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Abstract 

The West Antarctic Peninsula (WAP) is a rapidly warming region, with substantial ecological and biogeochemical responses 
to the observed change and variability for the past decades, revealed by multi-decadal observations from the Palmer Antarctica 15 
Long-Term Ecological Research (LTER) program. The wealth of these long-term observations provides an important resource 
for ecosystem modelling, but there has been a lack of focus on the development of numerical models that simulate time-
evolving plankton dynamics over the Austral growth season along the coastal WAP. Here we introduce a one-dimensional, 
data assimilation planktonic ecosystem model (i.e., the WAP-1D-VAR model v1.0) equipped with a variational adjoint and 
model parameter optimization scheme. We first demonstrate the modified and newly added model schemes to the pre-existing 20 
food-web and biogeochemical components of the other ecosystem models that WAP-1D-VAR model was adapted from, 
including diagnostic sea-ice forcing and trophic interactions specific to the WAP region. We then present the results from 
model experiments where we assimilate eleven different data types from an example Palmer LTER growth season (October 
2002 - March 2003) directly related to corresponding model state variables and flows between these variables. The iterative, 
data assimilation procedure reduces by 58% the misfits between observations and model results, compared to before 25 
optimization, via an optimized set of 12 parameters out of total 72 free parameters. The optimized model results capture key 
WAP ecological features, such as blooms during seasonal sea-ice retreat, the lack of macronutrient limitation, and modelled 
variables and flows comparable to other studies in the WAP region, as well as several important ecosystem metrics. One 
exception is that the model slightly underestimates particle export flux, for which we discuss potential underlying reasons. The 
data assimilation scheme of the WAP-1D-VAR model enables the available observational data to constrain previously poorly 30 
understood processes, including the partitioning of primary production by different phytoplankton groups, the optimal 
chlorophyll to carbon ratio of the WAP phytoplankton community, and the partitioning of dissolved organic carbon pools with 
different lability. The WAP-1D-VAR model can be successfully employed to link the snapshots collected by the available data 
sets together to explain and understand the observed dynamics along the coastal WAP.   
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1 Introduction 35 

The West Antarctic Peninsula (WAP) has experienced significant atmospheric and surface ocean warming since the 
1950s, resulting in decreased winter sea-ice duration, the retreat of glaciers, and changes in upper ocean dynamics (Clarke et 
al., 2009; Cook et al., 2005; Henley et al., 2019; King, 1994; Meredith & King, 2005; Stammerjohn et al., 2008; Vaughan et 
al., 2003, 2006; Whitehouse et al., 2008). These climate-driven changes propagate through marine food-webs by affecting 
physiology of individual organisms and the whole communities (Ducklow et al., 2007). Long-term observational efforts 40 
through the Palmer Antarctica Long-Term Ecological Research program (LTER; since 1991) have demonstrated a range of 
ecological and biogeochemical responses to changing environments, including phytoplankton (Montes-Hugo et al., 2009; Saba 
et al., 2014; Schofield et al., 2017), marine heterotrophic bacteria (Bowman & Ducklow, 2015; Ducklow et al., 2012; Kim & 
Ducklow, 2016; Luria et al., 2014, 2017), nutrient drawdown (Kim et al., 2016), and micro- and macrozooplankton (Garzio & 
Steinberg, 2013; Steinberg et al., 2015; Thibodeau et al., 2019). 45 

The wealth of Palmer LTER time-series observations provides an important resource for ecological and 
biogeochemical modelling, and different types of modelling approaches have been developed to explore the WAP responses 
to climate change and variability. For instance, an inverse modelling study estimated the steady-state dynamics of the WAP 
food-web by deriving snapshots of flows among different plankton functional types and higher trophic levels (Sailley et al., 
2013). However, there has been a less focus on numerical ecosystem models that simulate time-evolving plankton dynamics 50 
over the full Austral growth season along the coastal WAP. Numerical ecosystem models provide estimates of key rate 
processes for which observations have been less frequently or seldom made compared to frequently measured stocks and rates. 
Despite its strengths, constructing an ecosystem model is a challenge due to the lack of a priori knowledge on model parameter 
values and incomplete understanding of ecological processes that should be explicitly presented in the model structure 
(Ducklow et al., 2008; Murphy et al., 2012). Owing to many observational studies, a more robust, yet still incomplete, data-55 
based picture is emerging of WAP food-web interactions and ecosystem dynamics, which could guide a development of the 
WAP-specific numerical ecosystem model.  

Here we introduce a one-dimensional (1-D) variational data assimilation model specific to the coastal WAP (i.e., the 
WAP-1D-VAR model v1.0) that we developed by adapting an existing biogeochemical-planktonic model of different ocean 
basins (Friedrichs, 2001; Friedrichs et al., 2006, 2007; Luo et al., 2010). The WAP-1D-VAR model is compared against the 60 
roughly semi-weekly, bio-physical observations over the Austral growth season near Palmer Station on Anvers Island, 
Antarctica (64.77°S, 64.05°W). The field data record the seasonal variations in the initiation, peak, and termination of 
phytoplankton blooms and other biogeochemical processes modulated by variations in surface light, mixed layer depth, and 
sea-ice cover. In the present study, we 1) describe the structure and schemes of the WAP-1D-VAR in great detail, 2) evaluate 
the model performance and robustness using a variety of quantitative metrics, and 3) discuss the model applicability with 65 
regard to capturing the key WAP ecological and biogeochemical features using the data from an example growth season.  

2 Model development and implementation  

2.1 Model state variables   

The WAP-1D-VAR model v1.0 (Figure 1) is originally derived and modified from data-assimilative, ocean regional 
test-bed models of the Arabian Sea, the Equatorial Pacific, and the Hawaii Ocean Time-series Station ALOHA (Friedrichs, 70 
2001; Friedrichs et al., 2006, 2007; Luo et al., 2010). The WAP-1D-VAR model simulates stocks and flows of C, N, and P 
through 11 different model prognostic state variables. The two size-fractionated phytoplankton compartments (i.e., diatoms 
and cryptophytes) and the two different zooplankton compartments (i.e., microzooplankton and krill) are separately simulated 
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following the plankton functional types as in Sailley et al (2013) and the observations of the phytoplankton community 
structure along the coastal WAP. Typically, the coastal WAP is associated with large phytoplankton accumulations dominated 75 
by large (> 20 μm) diatoms, but nanoflagellates (< 20 μm) or cryptophytes are also an important component of the food web 
(Schofield et al., 2017). Mixed flagellates, prasinophytes, and type-4 haptophytes are also found in the region, but we choose 
to model only diatoms and cryptophytes, in order to avoid too many free (optimizable) parameters associated with each 
phytoplankton group. The third most dominant species is mixed flagellate but little is known about this taxa in the region and 
this taxa generally exhibit low interannual variability (Schofield et al. 2017). Functional grazing relationships are defined in 80 
which diatoms are consumed by both krill (Euphausia superba) and microzooplankton (mostly ciliates and other protozoa), 
cryptophytes are consumed by microzooplankton, and microzooplankton are grazed by krill. Other abundant zooplankton taxa 
in the WAP, such as salps, pteropods, and copepods (Steinberg et al., 2015), are not explicitly simulated in the WAP-1D-VAR 
model, in part to limit the model complexity and in part because of the limited data constraints on these groups, especially 
feeding. Higher trophic levels are implicitly represented to close the model. The WAP-1D-VAR model allows for the 85 
partitioning between labile dissolved organic matter (LDOM) and semi-labile DOM (SDOM) such that the entire LDOM pool 
is available but only a limited portion of the SDOM is available for bacterial utilization to account for lower lability of SDOM. 
Refractory DOM (RDOM) is not explicitly modelled due to its much longer turnover time than labile and semi-labile pools, 
but some mass flows are included to RDOM from other prognostic model compartments, such as bacteria, krill, and SDOM, 
to account for loss terms for those state variables. Detritus represents an average particulate organic matter (POM) pool after 90 
removing living phytoplankton and bacterial biomasses, and sinking of the detritus pool contributes to particle export flux. 
The WAP-1D-VAR model explicitly simulates NO3, NH4, and PO4 for inorganic (macro)nutrient compartments, but there is 
not a separate Fe model compartment or Fe uptake processes, given that even during the peak of the blooms iron is still 
measurable and iron limitation is absent or occurs only minimally and seasonally in the nearshore Palmer Station area 
(Carvalho et al., 2016; Sherrell et al., 2018).  95 

2.2 Model equations  

Here we demonstrate key model processes that are either based on the existing schemes or built as new schemes for 
the coastal WAP region. The original model schemes are detailed in Supplementary Material of Luo et al (2010). The WAP-
1D-VAR model simulates biological-physical model processes for a 1-D vertical water column, solving numerically for a 
discretized version of the time-rate of change for each model state variable. For a generic tracer variable C the time-rate of 100 
change equation takes the form (Glover et al., 2011): 

∂C
∂t

= – ∂
∂z
(wC)+ ∂

∂z
#Kz

∂C
∂z
$+ JC        (1) 

where z is the depth, w is the vertical velocity (the sum of water motion and gravitational particle sinking), Kz is the turbulent 
eddy diffusivity (Eq. 1), and JC is the biological and biogeochemical net source and sink term for C (Appendix A Equations 
Eq. A.2.41-44, A.3.37-40, A.4.53-55, A.5.24-26, A.6.27-29, A.7.4-6, A.8.4-9, A.9.2-4). The physical advection and mixing 105 
terms are discussed below in section 2.3 and applied sequentially following the computation of the biological and 
biogeochemical terms JC using a constant time step of 1 hour. The contributions of the source sink terms JC to the full time 
rate of change equations are constructed as a series of coupled ordinary differential equations, detailed in Appendix A (sections 
A1-9), and solved using a second-order Runge-Kutta numerical integration scheme. The WAP-1D-VAR model simulates the 
dynamics of C, N, and P, but here we only focus on the presentation of the model C dynamics. The cellular molar (e.g., N/C, 110 
P/C) quota parameter values of most state variables are fixed (Table 1) and not submitted to the optimization and data 
assimilation procedure. To first order, most model physiological processes are affected by water temperature, including the 
maximum growth rates of phytoplankton, bacteria, and zooplankton and basal respiration rates of bacteria and zooplankton. 
The Arrhenius function is implemented to change these physiological rates as a function of water temperature (Eq. A.1.1).  
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The net change of phytoplankton (both diatoms and cryptophytes) C biomass is driven by gross growth, DOC 115 
excretion, particulate organic carbon (POC) production via aggregation, respiration, and grazing (Eq. A.2.41, A.3.37), the net 
change of their N and P biomass by gross growth, dissolved organic nitrogen (phosphorus) excretion, particulate organic 
nitrogen (phosphorus) production, and grazing (Eq. A.2.42-43, A.3.38-39). The net change of their chlorophyll a (Chl) by 
gross growth, DOM excretion, and grazing (Eq. A.2.44, A.3.40). The WAP-1D-VAR model adapts a phytoplankton growth 
scheme with flexible stoichiometry, in which phytoplankton cells are allowed to accumulate and store more nutrients under 120 
light stress (Bertilsson et al., 2003; Droop, 1974, 1983; McCarthy, 1980). The phytoplankton C growth rate is limited by their 
cellular nutrient quota (Eq. A.2.1-2, A.3.1-2). Modified from Geider et al. (1998), phytoplankton nitrogen uptake decreases 
when their cellular N/C quota is higher than their reference (Redfield) ratio, but not limited when lower than their reference 
ratio (Eq. A.2.4, A.2.8, A.3.4, A.3.8). The nitrogen consumption completely ceases when the phytoplankton cellular quota 
reaches their maximum allowable ratios and additionally limited by the ambient NO3 and NH4 concentrations with a Monod 125 
function (Eq. A.2.10-11, A.3.10-11). NH4 inhibition on NO3 uptake of phytoplankton is modelled by assigning lower kNH4 
compared to kNO3 (Table 1). The inhibition term does not exist for PO4. The uptake scheme is similar for PO4 (Eq. A.2.13, 
A.3.13), but PO4 can be consumed in great excess of current needs (Armstrong 2006). Such luxury uptake is modelled by 
assigning smaller maximum and minimum P quota, which acts to alleviate P limitation. The maximum photosynthesis rate 
decreases when the phytoplankton cellular quota is lower than their reference ratio, and approaches zero near their minimum 130 
ratio (Eq. A.2.6, A.3.6). The Chl production decreases with lowering photosynthetic active radiation (PAR) and completely 
ceases in dark (Eq. A.2.14, A.3.14). Phytoplankton release LDOM via passive diffusion of the low molecular weights DOM 
(e.g., neutral sugars and dissolved free amino acids) with the same cellular elemental ratio as that of phytoplankton (Fogg 
1966, Bjørnsen 1988, Biddanda & Benner 1997; Eq. A.2.16-18, A.3.16-18). Phytoplankton also release L- and SDOM actively, 
in the form of carbohydrate, as 75% of the labile (Eq. A.2.19, A.2.23, A.3.19, A.3.23) and 25% of the semi-labile pools (Eq. 135 
A.2.20, A.2.26, A.3.20, A.3.26). This active DOM production enables phytoplankton to adjust their stoichiometry to approach 
their reference ratio. If cellular organic C is in excess, DOC is released on a time scale of 2 days, and if excess nitrogen 
(phosphorus), DON (DOP) is released on a time scale of 8 days (Eq. A.2.21-22, A.3.21-22). Diatoms are grazed by both 
microzooplankton and krill (Eq. A.2.33-40), while cryptophytes are only grazed by microzooplankton (Eq. A.3.33-36). 
Microzooplankton grazing functions are altered by assigning grazing limitation terms (ϵ) to provide a limit on diatom grazing 140 
and route more cryptophytes to microzooplankton (Eq. A.2.33, A.3.33), based on initial modelling attempts where elevated 
diatom Chl was not simulated due to their much stronger removal by microzooplankton than cryptophytes. In principle, 
optimization should be able to capture the elevated diatom Chl by adjusting free parameters unless: 1) the right parameters are 
not adjusted and/or the baseline (non-optimized) parameters need significant adjusting, and/or 2) the model equations are not 
adequate even with the optimized parameters. In our initial modelling attempts, the model failed to simulate the elevated 145 
diatom Chl with varying sets of the model initial parameter values assigned to decouple diatoms from their grazers. Thus, 
grazing limitation terms (ϵ) are instead assigned to limit microzooplankton grazing on diatoms for modelling purposes, the 
implementation of which is not strictly based on the ecological evidence of prey switching, or of zooplankton mortality 
thresholds.  

