
1 
 

Porosity and Permeability Prediction through Forward Stratigraphic 

Simulations Using GPMTM and PetrelTM: Application in Shallow 

Marine Depositional Settings. 

Daniel Otoo and David Hodgetts 

Department of Earth and Environmental Sciences, University of Manchester, Manchester, M13 9PL, United Kingdom. 

Correspondence to: Daniel Otoo (daniel.otoo@manchester.ac.uk) 

Abstract 

The forward stratigraphic simulation approach is used in this work to predict porosity and permeability 

attributes in the Volve field, Norway. This was achieved by using spatial data from the forward 

stratigraphic model to control the distribution of porosity and permeability in the 3-D grid. Building a 

subsurface property model that fits data at different locations in a hydrocarbon reservoir is a task 

associated with high levels of uncertainty. An appropriate means to minimise property representation 

uncertainties is to use geologically realistic sediment distribution and or stratigraphic patterns to predict 

lithofacies units as well as petrophysical properties. The workflow used are in three parts; first, the 

geological process modeling (GPMTM) software developed by Schlumberger was used to simulate 

scenarios of sediment deposition in the model area. Secondly, an estimation of lithofacies proportions in 

the stratigraphic model was done using the property calculator tool in the PetrelTM software. Finally, 

porosity and permeability values are assigned to corresponding lithofacies-associations in the forward 

model to produce a forward stratigraphic-based petrophysical model. Results show a lithofacies 

distribution that is strongly controlled by sediment diffusion rate, sea level variation, flow rate, wave 

processes, and tectonic events. This observation is consistent with real-world events were sea level 

changes, volume of sediment input, and accommodation space control the kind of stratigraphic sequence 

formed. Validation wells prefixed VP1 and VP2 in the original Volve field petrophysical model and the 

forward stratigraphic-based models show a good match in porosity and permeability attributes at 5 m 

vertical sample intervals. By reducing the level of property uncertainty between wells through forward 

stratigraphic modeling, an improved porosity and permeability can be achieved for an efficient field 

development strategy.  
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Introduction 1 

The distribution of reservoir properties such as porosity and permeability is a direct function of a complex 2 

combination of sedimentary, geochemical, and mechanical processes (Skalinski & Kenter, 2014). The 3 

impact of reservoir petrophysics on hydrocarbon field development and depletion strategies makes it 4 

imperative to use reservoir modeling techniques that can best represent these property variations in a 3-5 

D model (e.g. Deutsch and Journel, 1999; Caers and Zhang, 2004; Hu & Chugunova, 2008). Typically, 6 

reservoir modeling requires property-modifying coefficients in the form values to achieve a good match 7 

to known subsurface well data. The cost of acquiring subsurface data in deeper and complex geological 8 

basins limits the volume of quality datasets that could be obtained. This tends to reduce our perspective 9 

of reservoir property variation and its impact on fluid behaviour. Several studies, e.g. Hodgetts et al. 10 

(2004) and Orellana et al. (2014) have demonstrated that stratigraphic patterns and therefore petrophysical 11 

attributes can be fairly well understood from seismic, outcrop and well logs. However, this notion is 12 

limited by the absence of an accurate and reliable 3-D depositional model to guide the distribution of 13 

property variability in reservoir units (Burges et al. 2008). Reservoir modeling techniques with the 14 

capacity to integrate forward stratigraphic simulation outputs into subsurface property modeling 15 

workflows will most likely improve our understanding of heterogeneity in hydrocarbon reservoirs (Singh 16 

et al. 2013). The use of geostatistical-based methods to represent the spatial variability of reservoir 17 

properties have been widely accepted in many exploration and production projects (e.g. Kelkar and 18 

