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Abstract. The West Antarctic Peninsula (WAP) is a rapidly
warming region, with substantial ecological and biogeo-
chemical responses to the observed change and variability
for the past decades, revealed by multi-decadal observations
from the Palmer Antarctica Long-Term Ecological Research
(LTER) program. The wealth of these long-term observations
provides an important resource for ecosystem modeling, but
there has been a lack of focus on the development of nu-
merical models that simulate time-evolving plankton dynam-
ics over the austral growth season along the coastal WAP.
Here, we introduce a one-dimensional variational data assim-
ilation planktonic ecosystem model (i.e., the WAP-1D-VAR
v1.0 model) equipped with a model parameter optimization
scheme. We first demonstrate the modified and newly added
model schemes to the pre-existing food web and biogeo-
chemical components of the other ecosystem models that
WAP-1D-VAR model was adapted from, including diagnos-
tic sea-ice forcing and trophic interactions specific to the
WAP region. We then present the results from model ex-
periments where we assimilate 11 different data types from
an example Palmer LTER growth season (October 2002–
March 2003) directly related to corresponding model state
variables and flows between these variables. The iterative
data assimilation procedure reduces the misfits CE1 between
observations and model results by 58 %, compared to before

optimization, via an optimized set of 12 parameters out of
a total of 72 free parameters. The optimized model results
capture key WAP ecological features, such as blooms during
seasonal sea-ice retreat, the lack of macronutrient limitation,
and modeled variables and flows comparable to other studies
in the WAP region, as well as several important ecosystem
metrics. One exception is that the model slightly underesti-
mates particle export flux, for which we discuss potential un-
derlying reasons. The data assimilation scheme of the WAP-
1D-VAR model enables the available observational data to
constrain previously poorly understood processes, including
the partitioning of primary production by different phyto-
plankton groups, the optimal chlorophyll-to-carbon ratio of
the WAP phytoplankton community, and the partitioning of
dissolved organic carbon pools with different lability. The
WAP-1D-VAR model can be successfully employed to link
the snapshots collected by the available data sets together
to explain and understand the observed dynamics along the
coastal WAP.
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1 Introduction

The West Antarctic Peninsula (WAP) has experienced sig-
nificant atmospheric and surface ocean warming since the
1950s, resulting in decreased winter sea-ice duration, the
retreat of glaciers, and changes in upper-ocean dynamics
(Clarke et al., 2009; Cook et al., 2005; Henley et al., 2019;
King, 1994; Meredith and King, 2005; Stammerjohn et
al., 2008; Vaughan et al., 2003, 2006; Whitehouse et al.,
2008). These climate-driven changes propagate through ma-
rine food webs by affecting physiology of individual organ-
isms and the whole communities (Ducklow et al., 2007).
Long-term observational efforts through the Palmer Antarc-
tica Long-Term Ecological Research program (LTER; since
1991) have demonstrated a range of ecological and bio-
geochemical responses to changing environments, includ-
ing phytoplankton (Montes-Hugo et al., 2009; Saba et al.,
2014; Schofield et al., 2017), marine heterotrophic bacteria
(Bowman and Ducklow, 2015; Ducklow et al., 2012; Kim
and Ducklow, 2016; Luria et al., 2014, 2017), nutrient draw-
down (Kim et al., 2016), and micro- and macrozooplank-
ton (Garzio and Steinberg, 2013; Steinberg et al., 2015; Thi-
bodeau et al., 2019).

The wealth of Palmer LTER time-series observations pro-
vides an important resource for ecological and biogeochem-
ical modeling, and different types of modeling approaches
have been developed to explore the WAP responses to cli-
mate change and variability. For instance, an inverse model-
ing study estimated the steady-state dynamics of the WAP
food web by deriving snapshots of flows among different
plankton functional types and higher trophic levels (Sailley
et al., 2013). However, there has been less focus on numer-
ical ecosystem models that simulate time-evolving plank-
ton dynamics over the full austral growth season along the
coastal WAP. Numerical ecosystem models provide esti-
mates of key rate processes for which observations have been
less frequently or seldom made compared to frequently mea-
sured stocks and rates. Despite its strengths, constructing an
ecosystem model is a challenge due to the lack of a priori
knowledge on model parameter values and incomplete un-
derstanding of ecological processes that should be explicitly
presented in the model structure (Ducklow et al., 2008; Mur-
phy et al., 2012). Due to many observational studies, a more
robust, yet still incomplete, data-based picture is emerging of
WAP food-web interactions and ecosystem dynamics, which
could guide a development of the WAP-specific numerical
ecosystem model.

Here, we introduce a one-dimensional (1-D) variational
data assimilation model specific to the coastal WAP (i.e.,
the WAP-1D-VAR v1.0 model) that we develop by adapt-
ing an existing biogeochemical–planktonic model of differ-
ent ocean basins (Friedrichs, 2001; Friedrichs et al., 2006,
2007; Luo et al., 2010). The WAP-1D-VAR model is com-
pared against the roughly semi-weekly biophysical obser-
vations over the austral growth season near Palmer Station

on Anvers Island, Antarctica (64.77◦ S, 64.05◦W). The field
data record the seasonal variations in the initiation, peak, and
termination of phytoplankton blooms and other biogeochem-
ical processes modulated by variations in surface light, mixed
layer depth, and sea-ice cover. In the present study, we (1) de-
scribe the structure and schemes of the WAP-1D-VAR model
in great detail, (2) evaluate the model performance and ro-
bustness using a variety of quantitative metrics, and (3) dis-
cuss the model applicability with regard to capturing the key
WAP ecological and biogeochemical features using the data
from an example growth season.

2 Model development and implementation

2.1 Model state variables

The WAP-1D-VAR v1.0 model (Fig. 1) is originally de-
rived and modified from data-assimilative, ocean regional
test-bed models of the Arabian Sea, the equatorial Pacific,
and the Hawaii Ocean Time-series Station ALOHA (A Long-
Term Oligotrophic Habitat Assessment) (Friedrichs, 2001;
Friedrichs et al., 2006, 2007; Luo et al., 2010). The WAP-
1D-VAR model simulates stocks and flows of C, N, and P
through 11 different model prognostic state variables. The
two size-fractionated phytoplankton compartments (i.e., di-
atoms and cryptophytes) and the two different zooplankton
compartments (i.e., microzooplankton and krill) are sepa-
rately simulated following the plankton functional types as
in Sailley et al. (2013) and the observations of the phyto-
plankton community structure along the coastal WAP. Typi-
cally, the coastal WAP is associated with large phytoplank-
ton accumulations dominated by large (> 20µm) diatoms,
but nanoflagellates (< 20µm) or cryptophytes are also an im-
portant component of the food web (Schofield et al., 2017).
Mixed flagellates, prasinophytes, and type-4 haptophytes are
also found in the region, but we choose to model only di-
atoms and cryptophytes, in order to avoid too many free (op-
timizable) parameters associated with each phytoplankton
group. The third most dominant species is mixed flagellate
but little is known about these taxa in the region and these
taxa generally exhibit low interannual variability (Schofield
et al., 2017). Functional grazing relationships are defined
in which diatoms are consumed by both krill (Euphausia
superba) and microzooplankton (mostly ciliates and other
protozoa), cryptophytes are consumed by microzooplankton,
and microzooplankton are grazed by krill. Other abundant
zooplankton taxa in the WAP, such as salps, pteropods, and
copepods (Steinberg et al., 2015), are not explicitly simu-
lated in the WAP-1D-VAR model, in part to limit the model
complexity and in part because of the limited data constraints
on these groups, especially feeding. Higher trophic levels are
implicitly represented to close the model. The WAP-1D-VAR
model allows for the partitioning between labile dissolved or-
ganic matter (LDOM) and semi-labile DOM (SDOM) such
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Figure 1. The WAP-1D-VAR v1.0 model is forced by five different physical forcing, denoted as a horizontal row across the top of the
schematic of the ecosystem model. The ecosystem component incorporates 11 different prognostic state variables. Higher level and refractory
dissolved organic matter (RDOM) are represented implicitly.

that the entire LDOM pool is available but only a limited
portion of the SDOM is available for bacterial utilization
to account for lower lability of SDOM. Refractory DOM
(RDOM) is not explicitly modeled due to its much longer
turnover time than labile and semi-labile pools, but some
mass flows are included to RDOM from other prognostic
model compartments, such as bacteria, krill, and SDOM, to
account for loss terms for those state variables. Detritus rep-
resents an average particulate organic matter (POM) pool af-
ter removing living phytoplankton and bacterial biomass, and
sinking of the detritus pool contributes to particle export flux.
The WAP-1D-VAR model explicitly simulates NO3, NH4,

and PO4 for inorganic (macro)nutrient compartments, but
there is not a separate Fe model compartment or Fe uptake
processes, given that even during the peak of the blooms
iron is still measurable and iron limitation is absent or oc-
curs only minimally and seasonally in the nearshore Palmer
Station area (Carvalho et al., 2016; Sherrell et al., 2018).

2.2 Model equations

Here, we demonstrate key model processes that are either
based on the existing schemes or built as new schemes for the
coastal WAP region. The original model schemes are detailed
in Supplementary Material of Luo et al. (2010). The WAP-
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1D-VAR v1.0 model simulates biological–physical model
processes for a 1-D vertical water column, solving numeri-
cally for a discretized version of the time rate of change for
each model state variable. For a generic tracer variable C,
the time rate of change equation takes the form (Glover et
al., 2011)

∂C

∂t
=
∂

∂z
(wC)+

∂

∂z

(
Kz
∂C

∂z

)
+ JC, (1)

where z is the depth, w is the vertical velocity (the sum of
water motion and gravitational particle sinking), Kz is the
turbulent eddy diffusivity, and JC is the biological and bio-
geochemical net source and sink term for C (Appendix A
Equations; Eqs. A42–A45, A82–A85, A139–A141, A165–
A167, A194–A196, A200–A202, A206–A211, and A213–
A215). The physical advection and mixing terms are dis-
cussed below in Sect. 2.3 and applied sequentially follow-
ing the computation of the biological and biogeochemical
terms JC using a constant time step of 1 h. The contributions
of the source sink terms JC to the full time rate of change
equations are constructed as a series of coupled ordinary dif-
ferential equations, detailed in Appendix A (Sects. A1–A9),
and solved using a second-order Runge–Kutta numerical in-
tegration scheme. The WAP-1D-VAR model simulates the
dynamics of C, N, and P, but here we only focus on the pre-
sentation of the model C dynamics. The cellular molar (e.g.,
N/C, P/C) quota parameter values of most state variables are
fixed (Table 1) and not submitted to the optimization and data
assimilation procedure. To first order, most model physiolog-
ical processes are affected by water temperature, including
the maximum growth rates of phytoplankton, bacteria, and
zooplankton and basal respiration rates of bacteria and zoo-
plankton. The Arrhenius function is implemented to change
these physiological rates as a function of water temperature
(Eq. A1).

The net change of phytoplankton (both diatoms and cryp-
tophytes) C biomass is driven by gross growth, DOC excre-
tion, particulate organic carbon (POC) production via aggre-
gation, respiration, and grazing (Eqs. A42 and A82), the net
change of their N and P biomass by gross growth, dissolved
organic nitrogen (phosphorus) excretion, particulate organic
nitrogen (phosphorus) production, and grazing (Eqs. A43–
A44 and A83–A84). The net change of their chlorophyll
a (Chl a) by gross growth, DOM excretion, and grazing
(Eqs. A45 and A85). The WAP-1D-VAR model adapts a
phytoplankton growth scheme with flexible stoichiometry, in
which phytoplankton cells are allowed to accumulate and
store more nutrients under light stress (Bertilsson et al.,
2003; Droop, 1974, 1983; McCarthy, 1980). The phytoplank-
ton C growth rate is limited by their cellular nutrient quota
(Eqs. A2–A3 and A46–A47). Modified from Geider et al.
(1998), phytoplankton nitrogen uptake decreases when their
cellular N/C quota is higher than their reference (Redfield)
ratio but not limited when lower than their reference ratio
(Eqs. A5, A9, A49, and A53). The nitrogen consumption

completely ceases when the phytoplankton cellular quota
reaches their maximum allowable ratios and is additionally
limited by the ambient NO3 and NH4 concentrations with a
Monod function (Eqs. A11–A12 and A55–A56). NH4 inhi-
bition on NO3 uptake of phytoplankton is modeled by as-
signing lower kNH4 compared to kNO3 (Table 1). The inhi-
bition term does not exist for PO4. The uptake scheme is
similar for PO4 (Eqs. A14 and A58), but PO4 can be con-
sumed in great excess of current needs (Armstrong, 2006).
Such luxury uptake is modeled by assigning smaller maxi-
mum and minimum P quota, which acts to alleviate P limita-
tion. The maximum photosynthesis rate decreases when the
phytoplankton cellular quota is lower than their reference ra-
tio and approaches zero near their minimum ratio (Eqs. A7
and A51). The Chl production decreases with lowering pho-
tosynthetic active radiation (PAR) and completely ceases in
dark (Eqs. A15 and A59). Phytoplankton release LDOM via
passive diffusion of the low molecular weights DOM (e.g.,
neutral sugars and dissolved free amino acids) with the same
cellular elemental ratio as that of phytoplankton (Fogg, 1966,
Bjørnsen, 1988, Biddanda and Benner, 1997; Eqs. A17–A19
and A61–A63). Phytoplankton also release L- and SDOM
actively, in the form of carbohydrate, as 75 % of the labile
(Eqs. A20, A24, A64, and A68) and 25 % of the semi-labile
pools (Eqs. A21, A27, A65, and A71). This active DOM
production enables phytoplankton to adjust their stoichiom-
etry to approach their reference ratio. If cellular organic C
is in excess, DOC is released on a timescale of 2 d, and if
excess nitrogen (phosphorus), DON (DOP) is released on
a timescale of 8 d (Eqs. A22–A23 and A66–A67). Diatoms
are grazed by both microzooplankton and krill (Eqs. A34–
A41), while cryptophytes are only grazed by microzooplank-
ton (Eqs. A78–A81). Microzooplankton grazing functions
are altered by assigning grazing limitation terms (ε) to pro-
vide a limit on diatom grazing and route more cryptophytes
to microzooplankton (Eqs. A34 and A78), based on initial
modeling attempts where elevated diatom Chl was not simu-
lated due to their much stronger removal by microzooplank-
ton than cryptophytes. In principle, optimization should be
able to capture the elevated diatom Chl by adjusting free
parameters unless (1) the right parameters are not adjusted
and/or the baseline (non-optimized) parameters need signif-
icant adjusting, and/or (2) the model equations are not ade-
quate even with the optimized parameters. In our initial mod-
eling attempts, the model failed to simulate the elevated di-
atom Chl with varying sets of the model initial parameter val-
ues assigned to decouple diatoms from their grazers. Thus,
grazing limitation terms (ε) are instead assigned to limit mi-
crozooplankton grazing on diatoms for modeling purposes,
the implementation of which is not strictly based on the eco-
logical evidence of prey switching or of zooplankton mortal-
ity thresholds.