The net change of bacterial biomass is driven by their gross growth (via L- and SDOM uptake; Eq. A.4.12-14, A.4.15-150 
16, A.4.21-22), respiration (Eq. A.4.25), S- and RDOM excretion (Eq. A.4.26-28, A.4.35-43), grazing (Eq. A.4.44-46), and 
mortality due to viral attack (Eq. A.4.47-49). The WAP-1D-VAR model allows both L- and SDOM as the substrate sources 
for bacteria, and bacterial nutrient quota lets the lability of SDOM variable for their selective utilization. All the LDOM pool 
is available, while only a limited portion of the SDOM pool is allowed for bacterial utilization, the degree of which is controlled 
by an optimizable parameter controlling the relative utilization of SDOM to LDOM, or SDOM lability (i.e., rSDOC, Eq. A.4.11, 155 
Table 1). Bacterial carbon growth is determined by their cellular quota and available L- and SDOC concentration (Eq. A.4.12-
13), in which the growth would be limited if bacterial cellular nitrogen (phosphorus) quota is smaller than their reference ratios 
(Eq. A.4.8-9). Bacteria take up LDOM in the way that the ratio of LDON (LDOP) to LDOC uptake is the same as the bulk 
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N/C (P/C) ratio of the LDOM (Eq. A.4.15, Eq. A.4.21). Bacteria take up SDOM with higher N/P ratios to reflect that SDOM 
with higher N/P ratios is more labile (Eq. A.4.13). The ratio of SDON to SDOC uptake by bacteria would vary between the 160 
bulk N/C of SDOM and the bacterial reference cellular quota (Eq. A.4.16, A.4.22). Bacteria are modelled to either take up or 
release NH4 and PO4 to maintain their stable and consistent stoichiometry (Kirchman, 2000). Bacteria take up NO3 only if their 
cellular N/C ratio is smaller than their reference ratio (i.e., when bacteria are in short of nitrogen), in order to reflect higher 
energetic cost of NO3 uptake than NH4, but the amount of NO3 uptake is modelled to be no more than 10% of N-specific bulk 
L- and SDOM uptake, and the sum of NO3 and NH4 uptake is modelled to be no more than N-specific bulk L- and SDOM 165 
uptake (Eq. A.4.17-20). These limit the maximum NO3 uptake rate and set the inhibition of NH4 uptake on NO3 uptake. 
Bacteria excrete RDOM by transforming LDOM to RDOM (A4.26-28). Bacteria also adjust their cellular stoichiometry by 
remineralizing NH4 and PO4 if carbon is in short (i.e., N and P in excess; Eq. A.4.29-30) and by excreting SDOC if carbon is 
in excess (i.e., nitrogen and phosphorus are in short; Eq. A.4.38-43). Bacteria are grazed by microzooplankton (Eq. A.4.44-
46), and a certain percentage of bacteria gets lost to LDOC pool due to viral attack (Eq. A.4.47-49). 170 

The net change of zooplankton (both microzooplankton and krill) biomass is driven by their gross growth (via grazing 
on preys; Eq. A.5.3-5, A.6.3-5), L- and SDOM excretion (Eq. A.5.6-14, A.6.6-14), respiration (Eq. A.5.17, A.6.17), POM 
production (Eq. A.5.18-20, A.6.18-20), and grazing (Eq. A.5.21-23, A.6.24-26). Microzooplankton carbon growth is supported 
by consuming cryptophytes and bacteria (Eq. A.5.3-5), while krill carbon growth is supported by consuming diatoms and 
microzooplankton (Eq. A.6.3-5). Both zooplankton compartments follow the Holling Type 2 density-dependent grazing 175 
function with a preferential selection on different prey species (Eq. A.2.33, A.2.37, A.3.33, A.4.44, A.5.21). Both zooplankton 
groups release a portion of the organic matter that they ingest as DOM via sloppy feeding and excretion (Eq. A.5.6-8, A.5.9-
11, A.6.6-8, A.6.9-11) such that the ratio of the released DON (DOP) to LDOC is equivalent to the N/C (P/C) ratio of 
zooplankton. The amount of SDOC excretion is a function of the total carbon growth (Eq. A.5.9, A.6.9), while the amount of 
SDON (SDOP) excretion is also a function of the zooplankton cellular N/C (P/C) ratio relative to their reference ratio (Eq. 180 
A.5.10-11, A.6.10-11). Zooplankton adjust their body cellular quota by either releasing SDOM if carbon is in excess, or by 
regenerating NH4 or PO4 if nitrogen or phosphorus is in excess (Eq. A.5.12-16, A.6.12-16), similar to the bacterial scheme. 
Respiration is formulated such that basal respiration is based on a portion of zooplankton biomass, while active respiration is 
based on a portion of their grazed C (Eq. A.5.17, A.6.17). Both zooplankton egest fecal matter as POM (Eq. A.5.18-20, A.6.18-
20), but only krill additionally excrete RDOM with N/C and P/C similar to bacteria (Eq. A.6.21-23). Microzooplankton are 185 
grazed by krill (Eq. A.5.21-23), while krill are removed by implicit higher trophic levels (Eq. A.6.24-26), similarly calculated 
as a bacterial mortality term, rather than as an explicit grazing process. 

The net change of detritus is driven by POM produced by all phyto- and zooplankton compartments that is routed to 
detrital pool (Eq. A.2.29-32, A.3.29-32, A.5.18-20, A.6.18-20) and its dissolution (Eq. A.7.1-3). An optimizable vertical 
sinking speed is assigned to detritus to derive particle export flux (i.e., particle export flux = detrital concentration ´ particle 190 
sinking velocity, wnsv, Table 1). The detritus that is lost due to dissolution is incorporated to SDOM pool when it sinks (Eq. 
A.8.7-9) before regenerated to inorganic nutrients, rather than directly regenerated from as the particulate form. The net change 
of LDOM is driven by LDOM excretion by all phyto- and zooplankton compartments (Eq. A.2.16-19, A.3.16-19, A.5.6-8, 
A.6.6-8) and the amount of bacterial mortality that is incorporated to LDOM due to viral attack (Eq. A.4.47-49) and its uptake 
by bacteria (Eq. A.4.12). The net change of SDOM is driven by SDOM excretion by all organisms (Eq. A.2.20-22, A.3.20-22, 195 
A.5.9-14, A.6.9-14) and the amount of detrital dissolution (Eq. A.7.1-3), its uptake by bacteria (Eq. A.4.13-14), and its 
conversion to RDOM pool (Eq. A.8.1-3). The conversion of SDOM to RDOM pool is a function of the stoichiometry of 
SDOM, in which the conversion process is slower for higher N/C and P/C of SDOM, to reflect that nitrogen- and phosphorus-
enriched SDOM are more likely labile. A certain percentage of NH4 is converted to NO3 on a daily basis to represent a simple 
nitrification process in the model (Eq. A.9.1).   200 
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2.3 Physical forcing   

The WAP-1D-VAR model v1.0 is forced by mixed layer depth (MLD), PAR at the ocean surface, sea-ice 
concentration, water-column temperature, vertical velocity, and vertical eddy diffusivity, at a temporal resolution of 1 day. 
Temperature, sea ice, and vertical eddy diffusivity are set up at every vertical grid (depth) point.  

MLD is determined based on a finite difference density criterion with a threshold value of ∆σθ = 0.03 kg m-3 (Montégut 205 
et al., 2004) after calculating potential density of water mass from temperature and salinity Conductivity-Temperature-Density 
(CTD) observations. Vertical velocity, w, is assigned as zero because it is very weak in the surface waters of the study site and 
materials are transported vertically mostly by diffusion. The vertical eddy diffusivity scheme treats the rapid vertical mixing 
in the surface boundary layer by homogenizing model state variables instantaneously in the mixed layer (i.e., by averaging at 
every time step). Thus, Kz value above MLD is not required, and only Kz below MLD is calculated as follows:  210 

Kz (z) = Kz0 ´ exp{ –α ´ (z – MLD) }        (2) 
where z is depth (m) below MLD and KZ0 is the vertical eddy diffusivity at the bottom of the mixed layer (1.1 ´ 10-4 m2 s-1) 
(Klinck, 1998; Smith et al., 1999), and α is 0.01 (m-1). 

Daily surface downward solar radiation flux (National Centers for Environmental Prediction reanalysis daily 
averages) is used to calculate sea surface PAR. PAR is estimated as 46% of the total solar radiation (Pinker & Laszlo 1992, 215 
Kirk 1994). The attenuation of PAR as a function of depth is calculated as follows:  
 PAR (z) = PAR0 ´ exp{ –(kw + kc ´ CHL) ´ z }        (3) 
where z is depth (m), PAR0 is PAR level at sea surface (W m-2), kw is the attenuation coefficient for seawater (m-1), kc is the 
attenuation coefficient for Chl ((mg Chl)-1 m2), and CHL is the Chl concentration (mg Chl m-3).  

Sea-ice conditions in the coastal WAP do not necessarily represent solely local temperature and climate conditions, 220 
given that sea ice can be impacted by temperature, mixed layer, heat fluxes, regional winds, and other physical processes 
(Saenz et al. in review). We implement a sea-ice model scheme to account for light transmission through sea ice (5% of incident 
irradiance, as a typical transmittance value used in the Community Earth System Model) and non-linearities in the 
photosynthesis-irradiance (P-I) response under partial ice concentration (Long et al., 2015) using percent daily sea-ice 
concentration data (GSFC Bootstrap versions 2/3, derived from SMMR/SSMI satellite temperature brightness data binned into 225 
25 by 25 km grid cells). In many previous models, the light-limitation term ℒ(I) is calculated as a function of mean irradiance 
I ̅averaged over both ice-covered and open-water conditions, so ℒ(I)̅; instead we compute the mean of light-limitation term 
(ℒ(I)''''') as a function of fractional sea ice and open water and incident irradiance:  

ℒ(I) = PC/PCMAX = 1 – exp(–I/Ik)           (4) 

ℒ(I)''''' = fi ´ ℒ(Ii) + fo ´ ℒ(Io)          (5)  230 
where PC is the C-specific photosynthetic rate (d-1), PCMAX is the maximum photosynthetic rate (d-1), Ik is the parameter 
describing the light-saturation behaviour of the PI-curve (W m-2), Io is the open-water irradiance, Ii is the under-ice irradiance 
(i.e., Ii = 0.05 ´ Io), fi is the fraction of area covered with sea ice, and fo is the fraction of open water (i.e., fo = 1 – fi).  

2.4 Variational data assimilation  

The WAP-1D-VAR model is equipped with a built-in data assimilation scheme based on a variational adjoint method 235 
(Lawson et al., 1995). This method generates optimal model solutions that minimize model-observation misfits by objectively 
optimizing model parameter values (Friedrichs, 2001; Spitz et al., 2001; Ward et al., 2010). In detail, the assimilation scheme 
(Figure 2) consists of four steps (Glover et al., 2011): 1) starting with initial values of the model parameters (see below), the 
model is integrated forward in time from specified initial conditions to calculate the difference between the model simulation 
and the field data, or the model-observation misfit (i.e., cost function; section 2.5, Eq. 5); 2) an adjoint model constructed using 240 
the Tangent linear and Adjoint Model Compiler (TAPENADE) is integrated backward in time to compute the gradients of the 
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total cost with respect to the model parameters; 3) the computed gradients are then passed to a limited-memory quasi-Newton 
optimization software M1QN3 3.1 (Gilbert & Lemaréchal, 1989) to determine the direction and optimal step size by which 
the selected model parameters (see below) need to be modified in order to reduce the total cost; and 4) a new forward in time 
simulation is conducted using the new set of modified (optimized) parameter values. These four-step procedures are conducted 245 
in an iterative manner until the pre-set convergence criteria (i.e., low gradients of the total cost function with respect to 
optimized parameters and positive eigenvalues of the Hessian matrix) are satisfied to ensure that the optimized parameters 
converge and the total cost function reaches a local minimum.  
Initial values of the model parameters (total of 72 free or optimizable parameters, Table 1) are assigned based on literature 
values (Caron et al., 2000, Luo et al., 2010, Garzio et al., 2013) without examining the effects of the initial parameter values 250 
on the model results prior to optimization. As is typical for many types of ecosystem models, a collection of what appear to be 
reasonable initial parameter estimates can result in relatively poor overall system behaviour because of system-level 
interactions of different model components. In most marine ecosystem models, these initial parameter values are subjectively 
adjusted manually to improve the simulation, and the simulations with the initial, unadjusted parameter values are rarely 
shown. However, here with a more objective optimization approach that we conduct, the initial and optimized solutions can 255 
be explicitly compared (section 4). Optimization starts by submitting a subset of the 72 free model parameters rather than 
submitting all of them at once. This initial parameter subset consists of 10 different model parameters, the change of which 
yields the largest decrease in the total cost function, and which also happened to be usually one per each state variable. These 
include αDA (initial slope of photosynthesis vs. irradiance curve of diatoms, mol C (g Chl a)-1 d-1 (W m-2)-1), αCR (initial slope 
of photosynthesis vs. irradiance curve of cryptophytes, mol C (g Chl a)-1 d-1 (W m-2)-1), Θ (maximum Chl:N ratio, g Chl a (mol 260 
N)-1), μBAC (maximum bacterial growth rate, d-1), rAmax,BAC (maximum bacterial active respiration rate, d-1), gBAC (half-saturation 
density of bacteria in microzooplankton grazing, mmol C m-3), μMZ (maximum microzooplankton growth rate, d-1), μKR 
(maximum krill growth rate, d-1), and remvKR (krill removal rate by higher-trophic levels, (mmol C m-3) -1 d-1; Table 1).  