Godofredo, 2002). In geostatistical base modeling methods, an alternate numerical 3-D model (i.e. 19 

realizations) is derived to demonstrate different scenarios of property distribution that can be conditioned 20 

to well data (Ringrose & Bentley, 2015). Typically, subsurface modeling practioners are faced with the 21 

challenge of getting a lot of subsurface data to deduce reliable variogram models as a result of cost, 22 

therefore introducing a significant level of uncertainty in a reservoir model (Orellena et al. 2014). The 23 

advantages of applying geostatistical approaches in populating propoerties in reservoir models is well 24 

established (e.g. Deutsch and Journel, 1999; Dubrule, 1998), but the method tends to confine reservoir 25 

property models to known data and rarely realize geological realism to capture sedimentary that have led 26 
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to reservoir formation (Hassanpour et al. 2013). In effect, the geostatistical technique is unable to 27 

reproduce a long-range continuity of reservoir properties that are essential for generating realistic 28 

reservoir connectivity models (Strebelle & Levy, 2008). Based on lessons from a previous work (e.g. 29 

Otoo and Hodgetts, 2019), the forward stratigraphic simulation approach is again applied in this 30 

contribution to predict lithofacies units and petrophysical properties in a 3-D model. An important aspect 31 

of this work is the use of variogram parameters from forward stratigraphic-based synthetic wells to 32 

populate petrophysical properties, especially within inter-well regions of the reservoir under study. 33 

Forward stratigraphic modeling involves the uses morphodynamic rules to derive sedimentary 34 

depositional patterns to reflect stratigraphic observations in real data. The approach is driven by the 35 

principle that multiple sedimentary process-based simulations in a 3-D framework will most likely 36 

improve our understanding on spatial variation of facies, as well as petrophysical properties in a 37 

geological system.  38 

The sedimentary system, Hugin formation makes up the main reservoir interval in the Volve field. 39 

According to studies by Varadi et al. (1998); Kieft et al. (2011), the Hugin formation is made up of a 40 

complex depositional architecture of waves, tides and riverine processes; suggesting that a single 41 

depositional model will not be adequate to produce a realisitc lithofacies distributions model. 42 

Furthermore, the complicated Syn-depositional rift-related faulting system, significantly influence the 43 

stratigraphic architecture (Milner and Olsen, 1998). The focus of this work is to produce a depositional 44 

sequence in the shallow marine environment by using a forward stratigraphic modeling approach in the 45 

GPMTM (Schlumberger, 2017), and use variogram parameters from the forward model to control porosity 46 

and permeability property representation in a 3-D model.  47 

Study Area 48 

The Volve field (Figure 1), located in Block 15/9 south of the Norwegian North Sea is Jurassic in age 49 

(i.e. late Bajocian to Oxfordian) with the Hugin Formation as the main reservoir unit from which 50 

hydrocarbons are produced (Vollset and Dore, 1984). The Hugin formation is made up of shallow marine 51 

to marginal marine sandstone deposits, coals, and a significant influence of wave events that tend to 52 
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control lithofacies distribution in the formation (Varadi et al. 1998; and Kieft et al. 2011). Several studies, 53 

e.g. Sneider et al. (1995), and Husmo et al. (2003) associate sediment deposition in the Hugin system to 54 

a rift-related subsidence and successive flooding during a large transgression of the Viking Graben within 55 

the Middle to Late Jurassic period. Previously it was interpreted to comprise of marine shoreface, lagoonal 56 

and associated coastal plain, back-stepping delta-plain and delta front deposits (e.g. Cockings et al. 1992; 57 