The net change of bacterial biomass is driven by their
gross growth (via L- and SDOM uptake; Eqs. A97–A99,
A100–A101, and A106–A107), respiration (Eq. A110), S-
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Table 1. Summary of the model parameter symbol and definition, initial parameter values (p0) and optimized values (pf) for optimizable
parameters, the cost function gradient with regard to the optimized parameter (∂J/∂p), and prescribed values for fixed model parameters
over the course of simulations. The parameter with “n/a” in the parentheses is an optimized parameter with a large relative uncertainty, while
the parameter with values in the parentheses is a constrained parameter (optimized with a low relative uncertainty) with its upper and lower
bounds. The uncertainties for these upper and lower bounds are calculated as pf× e

±σf , where pf is the value of the constrained parameter
and σf is the square roots of diagonal elements of the inverse of the Hessian matrix. The cost function gradient with regard to the optimized
parameter (∂J/∂p) after data assimilation is defined as 1J/e1p where e1p ≈1p for an infinitely small 1p.

Model parameter symbol and definition (optimizable) p0 pf ∂J/∂p

AE, Arrhenius parameter for temperature function 4000.00 – −1.15
µDA, diatom C-specific maximum growth rate, d−1 2.00 0.77 (0.68–0.88) −5.53× 10−5

µCR, crypto. C-specific maximum growth rate, d−1 1.00 0.72 (0.61–0.85) 2.51× 10−4

αDA, initial slope of P–I curve of diatoms, molC (gChl)−1 d−1 (Wm−2)−1 0.30 0.13 (0.10–0.19) −1.55× 10−4

αCR, initial slope of P–I curve of crypto., molC (gChl)−1 d−1 (Wm−2)−1 0.20 3.89× 10−2 (n/a) 0.45
βDA, light inhibition parameter for diatom photosynthesis (Wm−2)−1 5.00× 10−3 – −1.10
βCR, light inhibition parameter for crypto. photosynthesis (Wm−2)−1 5.00× 10−3 – 0.32
vN

REF,DA, maximum N uptake rate per diatom C biomass, molN (molC)−1 d−1 0.50 – −5.13× 10−2

vN
REF,CR, maximum N uptake rate per crypto. C biomass, molN (molC)−1 d−1 0.30 – −3.07× 10−2

k
NH4
DA , NH4 half-saturation concentration for diatom uptake, mmolm−3 0.10 – 0.29

k
NH4
CR , NH4 half-saturation concentration for crypto. uptake, mmolm−3 0.10 – 0.14

k
NO3
DA , NO3 half-saturation concentration for diatom uptake, mmolm−3 1.00 – −0.29

k
NO3
CR , NO3 half-saturation concentration for crypto. uptake, mmolm−3 0.60 – −0.14
vP

REF,DA, maximum P uptake rate per diatom C biomass, molP (molC)−1 d−1 0.03 – 0.32
vP

REF,CR, maximum P uptake rate per crypto. C biomass, molP (molC)−1 d−1 0.03 – 0.15

k
PO4
DA , PO4 half-saturation concentration for diatom uptake, mmolm−3 0.05 – −9.93× 10−3

k
PO4
CR , PO4 half-saturation concentration for crypto. uptake, mmolm−3 0.04 – −3.68× 10−3

ζNO3 , C requirement (respiration) to assimilate NO3, molC (molN)−1 2.00 – −1.42
Θ , maximum Chl/N ratio, gChla (molN)−1 2.90 2.27 (1.82–2.82) 5.95× 10−5

exPSV,DA, diatom passive excretion rate per biomass, d−1 0.05 – 0.86
exPSV,CR, crypto. passive excretion rate per biomass, d−1 0.05 – 2.17
exACT,DA, diatom active excretion rate per growth rate, d−1 0.05 – 2.26× 10−2

exACT,CR, crypto. active excretion rate per growth rate, d−1 0.05 – 4.06× 10−3

pomDA, POM production rate by diatom aggregation, (mmolCm−3)−1 d−1 0.04 – 1.99
pomCR, POM production rate by crypto. aggregation, (mmolCm−3)−1 d−1 0.03 – 0.61
kDOC, DOC half-saturation concentration for bacterial uptake, mmolCm−3 0.65 – 1.00
rSDOM, parameter controlling SDOM lability 5.00× 10−3 – −0.64
µBAC, maximum bacterial growth rate, d−1 2.00 1.06 (0.93–1.20) 1.54× 10−4

bR,BAC, parameter control bacterial active respiration rate vs. production,
(mmolCm−3 d−1)−1

1.50× 10−2 – 9.60× 10−2

exADJ,BAC, bacterial extra SDOC excretion rate, d−1 2.00 – 0.00
remiBAC, bacterial nutrient regeneration rate, d−1 6.00 – −0.11
exREFR,BAC, bacterial RDOC production rate, d−1 1.70× 10−2 – 2.77
fS, bacterial selection strength on SDOM 0.25 – −5.18× 10−3

rB
BAC, bacterial basal respiration rate, d−1 1.27× 10−2 – 0.40
rA
min,BAC, bacterial minimum active respiration rate, d−1 3.50× 10−2 – −4.37× 10−3

rA
max,BAC, bacterial maximum active respiration rate, d−1 0.58 0.80 (0.77–0.84) −6.59× 10−4

mortBAC, bacterial mortality rate, d−1 0.02 – 3.10
µMZ, microzoo. C-specific maximum growth rate, d−1 1.00 1.18 (1.10–1.26) −7.41× 10−4

gDA, diatom half-saturation concentration in microzoo. grazing, mmolCm−3 1.00 – 1.85
g′DA, diatom half-saturation concentration in krill grazing, mmolCm−3 1.00 – −1.15
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Table 1. Continued.

Model parameter symbol and definition (optimizable) p0 pf ∂J/∂p

gCR, crypto. half-saturation concentration in microzoo. grazing, mmolCm−3 1.00 – 1.32
gBAC, bacterial half-saturation concentration in microzoo. grazing, mmolCm−3 0.55 0.81 (0.64–1.03) 3.75× 10−5

exMZ, total DOM excretion rate per microzoo. gross growth, d−1 0.15 – 0.52
fex,MZ, fraction of LDOC of total microzoo. DOC excretion 0.75 – −0.37
rB
MZ, microzoo. basal respiration rate, d−1 0.01 – 3.92× 10−2

rA
MZ, microzoo. active respiration rate, d−1 0.42 – −0.63

exADJ,MZ, microzoo. extra SDOM excretion rate, d−1 2.00 – 0.00
remiMZ, microzoo. nutrient regeneration rate, d−1 4.68 – 2.93× 10−3

pomMZ, POM production rate per microzoo. gross growth, d−1 2.70× 10−2 – 2.87× 10−2

µKR, maximum krill C-specific growth rate, d−1 0.80 1.02 (0.97–1.07) 2.17× 10−4

gMZ, microzoo. half-saturation concentration in krill grazing, mmolCm−3 1.00 0.15 (n/a) −0.95
exKR, total DOM excretion rate per krill gross growth, d−1 0.30 – −0.29
fex,KR, fraction of labile DOC of total krill DOC excretion 0.75 – −0.45
rB
KR, krill basal respiration rate, d−1 0.03 – −0.50
rA
KR, krill active respiration rate, d−1 0.30 – −1.08

exADJ,KR, krill extra SDOM excretion rate, d−1 2.00 – 0.00
remiKR, krill nutrient regeneration rate, d−1 4.00 – −2.81× 10−2

pomKR, POM production rate per krill gross growth, d−1 0.15 – −0.38
exREFR,KR, krill RDOC production rate, d−1 0.02 – −6.43× 10−2

remvKR, krill removal rate by higher trophic levels, (mmolCm−3)−1 d−1 0.10 0.43 (n/a) 0.86
fKR, fraction of SDOM production by krill 0.10 – 5.11× 10−2

fPOM,HZ, fraction of POM production by higher trophic level 0.20 – 4.86× 10−2

exREFR,SDOM, conversion rate of SDOM to RDOM, d−1 9.00× 10−4 – −5.17× 10−2

qC
N,RDOM, RDOM N/C ratio, molN (molC)−1 0.05 – −0.10
qC

P,RDOM, RDOM P/C ratio, molP (molC)−1 6.50× 10−4 – 4.70× 10−3

qC
N,POM, N/C ratio for POM production by microzoo. and krill, molN (molC)−1 0.12 – 0.12
qC

P,POM, P/C ratio for POM production by microzoo. and krill, molP (molC)−1 4.50× 10−3 – 6.24× 10−2

rntrf, nitrification rate (NH4 to NO3), d−1 7.60× 10−2 – −3.74× 10−2

prfN, preference for dissolving N content in POM 1.10 – 0.27
prfP, preference for dissolving P content in POM 4.00 – 1.67× 10−4

wnsv, detritus vertical sinking velocity, m d−1 5.00 – 0.26
diss, detrital dissolution rate, d−1 0.14 – 1.07

Model parameter symbol and definition (fixed) p

Tref, reference temperature in Arrhenius function, ◦C 15.00
qC

N,MIN,DA, minimum N/C ratio of diatoms 3.40× 10−2

qC
N,MAX,DA, maximum N/C ratio of diatoms 0.17
qC

N,RDF,DA, reference (Redfield) N/C ratio of diatoms 0.15
qC

P,MIN,DA, minimum P/C ratio of diatoms 1.90× 10−3

qC
P,MAX,DA, maximum P/C ratio of diatoms 1.59× 10−2

qC
P,RDF,DA, reference (Redfield) P/C ratio of diatoms 9.40× 10−3

qC
N,MIN,CR, minimum N/C ratio of crypto. 3.40× 10−2

qC
N,MAX,CR, maximum N/C ratio of crypto. 0.17
qC

N,RDF,CR, reference (Redfield) N/C ratio of crypto. 0.15
qC

P,MIN,CR, minimum P/C ratio of crypto. 1.90× 10−3

qC
P,MAX,CR, maximum P/C ratio of crypto. 1.59× 10−2

qC
P,RDF,CR, reference (Redfield) P/C ratio of crypto. 9.40× 10−3

qC
N,BAC, reference (optimal) N/C ratio of bacteria 0.18
qC

P,BAC, reference (optimal) P/C ratio of bacteria 0.02

Geosci. Model Dev., 14, 1–37, 2021 https://doi.org/10.5194/gmd-14-1-2021
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Table 1. Continued.

Model parameter symbol and definition (optimizable) p0 pf ∂J/∂p

qC
N,MZ, reference (optimal) N/C ratio of microzoo. 0.20
qC

P,MZ, reference (optimal) P/C ratio of microzoo. 2.20× 10−2

qC
N,KR, reference (optimal) N/C ratio of krill 0.20
qC

P,KR, reference (optimal) P/C ratio of krill 8.00× 10−3

εDA, grazing limit to the amount of diatoms available for microzoo. grazing, mmolCm−3 1.00× 10−3

εCR, grazing limit to the amount of crypto. available for microzoo. grazing, mmolCm−3 2.95

and RDOM excretion (Eqs. A111–A113 and A121–A129),
grazing (Eqs. A130–A132), and mortality due to viral attack
(Eqs. A133–A135). The WAP-1D-VAR model allows both
L- and SDOM as the substrate sources for bacteria, and bac-
terial nutrient quota lets the lability of SDOM variable for
their selective utilization. All the LDOM pool is available,
while only a limited portion of the SDOM pool is allowed
for bacterial utilization, the degree of which is controlled by
an optimizable parameter controlling the relative utilization
of SDOM to LDOM, or SDOM lability (i.e., rSDOC, Eq. A96,
Table 1). Bacterial C growth is determined by their cellular
quota and available L- and SDOC concentration (Eqs. A97–
A98), in which the growth would be limited if bacterial cel-
lular nitrogen (phosphorus) quota is smaller than their ref-
erence ratios (Eqs. A93–A94). Bacteria take up LDOM in
the way that the ratio of labile dissolved organic nitrogen
(LDON) (LDOP) to LDOC uptake is the same as the bulk
N/C (P/C) ratio of the LDOM (Eqs. A100 and A106). Bac-
teria take up SDOM with higher N/P ratios to reflect that
SDOM with higher N/P ratios is more labile (Eq. A98).
The ratio of semi-labile dissolved organic nitrogen (SDON)
to SDOC uptake by bacteria would vary between the bulk
N/C of SDOM and the bacterial reference cellular quota
(Eqs. A101 and A107). Bacteria are modeled to either take up
or release NH4 and PO4 to maintain their stable and consis-
tent stoichiometry (Kirchman, 2000). Bacteria take up NO3
only if their cellular N/C ratio is smaller than their refer-
ence ratio (i.e., when bacteria are short of nitrogen), in or-
der to reflect higher energetic cost of NO3 uptake than NH4,
but the amount of NO3 uptake is modeled to be no more
than 10 % of N-specific bulk L- and SDOM uptake, and the
sum of NO3 and NH4 uptake is modeled to be no more than
N-specific bulk L- and SDOM uptake (Eqs. A102–A105).
These limit the maximum NO3 uptake rate and set the inhibi-
tion of NH4 uptake on NO3 uptake. Bacteria excrete RDOM
by transforming LDOM to RDOM (Eqs. A111–A113). Bac-
teria also adjust their cellular stoichiometry by remineral-
izing NH4 and PO4 if carbon is in short (i.e., N and P in
excess; Eqs. A114–A115) and by excreting SDOC if car-
bon is in excess (i.e., nitrogen and phosphorus are in short;
Eqs. A124–A129). Bacteria are grazed by microzooplankton
(Eqs. A130–A132), and a certain percentage of bacteria gets
lost to LDOC pool due to viral attack (Eqs. A133–A135).

The net change of zooplankton (both microzooplankton
and krill) biomass is driven by their gross growth (via graz-
ing on prey; Eqs. A144–A146 and A170–A172), L- and
SDOM excretion (Eqs. A147–A155 and A173–A181), respi-
ration (Eqs. A158 and A184), POM production (Eqs. A159–
A161 and A185–A187), and grazing (Eqs. A162–A164 and
A191–A193). Microzooplankton C growth is supported by
consuming cryptophytes and bacteria (Eqs. A144–A146),
while krill carbon growth is supported by consuming diatoms
and microzooplankton (Eqs. A170–A172). Both zooplankton
compartments follow the Holling type-2 density-dependent
grazing function with a preferential selection on different
prey species (Eqs. A34, A38, A78, A130, and A162). Both
zooplankton groups release a portion of the organic matter
that they ingest as DOM via sloppy feeding and excretion
(Eqs. A147–A149, A150–A152, A173–A175, and A176–
A178) such that the ratio of the released DON (DOP) to
LDOC is equivalent to the N/C (P/C) ratio of zooplank-
ton. The amount of SDOC excretion is a function of the to-
tal carbon growth (Eqs. A150 and A176), while the amount
of SDON (SDOP) excretion is also a function of the zoo-
plankton cellular N/C (P/C) ratio relative to their reference
ratio (Eqs. A151–A152 and A177–A178). Zooplankton ad-
just their body cellular quota by either releasing SDOM if
carbon is in excess or by regenerating NH4 or PO4 if nitro-
gen or phosphorus is in excess (Eqs. A153–A157 and A179–
A183), similar to the bacterial scheme. Respiration is for-
mulated such that basal respiration is based on a portion of
zooplankton biomass, while active respiration is based on
a portion of their grazed C (Eqs. A158 and A184). Both
zooplankton egest fecal matter as POM (Eqs. A159–A161
and A185–A187), but only krill additionally excrete RDOM
with N/C and P/C similar to bacteria (Eqs. A188–A190).
Microzooplankton are grazed by krill (Eqs. A162–A164),
while krill are removed by implicit higher trophic levels
(Eqs. A191–A193), similarly calculated as a bacterial mor-
tality term rather than as an explicit grazing process.