When computed at the minimum of the cost function value, the inverse of the Hessian matrix provides the 
uncertainties of optimized parameters, cross-correlations among parameters, and sensitivities of the total cost function to each 265 
parameter (Matear, 1996; Tziperman & Thacker, 1989). High off-diagonal values in the inversed Hessian matrix indicate 
highly cross-correlated model parameters, so one of the highly cross-correlated parameters is removed from the optimization. 
The square root of a diagonal element in the inversed Hessian matrix is the logarithm of the relative uncertainty (σf) of the 
corresponding optimized parameter. The absolute uncertainty of the constrained parameter is calculated as pf  ´ exp(±σf) where 
pf is the value of the optimized parameter (Table 1). If parameters are optimized to ecologically unrealistic values, they are 270 
kept back to the initial parameter values and removed from the next optimization cycle. Optimized parameters with σf larger 
than 50% are updated but removed from the next optimization cycle (i.e., defined as ‘optimized’ parameters), while optimized 
parameters with σf smaller than 50% are updated and kept for the next optimization cycle (i.e., defined as ‘constrained 
parameters’). This way, a part of the initial parameter subset forms a final optimized parameter set. The gradients of the total 
cost function with respect to all 72 parameters are then evaluated, the parameters with large gradients (e.g., > 5) are re-275 
submitted to optimization to further reduce the total cost, the gradients are evaluated again, and these cycles repeat until the 
termination of optimization. Optimization terminates when the gradients are reasonably low (e.g., < 10-4-10-2 for constrained 
parameters, < 3-5 for optimized parameters, and < 5-10 for unoptimized parameters). Constrained parameters are reported with 
the uncertainties, while optimized parameters are reported without the uncertainties (Table 1) because both changed parameters 
consist of an optimized model parameter set, but the parameters reported with the uncertainty ranges are the ones optimized 280 
with relatively small uncertainties and considered constrained. This final optimized model parameter set forms the basis of the 
results presented throughout this study (section 4). Additionally, in order to assess the sensitivity of the model optimization 
results with regard to the initial parameter choice, we perturb by ±50% a subset of the initial parameter values used in the 
reference (original) optimization experiments to form different initial parameter sets (a total of 15 sets consisting of partially 
or fully perturbed 18 parameters, Tables B1-2) and conduct new optimization experiments from each set (section 4.1).  285 
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2.5 Cost function  

To represent a misfit between observations and model output, a total cost function is calculated as follows (Luo et al., 
2010):  

J = ∑ 1
 Nm
∑ (  a!m,n – am,n	

σm
)	Nm

 n=1
 M
 m=1

2       (5) 

where m and n represent assimilated data types and data points, respectively, M and Nm are the total number of assimilated 290 
data types and data points for data type m, respectively, σm is the target error for data type m, am,n is observations, and a(m,n is 
model output. Given the high biological productivity of the WAP waters and the approximate log-normal distribution of many 
marine biological variables, the base-10 logarithms of Chl and primary production (PP) are used in the cost function calculation 
to capture phytoplankton dynamics (Campbell, 1995; Glover et al., 2018). The target error	is calculated for each data type as 
follows:  295 

σm = am,n'''''	 ´ CVm          (6) 
where am,n'''''	 is the climatological mean (over the select 9 growth-seasons, see below) of the observations and CVm	is the 
averaged coefficient of variation (CV) of the observations of each data type in the mixed layer (due to observational error and 
seasonal and interannual variations) calculated using all of the observational data over 9 growth-season periods between 2002-
2003 and 2011-2012, except the 2007-2008 growth season due to its missing data. These 9 growth seasons are chosen, instead 300 
of the multi-decadal observations available from Palmer LTER (since 1991), due to the relatively more complete data coverage 
in those seasons. The standard deviations are used as target errors of the log-converted data types. The CV of the log-converted 
data type is estimated as the average of ± 1 standard deviation in log space converted back into normal space (Doney et al., 
2003; Glover et al., 2018). Hereafter, we present the total cost normalized by M (J equivalent to J/M hereafter) as it indicates 
the model-observation misfit equivalent to a reduced Chi-square estimate of model goodness of fit. We report the normalized 305 
total cost J along with normalized costs of individual data types throughout this article. J = 1 indicates a good fit, J >>1 
indicates a poor fit or underestimation of the error variance, and J <<1 indicates an overfitting of the data, fitting the noise, or 
overestimation of the error variance.  

3 Model experiments  

3.1 Modelling framework    310 

To examine the applicability of the WAP-1D-VAR model v1.0 to the coastal WAP region, we select a nearshore 
Palmer LTER water-column time-series station, Station E (64.77°S, 64.05°W), as the modelling site that is ~200 m deep and 
situated approximately 3 km south of Palmer Station and 6.5 km northeast of the head of Palmer Deep (Sherrell et al., 2018). 
Physical forcing (Figure 3) and data types assimilated are derived from roughly semi-weekly physical, chemical and biological 
profiles collected from small boat via a profiling CTD and discrete water samples at Station E. When weather and ice conditions 315 
permit, water column sampling at the station has been conducted twice a week over the growth season. Seven upper-ocean 
layer depths (2.5, 10, 20, 30, 40, 50 and 60 m) are chosen for the model vertical grids. The model depth can be extended to as 
deep as needed, but this study is focused to upper 60-m water column to fully take advantage of the large data availability. 
Also, conceptually, the application of the 1-D model framework makes the most sense for the upper water column dominated 
by local seasonal processes, and extension of the model into deeper water well below the maximum seasonal mixed layer 320 
becomes more problematic because of the growing importance of lateral advective process that are not well captured in the 1-
D model framework. The vertical structure of the water column can be affected by growing sea ice due to reduced wind-driven 
turbulence and brine rejection during winter, but this is what a prognostic, coupled ocean-ice 1-D model can offer to simulate, 
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not our diagnostic forcing based model used in this study. Also, because our model simulates only the spring-summer growth 
season, the impact of winter sea ice on ecosystem dynamics is less of a concern.  325 

Given the routine observations of Palmer LTER available over the growth season (October - March), we simulate one 
example growth season with the most complete data coverage, from October 2002 to March 2003 (2002-2003 growth season 
hereafter), instead of a series of different growth seasons in a continuous manner. The example growth season simulations 
utilize that year’s specific observed physical forcing fields and assimilated biological and biogeochemical observations. Each 
Palmer LTER growth season should be modelled to have its own unique optimized parameter set, as well as initial conditions 330 
and physical forcing that together determine the model solution for that year; however, only 2002-2003 growth season 
simulations are modelled in this study for model analysis and evaluation.   

3.2 Initial and boundary conditions     

Model initial conditions are prescribed 135 days before the model start date for the growth season (October 15, 2002), 
so on June 1, 2002. This 135-day spin up is conducted to minimize the impact of initial conditions on the model output over 335 
the growth season. Initial conditions are prepared by optimizing the full growth seasonal cycle forced by climatological physics 
and assimilated with climatological observations and with the same bottom boundary conditions used in the optimization of 
the 2002-2003 growth season (i.e., climatological model; using climatological physics and observations averaged over 9 
growth-season periods between 2002-2003 and 2011-2012 except the 2007-2008 growth season due to its missing data). Initial 
conditions for the first climatological model simulation are prepared by adjusting initial conditions manually following 340 
literature values (e.g., Luo et al. 2010). Due to strong interannual variability in the phytoplankton bloom phenology at Palmer 
Station, averaging across all these 9 years does not reflect distinct seasonal phytoplankton peaks, leading to underestimated 
phytoplankton values (not shown). To capture this non-linear aspect of the coastal WAP system, we construct the 
climatological year by applying a single time shift to all variables so that a seasonal PP peak of each year lines up with an 
average date of seasonal PP peaks from all years. Most biological initial conditions on June 1 are close to zero given the lack 345 
of active physiological processes in the very low light and the presence of sea ice during wintertime before the model growth 
season starts. All the data types are set to zero at the lower boundary (bottom) except for NO3, PO4, SDOC, SDON, and SDOP 
in which the climatological values at 65 m are used for lower boundary values (25.9 mmol m-3, 1.9 mmol m-3, 6.5 mmol m-3, 
0.6 mmol m-3, and 0.03 mmol m-3, respectively). 

3.3 Assimilated data  350 

We include the data types directly related to corresponding model outputs, including a mix of ecosystem stocks or 
state variables – NO3, PO4, Chl for diatoms and cryptophytes, bacterial biomass, microzooplankton biomass, SDOC, POC, 
and PON as well as carbon flows among model stocks – bulk net PP and bacterial production (BP). These data sets have been 
sampled semi-weekly at Palmer Station E (64.77°S, 64.05°W), the same location where our model is set up, and are available 
from the Palmer LTER data website (see Availability of Data and Model Simulations). The distinction between diatoms and 355 
cryptophytes is established by assimilating phytoplankton taxonomic-specific Chl data for diatoms and non-diatom species 
derived from a High-Performance Liquid Chromatography (HPLC) and CHEMTAX analysis (Schofield et al., 2017), but 
given cryptophytes being the second dominant species in the water samples at the study site, cryptophytes are assumed to 
represent all non-diatom species for modelling purposes. Given that POC (PON) from bottle filtration may capture both living 
biomass and detrital material, we adjust the observed POC (PON) by subtracting phytoplankton and bacterial C (N) biomass 360 
to estimate the detrital pool, in order to only include non-living particles to detrital pool. When phytoplankton or bacterial 
biomass data are not available, we assign climatological (2002-2003 to 2011-2012) fractions of POC (PON) to detrital pool. 
Phytoplankton- and bacterial biomass accounts for 74% of total POC and 71% of total PON. In converting Chl to 
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phytoplankton carbon (nitrogen) biomass, the maximum Chl/C (Chl/N) ratio submitted for optimization is used along with 
other reference ratios (Table 1). Microzooplankton biomass data are not available for the full time-series, so their data from 365 
grazing experiments at Palmer Station (Garzio et al., 2013) are assimilated to at least provide constraints on bacterial and 
cryptophyte grazing processes. However, due to the discrepancy in the timing and location from model simulations of this 
study, the microzooplankton model-observation misfits are not analysed in the present study. Krill biomass data are not 
assimilated due to the strong patchiness of their distribution that may hinder proper model optimization. The vertical profiles 
of most of the data types are assimilated, whereas average NO3 and PO4 concentrations in the mixed layer are assimilated due 370 
to the difficulty of simulating depth-dependent nutrient concentrations and the fact that net PP is mostly determined by surface 
nutrient concentrations (Luo et al., 2010). BP (mmol C m-3 d-1) is derived from the 3H-leucine incorporation rate (pmol l-1 h-1) 
data using the conversion factor of 1.5 kg C (mol leucine)-1 incorporated (Ducklow, 2000). Bacterial biomass (mmol C m-3) is 
estimated from bacterial abundance measured by flow cytometry with the conversion factor of 10 fgC cell-1 (Fukuda et al., 
1998). SDOC is calculated by subtracting the background concentration (41.2 mmol m-3 for the modelling site) from total 375 
DOC concentration.   

3.4 Uncertainty analysis   

Uncertainties of the optimized parameters are computed from a finite difference approximation of the complete 
Hessian matrix (i.e., second derivatives of the cost function with respect to the model parameters) during the iterative 
optimization process. We then conduct Monte Carlo experiments to calculate the impact of the optimized parameter 380 
uncertainties on the model results. We create an ensemble of parameter sets (N = 1,000) by randomly sampling values within 
the uncertainty ranges of the constrained parameters, and then perform a model simulation using each parameter set. 1,000 
Monte Carlo experiments were shown to be adequate from a series of tests with different numbers of Monte Carlo sampling 
(N = 500-2,000), where standard deviations of model simulated values converged after >1,000 Monte Carlo sampling (not 
shown). All uncertainty estimates are calculated following standard error propagation rules and presented as ± 1 standard 385 
deviation in the study.  

4 Results and discussion 

4.1 Model skill assessment  

In the case of the example growth season (2002-2003) modelled in this study, the iterative data assimilation-parameter 
optimization procedure reduced by 58% the misfits between observations and model output compared to the misfits obtained 390 
from the initial parameter values (Table 2). The optimized model solution satisfied the pre-set convergence criteria, with the 
low gradients of the total cost with respect to the optimized parameters and positive eigenvalues of the Hessian matrix. Notably, 
this was achieved by optimizing a subset of 12 (9 constrained and 3 optimized) parameters among the total of 72 optimizable 
parameters (Table 1, section 4.2). To examine the sensitivity of the optimized model solution to the initial parameter choice, a 
series of new optimization experiments (n = 15) were conducted with a varying subset of the initial parameter values perturbed 395 
by +/-50% of those used in the original optimization experiment (Table B1). These experiments showed that the optimized 
model results (i.e., the reference case; Table 1) were not sensitive to the initial choice of the parameters. The 15 different initial 
parameter sets resulted in a range of initial model-observation misfits, some substantially larger than the reference case (14.25-
28.24 vs. 14.85 for the reference case). However, the total normalized optimized cost values of the 15 sensitivity experiments 
(5.79-7.19) were similar to that of the reference case of 6.42. In the sensitivity experiment #12, the initial model-observation 400 
misfit was ~2 times larger than that of the reference case, and there was up to 76% of the reduction in the model-observational 
misfit (vs. 58% of the reduction in the reference case; Table B1). These results suggest that no matter where in parameter space 
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the optimization started from, the adjoint/optimization scheme takes the model cost function to similar local minima. 
Importantly, this was achieved by similar subsets of the optimized parameters: μDA, μCR, rAmax,BAC, and μMZ were optimized in 
all cases, while αDA, αCR, Θ, μBAC, gCR, g’DA, gBAC, μKR, gMZ, and remvKR were optimized except for a few cases (Table B1). The 405 
uncertainties of the optimized parameters were similar among different optimizations, with most of the relative errors < 0.5. 
Constrained parameter values and their uncertainty ranges averaged over the sensitivity experiments (Table B2) were also 
comparable to those in the original optimization experiments (Table 1). Overall, there was a good model-data fit with the 
largely decreased cost value for each data type after optimization (Table 2). Optimization yielded Jf  close to 1 for all data 
types, compared to the initial model solution where three data types – diatom Chl, crypto Chl, and bacterial biomass – had 410 
particularly poor model fits to observations and underestimated error variances (J >> 1). Compared to the initial (unoptimized) 
model results, the average errors (εbias, Doney et al., 2009; Stow et al., 2009) in the optimized model results indicated that 
diatom Chl, cryptophyte Chl, bacterial biomass, BP, and POC had reduced model biases, while NO3, PP, and SDOC had 
increased model biases (for both positive and negative biases, defined as εbias > 0 and εbias < 0, for model overestimation and 
underestimation of the observation, respectively). Optimization resulted in the negative model bias for PO4, compared to the 415 
positive model bias in the initial model results. The point-to-point comparison plots showed that there were seasonally 
consistent, negative model biases for PP, POC, and PON (Figure B1). Model skill was further evaluated with a Taylor diagram 
(Taylor, 2001) summarizing the statistics of the correlation coefficient between model output and observations, normalized 
standard deviation (by the standard deviation of the observations), and centred (bias removed) root-mean-square difference 
(RMSD) for each data type, in which a better model skill is characterized by a higher correlation, a normalized standard 420 
deviation close to 1, and a lower RMSD (Figure 4). Optimization resulted in better model skills for cryptophyte Chl, PP, BP, 
and bacterial biomass via increased correlation coefficients and lowered RMSD (Figure 4B), compared to those in the 
unoptimized model results (Figure 4A). After optimization the normalized standard deviation of PP, BP, and bacterial biomass 
was closer to 1 (Figure 4B). Direct comparisons with the observational data showed that the optimized model parameter set 
captured better the increases in diatom biomass early in the season, cryptophyte biomass in January, and bacterial biomass in 425 
mid-February, compared to the unoptimized model parameter set (Figures 5A-B, Figure B2).  

4.2 Optimized parameters   

The number of the optimized parameters in this study is small and comparable to those from other data-assimilative 
model focused on different marine environments (Friedrichs, 2001; Friedrichs et al., 2006, 2007; Luo et al., 2010). This is 
consistent with the general behaviour of marine plankton ecosystem models, in which well-posed model solutions would be 430 
found with only a subset of independent model parameters due to many cross-correlated parameters inherent in nonlinear 
model equations (Fennel et al., 2001; Harmon & Challenor, 1997; Matear, 1996; Prunet et al., 1996). Ecosystem models with 
a relatively large number of unconstrained parameters (i.e., equivalent to the optimized parameters with high uncertainties in 
the present study) might reduce total costs to a greater extent, but could possess low predictive skill as a result of being over-
tuned to fit noise in the observations (Friedrichs et al., 2007). Also, there are several field and lab-based studies at the study 435 
site or in a similar polar environment that reported the values of the model parameters used in this study’s model, including 
the bacterial growth rate of 0.82 d-1, total phytoplankton (including large cells like diatoms) growth rate of 0.33-0.55 d-1, 
nanophytoplankton (corresponding to cryptophytes) growth rate of 0.52-0.99 d-1 (Garzio et al., 2013), and the 
microzooplankton growth rate of up to 1.0 d-1 (Caron et al., 2000). The optimized values of the maximum bacterial, diatom, 
cryptophyte, and microzooplankton growth rates in this study were 1.06 d-1 (0.93-1.20 d-1), 0.77 d-1 (0.68-0.88 d-1), 0.72 d-1 440 
(0.61-0.85 d-1), and 1.18 d-1 (1.10-1.26 d-1), falling in the ranges of those measured bacterial, total phytoplankton, 
nanophytoplankton, and microzooplankton growth rates, respectively.  

