km2) 4.1 6.6

RCP8.5 McGuire et al. (2018) Permafrost Lost 2010-2299 (x106 km2) 12.7 12.1

RCP8.5 Schuur et al. (2015) Cumulative Permafrost CO2 Emissions 2010-2100 (Pg C) 92 110.5

RCP8.5 Koven et al. (2015) Cumulative Permafrost CO2 Emissions 2010-2100 (Pg C) 27.9-112.6 110.5

RCP8.5 Koven et al. (2015) Permafrost CH4 Flux Change 2010-2100 (Pg C yr−1) 3.97-10.48 26.8

RCP8.5 Crichton et al. (2016) Permafrost-Driven Temperature Change by 2100 10-40% 10-30%

permafrost profile rather than 0-3m as is represented in our model, so this may imply our estimates are slightly higher in

comparison.

Methane emissions were somewhat high in Hector compared to estimates by Koven et al. (2015b), though comparing an

annual flux value makes it particularly sensitive to the timing of the peak so this difference may be driven by a somewhat later,320

or much earlier, peak in Hector’s emissions. Even during the uncalibrated period of Hector, the land area of permafrost lost

still aligns fairly closely with estimates from McGuire et al. (2018).

Previous estimates of the temperature amplification of permafrost carbon feedback by the end of the century cover a wide

range, from 0.02 to 0.36°C in Burke et al. (2013); Schneider von Deimling et al. (2012) and Schneider von Deimling et al.

(2015),from 0.1 to 0.8 °C in (MacDougall et al., 2012, 2013), from 10-40% of peak temperature change (Crichton et al., 2016),325

and 0.2 to 12% of peak temperature change in (Burke et al., 2017). In Hector, we find a temperature amplification due to

permafrost emissions of 9-30%, or 0.4-0.5°C, by 2100 across all four RCPs (Table 3), which falls closely within the range of

Crichton et al. (2016) but higher than the estimates in Burke et al. (2017).

4.3 Conclusions

The addition of permafrost thaw in Hector provides a useful tool for understanding the potential impact of the permafrost330

carbon feedback over the next decades and centuries, a particularly important capability in the context of ongoing climate

change and uncertain impacts of permafrost thaw. The model’s simplicity means that it can cheaply run uncertainty analyses

over a wide range of parameter values to account for the remaining gaps in our knowledge of permafrost controls. In the future,

Hector’s permafrost module can be easily coupled with integrated assessment models like GCAM to estimate the economic

consequences of warming from this feedback and to improve evaluation of climate and energy policy using such models.335
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5 Code availability

The version of Hector used in this analysis is available at https://github.com/dawnlwoodard/hector/tree/permafrost-submodel

and the code used to generate the tables and figures is available at: https://github.com/dawnlwoodard/hector-permafrost-

analysis.
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