The net change of detritus is driven by POM production
by all phyto- and zooplankton compartments that is routed
to detrital pool (Eqs. A30–A33, A74–A77, A159–A161, and
A185–A187) and its dissolution (Eqs. A197–A199). An op-
timizable vertical sinking speed is assigned to detritus to de-
rive particle export flux (i.e., particle export flux is equal to
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detrital concentration multiplied by particle sinking velocity,
wnsv, Table 1). The detritus that is lost due to dissolution
is incorporated to SDOM pool when it sinks (Eqs. A209–
A211) before regenerated to inorganic nutrients, rather than
directly regenerated from as the particulate form. The net
change of LDOM is driven by LDOM excretion by all phyto-
and zooplankton compartments (Eqs. A17–A20, A61–A64,
A147–A149, and A173–A175) and the amount of bacterial
mortality that is incorporated to LDOM due to viral attack
(Eqs. A133–A135) and its uptake by bacteria (Eq. A97).
The net change of SDOM is driven by SDOM excretion by
all organisms (Eqs. A21–A23, A65–A67, A150–A155, and
A176–A181), the amount of detrital dissolution (Eqs. A197–
A199), uptake by bacteria (Eqs. A98–A99), and conver-
sion to RDOM pool (Eqs. A203–A205). The conversion of
SDOM to RDOM pool is a function of the stoichiometry
of SDOM, in which the conversion process is slower for
higher N/C and P/C of SDOM, to reflect that nitrogen- and
phosphorus-enriched SDOM is more likely labile. A cer-
tain percentage of NH4 is converted to NO3 on a daily ba-
sis to represent a simple nitrification process in the model
(Eq. A212).

2.3 Physical forcing

The WAP-1D-VAR v1.0 model is forced by mixed layer
depth (MLD), PAR at the ocean surface, sea-ice concentra-
tion, water-column temperature, vertical velocity, and verti-
cal eddy diffusivity, at a temporal resolution of 1 d. Temper-
ature, sea ice, and vertical eddy diffusivity are set up at every
vertical grid (depth) point.

MLD is determined based on a finite difference den-
sity criterion with a threshold value of 1σθ = 0.03kgm−3

(Montégut et al., 2004) after calculating potential density
of water mass from temperature and salinity conductivity–
temperature–depth (CTD) observations. Vertical velocity, w,
is assigned as zero because it is very weak in the surface wa-
ters of the study site and materials are transported vertically
mostly by diffusion. The vertical eddy diffusivity scheme
treats the rapid vertical mixing in the surface boundary layer
by homogenizing model state variables instantaneously in
the mixed layer (i.e., by averaging at every time step). Thus,
Kz value above MLD is not required, and only Kz below
MLD is calculated as follows:

Kz(z)=Kz0 × exp {−α× (z−MLD)} , (2)

where z is depth (m) below MLD and Kz0 is the vertical
eddy diffusivity at the bottom of the mixed layer (1.1×
10−4 m2 s−1) (Klinck, 1998; Smith et al., 1999), and α is 0.01
(m−1).

Daily surface downward solar radiation flux (National
Centers for Environmental Prediction reanalysis daily aver-
ages) is used to calculate sea surface PAR. PAR is estimated
as 46 % of the total solar radiation (Pinker and Laszlo, 1992,
Kirk, 1994). The attenuation of PAR as a function of depth is

calculated as follows:

PAR(z)= PAR0× exp {−(kw+ kc×CHL)× z} , (3)

where z is depth (m), PAR0 is PAR level at sea sur-
face (Wm−2), kw is the attenuation coefficient for sea-
water (m−1), kc is the attenuation coefficient for Chl
((mgChl)−1 m2), and CHL is the Chl concentration
(mgChlm−3).

Sea-ice conditions in the coastal WAP do not necessar-
ily represent solely local temperature and climate condi-
tions, given that sea ice can be impacted by temperature,
mixed layer, heat fluxes, regional winds, and other physi-
cal processes (Saenz et al., in review). We implement a sea-
ice model scheme to account for light transmission through
sea ice (5 % of incident irradiance, as a typical transmit-
tance value used in the Community Earth System Model)
and non-linearities in the photosynthesis–irradiance (P–I) re-
sponse under partial ice concentration (Long et al., 2015) us-
ing percent daily sea-ice concentration data (GSFC Bootstrap
versions 2/3, derived from SMMR/SSMI satellite tempera-
ture brightness data binned into 25 by 25 km grid cells). In
many previous models, the light-limitation term L(I ) is cal-
culated as a function of mean irradiance I averaged over both
ice-covered and open-water conditions, so L(I ); instead, we
compute the mean of light-limitation term (L(I )) as a func-
tion of fractional sea ice and open-water and incident irradi-
ance:

L(I )= PC/PC
MAX = 1− exp(−I/Ik) (4)

L(I )= fi×L(Ii)+ fo×L(Io), (5)

where PC is the C-specific photosynthetic rate (d−1), PC
MAX

is the maximum photosynthetic rate (d−1), Ik is the parame-
ter describing the light-saturation behavior of the P–I curve
(Wm−2), Io is the open-water irradiance, Ii is the under-ice
irradiance (i.e., Ii = 0.05× Io), fi is the fraction of area cov-
ered with sea ice, and fo is the fraction of open water (i.e.,
fo = 1− fi).

2.4 Variational data assimilation

The WAP-1D-VAR v1.0 model is equipped with a built-
in data assimilation scheme based on a variational adjoint
method (Lawson et al., 1995). This method generates optimal
model solutions that minimize the difference between model
results and observations by objectively optimizing model pa-
rameter values (Friedrichs, 2001; Spitz et al., 2001; Ward et
al., 2010). In detail, the assimilation scheme (Fig. 2) consists
of four steps (Glover et al., 2011): (1) starting with initial
values of the model parameters (see below), the model is in-
tegrated forward in time from specified initial conditions to
calculate the difference between the model simulation and
the field data, or the model–observation misfit (i.e., cost func-
tion; Sect. 2.5, Eq. 6); (2) an adjoint model constructed us-
ing the Tangent linear and Adjoint Model Compiler (TAPE-
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Figure 2. A variational adjoint scheme is employed for the pa-
rameter optimization and data assimilation processes (adapted from
Glover et al., 2011). Gradient: the sensitivity of the total cost func-
tion with respect to model parameter from optimization.

NADE) is integrated backward in time to compute the gra-
dients of the total cost with respect to the model parame-
ters; (3) the computed gradients are then passed to a limited-
memory quasi-Newton optimization software M1QN3 3.1
(Gilbert and Lemaréchal, 1989) to determine the direction
and optimal step size by which the selected model parame-
ters (see below) need to be modified in order to reduce the
total cost; and (4) a new forward-in-time simulation is con-
ducted using the new set of modified (optimized) parameter
values. These four-step procedures are conducted in an iter-
ative manner until the preset convergence criteria (i.e., low
gradients of the total cost function with respect to optimized
parameters and positive eigenvalues of the Hessian matrix)
are satisfied to ensure that the optimized parameters converge
and the total cost function reaches a local minimum.

Initial values of the model parameters (total of 72 free or
optimizable parameters, Table 1) are assigned based on lit-
erature values (Caron et al., 2000, Luo et al., 2010, Garzio
et al., 2013) without examining the effects of the initial pa-
rameter values on the model results prior to optimization.
As is typical for many types of ecosystem models, a col-
lection of what appear to be reasonable initial parameter es-
timates can result in relatively poor overall system behav-
ior because of system-level interactions of different model
components. In most marine ecosystem models, these ini-
tial parameter values are subjectively and manually adjusted
to improve the simulation, and the simulations with the ini-
tial, unadjusted parameter values are rarely shown. However,
here with a more objective optimization approach that we
conduct, the initial and optimized solutions can be explic-
itly compared (Sect. 4). Optimization starts by submitting a
subset of the 72 free model parameters rather than submit-
ting all of them at once. This initial parameter subset con-
sists of 10 different model parameters, the change of which
yields the largest decrease in the total cost function (i.e.,
which also happens to be usually one per each state variable).

These include αDA (initial slope of photosynthesis vs. irra-
diance curve of diatoms, molC (gChl a)−1 d−1 (Wm−2)−1),
αCR (initial slope of photosynthesis vs. irradiance curve of
cryptophytes, molC (gChla)−1 d−1 (Wm−2)−1), Θ (maxi-
mum Chl/N ratio, gChla (molN)−1), µBAC (maximum bac-
terial growth rate, d−1), rA

max,BAC (maximum bacterial active
respiration rate, d−1), gBAC (half-saturation density of bacte-
ria in microzooplankton grazing, mmolCm−3), µMZ (max-
imum microzooplankton growth rate, d−1), µKR (maximum
krill growth rate, d−1), and remvKR (krill removal rate by
higher trophic levels (mmolCm−3)−1 d−1; Table 1).

When computed at the minimum of the cost function
value, the inverse of the Hessian matrix provides the uncer-
tainties of optimized parameters, cross-correlations among
parameters, and sensitivities of the total cost function to each
parameter (Matear, 1996; Tziperman and Thacker, 1989).
High off-diagonal values in the inversed Hessian matrix in-
dicate highly cross-correlated model parameters, so one of
the highly cross-correlated parameters is removed from the
optimization. The square root of a diagonal element in the
inversed Hessian matrix is the logarithm of the relative uncer-
tainty (σf) of the corresponding optimized parameter. The ab-
solute uncertainty of the constrained parameter is calculated
as pf× e

±σf where pf is the value of the optimized parame-
ter (Table 1). If optimized to ecologically unrealistic values,
parameters are kept back to their respective initial values and
removed from the next optimization cycle. Optimized param-
eters with σf larger than 50 % are updated but removed from
the next optimization cycle (i.e., defined as “optimized” pa-
rameters), while optimized parameters with σf smaller than
50 % are updated and kept for the next optimization cycle
(i.e., defined as “constrained parameters”). Constrained pa-
rameters are reported with the uncertainties, while optimized
parameters are reported without the uncertainties (Table 1)
because both changed parameters consist of an optimized
model parameter set, but the parameters reported with the un-
certainty ranges are the ones optimized with relatively small
uncertainties and considered constrained. This way, a part of
the initial parameter subset forms a final optimized parameter
set. The gradients of the total cost function with respect to all
72 parameters are then evaluated, the parameters with large
gradients (e.g., > 5) are re-submitted to optimization to fur-
ther reduce the total cost, the gradients are evaluated again,
and these cycles repeat until the termination of optimization.
Optimization terminates when the gradients are reasonably
low (e.g., < 10−2 for constrained parameters, < 5 for op-
timized parameters, and < 10 for unoptimized parameters).
This final optimized model parameter set forms the basis of
the results presented throughout this study (Sect. 4). Addi-
tionally, in order to assess the sensitivity of the model opti-
mization results with regard to the initial parameter choice,
we perturb by ±50 % a subset of the initial parameter values
used in the reference (original) optimization experiments to
form different initial parameter sets (a total of 15 sets consist-
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ing of partially or fully perturbed 18 parameters, Tables B1–
2) and conduct new optimization experiments from each set
(Sect. 4.1).

2.5 Cost function

To represent a misfit between observations and model out-
put, a total cost function is calculated as follows (Luo et al.,
2010):

J =

M∑
m=1

1
Nm

Nm∑
n=1

(
âm,n− am,n

σm

)2

, (6)

where m and n represent assimilated data types and data
points, respectively, M and Nm are the total number of as-
similated data types and data points for data type m, respec-
tively, σm is the target error for data type m, am,n is obser-
vations, and âm,n is model output. Given the high biologi-
cal productivity of the WAP waters and the approximate log-
normal distribution of many marine biological variables, the
base-10 logarithms of Chl and primary production (PP) are
used in the cost function calculation to capture phytoplankton
dynamics (Campbell, 1995; Glover et al., 2018). The target
error is calculated for each data type as follows:

σm = am,n×CVm, (7)

where am,n is the climatological mean (over the select nine
growth seasons; see below) of the observations and CVm is
the averaged coefficient of variation (CV) of the observa-
tions of each data type in the mixed layer (due to observa-
tional error and seasonal and interannual variations) calcu-
lated using all of the observational data over nine growth-
season periods between 2002–2003 and 2011–2012, except
the 2007–2008 growth season due to its missing data. These
nine growth seasons are chosen, instead of the multi-decadal
observations available from Palmer LTER (since 1991), due
to the relatively more complete data coverage in those sea-
sons. The standard deviations are used as target errors of the
log-converted data types. The CV of the log-converted data
type is estimated as the average of ±1 standard deviation in
log space converted back into normal space (Doney et al.,
2003; Glover et al., 2018). Hereafter, we present the total cost
normalized by M (J equivalent to J/M hereafter) as it indi-
cates the model–observation misfit equivalent to a reduced
chi-square estimate of model goodness of fit. We report the
normalized total cost J along with normalized costs of in-
dividual data types throughout this study. J = 1 indicates a
good fit, J � 1 indicates a poor fit or underestimation of the
error variance, and J � 1 indicates an overfitting of the data,
fitting the noise, or overestimation of the error variance.

3 Model experiments

3.1 Modeling framework

To examine the applicability of the WAP-1D-VAR v1.0
model to the coastal WAP region, we select a nearshore
Palmer LTER water-column time-series station, Station E
(64.77◦ S, 64.05◦W), as the modeling site that is ∼ 200 m
deep and situated approximately 3 km south of Palmer Sta-
tion and 6.5 km northeast of the head of Palmer Deep (Sher-
rell et al., 2018). Physical forcing (Fig. 3) and data types
assimilated are derived from roughly semi-weekly physical,
chemical, and biological profiles collected from small boat
via a profiling CTD and discrete water samples at Station E.
When weather and ice conditions permit, water-column sam-
pling at the station has been conducted twice a week over the
growth season. Seven upper-ocean layer depths (2.5, 10, 20,
30, 40, 50, and 60 m) are chosen for the model vertical grids.
The model depth can be extended to as deep as needed, but
this study is focused to upper 60 m water column to fully take
advantage of the large data availability. Also, conceptually,
the application of the 1-D model framework makes the most
sense for the upper water column dominated by local sea-
sonal processes, and extension of the model into deeper wa-
ter well below the maximum seasonal mixed layer becomes
more problematic because of the growing importance of lat-
eral advective processes that are not well captured in the 1-
D model framework. The vertical structure of the water col-
umn can be affected by growing sea ice due to reduced wind-
driven turbulence and brine rejection during winter, but this
is what a prognostic, coupled ocean–ice 1-D model can offer
to simulate, not our diagnostic-forcing-based model that was
used in this study. Also, because our model simulates only
the spring–summer growth season, the impact of winter sea
ice on ecosystem dynamics is less of a concern.