The ensemble of the model state variables and flows obtained from the Monte Carlo experiments had generally small 
standard variations at each model time step and grid, suggesting the robustness of the modelled fields against the variations in 
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the optimized parameter values (Figures B2, B3). To examine the translation of the optimized parameter values to altered 445 
functioning of the WAP biogeochemical processes, we compared two different sets of the model simulation results – one based 
on the initial parameter values (Figures 5A, 6A, 7A) and the other based on the optimized parameter values (Figures 5B, 6B, 
7B). However, due to the non-linearities in the model it is not straightforward to identify what caused the parameter variations, 
except for a few cases in which the changes in the parameter values are clearly linked to the difference in the model state 
variables and flows. The first case is the relation of the increased gBAC value (bacterial half-saturation concentration in 450 
microzooplankton grazing, mmol C m-3) to the elevated bacterial accumulations after optimization (Table 1, Figures 5, 7).  The 
second case is the link between Θ (maximum Chl/N ratio, g Chl a (mol N)-1) and the relative dominance of cryptophytes in 
total phytoplankton accumulations. It is known that the variations of Θ are driven by an imbalance between the rate of light 
absorption and energy demands for photosynthesis and biosynthesis in phytoplankton cells (Geider et al., 1997). Θ can also 
change because of the variations in phytoplankton photo-acclimation or physiological differences across phytoplankton groups, 455 
from a lower Θ value for smaller species to a higher Θ value for larger diatom cells (Geider, 1987). Θ was optimized to a 30% 
lower value than the initial parameter value (Table 1), in order to simulate the relatively larger proportion of cryptophytes in 
total phytoplankton accumulations in the optimized model results compared to the unoptimized model results (Figures 5, 7). 
By contrast, the remaining cases are not as clear because the first-order impact of parameter variations on the model results is 
less direct and more nuanced. Compared to the unoptimized results, the decreases in μDA (diatom C-specific maximum growth 460 
rate, d-1), μCR (cryptophytes C-specific maximum growth rate, d-1), αDA (initial slope of P-I curve of diatoms, mol C (g Chl)-1 d-

1 (W m-2)-1), and αCR (initial slope of P-I curve of cryptophytes, mol C (g Chl)-1 d-1 (W m-2)-1) did not lead to decreased diatom 
and cryptophyte accumulations, presumably due to decreased gMZ (microzooplankton half-saturation concentration in krill 
grazing, mmol C m-3) and increased remvKR (krill removal rate by higher-trophic levels, (mmol C m-3)-1 d-1) after optimization 
(Table 1, Figures 5, 7). Similarly, the decreased μBAC (maximum bacterial growth rate, d-1) and the increased rAMAX,BAC (bacterial 465 
maximum active respiration rate, d-1) did not lead to decreased bacterial accumulations, presumably due to the increased gBAC 
(bacterial half-saturation concentration in microzooplankton grazing, mmol C m-3) and the decreased gMZ (microzooplankton 
half-saturation concentration in krill grazing, mmol C m-3).  

4.3 Ecosystem indices 

We calculated key ecosystem indices for the modelled growth season, including NPP (directly comparable to 14C-PP 470 
observations), net community production (NCP; i.e., NCP = NPP – bacterial-, microzooplankton-, and krill respiration), BP, 
and POC export (sinking) flux (Figure 6). Setting an upper limit for lateral or vertical carbon export from the euphotic zone 
(Dugdale & Goering, 1967), over appropriate time and space scales NCP is quantitatively equivalent to new production that is 
supported via external sources of nitrogen (Ducklow & Doney, 2013). In both optimized and unoptimized model results, NPP 
increased after complete sea-ice retreat, but a brief ice-edge bloom was simulated under sea ice at the beginning of the growth 475 
season (Figures 3, 6). Seasonal patterns of NCP resembled those of NPP and occasionally fell below zero (i.e., the net 
heterotrophy) in subsurface waters for both optimized and unoptimized cases (Figure 6). The POC export flux increased over 
time and reached the maximum value at the end of the growth season in both model results but there were two major POC flux 
events separated by weaker, in-between flux events in December in the optimized results that the initial model results did not 
capture (Figure 6B). After optimization, the correlation coefficients adjusted from 0.88 to 0.36, 0.89 to 0.68, and 0.45 to 0.73 480 
for the NPP-vs.-NCP pair, the NPP-vs.-BP pair, and the NCP-vs.-POC export flux (lagged by 30 days) pair (all p < 0.001). In 
the optimized model results, the growth-season mean of the depth-integrated NPP, NCP, and BP in the 60 m water column, 
and the 30-day lagged POC export flux at 60 m were 19 ± 8 mmol C m-2 d-1, 10 ± 3 mmol C m-2 d-1, 1 ± 1 mmol C m-2 d-1, and 
2 ± 0.3 mmol C m-2 d-1 (uncertainties propagated from season-averaging in Figure 6B and Monte Carlo uncertainties in Figure 
B3), compared to 28 ± 6 mmol C m-2 d-1, 13 ± 3 mmol C m-2 d-1, 3 ± 1 mmol C m-2 d-1, and 2 ± 0.2 mmol C m-2 d-1 in the 485 
unoptimized model results (uncertainties from season-averaging in Figure 6A).  
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The mean e-ratio, defined as the growth-season mean of the 30-day lagged POC export flux divided by the growth-
season mean NPP (i.e., particle export efficiency), was 0.11 ± 0.05 (uncertainties propagated from season-averaging in Figure 
6B and Monte Carlo uncertainties in Figure B3) in the optimized model results, compared to 0.07 ± 0.02 (uncertainties from 
season-averaging in Figure 6A) in the unoptimized model results. The mean f-ratio, defined as the amount of NO3 uptake 490 
divided by the amount of NO3 and NH4 uptake both, was 0.88 ± 1.52 in the optimized model results, compared to 0.84 ± 0.19 
in the unoptimized model results (not shown). The higher mean f-ratio relative to the mean e-ratio in the present study implies 
an imbalance between production and export at the study site, at least during the modelled period. Excess new production 
relative to export production (as derived from sediment traps and 234Th disequilibrium; Ducklow et al., 2018) was previously 
observed in the WAP, presumably due to diel vertical migration, DOM export, lateral export, and diffusive loss of PON via 495 
diapycnal mixing (Stukel et al., 2015). Stukel et al (2015) reported up to 5 times larger new production via NO3 uptake than 
export production via Th-based N export along the coastal WAP. Several additional mechanisms might be responsible for 
driving the discrepancy between production and export. First, given that the assimilated pool of suspended POC in the model 
formulation is not a good indicator of a rapidly sinking detrital pool dominating particle export, our WAP-1D-VAR model 
does not capture large, short-lived particle flux events (e.g., fecal pellets produced by a large swarm of krill), underestimating 500 
POC export flux. Second, the WAP-1D-VAR model export scheme does not consider DOC export that would lower the 
production-export discrepancy. Finally, it should be noted that RDOC is not explicitly modelled in the WAP-1D-VAR model, 
due to its much longer time scale than the model time scale, so accumulated and not-exportable RDOC pool would contribute 
to the deviation of the modelled e-ratio from the modelled f-ratio. Indeed, the modelled mean e-ratios in the present study, for 
both optimized and unoptimized cases, situate at the lower end of the range of the e-ratios measured or estimated in the WAP 505 
waters (Ducklow et al., 2018; Sailley et al., 2013; Stukel et al., 2015; Weston et al., 2013), but optimization increased the e-
ratio by 60% and thus made it closer to the literature values.  

The mean BP/NPP ratio was 0.05 ± 0.06 (uncertainties propagated from season-averaging in Figure 6B and Monte 
Carlo uncertainties in Figure B3) in the optimized model results, compared to 0.11 ± 0.04 (uncertainties from season-averaging 
in Figure 6A) in the unoptimized model results. The modelled mean BP/NPP ratio for both optimized and unoptimized cases 510 
correspond well to the estimates from other measurement- and observation-based studies (Ducklow et al., 2012; Kim & 
Ducklow, 2016). Relatively low bacterial activity in productive Antarctic waters, typically reflected as a low BP/PP ratio, has 
been attributed to low LDOM availability for bacterial growth (Kirchman et al., 2009), low temperature (Pomeroy & Wiebe, 
2001), or top-down control via grazing and viral lysis (Bird & Karl, 1999). 

  515 

4.4 Mean carbon stocks and flows   

We summarized the growth-season means of the carbon stocks and flows in the entire food web (Figure 7). The WAP-
1D-VAR model captured several key WAP ecological and biogeochemical features, including the lack of macronutrient 
limitation (NO3 and PO4 drawdown by phytoplankton utilization but remaining well above their half-saturation constants, 
Table 2) and comparable values of the assimilated and non-assimilated model state variables (Ducklow et al., 2007, 2012, 520 
2018; Kim et al., 2016; Moline et al., 2008; Smith et al., 2008), providing confidence in the model simulations. For instance, 
growth-season measurements in 2017-2018 at Palmer Station showed a strongly patchy krill distribution, with the mean 
biomass of 0.12 ± 0.04 mmol C m-3 and the maximum biomass of 0.57 mmol C m-3 when krill were present (unpublished data 
provided by D. Steinberg), falling in the range of the modelled krill biomass values (0.13 ± 0.03 mmol C m-3; calculated from 
Figure 7B). The WAP-1D-VAR model also simulated several important ecosystem metrics comparable to other statistical 525 
modelling studies. For instance, the modelled phytoplankton seasonal patterns in the present study are consistent with 
physicochemical attributes revealed by a distinct ecological seascape pattern in the coastal WAP (Bowman et al., 2018), 
including low Chl and high nutrients in the first half of the growth season followed by high Chl and low nutrients in the second 
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half of the growth season. A steady-state solution based, inverse modelling study quantified different food-web states using 
ecosystem network indices from Palmer LTER annual summer cruises along the WAP shelf region (Sailley et al., 2013). Their 530 
network indices include the ratio of C export to total PP (i.e., equivalent to e-ratio in the present study) and the ratio of recycling 
(the sum of flows into respiration and DOC pool) to total PP, where more (less) recycling favourable microbial food-webs are 
characterized by greater (smaller) ratios of recycling to total PP and smaller (greater) ratios of total C export to total PP 
(Legendre & Rassoulzadegan, 1996). As discussed above, the modelled mean e-ratio in the present study is smaller than the 
estimates in the inverse modelling study for the WAP shelf region (Sailley et al., 2013), but consistent with their conclusion 535 
on the food-web status of the modelled growth season (2002-2003) positioned on the microbial food-web side. The discrepancy 
in the e-ratio values between the present study and Sailley et al. (2013) may be attributed to fundamentally different model 
formulation (i.e., time-evolving modelling versus steady-state modelling) and optimization approach, or due to relatively 
strong microbial food-web activity at our coastal site compared to the shelf region. Microbial food-web activity can be 
approximated by quantifying the amount of fixed carbon flowing through heterotrophic bacteria (Carlson et al., 1999; del 540 
Giorgio & Cole, 1998; Ducklow, 2000; Ducklow et al., 2012). According to this approach, microbial food-web activity from 
the optimized model results was around 38 ± 16%, calculated as the ratio of bacterial L- and SDOC uptake to PP (i.e., (arrow 
13 + arrow 14)/arrow 1 in Figure 1, mean ± uncertainties from season-averaging and Monte Carlo uncertainties in Figure 7B). 
On average, SDOC supported 1 ± 2% of the total bacterial C uptake, or C demand (i.e., arrow 14/arrow 13 in Figure 1, mean 
± uncertainties from season-averaging and Monte Carlo uncertainties in Figure 7B), but could be an important bacterial C 545 
source when LDOC became scarce as the growth season progressed (Figure 5B). Indeed, several observational studies 
speculated that the WAP bacteria utilize SDOM in short of LDOM (Ducklow et al., 2011; Kim & Ducklow, 2016; Luria et al., 
2017).  

5 Summary    

We developed the WAP-1D-VAR model, a one-dimensional variational data assimilation model specific to the coastal 550 
WAP region, evaluated the model performance and robustness using a variety of quantitative metrics, and discussed the model 
applicability with regard to capturing the key WAP ecological and biogeochemical features using the data from an example 
growth season, 2002-2003. The data assimilation scheme significantly reduced the model-observation misfits via the optimized 
model parameter set that adjusted the simulation to better match the Palmer LTER observations in 2002-2003. We also 
explored the nuanced question of how the observations influenced the data assimilation process, drove the variations in 555 
optimized parameter values relative to their corresponding initial parameter values, and affected the resulting model 
simulations. The WAP-1D-VAR model successfully simulated the variables and flows not included in data assimilation, with 
the values consistent and comparable with other measurement- and observation-based studies in the coastal WAP. Importantly, 
the data assimilation scheme enabled the available observational data to constrain processes that have been poorly understood, 
including the partitioning of NPP by different phytoplankton groups, the optimal Chl/C ratio of the WAP phytoplankton 560 
community, and the partitioning of DOC pools with different lability. Up to this point, a range of observational studies has 
provided snapshots of ecosystem and biogeochemical processes in the WAP. Yet, we have little understanding of the driving 
processes that underlie the connections between each component in complex food-web interactions. We used data-assimilative 
modelling to glue these snapshots together to explain better the observed dynamics and further understand the previously 
poorly constrained processes in the coastal WAP system.  565 
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Figure 1. Ecosystem model. The model is forced by five different physical forcing, denoted as a horizontal row across the 
top of the schematic. The ecosystem component incorporates eleven different prognostic state variables. Higher level and 
refractory dissolved organic matter (RDOM) are represented implicitly.  
 605 
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Figure 2. Variational data assimilation. A variational adjoint scheme is employed for the parameter optimization and data 
assimilation processes (adapted from Glover et al., 2011). Gradient: the sensitivity of the total cost function with respect to 
model parameter from optimization.  
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Figure 3. Physical forcing. Physical forcing used in the model, including surface photosynthetically active radiation (PAR) 
(a), sea-ice concentration (b), water temperature (c), and vertical eddy diffusivity (d) overlaid with mixed layer depth (MLD; 
dash line) in the modelled growth season 2002-2003.  615 
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Figure 4. Model skill assessment. The Taylor diagrams using a polar-coordinate system summarizing the model-observational 
correspondence for each model stock and flow for the modelled growth season 2002-2003 before (a) and after optimization 
(b). The angular coordinate for the Pearson correlation coefficient (r), the distance from the origin for the standard deviation 620 
normalized by the standard deviation of the observation, and the distance from point (1,0), marked as REF on x-axis, for the 
centred (bias removed) root-mean-square difference (RMSD) between model results and observations.  
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Figure 5. Model state variables before and after optimization. The model state variables for the modelled growth season 625 
2002-2003 (x-axis; month/day) for before (a) and after optimization (b). init. as the initial (unoptimized) model results and 
opt. as the optimized model results. The error (standard deviation) of each model state variable from the Monte Carlo 
experiments (N = 1,000) is available in Figure B2. 
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Figure 6. Model ecosystem indices before and after optimization. The key ecosystem indices for the modelled growth 635 
season 2002-2003 (x-axis; month/day). init. as the initial (unoptimized) model results and opt. as the optimized model results. 
NPP: net primary production, NCP: net community production, C export flux: particulate organic carbon (POC) export flux, 
and BP: bacterial production. The error (standard deviation) of each rate process from the Monte Carlo experiments (N = 
1,000) is available in Figure B3. 