Milner and Olsen, 1998), but recent studies, e.g. Folkestad and Satur, (2006) suggest the influence of a 58 

strong tidal event, which introduces another dimension in property modeling in the reservoir. The 59 

thickness of the Hugin formation is estimated to range between 5 m and 200 m but can be thicker off-60 

structure and non-existent on structurally high segments as a result of post-depositional erosion (Folkestad 61 

and Satur, 2006).  62 

Based on studies by Kieft et al. (2011), a summarised sedimentological delineation within the Hugin 63 

formation is presented in Table 1. Lithofacies-association codes A, B, C, D, and E used in the 64 

classification represents bay fill units, shoreface sandstone facies, mouth bar units, fluvio-tidal channel 65 

fill sediments, and coastal plain facies units respectively. In addition a lithofacies association prefixed 66 

code F was interpreted to consist of open marine shale units, mudstone with occasional siltstone beds, 67 

parallel laminated soft sediment deformation that locally develop at bed tops. The lateral extent of the 68 

code F lithofacies package is estimated to be 1.7 km to 37.6 km, but the thickness have not been 69 

completely penetrated (Folkestad & Satur, 2006).  70 

Data and Software 71 

This work is based on description, and interpretation of petrophysical datasets in the Volve field by 72 

Statoil, now Equinor. Datasets include 3-D seismic data, twenty four suite of well data; comprising of 73 

formation pressure data, core data, and sedimentological logs. Previous works, Folkestad & Satur, (2006) 74 

and Kieft et al. (2011) show varying grain size, sorting, sedimentary structures, bounding contacts of 75 

sediment matrix that play a significant part of the reservoir petrophysics. Wireline-log attributes such as 76 

gamma ray (GR), sonic (DT), density (RHOB), and neutron-porosity (NPHI) were used to distinguish 77 

lithofacies units, stratigraphic horizons and zones that are required to build the 3-D property model. 78 
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Porosity, and permeability models, of the Volve field, were generated in Schlumberger’s PetrelTM 79 

software. Importantly, this work also seeks to produce geologically realistic depositional architecture that 80 

is comparable to a real-world stratigraphic framework in a shallow marine environment. Deriving a 81 

representative 3-D stratigraphic model of the reservoir allows us to deduce geometrical and variogram 82 

parameters as input datasets in actual subsurface property modeling.  83 

The geological process modeling (GPMTM) software developed by Schlumberger was used to undertake 84 

twenty forward stratigraphic simulation in an attempt to replicate the depositional processes that resulted 85 

in the build-up of the reservoir. Simulations were constrained to twenty scenarios because the desired 86 

stratigraphic sequence and associated sediment patterns were achieved at the fourth simulation. Several 87 

process modeling software packages exist and have been applied in some studies; e.g. Delft3D-FlowTM 88 

by Rijin & Walstra, (2003); DIONISOSTM by Burges et al. (2008). The geological process modeling 89 

(GPMTM) software was preferred because of the availability of software license, and also the ease in 90 

integrating of its outputs into the property modeling workflow in PetrelTM. 91 

Methodology 92 

The workflow (Figure 2a) combines the stratigraphic simulation capacity of the GPMTM software in 93 

different depositional settings, and the property modeling tools in PetrelTM to predict the distribution of 94 

porosity and permeability properties away from well data.  Three broad steps have been used here to 95 

achieve this goal; (i) forward stratigraphic simulation (FSS) in GPMTM software (2019.1 version), (ii) 96 

lithofacies classification using the calculator tool in PetrelTM, and (iii) lithofacies, porosity, and 97 

permeability modeling in PetrelTM (2019.1 version).   98 

Process Modeling in GPMTM 99 

The GPMTM software consist of different geological processes designed to replicate sediment deposition 100 

in clastic and carbonate environments. Example, the steady flow process is efficient for simulating 101 

sediment depositions in fluvial bodies, whilst the unsteady flow process control sediment transportation 102 

from the basin slope into deep-water basin setting, largely in the form of basinal floor fan units. Previous 103 
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studies, e.g. Kieft et al, (2011) identified the influence of riverine, and wave processes in the genetic 104 

structure of sediments in the Hugin formation. These geological processes could be very rapid depending 105 

on accommodation space generated as a result of sea level variation, and or sediment composition and 106 

flow intensity. Sediment deposition, and its response to post-depositional sedimentary and tectonic 107 