Given the routine observations of Palmer LTER available
over the growth season (October–March), we simulate one
example growth season with the most complete data cover-
age, from October 2002 to March 2003 (2002–2003 growth
season hereafter), instead of a series of different growth
seasons in a continuous manner. The example growth sea-
son simulations utilize this year’s specific observed physical
forcing fields and assimilated biological and biogeochemical
observations. Each Palmer LTER growth season should be
modeled to have its own unique optimized parameter set, as
well as initial conditions and physical forcing that together
determine the model solution for that year; however, only the
2002–2003 growth season simulations are modeled in this
study for model analysis and evaluation.

3.2 Initial and boundary conditions

Model initial conditions are prescribed 135 d before the
model start date for the growth season (15 October 2002)
on 1 June 2002. This 135 d spinup is conducted to mini-
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Figure 3. Physical forcing used in the WAP-1D-VAR v1.0 model,
including surface photosynthetically active radiation (PAR) (a), sea-
ice concentration (b), water temperature (c), and vertical eddy dif-
fusivity (d) overlaid with mixed layer depth (MLD; dashed line) in
the modeled growth season of 2002–2003.

mize the impact of initial conditions on the model output
over the growth season. Initial conditions are prepared by
optimizing the full growth seasonal cycle forced by clima-
tological physics and assimilated with climatological obser-
vations and with the same bottom boundary conditions used

in the optimization of the 2002–2003 growth season (i.e., cli-
matological model; using climatological physics and obser-
vations averaged over nine growth-season periods between
2002–2003 and 2011–2012 except the 2007–2008 growth
season due to its missing data). For the first climatologi-
cal model simulation, initial conditions are prepared by ad-
justing manually following literature values (e.g., Luo et
al., 2010). Due to strong interannual variability in the phy-
toplankton bloom phenology at Palmer Station, averaging
across all these 9 years does not reflect distinct seasonal phy-
toplankton peaks, leading to underestimated phytoplankton
values (not shown). To capture this non-linear aspect of the
coastal WAP system, we construct the climatological year
by applying a single time shift to all variables so that a sea-
sonal PP peak of each year lines up with an average date
of seasonal PP peaks from all years. Most biological initial
conditions on 1 June are close to zero given the lack of active
physiological processes in the very low light and the presence
of sea ice during wintertime before the model growth season
starts. All the data types are set to zero at the lower boundary
(bottom) except for NO3, PO4, SDOC, SDON, and SDOP in
which the climatological values at 65 m are used for lower
boundary values (25.9, 1.9, 6.5, 0.6, and 0.03 mmolm−3, re-
spectively).

3.3 Assimilated data

We include the data types directly related to corresponding
model outputs, including a mix of ecosystem stocks or state
variables – NO3, PO4, Chl for diatoms and cryptophytes,
bacterial biomass, microzooplankton biomass, SDOC, POC,
and particulate organic nitrogen (PON), as well as carbon
flows among model stocks – bulk net PP and bacterial pro-
duction (BP). These data sets have been sampled semi-
weekly at Palmer Station E (64.77◦ S, 64.05◦W), the same
location where our model is set up, and are available from
the Palmer LTER data website (see data availability). The
distinction between diatoms and cryptophytes is established
by assimilating phytoplankton taxonomic-specific Chl data
for diatoms and non-diatom species derived from a high-
performance liquid chromatography (HPLC) and CHEM-
TAX analysis (Schofield et al., 2017), but given cryptophytes
being the second dominant species in the water samples
at the study site, cryptophytes are assumed to represent all
non-diatom species for modeling purposes. Given that POC
(PON) from bottle filtration may capture both living biomass
and detrital material, we adjust the observed POC (PON)
by subtracting phytoplankton and bacterial C (N) biomass
to estimate the detrital pool, in order to only include non-
living particles to detrital pool. When phytoplankton or bac-
terial biomass data are not available, we assign climatolog-
ical (2002–2003 to 2011–2012) fractions of POC (PON) to
detrital pool. Phytoplankton and bacterial biomass accounts
for 26 % of total POC and 29 % of total PON. In converting
Chl to phytoplankton carbon (nitrogen) biomass, the max-
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imum Chl/C (Chl/N) ratio submitted for optimization is
used along with other reference ratios (Table 1). Microzoo-
plankton biomass data are not available for the full time se-
ries, so their data from grazing experiments at Palmer Sta-
tion (Garzio et al., 2013) are assimilated to at least pro-
vide constraints on bacterial and cryptophyte grazing pro-
cesses. However, due to the discrepancy in the timing and
location from model simulations of this study, the micro-
zooplankton model–observation misfits are not analyzed in
the present study. Krill biomass data are not assimilated due
to the strong patchiness of their distribution that may hin-
der proper model optimization. The vertical profiles of most
of the data types are assimilated, whereas average NO3 and
PO4 concentrations in the mixed layer are assimilated due
to the difficulty of simulating depth-dependent nutrient con-
centrations and the fact that net PP is mostly determined
by surface nutrient concentrations (Luo et al., 2010). BP
(mmolCm−3 d−1) is derived from the 3H-leucine incorpo-
ration rate (pmol l−1 h−1) data using the conversion factor
of 1.5 kgC (mol leucine)−1 incorporated (Ducklow, 2000).
Bacterial biomass (mmolCm−3) is estimated from bacte-
rial abundance measured by flow cytometry with the con-
version factor of 10 fgCcell−1 (Fukuda et al., 1998). SDOC
is calculated by subtracting the background concentration
(41.2 mmolm−3 for the modeling site) from total DOC con-
centration.

3.4 Uncertainty analysis

Uncertainties of the optimized parameters are computed
from a finite difference approximation of the complete Hes-
sian matrix (i.e., second derivatives of the cost function with
respect to the model parameters) during the iterative op-
timization process (details in Sect. 2.4). We then conduct
Monte Carlo experiments to calculate the impact of the op-
timized parameter uncertainties on the model results. We
first create an ensemble of parameter sets (n= 1000) by ran-
domly sampling values within the uncertainty ranges of the
constrained parameters and then perform a model simulation
using each parameter set. A total of 1000 Monte Carlo ex-
periments were shown to be adequate from a series of tests
with different numbers of Monte Carlo sampling (n= 500–
2000), where standard deviations of model-simulated values
converged after > 1000 Monte Carlo sampling (not shown).
All uncertainty estimates are calculated following standard
error propagation rules and presented as ±1 standard devia-
tion in the study.

4 Results and discussion

4.1 Model skill assessment

In the case of the example growth season (2002–2003) mod-
eled in this study, the iterative data assimilation–parameter
optimization procedure reduced by 58 % the misfits between

observations and model output compared to the misfits ob-
tained from the initial parameter values (Table 2). The opti-
mized model solution satisfied the preset convergence crite-
ria, with the low gradients of the total cost with respect to the
optimized parameters and positive eigenvalues of the Hessian
matrix. Notably, this was achieved by optimizing a subset of
12 (9 constrained and 3 optimized) parameters among the to-
tal of 72 optimizable parameters (Table 1, Sect. 4.2). To ex-
amine the sensitivity of the optimized model solution to the
initial parameter choice, a series of new optimization exper-
iments (n= 15) was conducted with a varying subset of the
initial parameter values perturbed by ±50 % of those used
in the original optimization experiment (Table B1). These
experiments showed that the optimized model results (i.e.,
the reference case; Table 1) were not sensitive to the initial
choice of the parameters. The 15 different initial parame-
ter sets resulted in a range of initial model–observation mis-
fits, some substantially larger than the reference case (14.25–
28.24 vs. 14.85 for the reference case). However, the total
normalized optimized cost values of the 15 sensitivity exper-
iments (5.79–7.19) were similar to that of the reference case
of 6.42. In sensitivity experiment no. 12, the initial model–
observation misfit was ∼ 2 times larger than that of the ref-
erence case, and there was up to 76 % of the reduction in
the model–observational misfit (vs. 58 % of the reduction in
the reference case; Table B1, Table 1). These results sug-
gest that no matter where in parameter space the optimiza-
tion process starts from, the optimization scheme takes the
model cost function to similar local minima. Importantly, this
was achieved by similar subsets of the optimized parameters:
µDA, µCR, rA

max,BAC, and µMZ were optimized in all cases,
while αDA, αCR, Θ , µBAC, gCR, g′DA, gBAC, µKR, gMZ, and
remvKR were optimized except for a few cases (Table B1).
The uncertainties of the optimized parameters were also sim-
ilar among different optimizations, with most of the relative
errors < 0.5. Constrained parameter values and their uncer-
tainty ranges averaged over the sensitivity experiments (Ta-
ble B2) were comparable to those in the original optimization
experiments (Table 1).

Overall, there was a good model–data fit with the largely
decreased cost value for each data type after optimization
(Table 2). Optimization yielded Jf close to 1 for all data
types, compared to the initial model solution where three data
types – diatom Chl, crypto Chl, and bacterial biomass – had
particularly poor model fits to observations and underesti-
mated error variances (J � 1). Compared to the initial (un-
optimized) model results, the average errors (εbias, Doney et
al., 2009; Stow et al., 2009) in the optimized model results in-
dicated that diatom Chl, cryptophyte Chl, bacterial biomass,
BP, and POC had reduced model biases, while NO3, PO4, PP,
SDOC, and PON had increased model biases (for both pos-
itive and negative biases, defined as εbias > 0 and εbias < 0,
for model overestimation and underestimation of the obser-
vation, respectively). Optimization resulted in the negative
model bias for PO4, compared to the positive model bias in
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Table 2. The observed mean (a), coefficient of variation (CV), and target error (σ ) of each assimilated data type used for calculating the cost
function before and after optimization. J0 is the normalized cost function before optimization and Jf is the normalized cost function after
optimization (Eq. 6). Data type units: mmolm−3 for NO3, PO4, bacterial biomass, SDOC, and POC; mgm−3 for diatom Chl, cryptophyte
Chl, mmolNm−3 for PON; and mmolCm−3 d−1 for PP and BP. The average error (εbias) of each data type (for non-transformed or raw Chl
and PP) is calculated from Stow et al. (2009) before and after optimization where a positive value indicates the model overestimation of the
observation, and vice versa.

Data types n a CV σ J0 Jf εbias,0 εbias,f

NO3 75 21.54 0.04 0.80 0.76 0.90 −0.59 −1.15
PO4 75 1.43 0.03 0.05 0.40 0.47 0.03 −0.04
log10 diatom Chl 86 −0.07 0.20 0.08 2.29 1.30 −0.37 −0.21
log10 crypto. Chl 86 −0.27 0.24 0.10 3.09 0.56 −0.42 −0.13
log10 PP 92 1.30 0.50 0.21 0.73 0.57 −16.6 −17.6
Bacterial biomass 55 0.44 0.08 0.04 4.61 0.58 −0.30 −0.02
BP 55 0.05 0.16 0.01 1.11 0.22 0.04 0.01
SDOC 55 11.39 0.20 2.30 0.66 0.67 0.04 0.10
POC 91 19.78 0.13 2.58 0.50 0.47 −7.43 −7.19
PON 91 2.66 0.12 0.32 0.71 0.68 −1.00 −1.01

Total cost function 14.85 6.42

the initial model results. The point-to-point comparison plots
showed that there were seasonally consistent, negative model
biases for PP, POC, and PON (Fig. B1). Model skill was
further evaluated with a Taylor diagram (Taylor, 2001) sum-
marizing the statistics of the correlation coefficient between
model output and observations, normalized standard devia-
tion (by the standard deviation of the observations), and cen-
tered (bias removed) root-mean-square difference (RMSD)
for each data type, in which a better model skill is character-
ized by a higher correlation, a normalized standard deviation
close to 1, and a lower RMSD (Fig. 4). Optimization resulted
in better model skills for cryptophyte Chl, PP, BP, and bac-
terial biomass via increased correlation coefficients and low-
ered RMSD (Fig. 4b), compared to those in the unoptimized
model results (Fig. 4a). After optimization, the normalized
standard deviations of PP, BP, bacterial biomass, phosphate,
POC, and PON were closer to 1 (Fig. 4b). Direct compar-
isons with the observational data showed that the optimized
model parameter set captured better the increases in diatom
biomass early in the season, cryptophyte biomass in January,
and bacterial biomass in mid-February, compared to the un-
optimized model parameter set (Figs. 5a and b and B2).

4.2 Optimized parameters

The number of the optimized parameters in this study is small
and comparable to those from other data-assimilative models
focused on different marine environments (Friedrichs, 2001;
Friedrichs et al., 2006, 2007; Luo et al., 2010). This is consis-
tent with the general behavior of marine plankton ecosystem
models, in which well-posed model solutions would be found
with only a subset of independent model parameters due
to many cross-correlated parameters inherent in non-linear
model equations (Fennel et al., 2001; Harmon and Challenor,

1997; Matear, 1996; Prunet et al., 1996a, b). Ecosystem mod-
els with a relatively large number of unconstrained parame-
ters (i.e., equivalent to the optimized parameters with high
uncertainties in the present study) might reduce total costs
to a greater extent but could possess low predictive skill as
a result of being overtuned to fit noise in the observations
(Friedrichs et al., 2007). Also, there are several field- and
lab-based studies at the study site or in a similar polar en-
vironment that reported the values of the model parameters
used in the WAP-1D-VAR v1.0 model, including the bac-
terial growth rate of 0.82 d−1, total phytoplankton (includ-
ing large cells like diatoms) growth rate of 0.33–0.55 d−1,
nanophytoplankton (corresponding to cryptophytes) growth
rate of 0.52–0.99 d−1 (Garzio et al., 2013), and the mi-
crozooplankton growth rate of up to 1.0 d−1 (Caron et al.,
2000). The optimized values of the maximum bacterial, di-
atom, cryptophyte, and microzooplankton growth rates in
this study were 1.06 d−1 (0.93–1.20 d−1), 0.77 d−1 (0.68–
0.88 d−1), 0.72 d−1 (0.61–0.85 d−1), and 1.18 d−1 (1.10-
1.26 d−1), falling in the ranges of those measured bacte-
rial, total phytoplankton, nanophytoplankton, and microzoo-
plankton growth rates, respectively.