 640 
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Figure 7. Mean carbon stocks and flows. Depth-integrated (0-60 m) carbon stocks (mmol C m-3), flows (mmol C m-3 d-1), 
and POC export flux at 60-m (mmol C m-2 d-1) averaged over the modelled Austral growth season (October 2002 – March 
2003) before (a) and after optimization (b). Values in parentheses as uncertainties from season-averaging (a) and as 645 
uncertainties propagated from season-averaging and depth-integration of the Monte Carlo errors for (b).  
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Table 1. Summary of model parameters. Summary of the model parameter symbol and definition, initial parameter values 650 
(p0) and optimized values (pf) for optimizable parameters, the cost function gradient with regard to the optimized parameter 
(∂J/∂p), and prescribed values for fixed model parameters over the course of simulations. The parameter with ‘n/a’ in the 
parenthesis is an optimized parameter with a large relative uncertainty, while the parameter with values in the parenthesis is a 
constrained parameter (optimized with a low relative uncertainty) with its upper and lower bounds. The uncertainties for these 
upper and lower bounds are calculated as: pf ´ e±σf where pf is the value of the constrained parameter and σf is the square roots 655 
of diagonal elements of the inverse of the Hessian matrix. The cost function gradient with regard to the optimized parameter 
(∂J/∂p) after data assimilation is defined as: ΔJ/eΔp where eΔp ≈ Δp for an infinitely small Δp. For example, a 10% change of a 
parameter (Δp = 10%) leads to a total cost change equivalent to 10% of the corresponding gradient.  

 
Model parameter symbol and definition (optimizable)  p0 pf ∂J/∂p 
AE, Arrhenius parameter for temperature function 4000.00 - -1.15 
μDA, Diatom C-specific maximum growth rate, d-1 2.00 0.77 (0.68-0.88) -5.53´10-5 
μCR, Crypto. C-specific maximum growth rate, d-1 1.00 0.72 (0.61-0.85) 2.51´10-4 
αDA, Initial slope of P-I curve of diatoms, mol C (g Chl)-1 d-1 (W m-2)-1 0.30 0.13 (0.10-0.19) -1.55´10-4 
αCR, Initial slope of P-I curve of crypto., mol C (g Chl)-1 d-1 (W m-2)-1 0.20 3.89´10-2 (n/a) 0.45 
βDA, Light inhibition parameter for diatom photosynthesis (W m-2)-1 5.00´10-3 - -1.10 
βCR, Light inhibition parameter for crypto. photosynthesis (W m-2)-1 5.00´10-3 - 0.32 
vNREF,DA, Maximum N uptake rate per diatom C biomass, mol N (mol C)-1 d-1 0.50 - -5.13´10-2 
vNREF,CR, Maximum N uptake rate per crypto. C biomass, mol N (mol C)-1 d-1 0.30 - -3.07´10-2 
kNH4DA, NH4 half-saturation concentration for diatom uptake, mmol m-3 0.10 - 0.29 
kNH4CR, NH4 half-saturation concentration for crypto. uptake, mmol m-3 0.10 - 0.14 
kNO3DA, NO3 half-saturation concentration for diatom uptake, mmol m-3 1.00 - -0.29 
kNO3CR, NO3 half-saturation concentration for crypto. uptake, mmol m-3 0.60 - -0.14 
vPREF,DA, Maximum P uptake rate per diatom C biomass, mol P (mol C)-1 d-1 0.03 - 0.32 
vPREF,CR, Maximum P uptake rate per crypto. C biomass, mol P (mol C)-1 d-1 0.03 - 0.15 
kPO4DA, PO4 half-saturation concentration for diatom uptake, mmol m-3 0.05 - -9.93´10-3 
kPO4CR, PO4 half-saturation concentration for crypto. uptake, mmol m-3 0.04 - -3.68´10-3 
ζNO3, C requirement (respiration) to assimilate NO3, mol C (mol N)-1 2.00 - -1.42 
Θ, Maximum Chl/N ratio, g Chl a (mol N)-1 2.90 2.27 (1.82-2.82) 5.95´10-5 
exPSV,DA, Diatom passive excretion rate per biomass, d-1 0.05 - 0.86 
exPSV,CR, Crypto. passive excretion rate per biomass, d-1 0.05 - 2.17 
exACT,DA, Diatom active excretion rate per growth rate, d-1 0.05 - 2.26´10-2 
exACT,CR, Crypto. active excretion rate per growth rate, d-1 0.05 - 4.06´10-3 
pomDA, POM production rate by diatom aggregation, (mmol C m-3)-1d-1 0.04 - 1.99 
pomCR, POM production rate by crypto. aggregation, (mmol C m-3)-1d-1 0.03 - 0.61 
kDOC, DOC half-saturation concentration for bacterial uptake, mmol C m-3 0.65 - 1.00 
rSDOM, Parameter controlling SDOM lability 5.00´10-3 - -0.64 
μBAC, Maximum bacterial growth rate, d-1 2.00 1.06 (0.93-1.20) 1.54´10-4 
bR,BAC, Parameter control bacterial active respiration rate versus production, (mmol C 
m-3 d-1)-1 1.50´10-2 - 9.60´10-2 
exADJ,BAC, Bacterial extra SDOC excretion rate, d-1 2.00 - 0.00 
remiBAC, Bacterial nutrient regeneration rate, d-1 6.00 - -0.11 
exREFR,BAC, Bacterial RDOC production rate, d-1 1.70´10-2 - 2.77 
fS, Bacterial selection strength on SDOM 0.25 - -5.18´10-3 
rBBAC, Bacterial basal respiration rate, d-1 1.27´10-2 - 0.40 
rAmin,BAC, Bacterial minimum active respiration rate, d-1 3.50´10-2 - -4.37´10-3 
rAmax,BAC, Bacterial maximum active respiration rate, d-1 0.58 0.80 (0.77-0.84) -6.59´10-4 
mortBAC, Bacterial mortality rate, d-1 0.02 - 3.10 
μMZ, Microzoo. C-specific maximum growth rate, d-1 1.00 1.18 (1.10-1.26) -7.41´10-4 
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gDA, Diatom half-saturation concentration in microzoo. grazing, mmol C m-3 1.00 - 1.85 
g’DA, Diatom half-saturation concentration in krill grazing, mmol C m-3 1.00 - -1.15 
gCR, Crypto. half-saturation concentration in microzoo. grazing, mmol C m-3 1.00 - 1.32 
gBAC, Bacterial half-saturation concentration in microzoo. grazing, mmol C m-3 0.55 0.81 (0.64-1.03) 3.75´10-5 
exMZ, Total DOM excretion rate per microzoo. gross growth, d-1 0.15 - 0.52 
fex,MZ, Fraction of LDOC of total microzoo. DOC excretion 0.75 - -0.37 
rBMZ, Microzoo. basal respiration rate, d-1 0.01 - 3.92´10-2 
rAMZ, Microzoo. active respiration rate, d-1 0.42 - -0.63 
exADJ,MZ, Microzoo. extra SDOM excretion rate, d-1 2.00 - 0.00 
remiMZ, Microzoo. nutrient regeneration rate, d-1 4.68 - 2.93´10-3 
pomMZ, POM production rate per microzoo. gross growth, d-1 2.70´10-2 - 2.87´10-2 
μKR, Maximum krill C-specific growth rate, d-1 0.80 1.02 (0.97-1.07) 2.17´10-4 
gMZ, Microzoo. half-saturation concentration in krill grazing, mmol C m-3 1.00 0.15 (n/a) -0.95 
exKR, Total DOM excretion rate per krill gross growth, d-1 0.30 - -0.29 
fex,KR, Fraction of labile DOC of total krill DOC excretion 0.75 - -0.45 
rBKR, Krill basal respiration rate, d-1 0.03 - -0.50 
rAKR, Krill active respiration rate, d-1 0.30 - -1.08 
exADJ,KR, Krill extra SDOM excretion rate, d-1 2.00 - 0.00 
remiKR, Krill nutrient regeneration rate, d-1 4.00 - -2.81´10-2 
pomKR, POM production rate per krill gross growth, d-1 0.15 - -0.38 
exREFR,KR, Krill RDOC production rate, d-1 0.02 - -6.43´10-2 
remvKR, Krill removal rate by higher-trophic levels, (mmol C m-3)-1 d-1 0.10 0.43 (n/a) 0.86 
fKR, Fraction of SDOM production by krill  0.10 - 5.11´10-2 
fPOM,HZ, Fraction of POM production by higher-trophic level  0.20 - 4.86´10-2 
exREFR,SDOM, Conversion rate of SDOM to RDOM, d-1 9.00´10-4 - -5.17´10-2 
qCN,RDOM, RDOM N/C ratio, mol N (mol C)-1 0.05 - -0.10 
qCP,RDOM, RDOM P/C ratio, mol P (mol C)-1 6.50´10-4 - 4.70´10-3 
qCN,POM, N/C ratio for POM production by microzoo. and krill, mol N (mol C)-1 0.12 - 0.12 
qCP,POM, P/C ratio for POM production by microzoo. and krill, mol P (mol C)-1 4.50´10-3 - 6.24´10-2 
rntrf, Nitrification rate (NH4 to NO3), d-1 7.60´10-2 - -3.74´10-2 
prfN, Preference for dissolving N content in POM 1.10 - 0.27 
prfP, Preference for dissolving P content in POM 4.00 - 1.67´10-4 
wnsv, Detritus vertical sinking velocity, m d-1 5.00 - 0.26 
diss, Detrital dissolution rate, d-1 0.14 - 1.07 
Model parameter symbol and definition (fixed)  P 
Tref, Reference temperature in Arrhenius function, °C 15.00 
qCN,MIN,DA, Minimum N/C ratio of diatoms 3.40´10-2 
qCN,MAX,DA, Maximum N/C ratio of diatoms 0.17 
qCN,RDF,DA, Reference (Redfield) N/C ratio of diatoms 0.15 
qCP,MIN,DA, Minimum P/C ratio of diatoms 1.90´10-3 
qCP,MAX,DA, Maximum P/C ratio of diatoms 1.59´10-2 
qCP,RDF,DA, Reference (Redfield) P/C ratio of diatoms 9.40´10-3 
qCN,MIN,CR, Minimum N/C ratio of crypto. 3.40´10-2 
qCN,MAX,CR, Maximum N/C ratio of crypto. 0.17 
qCN,RDF,CR, Reference (Redfield) N/C ratio of crypto. 0.15 
qCP,MIN,CR, Minimum P/C ratio of crypto. 1.90´10-3 
qCP,MAX,CR, Maximum P/C ratio of crypto. 1.59´10-2 
qCP,RDF,CR, Reference (Redfield) P/C ratio of crypto. 9.40´10-3 
qCN,BAC, Reference (optimal) N/C ratio of bacteria  0.18 
qCP,BAC, Reference (optimal) P/C ratio of bacteria 0.02 
qCN,MZ, Reference (optimal) N/C ratio of microzoo. 0.20 
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qCP,MZ, Reference (optimal) P/C ratio of microzoo. 2.20´10-2 
qCN,KR, Reference (optimal) N/C ratio of krill 0.20 
qCP,KR, Reference (optimal) P/C ratio of krill 8.00´10-3 
ϵDA, Grazing limit to the amount of diatoms available for microzoo. grazing, mmol C 
m-3 1.00´10-3 

ϵCR, Grazing limit to the amount of crypto. available for microzoo. grazing, mmol C 
m-3 2.95 

 660 
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Table 2. Data types, observed means, coefficient of variation, target errors, and costs before and after optimization. 
The observed mean (𝑎'), coefficient of variation (CV), and target error (s) of each assimilated data type used for calculating 
the cost function before and after optimization. J0 is the normalized cost function before optimization and Jf is the normalized 
cost function after optimization (Eq. 5). Data type units: mmol m-3 for NO3, PO4, diatom Chl, cryptophyte Chl, bacterial 665 
biomass, SDOC, and POC; mmol N m-3 for PON; and mmol C m-3 d-1 for PP and BP. The average error (εbias) of each data 
type (for non-transformed or raw Chl and PP) is calculated from Stow et al. (2009) before and after optimization where a 
positive value indicates the model overestimation of the observation and vice versa.  