The ensemble of the model state variables and flows ob-
tained from the Monte Carlo experiments had generally small
standard variations at each model time step and grid, suggest-
ing the robustness of the modeled fields against the variations
in the optimized parameter values (Figs. B3 and B4). To ex-
amine the translation of the optimized parameter values to al-
tered functioning of the WAP biogeochemical processes, we
compared two different sets of the model simulation results
– one based on the initial parameter values (Figs. 5a, 6a, and
7a) and the other based on the optimized parameter values
(Figs. 5b, 6b, and 7b). However, due to the non-linearities in
the model, it is not straightforward to identify what causes
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Figure 4. Model skill assessment: the Taylor diagrams using a polar-coordinate system summarizing the model–observation correspondence
for each model stock and flow for the modeled growth season of 2002–2003 before (a) and after optimization (b). The angular coordinate
for the Pearson correlation coefficient (r), the distance from the origin for the standard deviation normalized by the standard deviation of
the observation, and the distance from point (1,0), marked as REF on x axis, for the centered (bias removed) root-mean-square difference
(RMSD) between model results and observations.

the parameter variations, except for a few cases in which
the changes in the parameter values are clearly linked to the
difference in the model state variables and flows. The first
case is the relation of the increased gBAC value (bacterial
half-saturation concentration in microzooplankton grazing,
mmolCm−3) to the elevated bacterial accumulations after
optimization (Table 1, Figs. 5 and 7). The second case is the
link between Θ (maximum Chl/N ratio, gChla (molN)−1)
and the relative dominance of cryptophytes in total phyto-
plankton accumulations. It has been demonstrated that the
variations of Θ are driven by an imbalance between the rate

of light absorption and energy demands for photosynthesis
and biosynthesis in phytoplankton cells (Geider et al., 1997).
Θ can also change because of the variations in phytoplankton
photo-acclimation or physiological differences across phyto-
plankton groups, from a lower Θ value for smaller species
to a higher Θ value for larger diatom cells (Geider, 1987).
Θ was optimized to a 30 % lower value than the initial pa-
rameter value (Table 1), in order to simulate the relatively
larger proportion of cryptophytes in total phytoplankton ac-
cumulations in the optimized model results compared to the
unoptimized model results (Figs. 5 and 7). By contrast, the
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Figure 5. The model state variables for the modeled growth season of 2002–2003 (x axis; month/day) for before (a) and after optimization
(b) with init. as the initial (unoptimized) model results and opt. as the optimized model results. The error (standard deviation) of each model
state variable from the Monte Carlo experiments (n= 1000) is available in Fig. B3.

remaining cases are not as clear because the first-order im-
pact of parameter variations on the model results is less di-
rect and more nuanced. Compared to the unoptimized re-
sults, the decreases in µDA (diatom C-specific maximum
growth rate, d−1), µCR (cryptophytes C-specific maximum
growth rate, d−1), αDA (initial slope of P–I curve of diatoms,
molC (gChl)−1 d−1 (Wm−2)−1), and αCR (initial slope of
P–I curve of cryptophytes, molC (gChl)−1 d−1 (Wm−2)−1)
did not lead to decreased diatom and cryptophyte accumula-
tions, presumably due to decreased gMZ (microzooplankton
half-saturation concentration in krill grazing, mmolCm−3)
and increased remvKR (krill removal rate by higher trophic
levels, (mmolCm−3)−1 d−1) after optimization (Table 1,
Figs. 5 and 7). Similarly, the decreasedµBAC (maximum bac-
terial growth rate, d−1) and the increased rA

MAX,BAC (bacte-
rial maximum active respiration rate, d−1) did not lead to
decreased bacterial accumulations, presumably due to the
increased gBAC (bacterial half-saturation concentration in
microzooplankton grazing, mmolCm−3) and the decreased

gMZ (microzooplankton half-saturation concentration in krill
grazing, mmolCm−3).

4.3 Ecosystem indices

We calculated key ecosystem indices for the modeled growth
season, including NPP (directly comparable to 14C–PP ob-
servations), net community production (NCP; i.e., NCP=
NPP – bacterial, microzooplankton, and krill respiration),
BP, and POC export (sinking) flux (Fig. 6). Setting an up-
per limit for lateral or vertical carbon export from the eu-
photic zone (Dugdale and Goering, 1967), over appropriate
timescales and space scales, NCP is quantitatively equiva-
lent to new production that is supported via external sources
of nitrogen (Ducklow and Doney, 2013). In both optimized
and unoptimized model results, NPP increased after com-
plete sea-ice retreat, but a brief ice-edge bloom was simu-
lated under sea ice at the beginning of the growth season
(Figs. 3 and 6). Seasonal patterns of NCP resembled those
of NPP and occasionally fell below zero (i.e., the net het-
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Figure 6. Model ecosystem indices before (a) and after optimization (b). The key ecosystem indices for the modeled growth season of 2002–
2003 (x axis; month/day), with init. as the initial (unoptimized) model results and opt. as the optimized model results. NPP: net primary
production, NCP: net community production, C export flux: particulate organic carbon (POC) export flux, and BP: bacterial production. The
error (standard deviation) of each rate process from the Monte Carlo experiments (n= 1000) is available in Fig. B4.

erotrophy) in subsurface waters for both optimized and un-
optimized cases (Fig. 6). The POC export flux increased over
time and reached the maximum value at the end of the growth
season in both model results, but there were two major POC
flux events separated by weaker, in-between flux events in
December in the optimized results that the initial model re-
sults did not capture (Fig. 6b). After optimization, the corre-
lation coefficients adjusted from 0.88 to 0.36, 0.89 to 0.68,
and 0.45 to 0.73 for the NPP vs. NCP pair, the NPP vs. BP

pair, and the NCP vs. POC export flux (lagged by 30 d) pair
(all p < 0.001). In the optimized model results, the growth-
season mean of the depth-integrated NPP, NCP, and BP in the
60 m water column, and the 30 d lagged POC export flux at
60 m were 19± 8 mmolCm−2 d−1, 10± 3 mmolCm−2 d−1,
1± 1 mmolCm−2 d−1, and 2± 0.3 mmolCm−2 d−1 (un-
certainties propagated from season averaging in Fig. 6b
and Monte Carlo uncertainties in Fig. B4), compared
to 28± 6 mmolCm−2 d−1, 13± 3 mmolCm−2 d−1, 3±
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Figure 7. Depth-integrated (0–60 m) carbon stocks (mmolCm−3),
flows (mmolCm−3 d−1), and POC export flux at 60 m
(mmolCm−2 d−1) averaged over the modeled austral growth
season (October 2002–March 2003) before (a) and after opti-
mization (b). Values in parentheses as uncertainties from season
averaging (a) and as uncertainties propagated from season av-
eraging and depth integration of the Monte Carlo errors for
panel (b).

1 mmolCm−2 d−1, and 2±0.2 mmolCm−2 d−1 in the unop-
timized model results (uncertainties from season averaging
in Fig. 6a).

The mean e ratio, defined as the growth-season mean of
the 30 d lagged POC export flux divided by the growth-

season mean NPP, was 0.11±0.05 (uncertainties propagated
from season averaging in Fig. 6b and Monte Carlo uncertain-
ties in Fig. B4) in the optimized model results, compared to
0.07± 0.02 (uncertainties from season averaging in Fig. 6a)
in the unoptimized model results. The mean f ratio, defined
as the amount of NO3 uptake divided by the amount of NO3
and NH4 uptake both, was 0.88±1.52 in the optimized model
results, compared to 0.84± 0.19 in the unoptimized model
results (not shown). The higher mean f ratio relative to the
mean e ratio in this study implies an imbalance between pro-
duction and export at the study site, at least during the mod-
eled period. Excess new production relative to export pro-
duction (as derived from sediment traps and 234Th disequi-
librium; Ducklow et al., 2018) was previously observed in
the WAP, presumably due to diel vertical migration, DOM
export, lateral export, and diffusive loss of PON via diapyc-
nal mixing (Stukel et al., 2015). Stukel et al. (2015) reported
up to 5 times larger new production via NO3 uptake than
export production via Th-based N export along the coastal
WAP. Several additional mechanisms might be responsible
for driving the discrepancy between production and export.
First, given that the assimilated pool of suspended POC in the
model formulation is not a good indicator of a rapidly sink-
ing detrital pool dominating particle export, the WAP-1D-
VAR v1.0 model does not capture large, short-lived particle
flux events (e.g., fecal pellets produced by a large swarm of
krill), underestimating POC export flux. Second, the WAP-
1D-VAR v1.0 model export scheme does not consider DOC
export that would lower the production–export discrepancy.
Finally, RDOC is not explicitly modeled in the model, due to
its much longer timescale than the model timescale, so accu-
mulated and not-exportable RDOC pool would contribute to
the deviation of the modeled e ratio from the modeled f ra-
tio. Indeed, the modeled mean e ratios in our study, for both
optimized and unoptimized cases, are situated at the lower
end of the range of the e ratios measured or estimated in
the WAP waters (Ducklow et al., 2018; Sailley et al., 2013;
Stukel et al., 2015; Weston et al., 2013), but optimization in-
creased the e ratio by 60 % and thus made it closer to the
literature values.

The mean BP/NPP ratio was 0.05± 0.06 (uncertainties
propagated from season averaging in Fig. 6b and Monte
Carlo uncertainties in Fig. B4) in the optimized model re-
sults, compared to 0.11±0.04 (uncertainties from season av-
eraging in Fig. 6a) in the unoptimized model results. The
modeled mean BP/NPP ratio for both optimized and unop-
timized cases corresponds well to the estimates from other
measurement- and observation-based studies (Ducklow et
al., 2012; Kim and Ducklow, 2016). Relatively low bacterial
activity in productive Antarctic waters, typically reflected as
a low BP/PP ratio, has been attributed to low LDOM avail-
ability for bacterial growth (Kirchman et al., 2009), low tem-
perature (Pomeroy and Wiebe, 2001), or top-down control
via grazing and viral lysis (Bird and Karl, 1999).
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4.4 Mean carbon stocks and flows

We summarized the growth-season means of the carbon
stocks and flows in the entire food web (Fig. 7). The WAP-
1D-VAR v1.0 model captured several key WAP ecological
and biogeochemical features, including the lack of macronu-
trient limitation (NO3 and PO4 drawdown by phytoplank-
ton utilization but remaining well above their half-saturation
constants, Table 1) and comparable values of the assimilated
and non-assimilated model state variables (Ducklow et al.,
2007, 2012, 2018; Kim et al., 2016; Moline et al., 2008;
Smith et al., 2008), providing confidence in the model simu-
lations. For instance, growth-season measurements in 2017–
2018 at Palmer Station showed a strongly patchy krill dis-
tribution, with the mean biomass of 0.12±0.04 mmolCm−3

and the maximum biomass of 0.57 mmolCm−3 when krill
were present (unpublished data provided by D. Steinberg),
falling in the range of the modeled krill biomass val-
ues (0.13± 0.03 mmolCm−3; calculated from Fig. 7b). The
WAP-1D-VAR v1.0 model also simulated several important
ecosystem metrics comparable to other statistical modeling
studies. For instance, the modeled phytoplankton seasonal
patterns in the present study are consistent with physico-
chemical attributes revealed by a distinct ecological seascape
pattern in the coastal WAP (Bowman et al., 2018), includ-
ing low Chl and high nutrients in the first half of the growth
season followed by high Chl and low nutrients in the sec-
ond half of the growth season. A steady-state-solution-based
inverse modeling study quantified different food-web states
using ecosystem network indices from Palmer LTER annual
summer cruises along the WAP shelf region (Sailley et al.,
2013). Their network indices include the ratio of C export to
total PP (i.e., equivalent to e ratio in our study) and the ra-
tio of recycling (the sum of flows into respiration and DOC
pool) to total PP, where more (less) recycling favorable mi-
crobial food webs are characterized by greater (smaller) ra-
tios of recycling to total PP and smaller (greater) ratios of
total C export to total PP (Legendre and Rassoulzadegan,
1996). As discussed above, the modeled mean e ratio in the
present study is smaller than the estimates in the inverse mod-
eling study for the WAP shelf region (Sailley et al., 2013)
but consistent with their conclusion on the food-web status
of the modeled growth season (2002–2003) positioned on
the microbial food-web side. The discrepancy in the e-ratio
values between the present study and Sailley et al. (2013)
may be attributed to fundamentally different model formu-
lation (i.e., time-evolving modeling for the WAP-1D-VAR
v1.0 model vs. steady-state modeling) and optimization ap-
proach, or due to relatively strong microbial food-web activ-
ity at our coastal site compared to the shelf region. Micro-
bial food-web activity can be approximated by quantifying
the amount of fixed carbon flowing through heterotrophic
bacteria (Carlson et al., 1999; del Giorgio and Cole, 1998;
Ducklow, 2000; Ducklow et al., 2012). According to this
approach, microbial food-web activity from the optimized

model results was around 38%± 16 %, calculated as the ra-
tio of bacterial L- and SDOC uptake to PP (i.e., (arrow 13
+ arrow 14)/arrow 1 in Fig. 1, mean ± uncertainties from
season averaging and Monte Carlo uncertainties in Fig. 7b).
On average, SDOC supported 1%±2% of the total bacterial
C uptake or C demand (i.e., arrow 14/(arrow 13 + arrow 14)
in Fig. 1, mean ± uncertainties from season averaging and
Monte Carlo uncertainties in Fig. 7b) but could be an im-
portant bacterial C source when LDOC became scarce as the
growth season progressed (Fig. 5b). Indeed, several observa-
tional studies speculated that the WAP bacteria utilize SDOM
in short of LDOM (Ducklow et al., 2011; Kim and Ducklow,
2016; Luria et al., 2017).