 
Data types n 𝒂, CV s J0 Jf εbias,0 εbias,f 

NO3 75 21.54 0.04 0.80 0.76 0.90 -0.59 -1.15 
PO4 75 1.43 0.03 0.05 0.40 0.47 0.03 -0.04 

log10 diatom Chl 86 -0.07 0.20 0.08 2.29 1.30 -0.37 -0.21 
log10 crypto. Chl 86 -0.27 0.24 0.10 3.09 0.56 -0.42 -0.13 

log10PP 92 1.30 0.50 0.21 0.73 0.57 -16.6 -17.6 
Bacterial biomass 55 0.44 0.08 0.04 4.61 0.58 -0.30 -0.02 

BP 55 0.05 0.16 0.01 1.11 0.22 0.04 0.01 
SDOC 55 11.39 0.20 2.30 0.66 0.67 0.04 0.10 
POC 91 19.78 0.13 2.58 0.50 0.47 -7.43 -7.19 
PON 91 2.66 0.12 0.32 0.71 0.68 -1.00 -1.01 

Total cost function 14.85 6.42   
 670 
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Appendix A 

1. Temperature effect 

Tf  = exp{ –AE ´ (1/T – 1/Tref) }          (A.1.1) 

2. Diatom processes 675 

• Cellular quota (ratio):   
  QCN,DA  = NDA/CDA            (A.2.1) 
  QCP,DA  = PDA/CDA            (A.2.2) 
  QCCHL,DA  = CHLDA/CDA           (A.2.3) 

• N and P limitation function: 680 
  Nf,DA  = (QCN,DA – qCN,MIN,DA)/(qCN,RDF,DA – qCN,MIN,DA)  0 ≤ Nf,DA  ≤ 1     (A.2.4) 
  Pf,DA  = (QCP,DA – qCP,MIN,DA)/(qCP,RDF,DA – qCP,MIN,DA)  0 ≤ Pf,DA  ≤ 1     (A.2.5) 

• Maximum photosynthesis rate:  
PCMAX = μDA ´ Tf  ´ min(Nf,DA, Pf,DA)         (A.2.6) 

• C-specific gross primary production: 685 
GCDA = CDA ´ PCMAX  ´{ 1– exp(–αDA ´ QCCHL ´ PAR)/PCMAX) } ´ exp(–βDA ´ PAR)   (A.2.7) 

• Limitation on N and P uptake:   
VNMAX = (qCN,MAX – QCN,DA)/(qCN,MAX – qCN,RDF)  0 ≤ VNMAX  ≤ 1     (A.2.8) 
VPMAX = (qCP,MAX – QCP,DA)/(qCP,MAX – qCP,RDF)  0 ≤ VPMAX  ≤ 1     (A.2.9) 

• N assimilation:  690 
GNH4DA = CDA  ´ VNREF ´ Tf  ´ VNMAX  ´{ NH4/(NH4 + kNH4 + NO3 ´ kNH4/kNO3) }    (A.2.10) 

    GNO3DA = CDA ´ VNREF ´ Tf  ´ VNMAX  ´{ NO3/(NO3 + kNO3 + NH4 ´ kNO3/kNH4) }    (A.2.11) 
    GNDA    = GNH4DA + GNO3DA            (A.2.12) 

• P assimilation:  
GPO4DA = CDA  ´ VPREF ´ Tf  ´ VPMAX  ´{ PO4/(PO4 + kPO4) }       (A.2.13) 695 

• Chlorophyll production:  
GCHLDA = θ ´ (GNH4DA + GNO3DA)  ´{ GCDA /α ´ CHLDA ´ PAR ´ exp(-β ´ PAR) }   (A.2.14) 

• Respiration:  
RCDA = GNO3DA ´ ζNO3           (A.2.15) 

• Passive excretion of LDOM:  700 
ECDA,LDOC,PSV = exDA,PSV  ´ CDA          (A.2.16) 
ENDA,LDON,PSV = exDA,PSV  ´ NDA          (A.2.17) 
EPDA,LDOP,PSV = exDA,PSV  ´ PDA          (A.2.18) 

• Active excretion of LDOC:  
ECDA,LDOC,ACT  = exDA,ACT  ´ GCDA          (A.2.19) 705 

• Active excretion of SDOC:  
ECDA,SDOC,ACT =  0.5 ´ CDA ´ max( 1 – QCN,DA/qCN,RDF,DA, 1– QCP,DA/qCP,RDF,DA, 0 )    (A.2.20) 

• Active excretion of SDON and SDOP (if EXCDA,SDOC,ACT > 0, otherwise 0):  
ENDA,SDON,ACT  =  0.5 ´ 0.25 ´ NDA ´ max( 1 – QNP,DA/qCP,RDF,DA/qCN,RDF,DA, 0 )    (A.2.21) 
EPDA,SDOP,ACT  =  0.5 ´ 0.25 ´ PDA ´ max( 1 – QPN,DA/qCN,RDF,DA/qCP,RDF,DA, 0 )    (A.2.22) 710 
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• Partitioning between LDOM and SDOM: 
ECDA,LDOC  = ECDA,LDOC,PSV + 0.75 ´ ECDA,LDOC,ACT       (A.2.23) 

ENDA,LDON  = ENDA,LDON,PSV          (A.2.24) 

EPDA,LDOP  = EPDA,LDOP,PSV           (A.2.25) 

ECDA,SDOC  = ECDA,SDOC,ACT + 0.25 ´ ECDA,LDOC,ACT       (A.2.26) 715 
ENDA,SDON  = ENDA,SDON,ACT          (A.2.27) 

EPDA,SDOP  = EPDA,SDOP,ACT           (A.2.28) 

• POM production by aggregation: 
DCDA     = pomDA ´  CDA ´ CDA          (A.2.29) 

DNDA     = QCN,DA  ´  DCDA            (A.2.30) 720 
DPDA     = QCP,DA  ´  DCDA            (A.2.31) 

DCHLDA  = QCCHL,DA  ´  DCDA            (A.2.32) 

• Grazing by microzooplankton:  
GZCDA,MZ = Tf  ´ μMZ ´ CMZ  
      ´ [ (CDA – ϵDA) 2/{(CDA – ϵDA)2 + gDA2 + (CCRYPTO ´ gDA/gCR)2 + (CBAC ´ gDA/gBAC)2} ]  (A.2.33) 725 
GZNDA,MZ    = QCN,DA  ´  GZCDA,MZ         (A.2.34)  
GZPDA,MZ    = QCP,DA  ´  GZCDA,MZ          (A.2.35) 

GZCHLDA,MZ = QCCHL,DA  ´  GZCDA,MZ         (A.2.36) 
• Grazing by krill:  

GZCDA,KR = Tf  ´ μKR ´ CKR      730 
´ [ CDA2/{CDA2 + g’DA2 + (CMZ ´ g’DA/gMZ)2} ]       (A.2.37) 

GZNDA,KR    = QCN,DA  ´  GZCDA,KR          (A.2.38)  
GZPDA,KR    = QCP,DA  ´  GZCDA,KR          (A.2.39) 

GZCHLDA,KR = QCCHL,DA  ´  GZCDA,KR         (A.2.40) 
• The net growth rate equations:  735 

dCDA  

dt
 = GCDA – ECDA,LDOC – ECDA,SDOC – DCDA – RCDA – GZCDA,MZ – GZCDA,KR   (A.2.41) 

dNDA  

dt
 = GNDA – ENDA,LDON – ENDA,SDON – DNDA                     – GZNDA,MZ – GZNDA,KR   (A.2.42) 

dPDA  

dt
 = GPDA – EPDA,LDOP – EPDA,SDOP – DNDA                      – GZPDA,MZ – GZPDA,KR   (A.2.43) 

dCHLDA  

dt
 = GCHLDA                              – DCHLDA                 – GZCHLDA,MZ – GZCHLDA,KR   (A.2.44) 

3. Cryptophyte processes 740 

• Cellular quota (ratio): 
  QCN,CR  = NCR/CCR            (A.3.1) 
  QCP,CR  = PCR/CCR            (A.3.2) 
  QCCHL,CR  = CHLCR/CCR           (A.3.3) 

• N and P limitation function: 745 
  Nf,CR  = (QCN,CR – qCN,MIN,CR)/(qCN,RDF,CR – qCN,MIN,CR)  0 ≤ Nf,CR  ≤ 1     (A.3.4) 
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  Pf,CR  = (QCP,CR – qCP,MIN,CR)/(qCP,RDF,CR – qCP,MIN,CR)  0 ≤ Pf,CR  ≤ 1     
 (A.3.5) 

• Maximum primary production rate: 
PCMAX = μCR ´ Tf  ´ min(Nf,CR, Pf,CR)         (A.3.6) 750 

• C-specific gross primary production: 
GCCR = CCR ´ PCMAX  ´{ 1– exp(–αCR ´ QCCHL ´ PAR)/PCMAX) } ´ exp(–βCR ´ PAR)   (A.3.7) 

• Limitation on N and P uptake:   
VNMAX = (qCN,MAX – QCN,CR)/(qCN,MAX – qCN,RDF) 0 ≤ VNMAX  ≤ 1      (A.3.8) 
VPMAX = (qCP,MAX – QCP,CR)/(qCP,MAX – qCP,RDF)  0 ≤ VPMAX  ≤ 1     (A.3.9) 755 

• Nitrogen assimilation:  
GNH4CR = CCR  ´ VNREF ´ Tf  ´ VNMAX  ´{ NH4/(NH4 + kNH4 + NO3 ´ kNH4/kNO3) }    (A.3.10) 

          GNO3CR = CCR ´ VNREF ´ Tf  ´ VNMAX  ´{ NO3/(NO3 + kNO3 + NH4 ´ kNO3/kNH4) }   (A.3.11) 
          GNCR    = GNH4CR + GNO3CR           (A.3.12) 

• Phosphorus assimilation:  760 
GPO4CR = CCR  ´ VPREF ´ Tf  ´ VPMAX  ´{ PO4/(PO4 + kPO4) }       (A.3.13) 

• Chlorophyll production:  
GCHLCR = θ ´ (GNH4CR + GNO3CR)  ´{ GCCR /α ´ CHLCR ´ PAR ´ exp(-β ´ PAR) }   (A.3.14) 

• Respiration:  
RCCR = GNO3CR ´ ζNO3           (A.3.15) 765 

• Passive excretion of LDOM:  
ECCR,LDOC,PSV = exCR,PSV  ´ CCR          (A.3.16) 
ENCR,LDON,PSV = exCR,PSV  ´ NCR          (A.3.17) 
EPCR,LDOP,PSV = exCR,PSV  ´ PCR          (A.3.18) 

• Active excretion of LDOC:  770 
ECCR,LDOC,ACT  = exCR,ACT  ´ GCCR          (A.3.19) 

• Active excretion of SDOC:  
ECCR,SDOC,ACT =  0.5 ´ CCR ´ max( 1 – QCN,CR/qCN,RDF,CR, 1– QCP,CR/qCP,RDF,CR, 0 )    (A.3.20) 

• Active excretion of SDON and SDOP (if EXCCR,SDOC,ACT > 0, otherwise 0):  
ENCR,SDON,ACT  =  0.5 ´ 0.25 ´ NCR ´ max( 1 – QNP,CR/qCP,RDF,CR/qCN,RDF,CR, 0 )    (A.3.21) 775 
EPCR,SDOP,ACT  =  0.5 ´ 0.25 ´ PCR ´ max( 1 – QPN,CR/qCN,RDF,CR/qCP,RDF,CR, 0 )    

 (A.3.22) 
• Partitioning between LDOM and SDOM: 

ECCR,LDOC  = ECCR,LDOC,PSV + 0.75 ´ ECCR,LDOC,ACT       

 (A.3.23) 780 
ENCR,LDON  = ENCR,LDON,PSV          

 (A.3.24) 

EPCR,LDOP  = EPCR,LDOP,PSV           (A.3.25) 

ECCR,SDOC  = ECCR,SDOC,ACT + 0.25 ´ ECCR,LDOC,ACT       

 (A.3.26) 785 
ENCR,SDON  = ENCR,SDON,ACT          (A.3.27) 

EPCR,SDOP  = EPCR,SDOP,ACT           (A.3.28) 

• POM production by aggregation: 
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DCCR     = pomCR ´  CCR ´ CCR          (A.3.29) 

DNCR     = QCN,CR  ´  ACCR            (A.3.30) 790 
DPCR     = QCP,CR  ´  ACCR            (A.3.31) 

DCHLCR  = QCCHL,CR  ´  ACCR            (A.3.32) 

• Grazing by microzooplankton:  
GZCCR = Tf  ´ μMZ ´ CMZ  

´ [ (CCR – ϵCR)2/{(CCR – ϵCR)2 + gCR2 + (CDA´ gCR/gDA)2 + (CBAC ´ gCR/gBAC)2} ]   (A.3.33) 795 
GZNCR    = QCN,CR  ´  GZCCR,MZ          (A.3.34)  
GZPCR   = QCP,CR  ´  GZCCR,MZ          (A.3.35) 

GZCHLCR = QCCHL,CR  ´  GZCCR,MZ          (A.3.36) 
• The net growth rate equations:  

dCCR  

dt
 = GCCR – ECCR,LDOC – ECCR,SDOC – DCCR – RCCR – GZCCR     800 

 (A.3.37) 
dNCR  

dt
 = GNCR – ENCR,LDON – ENCR,SDON – DNCR                     – GZNCR     (A.3.38) 

dPCR  

dt
 = GPCR – EPCR,LDOP – EPCR,SDOP – DNCR                      – GZPCR     

 (A.3.39) 
dCHLCR  

dt
 = GCHLCR                              – DCHLCR                 – GZCHLCR     (A.3.40) 805 

 
4. Bacterial processes  

• Cellular quota (ratio): 
  QCN,BAC  = NBAC/CBAC            (A.4.1) 

 QCP,BAC  = PBAC/CBAC            (A.4.2) 810 
 QPN,BAC  = NBAC/PBAC            (A.4.3) 

  QCN,LDOM  = NLDOM/CLDOM           (A.4.4) 
  QCP,LDOM  = PLDOM/CLDOM           (A.4.5) 
  QCN,SDOM  = NSDOM/CSDOM           (A.4.6) 
  QCP,SDOM  = PSDOM/CSDOM           (A.4.7) 815 

• N and P limitation function: 
  Nf,BAC  = QCN,BAC/qCN,BAC     0 ≤ Nf,BAC  ≤ 1     (A.4.8) 
  Pf,BAC  = QCP,BAC/qCP,BAC     0 ≤ Pf,BAC  ≤ 1     (A.4.9) 

• Maximum available LDOC and SDOC:   
ALC = CLDOC            (A.4.10) 820 
ASC = rSDOC ´ CSDOC           (A.4.11) 

• Bacterial uptake of LDOC and SDOC (i.e., bacterial gross C growth):  
GCBAC,LDOC = μBAC ´ Tf  ´ CBAC ´ min(Nf,BAC, Pf,BAC) ´{ ALC/(ALC + kDOC + ASC) }   (A.4.12) 
GCBAC,SDOC = μBAC ´ Tf  ´ CBAC ´ min(Nf,BAC, Pf,BAC) ´{ ASC/(ASC + kDOC + ALC) }   (A.4.13) 
GCBAC,DOC = GCBAC,LDOC + GCBAC,SDOC         (A.4.14) 825 

• Bacterial N uptake:  
GCBAC,LDON  = GCBAC,LDOC ´ QCN,LDOM           (A.4.15) 
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GCBAC,SDON = GCBAC,SDOC ´ min{ qCN,BAC, QCN,SDOM + fS/Nf,BAC ´ (qCN,BAC – QCN,SDOM) }  (A.4.16) 
GCBAC,NH4 = GCBAC,LDON ´ NH4/NLDOM/min(1, Nf,BAC)       (A.4.17) 

if Nf,BAC  < 1,  830 
GCBAC,NO3 = min{ 0.1 ´ NO3 ´ 1/min(1, Nf,BAC) ´ (GCBAC,LDON + GCBAC,SDON)/(NLDOM + NSDOM),  

                         (NO3 + NH4) ´ (GNBAC,LDON + GNBAC,SDON)/(NLDOM + NSDOM) – GNH4BAC }   (A.4.18) 
 else,  GCBAC,NO3 = 0             (A.4.19)  

GCBAC,N = GCBAC,LDON  + GCBAC,SDON + GCBAC,NH4 + GCBAC,NO3      (A.4.20) 
• Bacterial P uptake:  835 

GCBAC,LDOP  = GCBAC,LDOC ´ QCP,LDOM           (A.4.21) 
GCBAC,SDOP = GCBAC,SDOC ´ min{ qCP,BAC, QCP,SDOM + fS/Pf,BAC ´ (qCP,BAC – QCP,SDOM) }  

 (A.4.22) 
GCBAC,PO4 = GCBAC,LDON ´ PO4/PLDOM/min(1, Pf,BAC)       (A.4.23) 
GCBAC,P = GCBAC,LDOP  + GCBAC,SDOP + GCBAC,PO4         (A.4.24) 840 