5 Summary

We developed the WAP-1D-VAR v1.0 model, a one-
dimensional variational data assimilation model specific to
the coastal WAP region, evaluated the model performance
and robustness using a variety of quantitative metrics, and
discussed the model applicability with regard to capturing
the key WAP ecological and biogeochemical features using
the data from the example growth season. The data assim-
ilation scheme significantly reduced the model–observation
misfits via the optimized model parameter set that adjusted
the simulation to better match the Palmer LTER observa-
tions in 2002–2003. We also explored the nuanced question
of how the observations influenced the data assimilation pro-
cess, drove the variations in optimized parameter values rel-
ative to their corresponding initial parameter values, and af-
fected the resulting model simulations. The WAP-1D-VAR
v1.0 model successfully simulated the variables and flows
not included in data assimilation, with the values consistent
and comparable with other measurement- and observation-
based studies in the coastal WAP. Importantly, the data as-
similation scheme enabled the available observational data to
constrain processes that were poorly understood, including
the partitioning of NPP by different phytoplankton groups,
the optimal Chl/C ratio of the WAP phytoplankton commu-
nity, and the partitioning of DOC pools with different labil-
ity. Up to this point, a range of observational studies has
provided snapshots of ecosystem and biogeochemical pro-
cesses in the WAP. Yet, we have little understanding of the
driving processes that underlie the connections between each
component in complex food-web interactions. We used data-
assimilative modeling to glue these snapshots together to bet-
ter explain the observed dynamics and further understand the
previously poorly constrained processes in the coastal WAP
system.
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Appendix A

A1 Temperature effect

Tf = exp {−AE× (1/T − 1/Tref)} (A1)

A2 Diatom processes

– Cellular quota (ratio):

QC
N,DA =NDA/CDA (A2)

QC
P,DA = PDA/CDA (A3)

QC
CHL,DA = CHLDA/CDA. (A4)

– N and P limitation function:

Nf,DA =
(
QC

N,DA− q
C
N,MIN,DA

)/(
qC

N,RDF,DA− q
C
N,MIN,DA

)
0≤Nf,DA ≤ 1 (A5)

Pf,DA =
(
QC

P,DA− q
C
P,MIN,DA

)/(
qC

P,RDF,DA− q
C
P,MIN,DA

)
0≤ Pf,DA ≤ 1. (A6)

– Maximum primary production rate:

PC
MAX = µDA× Tf×min(Nf,DA,Pf,DA). (A7)

– C-specific gross primary production:

GC
DA = CDA×P

C
MAX

×
{
1− exp

(
−αDA×Q

C
CHL×PAR

)/
PC

MAX
)}

× exp(−βDA×PAR). (A8)

– Limitation on N and P uptake:

V N
MAX =

(
qC

N,MAX−Q
C
N,DA

)/(
qC

N,MAX− q
C
N,RDF

)
0≤ V N

MAX ≤ 1 (A9)

V P
MAX =

(
qC

P,MAX−Q
C
P,DA

)/(
qC

P,MAX− q
C
P,RDF

)
0≤ V P

MAX ≤ 1. (A10)

– N assimilation:

G
NH4
DA = CDA×V

N
REF× Tf×V

N
MAX

×
{
NH4

/(
NH4+ k

NH4 +NO3× k
NH4/kNO3

)}
(A11)

G
NO3
DA = CDA×V

N
REF× Tf×V

N
MAX

×
{
NO3

/(
NO3+ k

NO3 +NH4× k
NO3

/
kNH4

)}
(A12)

GN
DA = G

NH4
DA +G

NO3
DA . (A13)

– P assimilation:

G
PO4
DA = CDA×V

P
REF× Tf×V

P
MAX

×
{
PO4

/(
PO4+ k

PO4
)}
. (A14)

– Chlorophyll production:

GCHL
DA = θ ×

(
G

NH4
DA +G

NO3
DA

)
×
{
GC

DA
/
α×CHLDA×PAR

× exp(−β ×PAR)
}
. (A15)

– Respiration:

RC
DA =G

NO3
DA × ζ

NO3 . (A16)

– Passive excretion of LDOM:

EC
DA,LDOC,PSV = exDA,PSV×CDA. (A17)

EN
DA,LDON,PSV = exDA,PSV×NDA. (A18)

EP
DA,LDOP,PSV = exDA,PSV×PDA. (A19)

– Active excretion of LDOC:

EC
DA,LDOC,ACT = exDA,ACT×G

C
DA. (A20)

– Active excretion of SDOC:

EC
DA,SDOC,ACT = 0.5×CDA

×max
(
1−QC

N,DA
/
qC

N,RDF,DA,

1−QC
P,DA

/
qC

P,RDF,DA,0
)
. (A21)

– Active excretion of SDON and SDOP (if
EXC

DA,SDOC,ACT > 0, otherwise 0):TS1

EN
DA,SDON,ACT = 0.5× 0.25×NDA

×max
(
1−QN

P,DA
/
qC

P,RDF,DA/
qC

N,RDF,DA,0
)

(A22)

EP
DA,SDOP,ACT = 0.5× 0.25×PDA

×max
(
1−QP

N,DA
/
qC

N,RDF,DA/
qC

P,RDF,DA,0
)
. (A23)

– Partitioning between LDOM and SDOM:

EC
DA,LDOC = E

C
DA,LDOC,PSV+ 0.75×EC

DA,LDOC,ACT
(A24)

EN
DA,LDON = E

N
DA,LDON,PSV (A25)

EP
DA,LDOP = E

P
DA,LDOP,PSV (A26)

EC
DA,SDOC = E

C
DA,SDOC,ACT+ 0.25×EC

DA,LDOC,ACT
(A27)

EN
DA,SDON = E

N
DA,SDON,ACT (A28)

EP
DA,SDOP = E

P
DA,SDOP,ACT. (A29)
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– POM production by aggregation:

DC
DA = pomDA×CDA×CDA (A30)

DN
DA =Q

C
N,DA×D

C
DA (A31)

DP
DA =Q

C
P,DA×D

C
DA (A32)

DCHL
DA =Q

C
CHL,DA×D

C
DA. (A33)

– Grazing by microzooplankton:

GZC
DA,MZ = Tf×µMZ×CMZ

×
[
(CDA− εDA)

2/{(CDA− εDA)
2

+ g2
DA+ (CCRYPTO× gDA/gCR)

2

+ (CBAC× gDA/gBAC)
2}] (A34)

GZN
DA,MZ =Q

C
N,DA×GZ

C
DA,MZ (A35)

GZP
DA,MZ =Q

C
P,DA×GZ

C
DA,MZ (A36)

GZCHL
DA,MZ =Q

C
CHL,DA×GZ

C
DA,MZ. (A37)

– Grazing by krill:

GZC
DA,KR = Tf×µKR×CKR

×
[
C2

DA
/{
C2

DA+ g
′

DA2

+ (CMZ× g
′

DA/gMZ)
2}] (A38)

GZN
DA,KR =Q

C
N,DA×GZ

C
DA,KR (A39)

GZP
DA,KR =Q

C
P,DA×GZ

C
DA,KR (A40)

GZCHL
DA,KR =Q

C
CHL,DA×GZ

C
DA,KR. (A41)

– The net growth rate equations:

dCDA

dt
= GC

DA−E
C
DA,LDOC−E

C
DA,SDOC−D

C
DA

−RC
DA−GZ

C
DA,MZ−GZ

C
DA,KR (A42)

dNDA

dt
= GN

DA−E
N
DA,LDON−E

N
DA,SDON−D

N
DA

−GZN
DA,MZ−GZ

N
DA,KR (A43)

dPDA

dt
= GP

DA−E
P
DA,LDOP−E

P
DA,SDOP−D

N
DA

−GZP
DA,MZ−GZ

P
DA,KR (A44)

dCHLDA

dt
= GCHL

DA −D
CHL
DA −GZ

CHL
DA,MZ−GZ

CHL
DA,KR.

(A45)

A3 Cryptophyte processes

– Cellular quota (ratio):

QC
N,CR =NCR/CCR (A46)

QC
P,CR = PCR/CCR (A47)

QC
CHL,CR = CHLCR/CCR. (A48)

– N and P limitation function:

Nf,CR =
(
QC

N,CR− q
C
N,MIN,CR

)/(
qC

N,RDF,CR− q
C
N,MIN,CR

)
0≤Nf,CR ≤ 1 (A49)

Pf,CR =
(
QC

P,CR− q
C
P,MIN,CR

)/(
qC

P,RDF,CR− q
C
P,MIN,CR

)
0≤ Pf,CR ≤ 1. (A50)

– Maximum primary production rate:

PC
MAX = µCR× Tf×min(Nf,CR,Pf,CR). (A51)

– C-specific gross primary production:

GC
CR = CCR×P

C
MAX

×
{
1− exp

(
−αCR×Q

C
CHL×PAR

)/
PC

MAX)
}

× exp(−βCR×PAR). (A52)

– Limitation on N and P uptake:

V N
MAX =

(
qC

N,MAX−Q
C
N,CR

)/(
qC

N,MAX− q
C
N,RDF

)
0≤ V N

MAX ≤ 1 (A53)

V P
MAX =

(
qC

P,MAX−Q
C
P,CR

)/(
qC

P,MAX− q
C
P,RDF

)
0≤ V P

MAX ≤ 1. (A54)

– Nitrogen assimilation:

G
NH4
CR = CCR×V

N
REF× Tf×V

N
MAX

×
{
NH4

/(
NH4+ k

NH4 +NO3× k
NH4

/
kNO3

)}
(A55)

G
NO3
CR = CCR×V

N
REF× Tf×V

N
MAX

×
{
NO3

/(
NO3+ k

NO3 +NH4× k
NO3

/
kNH4

)}
(A56)

GN
CR = G

NH4
CR +G

NO3
CR . (A57)

– Phosphorus assimilation:

G
PO4
CR = CCR×V

P
REF× Tf×V

P
MAX

×
{
PO4

/(
PO4+ k

PO4
)}
. (A58)

– Chlorophyll production:

GCHL
CR = θ ×

(
G

NH4
CR +G

NO3
CR

)
×
{
GC

CR
/
α×CHLCR×PAR

× exp(−β ×PAR)
}
. (A59)

– Respiration:

RC
CR =G

NO3
CR × ζ

NO3 . (A60)
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– Passive excretion of LDOM:

EC
CR,LDOC,PSV = exCR,PSV×CCR (A61)

EN
CR,LDON,PSV = exCR,PSV×NCR (A62)

EP
CR,LDOP,PSV = exCR,PSV×PCR. (A63)

– Active excretion of LDOC:

EC
CR,LDOC,ACT = exCR,ACT×G

C
CR. (A64)

– Active excretion of SDOC:

EC
CR,SDOC,ACT = 0.5×CCR

×max
(
1−QC

N,CR
/
qC

N,RDF,CR,

1−QC
P,CR

/
qC

P,RDF,CR,0
)
. (A65)

– Active excretion of SDON and SDOP (if
EXC

CR,SDOC,ACT > 0, otherwise 0):TS2

EN
CR,SDON,ACT = 0.5× 0.25×NCR

×max
(
1−QN

P,CR
/
qC

P,RDF,CR/
qC

N,RDF,CR,0
)

(A66)

EP
CR,SDOP,ACT = 0.5× 0.25×PCR

×max
(
1−QP

N,CR
/
qC

N,RDF,CR/
qC

P,RDF,CR,0
)
. (A67)

– Partitioning between LDOM and SDOM:

EC
CR,LDOC = E

C
CR,LDOC,PSV+ 0.75×EC

CR,LDOC,ACT
(A68)

EN
CR,LDON = E

N
CR,LDON,PSV (A69)

EP
CR,LDOP = E

P
CR,LDOP,PSV (A70)

EC
CR,SDOC = E

C
CR,SDOC,ACT+ 0.25×EC

CR,LDOC,ACT
(A71)

EN
CR,SDON = E

N
CR,SDON,ACT (A72)

EP
CR,SDOP = E

P
CR,SDOP,ACT. (A73)

– POM production by aggregation:

DC
CR = pomCR×CCR×CCR (A74)

DN
CR =Q

C
N,CR×A

C
CR (A75)

DP
CR =Q

C
P,CR×A

C
CR (A76)

DCHL
CR =Q

C
CHL,CR×A

C
CR. (A77)

– Grazing by microzooplankton:

GZC
CR = Tf×µMZ×CMZ

×
[
(CCR− εCR)

2/{(CCR− εCR)
2

+ g2
CR+ (CDA× gCR/gDA)

2

+ (CBAC× gCR/gBAC)
2}] (A78)

GZN
CR =Q

C
N,CR×GZ

C
CR,MZ (A79)

GZP
CR =Q

C
P,CR×GZ

C
CR,MZ (A80)

GZCHL
CR =Q

C
CHL,CR×GZ

C
CR,MZ. (A81)

– The net growth rate equations:

dCCR

dt
= GC

CR−E
C
CR,LDOC−E

C
CR,SDOC−D

C
CR

−RC
CR−GZ

C
CR (A82)

dNCR

dt
= GN

CR−E
N
CR,LDON−E

N
CR,SDON−D

N
CR

−GZN
CR (A83)

dPCR

dt
= GP

CR−E
P
CR,LDOP−E

P
CR,SDOP−D

N
CR

−GZP
CR (A84)

dCHLCR

dt
= GCHL

CR −D
CHL
CR −GZ

CHL
CR . (A85)

A4 Bacterial processes

– Cellular quota (ratio):

QC
N,BAC =NBAC/CBAC (A86)

QC
P,BAC = PBAC/CBAC (A87)

QP
N,BAC =NBAC/PBAC (A88)

QC
N,LDOM =NLDOM/CLDOM (A89)

QC
P,LDOM = PLDOM/CLDOM (A90)

QC
N,SDOM =NSDOM/CSDOM (A91)

QC
P,SDOM = PSDOM/CSDOM. (A92)

– N and P limitation function:

Nf,BAC =Q
C
N,BAC/q

C
N,BAC 0≤Nf,BAC ≤ 1 (A93)

Pf,BAC =Q
C
P,BAC/q

C
P,BAC 0≤ Pf,BAC ≤ 1. (A94)

– Maximum available LDOC and SDOC:

ALC= CLDOC (A95)
ASC= rSDOC×CSDOC. (A96)

Pl
ea

se
no

te
th

e
re

m
ar

ks
at

th
e

en
d

of
th

e
m

an
us

cr
ip

t.

https://doi.org/10.5194/gmd-14-1-2021 Geosci. Model Dev., 14, 1–37, 2021



22 H.H. Kim et al.: WAP-1D-VAR v1.0: variational data assimilation model

– Bacterial uptake of LDOC and SDOC (i.e., bacterial
gross C growth):

GC
BAC,LDOC = µBAC× Tf×CBAC

×min(Nf,BAC,Pf,BAC)

×{ALC/(ALC+ kDOC
+ASC)} (A97)

GC
BAC,SDOC = µBAC× Tf×CBAC

×min(Nf,BAC,Pf,BAC)

×{ASC/(ASC+ kDOC
+ALC)} (A98)

GC
BAC,DOC = G

C
BAC,LDOC+G

C
BAC,SDOC. (A99)

– Bacterial N uptake:

GC
BAC,LDON = G

C
BAC,LDOC×Q

C
N,LDOM

GC
BAC,SDON = G

C
BAC,SDOC (A100)

×min
{
qC

N,BAC,Q
C
N,SDOM+ fS

/
Nf,BAC

×
(
qC

N,BAC−Q
C
N,SDOM

)}
(A101)

GC
BAC,NH4

= GC
BAC,LDON

×NH4/NLDOM/min(1,Nf,BAC),

(A102)

if Nf,BAC < 1,

GC
BAC,NO3

= min
{
0.1×NO3× 1/min(1,Nf,BAC)

×
(
GC

BAC,LDON+G
C
BAC,SDON

)/(
NLDOM+NSDOM), (NO3+NH4

)
×
(
GN

BAC,LDON+G
N
BAC,SDON

)/(
NLDOM+NSDOM

)
−G

NH4
BAC

}
, (A103)

else,

GC
BAC,NO3

= 0 (A104)

GC
BAC,N = G

C
BAC,LDON+G

C
BAC,SDON+G

C
BAC,NH4

+GC
BAC,NO3

. (A105)

– Bacterial P uptake:

GC
BAC,LDOP = G

C
BAC,LDOC×Q

C
P,LDOM

GC
BAC,SDOP = G

C
BAC,SDOC (A106)

×min
{
qC

P,BAC,Q
C
P,SDOM+ fS

/
Pf,BAC

×
(
qC

P,BAC−Q
C
P,SDOM

)}
(A107)

GC
BAC,PO4

= GC
BAC,LDON

×PO4/PLDOM/min(1,Pf,BAC) (A108)

GC
BAC,P = G

C
BAC,LDOP+G

C
BAC,SDOP+G

C
BAC,PO4

.

(A109)

– Respiration:

RC
BAC = ζ

NO3 ×GC
BAC,NO3

+ rB
BAC× Tf×CBAC

+
{
rA

min,BAC+
(
rA

max,BAC− r
A
min,BAC

)
× exp

(
− bR,BAC×G

C
BAC,DOC

)}
×GC

BAC,DOC. (A110)

– RDOC release:

EC
BAC,RDOC = refrBAC×CBAC (A111)

EN
BAC,RDON = E

C
BAC,RDOC× q

C
N,RDOM (A112)

EP
BAC,RDOP = E

C
BAC,RDOC× q

C
P,RDOM. (A113)

– Remineralization of inorganic nutrients:
if QC

N,BAC > q
C
N,BAC and QC

P,BAC > q
C
P,BAC (i.e., C in

short)

REMIN
BAC = remiBAC×

(
NBAC−CBAC× q

C
N,BAC

)
(A114)

REMIP
BAC = remiBAC×

(
PBAC−CBAC× q

C
P,BAC

)
(A115)

elseif QC
N,BAC < q

C
N,BAC and QP

N,BAC < q
C
N,BAC/q

C
P,BAC

(i.e., N in short)

REMIN
BAC = 0 (A117)

REMIP
BAC = 0, (A118)

else (i.e., P in short)

REMIN
BAC = 0 (A119)

REMIP
BAC = 0. (A120)

– SDOM excretion to adjust stoichiometry:
if QC

N,BAC > q
C
N,BAC and QC

P,BAC > q
C
P,BAC (i.e., C in
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short)

EC
BAC,SDOC = 0 (A121)

EN
BAC,SDON = 0 (A122)

EP
BAC,SDOP = 0, (A123)

else if QC
N,BAC < q

C
N,BAC and QP

N,BAC < q
C
N,BAC/q

C
P,BAC

(i.e., N in short)

EC
BAC,SDOC = exADJ,BAC×

(
CBAC−NBAC

/
qC

N,BAC
)

(A124)

EN
BAC,SDOC = 0 (A125)

EP
BAC,SDOP = exADJ,BAC

×
(
PBAC−NBAC

/
qC

N,BAC× q
C
P,BAC

)
,

(A126)

else (i.e., P in short)

EC
BAC,SDOC = exADJ,BAC×

(
CBAC−PBAC

/
qC

P,BAC
)

(A127)

EN
BAC,SDON = exADJ,BAC

×
(
NBAC−PBAC

/
qC

P,BAC× q
C
N,BAC

)
(A128)

EN
BAC,SDOP = 0. (A129)

– Grazing by microzooplankton:

GZC
BAC = Tf×µMZ×CMZ

×
[
C2

BAC
/{
C2

CR+ g
2
BAC

+ (CDA× gBAC/gDA)
2

+ (CCR× gBAC/gCR)
2}] (A130)

GZN
BAC = GZ

C
BAC×Q

C
N,BAC (A131)

GZP
BAC = GZ

C
BAC×Q

C
P,BAC. (A132)

– Viral mortality:

MC
BAC =mBAC×CBAC (A133)

MN
BAC =mBAC×NBAC (A134)

MP
BAC =mBAC×PBAC. (A135)

– Net flux of inorganic nutrients through bacteria:

FLUXNH4
BAC = REMIN

BAC−G
C
BAC,NH4

(A136)

FLUXNO3
BAC =−G

C
BAC,NO3

(A137)

FLUXPO4
BAC = REMIP

BAC−G
C
BAC,PO4

. (A138)

– The net growth rate equations:

dCBAC

dt
= GC

BAC,DOC−E
C
BAC,SDOC−E

C
BAC,RDOC

−RC
BAC−GZ

C
BAC−M

C
BAC (A139)

dNBAC

dt
= GN

BAC,DON−E
N
BAC,SDON−E

N
BAC,RDON

−RN
BAC−GZ

N
BAC−M

N
BAC (A140)

dPBAC

dt
= GP

BAC,DOP−E
P
BAC,SDOP−E

P
BAC,RDOP

−RP
BAC−GZ

P
BAC−M

P
BAC. (A141)

A5 Microzooplankton processes

– Cellular quota (ratio):

QC
N,MZ =NMZ/CMZ (A142)

QC
P,MZ = CMZ/PMZ. (A143)

– Gross growth:

GC
MZ =GZ

C
CR+GZ

C
BAC (A144)

GN
MZ =GZ

N
CR+GZ

N
BAC (A145)

GP
MZ =GZ

P
CR+GZ

P
BAC. (A146)

– LDOM excretion:

EC
MZ,LDOC = fex,MZ× exMZ×G

C
MZ (A147)

EN
MZ,LDON = fex,MZ× exMZ×G

N
MZ (A148)

EP
MZ,LDOP = fex,MZ× exMZ×G

P
MZ. (A149)

– SDOM excretion:

EC
MZ,SDOC,1 = (1− fex,MZ)× exMZ×G

C
MZ (A150)

EN
MZ,SDON,1 = (1− fex,MZ)× exMZ×G

N
MZ

×QC
N,MZ

/
qC

N,MZ (A151)

EP
MZ,SDOP,1 = (1− fex,MZ)× exMZ×G

P
MZ

×QC
P,MZ

/
qC

P,MZ. (A152)

– SDOM excretion to adjust stoichiometry:

EC
MZ,SDOC,2 = exADJ,MZ×CMZ

×max
(
0,1−QC

N,MZ
/
qC

N,MZ,

1−QC
P,MZ

/
qC

P,MZ
)

(A153)

EN
MZ,SDON,2 = 0.5×EC

MZ,SDOC,2×Q
C
N,MZ (A154)

EP
MZ,SDOP,2 = 0.5×EC

MZ,SDOC,2×Q
C
P,MZ. (A155)
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– Remineralization of inorganic nutrients:

REMIN
MZ = remiMZ×max

(
0,NMZ−CMZ× q

C
N,MZ,

NMZ− q
C
N,MZ

/
PMZ× q

C
P,MZ

)
(A156)

REMIP
MZ = remiMZ×max

(
0,PMZ−CMZ× q

C
P,MZ,

PMZ− q
C
P,MZ

/
NMZ× q

C
N,MZ

)
. (A157)

– Respiration:

RC
MZ = r

B
MZ× Tf×CMZ+ r

A
MZ×G

C
MZ. (A158)

– POM production:TS3

PC
MZ = pomMZ×G

C
MZ (A159)

PN
MZ = q

C
N,POM×G

C
MZ (A160)

P P
MZ = q

C
P,POM×G

C
MZ. (A161)

– Grazing by krill:

GZC
MZ = Tf×µMZ×CKR×

[
C2

MZ
/{
C2

MZ+ g
2
MZ

+ (CDA× gMZ/gDA)
2}] (A162)

GZN
MZ =Q

C
N,MZ×GZ

C
MZ (A163)

GZP
MZ =Q

C
P,MZ×GZ

C
MZ. (A164)

– The net growth rate equations:

dCMZ

dt
= GC

MZ−E
C
MZ,LDOC−E

C
MZ,SDOC,1

−EC
MZ,SDOC,2−P

C
MZ−R

C
MZ−GZ

C
MZ

(A165)
dNMZ

dt
= GN

MZ−E
N
MZ,LDON−E

N
MZ,SDON,1

−EN
MZ,SDON,2−P

N
MZ−R

N
MZ−GZ

N
MZ

(A166)
dPMZ

dt
= GP

MZ−E
P
MZ,LDOP−E

P
MZ,SDOP,1

−EP
MZ,SDOP,2−P

P
MZ−R

P
MZ−GZ

P
MZ.

(A167)

A6 Krill processes

– Cellular quota (ratio):

QC
N,KR =NKR/CKR (A168)

QC
P,KR = CKR/PKR. (A169)

– Gross growth:

GC
KR =GZ

C
DA,KR+GZ

C
MZ (A170)

GN
KR =GZ

N
DA,KR+GZ

N
MZ (A171)

GP
KR =GZ

P
DA,KR+GZ

P
MZ. (A172)

– LDOM excretion:

EC
KR,LDOC = fex,KR× exKR×G

C
KR (A173)

EN
KR,LDON = fex,KR× exKR×G

N
KR (A174)

EP
KR,LDOP = fex,KR× exKR×G

P
KR. (A175)

– SDOM excretion:

EC
KR,SDOC,1 = (1− fex,KR)× exKR×G

C
KR (A176)

EN
KR,SDON,1 = (1− fex,KR)× exKR×G

N
KR

×QC
N,KR

/
qC

N,KR (A177)

EP
KR,SDOP,1 = (1− fex,KR)× exKR×G

P
KR

×QC
P,KR

/
qC

P,KR. (A178)

– SDOM excretion to adjust stoichiometry:

EC
KR,SDOC,2 = exADJ,KR×CKR

×max
(
0,1−QC

N,KR
/
qC

N,KR,

1−QC
P,KR

/
qC

P,KR
)

(A179)

EN
KR,SDON,2 = 0.5×EC

KR,SDOC,2×Q
C
N,KR (A180)

EP
KR,SDOP,2 = 0.5×EC

KR,SDOC,2×Q
C
P,KR. (A181)

– Remineralization of inorganic nutrients:

REMIN
KR = remiKR×max

(
0,NKR−CKR× q

C
N,KR,

NKR− q
C
N,KR

/
PKR× q

C
P,KR

)
(A182)

REMIP
KR = remiKR×max

(
0,PKR−CKR× q

C
P,KR,

PKR− q
C
P,KR

/
NKR× q

C
N,KR

)
. (A183)

– Respiration:

RC
KR = r

B
KR× Tf×CKR+ r

A
KR×G

C
KR. (A184)

– POM production:TS4

PC
KR = pomKR×G

C
KR (A185)

PN
KR = q

C
N,POM×G

N
KR (A186)

P P
KR = q

C
P,POM×G

P
KR. (A187)

– RDOC release:

EC
KR,RDOC = refrKR×CKR (A188)

EN
KR,RDON = E

C
KR,RDOC× q

C
N,RDOM (A189)

EP
KR,RDOP = E

C
KR,RDOC× q

C
P,RDOM. (A190)

– Removal by higher trophic levels

MC
KR =mortKR×CKR×CKR (A191)

MN
KR =M

C
KR,RDOC×Q

C
N,KR (A192)

MP
KR =M

C
KR,RDOC×Q

C
P,KR. (A193)
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– The net growth rate equations:

dCKR

dt
= GC

KR−E
C
KR,LDOC−E

C
KR,SDOC,1

−EC
KR,SDOC,2−E

C
KR,RDOC−P

C
KR

−RC
KR−M

C
KR (A194)

dNKR

dt
= GN

KR−E
N
KR,LDON−E

N
KR,SDON,1

−EN
KR,SDON,2−E

N
KR,RDON−P

N
KR

−RN
KR−M

N
KR (A195)

dPKR

dt
= GP

KR−E
P
KR,LDOC−E

P
KR,SDOC,1

−EP
KR,SDOC,2−E

P
KR,RDOC−P

P
KR

−RP
KR−M

P
KR. (A196)

A7 Detrital processes

– Dissolution:

DISSC
DET = diss×CDET (A197)

DISSN
DET = diss× prfN×NDET (A198)

DISSP
DET = diss× prfP×PDET. (A199)

– The net change equations:

dCDET

dt
= DC

DA+D
C
CR+D

C
MZ+D

C
KR+DISSC

HZ

−DC
DET (A200)

dNDET

dt
= DN

DA+D
N
CR+D

N
MZ+D

N
KR+DISSN

HZ

−DN
DET (A201)

dPDET

dt
= DP

DA+D
P
CR+D

P
MZ+D

P
KR+DISSP

HZ

−DP
DET, (A202)

where

DC
HZ = fPOM,HZ×M

C
KR

DN
HZ = fPOM,HZ×M

N
KR

DP
HZ = fPOM,HZ×M

P
KR.

A8 DOM processes

– Conversion of SDOM to RDOM:

REFRC
SDOM = exREFR,SDOM×CSDOM

× exp
{
1−min

(
QC

N,SDOM
/
qC

N,RDOM,

QC
P,SDOM

/
qC

P,RDOM
)}

(A203)

REFRN
SDOM = REFRC

SDOM× q
C
N,RDOM (A204)

REFRP
SDOM = REFRC

SDOM× q
C
P,RDOM. (A205)

– The net change equations:

dCLDOM

dt
= EC

DA,LDOC+E
C
CR,LDOC+E

C
MZ,LDOC

+EC
KR,LDOC+M

C
BAC−G

C
BAC,LDOC

(A206)
dNLDOM

dt
= EN

DA,LDON+E
N
CR,LDON+E

N
MZ,LDON

+EN
KR,LDON+M

N
BAC−G

N
BAC,LDON

(A207)
dPLDOM

dt
= EP

DA,LDOP+E
P
CR,LDOP+E

P
MZ,LDOP

+EP
KR,LDOP+M

P
BAC−G

P
BAC,LDOP

(A208)
dCSDOM

dt
= EC

DA,SDOC+E
C
CR,SDOC+E

C
BAC,SDOC

+EC
MZ,SDOC,1+E

C
MZ,SDOC,2

+EC
KR,SDOC,1+E

C
KR,SDOC,2

+EC
HZ,SDOC TS5 +DISSC

DET

−REFRC
SDOM−G

C
BAC,SDOC (A209)

dNSDOM

dt
= EN

DA,SDON+E
N
CR,SDON+E

N
BAC,SDON

+EN
MZ,SDON,1+E

N
MZ,SDON,2

+EN
KR,SDON,1+E

N
KR,SDON,2

+EN
HZ,SDON TS6 +DISSN

DET

−REFRN
SDOM−G

N
BAC,SDON (A210)

dPSDOM

dt
= EP

DA,SDOP+E
P
CR,SDOP+E

P
BAC,SDOP

+EP
MZ,SDOP,1+E

P
MZ,SDOP,2

+EP
KR,SDOP,1+E

P
KR,SDOP,2

+EP
HZ,SDOP TS7 +DISSP

DET

−REFRP
SDOM−G

P
BAC,SDOP. (A211)

A9 Dissolved inorganic nutrient processes

– Nitrification:

NTRF= rntrf×NH4. (A212)
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– The net change equations:

dNH4

dt
= FLUXNH4

BAC+REMIN
MZ+REMIN

KR

+REMIN
HZ−G

NH4
DA −G

NH4
CR −NTRF (A213)

dNO3

dt
= FLUXNO3

BAC−G
NO3
DA −G

NO3
CR +NTRF (A214)

dPO4

dt
= FLUXPO4

BAC+REMIP
MZ+REMIP

KR

+REMIP
HZ−G

PO4
DA −G

PO4
CR , (A215)

where

REMIN
HZ =M

N
KR−D

N
HZ−E

SDON
HZ TS8

REMIP
HZ =M

N
KR−D

P
HZ−E

SDOP
HZ TS9 .
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Appendix B

Figure B1. Comparison of the observations to the initial (unoptimized) and optimized model results. The dot points in the second panels rep-
resent how much larger model output value is compared to the corresponding observational data (i.e., the model value minus the observational
value). Normalized observation: observations normalized by the mean of each model state variable.
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Figure B2. Observations assimilated for each data type. BAC: bacterial biomass, CR: cryptophyte Chl, DA: diatom Chl. TS10
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Figure B3. The uncertainties (standard deviation) of the model state variables for the modeled growth season of 2002–2003 (x axis;
month/day) from the Monte Carlo experiments (n= 1000). Note the different contour scales among panels.
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Figure B4. The uncertainties (standard deviation) of the ecosystem indices for the modeled growth season of 2002–2003 (x axis; month/day)
from the Monte Carlo experiments (n= 1000). Note the different contour scales among panels.
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Table B1. Sensitivity tests to varying initial parameter values. The parameters with “n/a” in the parentheses are optimized parameters
with large relative uncertainties (i.e., “optimized parameters”). The 50 % perturbations to AE, wnsv, and remin (Table 1) are considered
ecologically unrealistic and therefore excluded from these sensitivity experiments.