• Respiration:  
RCBAC = ζNO3 ´ GCBAC,NO3 + rBBAC ´ Tf  ´ CBAC 

+{ rAmin,BAC + (rAmax,BAC – rAmin,BAC) ´ exp(–bR,BAC ´ GCBAC,DOC) } ´ GCBAC,DOC  
 (A.4.25) 

• RDOC release:  845 
ECBAC,RDOC = refrBAC ´ CBAC           (A.4.26) 
ENBAC,RDON = ECBAC,RDOC ´ qCN,RDOM          (A.4.27) 
EPBAC,RDOP = ECBAC,RDOC ´ qCP,RDOM          (A.4.28) 

• Remineralization of inorganic nutrients:  
 if QCN,BAC > qCN,BAC and QCP,BAC > qCP,BAC (i.e., C in short)  850 

         REMINBAC = remiBAC ´ (NBAC – CBAC ´ qCN,BAC)         (A.4.29) 
    REMIPBAC = remiBAC ´ (PBAC – CBAC ´ qCP,BAC)         (A.4.30) 

remiBAC    
elseif QCN,BAC < qCN,BAC and QPN,BAC < qCN,BAC/qCP,BAC (i.e., N in short)  

REMINBAC = 0            (A.4.31) 855 
    REMIPBAC = 0             (A.4.32) 

else (i.e., P in short)  
REMINBAC = 0            (A.4.33) 

    REMIPBAC = 0             (A.4.34) 
• SDOM excretion to adjust stoichiometry:  860 

 if QCN,BAC > qCN,BAC and QCP,BAC > qCP,BAC (i.e., C in short)  
ECBAC,SDOC = 0            (A.4.35) 
ENBAC,SDON = 0            (A.4.36) 
EPBAC,SDOP = 0            (A.4.37) 

elseif QCN,BAC < qCN,BAC and QPN,BAC < qCN,BAC/qCP,BAC (i.e., N in short)  865 
ECBAC,SDOC = exADJ,BAC ´ (CBAC – NBAC/qCN,BAC)        (A.4.38) 
ENBAC,SDOC = 0            (A.4.39) 
EPBAC,SDOP = exADJ,BAC ´ (PBAC – NBAC/qCN,BAC ´ qCP,BAC)      
 (A.4.40) 

else (i.e., P in short)  870 
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ECBAC,SDOC = exADJ,BAC ´ (CBAC – PBAC/qCP,BAC)        (A.4.41) 
ENBAC,SDON = exADJ,BAC ´ (NBAC – PBAC/qCP,BAC´ qCN,BAC)       (A.4.42) 
ENBAC,SDOP = 0            (A.4.43) 

• Grazing by microzooplankton:  
GZCBAC = Tf  ´ μMZ ´ CMZ 875 

´ [ CBAC2/{CCR2 + gBAC2 + (CDA ´ gBAC/gDA)2 + (CCR ´ gBAC/gCR)2} ]     (A.4.44) 
GZNBAC = GZCBAC ´ QCN,BAC          (A.4.45) 
GZPBAC = GZCBAC ´ QCP,BAC          (A.4.46) 

• Viral mortality:  
       MCBAC = mBAC ´ CBAC            (A.4.47) 880 
       MNBAC = mBAC ´ NBAC            (A.4.48) 
       MPBAC = mBAC ´ PBAC             (A.4.49) 

• Net flux of inorganic nutrients through bacteria:   
FLUXNH4BAC = REMINBAC – GCBAC,NH4         (A.4.50) 
FLUXNO3BAC = –GCBAC,NO3          (A.4.51) 885 
FLUXPO4BAC = REMIPBAC – GCBAC,PO4         (A.4.52) 

• The net growth rate equations:  
dCBAC  

dt
 = GCBAC,DOC – ECBAC,SDOC – ECBAC,RDOC – RCBAC – GZCBAC – MCBAC    (A.4.53) 

dNBAC  

dt
 = GNBAC,DON – ENBAC,SDON – ENBAC,RDON – RNBAC – GZNBAC – MNBAC    (A.4.54) 

dPBAC  

dt
 = GPBAC,DOP – EPBAC,SDOP – EPBAC,RDOP  – RPBAC – GZPBAC – MPBAC    (A.4.55) 890 

 
5. Microzooplankton processes  

• Cellular quota (ratio): 
  QCN,MZ  = NMZ/CMZ            (A.5.1) 

 QCP,MZ  = CMZ/PMZ            (A.5.2) 895 
• Gross growth:  

GCMZ = GZCCR + GZCBAC           (A.5.3) 
GNMZ = GZNCR + GZNBAC           (A.5.4) 
GPMZ = GZPCR + GZPBAC           (A.5.5) 

• LDOM excretion:  900 
ECMZ,LDOC = fex,MZ ´ exMZ ´ GCMZ          (A.5.6) 
ENMZ,LDON = fex,MZ ´ exMZ ´ GNMZ          (A.5.7) 
EPMZ,LDOP = fex,MZ ´ exMZ ´ GPMZ          (A.5.8) 

• SDOM excretion:  
ECMZ,SDOC,1 = (1 – fex,MZ) ´ exMZ ´ GCMZ         (A.5.9) 905 
ENMZ,SDON,1 = (1 – fex,MZ) ´ exMZ ´ GNMZ ´ QCN,MZ/qCN,MZ      (A.5.10) 
EPMZ,SDOP,1 = (1 – fex,MZ) ´ exMZ ´ GPMZ ´ QCP,MZ/qCP,MZ      (A.5.11) 

• SDOM excretion to adjust stoichiometry:   
ECMZ,SDOC,2 = exADJ,MZ ´ CMZ  
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´ max(0, 1 – QCN,MZ/qCN,MZ, 1 – QCP,MZ/qCP,MZ)     (A.5.12) 910 
ENMZ,SDON,2 = 0.5 ´ ECMZ,SDOC,2 ´ QCN,MZ         (A.5.13) 
EPMZ,SDOP,2 = 0.5 ´ ECMZ,SDOC,2 ´ QCP,MZ         (A.5.14) 

• Remineralization of inorganic nutrients:   
REMINMZ = remiMZ ´ max(0, NMZ – CMZ ´ qCN,MZ,  

    NMZ – qCN,MZ/PMZ ´ qCP,MZ)        (A.5.15) 915 
REMIPMZ = remiMZ ´ max(0, PMZ – CMZ ´ qCP,MZ,  

    PMZ – qCP,MZ/NMZ ´ qCN,MZ)        (A.5.16) 
• Respiration:  

RCMZ = rBMZ ´ Tf ´ CMZ + rAMZ ´ GCMZ         (A.5.17) 
• POM production: 920 

PCMZ     = pomMZ ´  GCMZ           (A.5.18) 
PNMZ     = qCN,POM   ´  GCMZ          (A.5.19) 

PPMZ     = qCP,POM  ´  GCMZ          (A.5.20) 

• Grazing by krill:  
GZCMZ = Tf  ´ μMZ ´ CKR 925 

´ [ CMZ2/{CMZ2 + gMZ2 + (CDA ´ gMZ/gDA)2} ]        (A.5.21) 
GZNMZ = QCN,MZ  ´ GZCMZ           (A.5.22) 
GZPMZ = QCP,MZ  ´ GZCMZ           (A.5.23) 

• The net growth rate equations:  
dCMZ  

dt
 = GCMZ – ECMZ,LDOC – ECMZ,SDOC,1 – ECMZ,SDOC,2  930 

– PCMZ – RCMZ – GZCMZ        (A.5.24) 
dNMZ  

dt
 = GNMZ – ENMZ,LDON – ENMZ,SDON,1 – ENMZ,SDON,2  

– PNMZ – RNMZ – GZNMZ        (A.5.25) 
dPMZ  

dt
 = GPMZ – EPMZ,LDOP – EPMZ,SDOP,1 – EPMZ,SDOP,2  

– PPMZ – RPMZ – GZPMZ        (A.5.26) 935 
 
6. Krill processes  

• Cellular quota (ratio): 
  QCN,KR  = NKR/CKR            (A.6.1) 

 QCP,KR  = CKR/PKR            (A.6.2) 940 
• Gross growth:  

GCKR = GZCDA,KR + GZCMZ          (A.6.3) 
GNKR = GZNDA,KR + GZNMZ          (A.6.4) 
GPKR = GZPDA,KR + GZPMZ          (A.6.5) 

• LDOM excretion:  945 
ECKR,LDOC = fex,KR ´ exKR ´ GCKR          (A.6.6) 
ENKR,LDON = fex,KR ´ exKR ´ GNKR          (A.6.7) 
EPKR,LDOP = fex,KR ´ exKR ´ GPKR          (A.6.8) 
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• SDOM excretion:  
ECKR,SDOC,1 = (1 – fex,KR) ´ exKR ´ GCKR         (A.6.9) 950 
ENKR,SDON,1 = (1 – fex,KR) ´ exKR ´ GNKR ´ QCN,KR/qCN,KR       (A.6.10) 
EPKR,SDOP,1 = (1 – fex,KR) ´ exKR ´ GPKR ´ QCP,KR/qCP,KR       (A.6.11) 

• SDOM excretion to adjust stoichiometry:   
ECKR,SDOC,2 = exADJ,KR ´ CKR  

´ max(0, 1 – QCN,KR/qCN,KR, 1 – QCP,KR/qCP,KR)     (A.6.12) 955 
ENKR,SDON,2 = 0.5 ´ ECKR,SDOC,2 ´ QCN,KR         (A.6.13) 
EPKR,SDOP,2 = 0.5 ´ ECKR,SDOC,2 ´ QCP,KR         (A.6.14) 

• Remineralization of inorganic nutrients:   
REMINKR = remiKR ´ max(0, NKR – CKR ´ qCN,KR,  

    NKR – qCN,KR/PKR ´ qCP,KR)        (A.6.15) 960 
REMIPKR = remiKR ´ max(0, PKR – CKR ´ qCP,KR,  

    PKR – qCP,KR/NKR ´ qCN,KR)        (A.6.16) 
• Respiration:  

RCKR = rBKR ´ Tf ´ CKR + rAKR ´ GCKR         (A.6.17) 
• POM production: 965 

PCKR     = pomKR ´  GCKR           (A.6.18) 
PNKR     = qCN,POM   ´  GNKR          (A.6.19) 

PPKR     = qCP,POM  ´  GPKR          

 (A.6.20) 

• RDOC release:  970 
ECKR,RDOC = refrKR ´ CKR            (A.6.21) 
ENKR,RDON = ECKR,RDOC ´ qCN,RDOM          

 (A.6.22) 
EPKR,RDOP = ECKR,RDOC ´ qCP,RDOM          

 (A.6.23) 975 
• Removal by higher trophic levels  

MCKR = mortKR ´ CKR ´ CKR          (A.6.24) 
MNKR = MCKR,RDOC ´ QCN,KR          (A.6.25) 
MPKR = MCKR,RDOC ´ QCP,KR          (A.6.26) 

• The net growth rate equations:  980 
dCKR  

dt
 = GCKR – ECKR,LDOC – ECKR,SDOC,1 – ECKR,SDOC,2 – ECKR,RDOC 

– PCKR – RCKR – MCKR         (A.6.27) 
dNKR  

dt
 = GNKR – ENKR,LDON – ENKR,SDON,1 – ENKR,SDON,2 – ENKR,RDON 

– PNKR – RNKR – MNKR         (A.6.28) 
dPKR  

dt
 = GPKR – EPKR,LDOC – EPKR,SDOC,1 – EPKR,SDOC,2 – EPKR,RDOC 985 

– PPKR – RPKR – MPKR         (A.6.29) 
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7. Detrital processes  
• Dissolution:  

DISSCDET = diss ´ CDET           (A.7.1) 990 
DISSNDET = diss ´ prfN ´ NDET          (A.7.2) 
DISSPDET = diss ´ prfP ´ PDET          (A.7.3) 

• The net change equations:  
dCDET  

dt
 = DCDA + DCCR + DCMZ + DCKR + DISSCHZ – DISSCDET      (A.7.4) 

dNDET  

dt
 = DNDA + DNCR + DNMZ + DNKR + DISSNHZ – DISSNDET      (A.7.5) 995 

dPDET  

dt
 = DPDA + DPCR + DPMZ + DPKR + DISSPHZ – DISSPDET      (A.7.6) 

  where DISSCHZ = fPOM,HZ ´ MCKR 

             DISSNHZ = fPOM,HZ ´ MNKR 

             DISSPHZ = fPOM,HZ ´ MPKR 

 1000 
8. DOM processes 

• Conversion of SDOM to RDOM:  
REFRCSDOM = exREFR,SDOM ´ CSDOM ´ exp{ 1 – min(QCN,SDOM/qCN,RDOM, QCP,SDOM/qCP,RDOM) }  (A.8.1) 
REFRNSDOM = REFRCSDOM ´ qCN,RDOM           (A.8.2) 
REFRPSDOM = REFRCSDOM ´ qCP,RDOM           (A.8.3) 1005 

• The net change equations:  
dCLDOM  

dt
 = ECDA,LDOC + ECCR,LDOC + ECMZ,LDOC + ECKR,LDOC + MCBAC – GCBAC,LDOC   (A.8.4) 

dNLDOM  

dt
 = ENDA,LDON + ENCR,LDON + ENMZ,LDON + ENKR,LDON + MNBAC – GNBAC,LDON   (A.8.5) 

dPLDOM  

dt
 = EPDA,LDOP + EPCR,LDOP + EPMZ,LDOP + EPKR,LDOP + MPBAC – GPBAC,LDOP   (A.8.6) 

dCSDOM  

dt
 = ECDA,SDOC + ECCR,SDOC + ECBAC,SDOC + ECMZ,SDOC,1 + ECMZ,SDOC,2  1010 

     + ECKR,SDOC,1 + ECKR,SDOC,2  + ECHZ,SDOC + DISSCDET – REFRCSDOM – GCBAC,SDOC  (A.8.7) 
dNSDOM  

dt
 = ENDA,SDON + ENCR,SDON + ENBAC,SDON + ENMZ,SDON,1 + ENMZ,SDON,2  

     + ENKR,SDON,1 + ENKR,SDON,2  + ENHZ,SDON + DISSNDET – REFRNSDOM – GNBAC,SDON  (A.8.8) 
dPSDOM  

dt
 = EPDA,SDOP + EPCR,SDOP + EPBAC,SDOP + EPMZ,SDOP,1 + EPMZ,SDOP,2  

     + EPKR,SDOP,1 + EPKR,SDOP,2  + EPHZ,SDOP + DISSPDET – REFRPSDOM – GPBAC,SDOP  (A.8.9) 1015 
 
9. Dissolved inorganic nutrient processes 

• Nitrification:  
NTRF = rntrf ´ NH4           (A.9.1) 

• The net change equations:  1020 
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dNH4  

dt
 = FLUXNH4BAC + REMINMZ + REMINKR + REMINHZ – GNH4DA – GNH4CR – NTRF  (A.9.2) 

dNO3 

dt
 = FLUXNO3BAC – GNO3DA – GNO3CR + NTRF       (A.9.3) 

dPO4 

dt
 = FLUXPO4BAC + REMIPMZ + REMIPKR + REMIPHZ – GPO4DA – GPO4CR    (A.9.4) 

where REMINHZ = MNKR – DNHZ – ESDONHZ 

           REMIPHZ = MNKR – DPHZ – ESDOPHZ 1025 
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Appendix B  
 
Figure B1. Comparison of the observations to the initial (unoptimized) and optimized model results. The dot points in the 1030 
second panels represent how much larger model output value is compared to the corresponding observational data (i.e., the 
model value minus the observational value). Normalized observation: observations normalized by the mean of each model 
state variable.  
 

 1035 
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Figure B2. Observations assimilated for each data type. BAC: bacterial biomass, CR: cryptophyte Chl, DA: diatom Chl.  
 

 1040 
 
  



39 
 

Figure B3. The uncertainties (standard deviation) of the model state variables for the modelled growth season 2002-2003 (x-
axis; month/day) from the Monte Carlo experiments (N = 1,000). Note different contour scales among panels.  
 1045 

 



40 
 

Figure B4. The uncertainties (standard deviation) of the ecosystem indices for the modelled growth season 2002-2003 (x-axis; 
month/day) from the Monte Carlo experiments (N = 1,000). Note different contour scales among panels. 
 1050 
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Table B1. Sensitivity tests to varying initial parameter values. The parameters with ‘n/a’ in the parentheses are optimized parameters 
with large relative uncertainties (i.e., ‘optimized parameters’). 50% perturbations to AE, wnsv, and remin (Table 1) are considered 
ecologically unrealistic and therefore excluded from these sensitivity experiments.  
 1055 

 Perturbations to initial parameter values  J0 Jf Optimized parameters (optimized value, ranges) 

Original optimization experiment: 
Initial parameter values (Table 1) 14.85 6.42 

μDA (0.77, 0.68-0.88), μCR (0.72, 0.61-0.85), αDA (0.13, 0.10-0.19), αCR (3.89´10-
2, n/a), Θ (2.27, 1.82-2.82), μBAC (1.06, 0.93-1.20), rAmax,BAC (0.80, 0.77-0.84), 
μMZ (1.18, 1.10-1.26), gBAC (0.81, 0.64-1.03), μKR (1.02, 0.97-1.07), gMZ (0.15, 
n/a), remvKR (0.43, n/a) 

Sensitivity experiment #1: 
μDA and μCR perturbed by +50%  17.02 5.79 

μDA (1.15, 0.99-1.34), μCR (1.25, 0.85-1.85), αDA (0.19, 0.16-0.23), αCR (0.04, 
0.03-0.06), Θ (2.34, 1.91-2.87), rAmax,BAC (0.85, 0.83-0.87), μMZ (1.50, n/a), gBAC 
(1.75, n/a), μKR (0.87, 0.84-0.90), gMZ (0.22, n/a), remvKR (0.14, n/a) 

Sensitivity experiment #2: 
μDA and μCR perturbed by -50% 24.98 6.40 

μDA (0.72, 0.61-0.84), μCR (0.97, 0.84-1.12), Θ (3.38, 2.46-4.64), μBAC (1.14, 
0.96-1.35), rAmax,BAC (0.84, 0.80-0.88), μMZ (0.75, 0.65-0.86), gCR (0.65, 0.47-
0.90), gBAC (1.23, 0.85-1.78), μKR (0.94, 0.87-1.02), gMZ (0.40, 0.30-0.54), 
remvKR (0.24, n/a) 

Sensitivity experiment #3: 
μDA, μCR, αDA, and αCR perturbed by +50% 14.87 6.61 

μDA (0.71, 0.60-0.83), μCR (0.60, 0.54-0.67), αDA (0.08, n/a), Θ (2.28, 1.83-2.84), 
μBAC (1.46, 1.32-1.61), rAmax,BAC (0.83, 0.80-0.86), μMZ (1.14, 1.03-1.27), gMZ 
(0.17, 0.12-0.24), remvKR (0.21, 0.17-0.26) 

Sensitivity experiment #4: 
μDA, μCR, αDA, and αCR perturbed by -50% 20.35 6.63 

μDA (0.86, 0.77-0.96), μCR (0.77, 0.68-0.87), Θ (3.73, 2.75-5.06), rAmax,BAC (0.88, 
0.86-0.90), μMZ (0.86, 0.76-0.98), gBAC (2.19, 1.35-3.56), μKR (0.71, 0.68-10.75), 
gMZ (0.41, 0.30-0.56) 

Sensitivity experiment #5: 
μDA, μCR, αDA, αCR, Θ, and μBAC perturbed by +50% 16.72 6.72 

μDA (0.75, 0.63-0.89), μCR (0.65, 0.59-0.71), αDA (0.07, n/a), Θ (2.47, 1.99-3.07), 
μBAC (1.75, 1.60-1.91), rAmax,BAC (0.84, 0.82-0.86), μMZ (1.12, 1.01-1.24), μKR 
(0.65, 0.62-0.68), gMZ (0.21, 0.16-0.28) 

Sensitivity experiment #6: 
μDA, μCR, αDA, αCR, Θ, and μBAC perturbed by -50% 19.91 5.98 

μDA (1.01, 0.87-1.17), μCR (0.98, 0.85-1.14), αCR (0.11, n/a), Θ (2.78, 2.17-3.57), 
rAmax,BAC (0.86, 0.84-0.88), μMZ (1.55, 1.37-1.76), gBAC (2.22, 1.47-3.35), gMZ 
(0.26, 0.19-0.35), remvKR (0.13, n/a) 

Sensitivity experiment #7: 
μDA, μCR, αDA, αCR, Θ, μBAC, gBAC, and μMZ perturbed by 
+50% 

16.68 6.40 
μDA (1.14, 0.99-1.31), μCR (1.43, 1.15-1.78), αDA (0.12, n/a), αCR (0.04, n/a), μBAC 
(1.02, 0.92-1.13), rAmax,BAC (0.81, 0.77-0.85), μMZ (1.02, 0.91-1.15), gBAC (1.64, 
1.25-2.15), μKR (0.72, 0.68-0.76), gMZ (0.38, 0.29-0.50) 

Sensitivity experiment #8: 
μDA, μCR, αDA, αCR, Θ, μBAC, gBAC, and μMZ perturbed by -
50% 

25.06 7.19 
μDA (0.64, 0.57-0.72), μCR (0.47, 0.41-0.53), αCR (0.08, n/a), Θ (3.13, 2.44-4.01), 
μBAC (1.14, 0.99-1.32), rAmax,BAC (0.79, 0.75-0.83), μMZ (0.40, 0.36-0.44), μKR 
(0.81, 0.71-0.77), gMZ (0.55, 0.39-0.77), remvKR (0.12, n/a) 

Sensitivity experiment #9: 
μDA, μCR, αDA, αCR, Θ, μBAC, gBAC, μMZ, μKR, and gMZ 
perturbed by +50% 

16.36 6.22 
μDA (0.88, 0.78-1.00), μCR (0.70, n/a), αDA (0.27, 0.20-0.36), αCR (0.04, n/a), Θ 
(2.40, 1.91-3.02), rAmax,BAC (0.87, 0.85-0.89), μMZ (0.95, 0.75-1.20), gBAC (1.75, 
n/a), μKR (0.78, 0.74-0.82), gMZ (0.21, 0.14-0.32), remvKR (0.18, n/a) 

Sensitivity experiment #10: 
μDA, μCR, αDA, αCR, Θ, μBAC, gBAC, μMZ, μKR, and gMZ 
perturbed by -50% 

18.27 6.75 
μDA (0.91, 0.78-1.06), μCR (0.58, 0.51-0.66), Θ (2.71, 2.21-3.32), μBAC (1.70, 
n/a), rAmax,BAC (0.84, 0.82-0.86), μMZ (0.88, 0.71-1.09), g’DA (2.5, n/a), gBAC (1.0, 
n/a), μKR (1.89, 1.60-2.24), remvKR (0.04, n/a) 

Sensitivity experiment #11: 
μDA, μCR, αDA, αCR, Θ, μBAC, gBAC, μMZ, μKR, gMZ, 
rAmax,BAC, and remvKR perturbed by +50% 

15.56 6.43 
μDA (0.88, 0.79-0.98), μCR (0.75, 0.66-0.85), αDA (0.30, n/a), αCR (0.15, n/a), Θ 
(2.99, 2.33-3.83), rAmax,BAC (0.88, 0.87-0.89), μMZ (0.87, 0.75-1.01), gBAC (1.62, 
n/a), μKR (0.73, 0.66-0.81), gMZ (0.36, 0.26-0.50), remvKR (0.11, 0.08-0.15) 

Sensitivity experiment #12: 
μDA, μCR, αDA, αCR, Θ, μBAC, gBAC, μMZ, μKR, gMZ, 
rAmax,BAC, and remvKR perturbed by -50% 

28.24 6.81 
μDA (0.54, 0.49-0.60), μCR (0.41, 0.36-0.46), αDA (0.12, n/a), Θ (1.96, 1.59-2.42), 
μBAC (1.40, 1.24-1.58), rAmax,BAC (0.81, 0.78-0.84), μMZ (0.32, 0.28-0.36), μKR 
(0.70, 0.65-0.75), gMZ (0.20, n/a), remvKR (0.27, n/a) 

Sensitivity experiment #13: 
AE, wnsv, and remin perturbed by -50% 16.26 6.09 

μDA (0.48, 0.44-0.53), μCR (0.57, 0.54-0.60), Θ (3.23, 2.54-4.11), rAmax,BAC (0.88, 
0.86-0.90), μMZ (1.04, 1.00-1.09), gCR (0.56, 0.47-0.67), gBAC (1.27, 0.82-1.97), 
μKR (0.54, 0.53-0.55), gMZ (0.18, n/a) 

Sensitivity experiment #14: 
gDA, g’DA, and gCR perturbed by +50% 14.25 5.95 

μDA (0.65, 0.56-0.75), μCR (1.10, 0.98-1.24), αDA (0.20, n/a), αCR (0.12, n/a), Θ 
(3.09, 2.40-3.98), rAmax,BAC (0.87, 0.85-0.89), μMZ (1.75, 1.55-1.97), gCR (0.77, 
0.63-0.95), gBAC (2.60, 1.70-3.97), μKR (0.82, 0.78-0.86), gMZ (0.24,0.18-0.32) 

Sensitivity experiment #15: 
gDA, g’DA, and gCR perturbed by -50% 24.17 6.51 

μDA (1.22, 1.03-1.45), μCR (0.86, 0.75-0.99), αDA (0.10, n/a), αCR (0.15, n/a), Θ 
(4.53, 3.36-6.11), μBAC (1.24, n/a), rAmax,BAC (0.85, 0.83-0.87), μMZ (0.86, 0.73-
1.01), gCR (0.53, 0.42-0.67), gBAC (0.89, 0.55-1.43), μKR (1.02, 0.94-1.10), gMZ 
(0.37, 0.25-0.55), remvKR (0.19, n/a) 
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Table B2. Summary of model parameters from initial parameter perturbation experiments. Summary of the model 
parameter symbol and definition, initial parameter values (p0, ref) and optimized values (pf, ref) for the original (reference) 
experiments (Table 1) and initial parameter values (p0) and optimized values (pf) averaged from the sensitivity experiments (n 1060 
= 15). p0, ref and the mean p0 are the same for most parameters because of the perturbations by ±50% their original initial 
parameter values (with standard deviation in parentheses), while p0, ref and the mean p0 are different for AE and wnsv because 
of the perturbations only by -50% their original initial parameter values (with standard deviation in parentheses). Numbers in 
parentheses for pf are the uncertainty ranges (lower and upper bounds) averaged across the sensitivity experiments as follows. 
First, for each sensitivity experiment lower and upper bounds of the constrained parameter are calculated as pf ´ e+σf and pf ´ 1065 
e-σf (where pf is the value of the constrained parameter and σf is the square roots of diagonal elements of the inverse of the 
Hessian matrix), respectively. Then we form the “lower (upper) bound parameter set” that only consists of the lower (higher) 
bounds of the constrained parameters from each experiment, and average those across the sensitivity experiments (n = 15) to 
calculate the lower (upper) bound listed in parentheses.  
 1070 
Model parameter symbol and definition (optimizable) p0, ref p0 pf, ref pf 
AE, Arrhenius parameter for temperature function 4000 3867 (516) - - 
μDA, Diatom C-specific maximum growth rate, d-1 2.00 2.00 (0.93) 0.77 (0.68-0.88) 0.84 (0.73-0.96) 
μCR, Crypto. C-specific maximum growth rate, d-1 1.00 1.00 (0.46) 0.72 (0.61-0.85) 0.81 (0.69-0.95) 
αDA, Initial slope of P-I curve of diatoms, mol C (g Chl)-1 d-1 (W m-2)-1 0.30 0.30 (0.13) 0.13 (0.10-0.19) 0.18 (0.17-0.19) 
αCR, Initial slope of P-I curve of crypto., mol C (g Chl)-1 d-1 (W m-2)-1 0.20 0.20 (0.08) 3.89´10-2 (n/a) 0.13 (0.13-0.13) 
Θ, Maximum Chl/N ratio, g Chl a (mol N)-1 2.90 2.90 (1.10) 2.27 (1.82-2.82) 3.03 (2.42-3.82) 
μBAC, Maximum bacterial growth rate, d-1 2.00 2.00 (0.76) 1.06 (0.93-1.20) 1.86 (1.80-1.92) 
rAmax,BAC, Bacterial maximum active respiration rate, d-1 0.58 0.58 (0.11) 0.80 (0.77-0.84) 0.85 (0.83-0.87) 
μMZ, Microzoo. C-specific maximum growth rate, d-1 1.00 1.00 (0.33) 1.18 (1.10-1.26) 1.00 (0.89-1.13) 
gDA, Diatom half-saturation concentration in microzoo. grazing, mmol C 
m-3 1.00 1.00 (0.19) - - 

g’DA, Diatom half-saturation concentration in krill grazing, mmol C m-3 1.00 1.00 (0.19) - 1.10 (1.10-1.10) 
gCR, Crypto. half-saturation concentration in microzoo. grazing, mmol C 
m-3 1.00 1.00 (0.19) - 0.90 (0.87-0.95) 

gBAC, Bacterial half-saturation concentration in microzoo. grazing, mmol 
C m-3 0.55 0.55 (0.18) 0.81 (0.64-1.03) 1.34 (1.07-1.75) 

μKR, Maximum krill C-specific growth rate, d-1 0.80 0.80 (0.21) 1.02 (0.97-1.07) 0.86 (0.80-0.93) 
gMZ, Microzoo. half-saturation concentration in krill grazing, mmol C m-3 1.00 1.00 (0.27) 0.15 (n/a) 0.34 (0.28-0.43) 
remvKR, Krill removal rate by higher-trophic levels, (mmol C m-3)-1 d-1 0.10 0.10 (0.02) 0.43 (n/a) 0.14 (0.14-0.15) 
wnsv, Detritus vertical sinking velocity, m d-1 5.00 4.83 (0.65) - - 
diss, Detrital dissolution rate, d-1 0.14 0.14 (0.02) - - 
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