Perturbations to initial parameter values J0 Jf Optimized parameters (optimized value, ranges)

Original optimization experiment:
initial parameter values (Table 1)

14.85 6.42 µDA (0.77, 0.68–0.88), µCR (0.72, 0.61–0.85), αDA (0.13, 0.10–
0.19), αCR (3.89× 10−2, n/a), Θ (2.27, 1.82–2.82), µBAC (1.06,
0.93–1.20), rA

max,BAC (0.80, 0.77–0.84), µMZ (1.18, 1.10–1.26),
gBAC (0.81, 0.64–1.03), µKR (1.02, 0.97–1.07), gMZ (0.15, n/a),
remvKR (0.43, n/a)

Sensitivity experiment no. 1:
µDA and µCR perturbed by +50 %

17.02 5.79 µDA (1.15, 0.99–1.34), µCR (1.25, 0.85–1.85), αDA (0.19, 0.16–
0.23), αCR (0.04, 0.03–0.06), Θ (2.34, 1.91–2.87), rA

max,BAC (0.85,
0.83–0.87), µMZ (1.50, n/a), gBAC (1.75, n/a), µKR (0.87, 0.84–
0.90), gMZ (0.22, n/a), remvKR (0.14, n/a)

Sensitivity experiment no. 2:
µDA and µCR perturbed by −50 %

24.98 6.40 µDA (0.72, 0.61–0.84), µCR (0.97, 0.84–1.12), Θ (3.38, 2.46–
4.64), µBAC (1.14, 0.96–1.35), rA

max,BAC (0.84, 0.80–0.88), µMZ
(0.75, 0.65–0.86), gCR (0.65, 0.47–0.90), gBAC (1.23, 0.85–1.78),
µKR (0.94, 0.87–1.02), gMZ (0.40, 0.30–0.54), remvKR (0.24, n/a)

Sensitivity experiment no. 3:
µDA, µCR, αDA, and αCR perturbed by +50 %

14.87 6.61 µDA (0.71, 0.60–0.83), µCR (0.60, 0.54–0.67), αDA (0.08, n/a), Θ
(2.28, 1.83–2.84), µBAC (1.46, 1.32–1.61), rA

max,BAC (0.83, 0.80–
0.86), µMZ (1.14, 1.03–1.27), gMZ (0.17, 0.12–0.24), remvKR
(0.21, 0.17–0.26)

Sensitivity experiment no. 4:
µDA, µCR, αDA, and αCR perturbed by −50 %

20.35 6.63 µDA (0.86, 0.77–0.96), µCR (0.77, 0.68–0.87), Θ (3.73, 2.75–
5.06), rA

max,BAC (0.88, 0.86–0.90), µMZ (0.86, 0.76–0.98), gBAC
(2.19, 1.35–3.56), µKR (0.71, 0.68–10.75), gMZ (0.41, 0.30–0.56)

Sensitivity experiment no. 5:
µDA, µCR, αDA, αCR, Θ , and µBAC perturbed
by +50 %

16.72 6.72 µDA (0.75, 0.63–0.89), µCR (0.65, 0.59–0.71), αDA (0.07, n/a), Θ
(2.47, 1.99–3.07), µBAC (1.75, 1.60–1.91), rA

max,BAC (0.84, 0.82–
0.86), µMZ (1.12, 1.01–1.24), µKR (0.65, 0.62–0.68), gMZ (0.21,
0.16–0.28)

Sensitivity experiment no. 6:
µDA, µCR, αDA, αCR, Θ , and µBAC perturbed
by −50 %

19.91 5.98 µDA (1.01, 0.87–1.17), µCR (0.98, 0.85–1.14), αCR (0.11, n/a), Θ
(2.78, 2.17–3.57), rA

max,BAC (0.86, 0.84–0.88), µMZ (1.55, 1.37–
1.76), gBAC (2.22, 1.47–3.35), gMZ (0.26, 0.19–0.35), remvKR
(0.13, n/a)

Sensitivity experiment no. 7:
µDA, µCR, αDA, αCR, Θ , µBAC, gBAC, and
µMZ perturbed by +50 %

16.68 6.40 µDA (1.14, 0.99–1.31), µCR (1.43, 1.15–1.78), αDA (0.12, n/a),
αCR (0.04, n/a), µBAC (1.02, 0.92–1.13), rA

max,BAC (0.81, 0.77–
0.85), µMZ (1.02, 0.91–1.15), gBAC (1.64, 1.25–2.15), µKR (0.72,
0.68–0.76), gMZ (0.38, 0.29–0.50)

Sensitivity experiment no. 8:
µDA, µCR, αDA, αCR, Θ , µBAC, gBAC, and
µMZ perturbed by −50 %

25.06 7.19 µDA (0.64, 0.57–0.72), µCR (0.47, 0.41–0.53), αCR (0.08, n/a), Θ
(3.13, 2.44–4.01), µBAC (1.14, 0.99–1.32), rA

max,BAC (0.79, 0.75–
0.83), µMZ (0.40, 0.36–0.44), µKR (0.81, 0.71–0.77), gMZ (0.55,
0.39–0.77), remvKR (0.12, n/a)

Sensitivity experiment no. 9:
µDA, µCR, αDA, αCR, Θ , µBAC, gBAC, µMZ,
µKR, and gMZ perturbed by +50 %

16.36 6.22 µDA (0.88, 0.78–1.00), µCR (0.70, n/a), αDA (0.27, 0.20–0.36),
αCR (0.04, n/a), Θ (2.40, 1.91–3.02), rA

max,BAC (0.87, 0.85–0.89),
µMZ (0.95, 0.75–1.20), gBAC (1.75, n/a), µKR (0.78, 0.74–0.82),
gMZ (0.21, 0.14–0.32), remvKR (0.18, n/a)

Sensitivity experiment no. 10:
µDA, µCR, αDA, αCR, Θ , µBAC, gBAC, µMZ,
µKR, and gMZ perturbed by −50 %

18.27 6.75 µDA (0.91, 0.78–1.06), µCR (0.58, 0.51–0.66), Θ (2.71, 2.21–
3.32), µBAC (1.70, n/a), rA

max,BAC (0.84, 0.82–0.86), µMZ (0.88,
0.71–1.09), g′DA (2.5, n/a), gBAC (1.0, n/a), µKR (1.89, 1.60–2.24),
remvKR (0.04, n/a)

Sensitivity experiment no. 11:
µDA, µCR, αDA, αCR, Θ , µBAC, gBAC, µMZ,
µKR, gMZ, rA

max,BAC, and remvKR perturbed
by +50 %

15.56 6.43 µDA (0.88, 0.79–0.98), µCR (0.75, 0.66–0.85), αDA (0.30, n/a),
αCR (0.15, n/a), Θ (2.99, 2.33–3.83), rA

max,BAC (0.88, 0.87–0.89),
µMZ (0.87, 0.75–1.01), gBAC (1.62, n/a), µKR (0.73, 0.66–0.81),
gMZ (0.36, 0.26–0.50), remvKR (0.11, 0.08–0.15)
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Table B1. Continued.

Perturbations to initial parameter values J0 Jf Optimized parameters (optimized value, ranges)

Sensitivity experiment no. 12:
µDA, µCR, αDA, αCR, Θ , µBAC, gBAC, µMZ,
µKR, gMZ, rA

max,BAC, and remvKR perturbed
by −50 %

28.24 6.81 µDA (0.54, 0.49–0.60), µCR (0.41, 0.36–0.46), αDA (0.12, n/a),
Θ (1.96, 1.59–2.42), µBAC (1.40, 1.24–1.58), rA

max,BAC (0.81,
0.78–0.84), µMZ (0.32, 0.28–0.36), µKR (0.70, 0.65–0.75),
gMZ (0.20, n/a), remvKR (0.27, n/a)

Sensitivity experiment no. 13:
AE, wnsv, and remin perturbed by −50 %

16.26 6.09 µDA (0.48, 0.44–0.53), µCR (0.57, 0.54–0.60), Θ (3.23, 2.54–
4.11), rA

max,BAC (0.88, 0.86–0.90), µMZ (1.04, 1.00–1.09), gCR
(0.56, 0.47–0.67), gBAC (1.27, 0.82–1.97), µKR (0.54, 0.53–
0.55), gMZ (0.18, n/a)

Sensitivity experiment no. 14:
gDA, g′DA, and gCR perturbed by +50 %

14.25 5.95 µDA (0.65, 0.56–0.75), µCR (1.10, 0.98–1.24), αDA (0.20, n/a),
αCR (0.12, n/a), Θ (3.09, 2.40–3.98), rA

max,BAC (0.87, 0.85–
0.89), µMZ (1.75, 1.55–1.97), gCR (0.77, 0.63–0.95), gBAC
(2.60, 1.70–3.97), µKR (0.82, 0.78–0.86), gMZ (0.24,0.18–
0.32)

Sensitivity experiment no. 15:
gDA, g′DA, and gCR perturbed by −50 %

24.17 6.51 µDA (1.22, 1.03–1.45), µCR (0.86, 0.75–0.99), αDA (0.10,
n/a), αCR (0.15, n/a), Θ (4.53, 3.36–6.11), µBAC (1.24, n/a),
rA
max,BAC (0.85, 0.83–0.87), µMZ (0.86, 0.73–1.01), gCR (0.53,

0.42–0.67), gBAC (0.89, 0.55–1.43), µKR (1.02, 0.94–1.10),
gMZ (0.37, 0.25–0.55), remvKR (0.19, n/a)
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Table B2. Summary of model parameters from initial parameter perturbation experiments. Summary of the model parameter symbol and
definition, initial parameter values (p0,ref) and optimized values (pf,ref) for the original (reference) experiments (Table 1), and initial pa-
rameter values (p0) and optimized values (pf) averaged from the sensitivity experiments (n= 15). p0,ref and the mean p0 are the same for
most parameters because of the perturbations by±50 % their original initial parameter values (with standard deviation in parentheses), while
p0,ref and the mean p0 are different for AE and wnsv because of the perturbations only by−50 % their original initial parameter values (with
standard deviation in parentheses). Numbers in parentheses for pf are the uncertainty ranges (lower and upper bounds) averaged across the
sensitivity experiments as follows. First, for each sensitivity experiment, lower and upper bounds of the constrained parameter are calculated
as pf× e

+σf and pf× e
−σf (where pf is the value of the constrained parameter and σf is the square roots of diagonal elements of the inverse

of the Hessian matrix), respectively. Then we form the “lower (upper) bound parameter set” that only consists of the lower (higher) bounds
of the constrained parameters from each experiment, and average those across the sensitivity experiments (n= 15) to calculate the lower
(upper) bound listed in parentheses.

Model parameter symbol and definition (optimizable) p0,ref p0 pf,ref pf

AE, Arrhenius parameter for temperature function 4000 3867 (516) – –

µDA, diatom C-specific maximum growth rate, d−1 2.00 2.00 (0.93) 0.77 (0.68–0.88) 0.84 (0.73–0.96)

µCR, crypto. C-specific maximum growth rate, d−1 1.00 1.00 (0.46) 0.72 (0.61–0.85) 0.81 (0.69–0.95)

αDA, initial slope of P–I curve of diatoms,
molC (gChl)−1 d−1 (Wm−2)−1

0.30 0.30 (0.13) 0.13 (0.10–0.19) 0.18 (0.17–0.19)

αCR, initial slope of P–I curve of crypto.,
molC (gChl)−1 d−1 (Wm−2)−1

0.20 0.20 (0.08) 3.89× 10−2 (n/a) 0.13 (0.13–0.13)

Θ , maximum Chl/N ratio, gChla (molN)−1 2.90 2.90 (1.10) 2.27 (1.82–2.82) 3.03 (2.42–3.82)

µBAC, maximum bacterial growth rate, d−1 2.00 2.00 (0.76) 1.06 (0.93–1.20) 1.86 (1.80–1.92)

rA
max,BAC, bacterial maximum active respiration rate, d−1 0.58 0.58 (0.11) 0.80 (0.77–0.84) 0.85 (0.83–0.87)

µMZ, microzoo. C-specific maximum growth rate, d−1 1.00 1.00 (0.33) 1.18 (1.10–1.26) 1.00 (0.89–1.13)

gDA, diatom half-saturation concentration in microzoo. grazing,
mmolCm−3

1.00 1.00 (0.19) – –

g′DA, diatom half-saturation concentration in krill grazing,
mmolCm−3

1.00 1.00 (0.19) – 1.10 (1.10–1.10)

gCR, crypto. half-saturation concentration in microzoo. grazing,
mmolCm−3

1.00 1.00 (0.19) – 0.90 (0.87–0.95)

gBAC, bacterial half-saturation concentration in microzoo. grazing,
mmolCm−3

0.55 0.55 (0.18) 0.81 (0.64–1.03) 1.34 (1.07–1.75)

µKR, maximum krill C-specific growth rate, d−1 0.80 0.80 (0.21) 1.02 (0.97–1.07) 0.86 (0.80–0.93)

gMZ, microzoo. half-saturation concentration in krill grazing,
mmolCm−3

1.00 1.00 (0.27) 0.15 (n/a) 0.34 (0.28–0.43)

remvKR, krill removal rate by higher trophic levels,
(mmolCm−3)−1 d−1

0.10 0.10 (0.02) 0.43 (n/a) 0.14 (0.14–0.15)

wnsv, detritus vertical sinking velocity, md−1 5.00 4.83 (0.65) – –

diss, detrital dissolution rate, d−1 0.14 0.14 (0.02) – –
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Code availability. The Tangent linear and Adjoint Model Compiler
(TAPENADE) used to construct an adjoint model is available online
(https://team.inria.fr/ecuador/en/tapenade/, TS11 ). The current ver-
sion of the WAP-1D-VAR model (v1.0) is available from the project
website: https://zenodo.org/record/5041139 (Kim et al., 2021) un-
der the Creative Commons Attribution 4.0 International license. The
exact version of the model used to produce the results, input data,
and scripts to run the model and produce the plots for all the sim-
ulations presented in this paper is archived on Zenodo (Kim et al.,
2021) (26 January 2021). WAP-1D-VAR v1.0: A One-Dimensional
Variational Data Assimilation Model for the West Antarctic Penin-
sula (version v1.0); https://doi.org/10.5281/zenodo.5041139; Kim
et al., 2021). A user manual is available as a separate Supplement
to this article.

Data availability. Complete Palmer LTER time-series data used
for data assimilation are available online (http://pal.lternet.edu/data,
TS12 ). Surface downward solar radiation flux data used for physical
forcing of the model simulations can be found at the National Cen-
ters for Environmental Prediction website (https://www.esrl.noaa.
gov/psd/data/gridded/data.ncep.reanalysis.surface.html, TS13 ).
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