processes are significant in the ultimate distribution of subsurface lithofacies units; hence, the variation 108 

of input parameters to increase our chance attaining outputs that fall within acceptable limits of what may 109 

exist in the natural order. The simulation generated geologically realistic stratigraphic frameworks, but 110 

also revealed some limitations, such as instability in the simulator when more than three geological 111 

processes and sub-operations run at a time. In view of this, the diffusion and tectonic processes are 112 

constant features whiles other processes like steady flow, sediment accumulation and compaction are 113 

varied. 114 

Parameters for Forward Stratigraphic Simulation 115 

A realistic reproduction of stratigraphic patterns the study area require input parameters (also known as 116 

initial conditions). These include: a hypothetical paleo-topography, sea level curves, sediment source 117 

location and distribution curve, tectonic events (i.e. subsidence and uplift), and sediment mix velocity. 118 

The application of these input parameters in the GPMTM simulator, and their influence on the resultant 119 

stratigraphic framework are explained are assessed below. 120 

Hypothetical Paleo-Surface: The hypothetical paleo-surface, on which the simulation commences was inferred 121 

from the seismic section. Here, we assume that the present day stratigraphic surface, also referred to as the paleo 122 

shoreline in Figure 3a occurred as a result of basin filling through different geological periods. Since the 123 

hypothetical topography generated from the seismic section have undergone various phases of subsidence and 124 

uplifts over time, the paleo topographic surface used in this work does not present an accurate description of the 125 

basin at the period of sediment deposition. To mitigate this uncertainty, 5 paleo topographic surfaces were generated 126 

stochastically by adding or subtracting elevations from the inferred paleo topographic surface or base topography 127 

(see Figure 4g) using the equation: TPr = Sbs + EM, where, Sbs is the base surface scenario (in this instance, 128 

scenario 6), and EM an elevation below and above the base surface. In this work, scenario 3 (figure 3d) was used  129 
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as the paleo-topographic surface, because it produced stratigraphic sequences that fit the conceptual 130 

knowledge of depositional framework as observed in the seismic section (Figure 5d). 131 

Sediment Source Location: Based on regional well correlations in previous studies (e.g. Kieft et al. 132 

2011), and the basin structure interpreted from seismic data, the sediment entry point for this task was 133 

placed in the north-eastern section of the hypothetical paleo-topography. Since the exact sediment entry 134 

point is uncertain, multiple entry points were placed at 4 m radius around the primary location in (Figure 135 

3c), in order to capture possible sediment source locations. 136 

Sea Level: Primarily, the sea level variation relative to elevation was inferred from published studies and 137 

facies description in shallow marine environments (e.g. Winterer and Bosellini, 1981). Considering the 138 

limitations in the software, we assumed a constant sea level of 30 m for short simulation runs, e.g. 20000 139 

years to attain stability in the simulator and vary it accordingly with increasing duration of the simulation. 140 

The peak sea-level in the simulation represents the maximum flooding surface, and therefore an inferred 141 

sequence boundary in the geological process model. 142 

Diffusion and Tectonic Event Rates: The sediment mix proportion and diffusion rate for the simulation 143 

were stochastically inferred from previous studies (e.g. Burges et al., 2008), primarily to attain a 144 

prograding and or aggrading clinoforms features that are noticeable in real world geological outcrops. 145 

The subsidence and uplift rates were kept constant in most part of the model . The functions are inferred 146 

from published works; e.g. Walter, 1978; Winterer and Bosellini, 1981, and increased or reduced to 147 

produce a stratigraphic model that fit our knowledge of the basin evolution. The simulation parameters 148 

applied (Table 2) were generated randomly using the initial run (Figure 6a) as a guide. The guiding 149 

principle for parameter selection is their capacity to produce stratigraphic outputs that depict different 150 

depositional scenarios in the shallow marine setting. A sudden change in subsidence rate tends to 151 

constrain coarse to medium sediments at proximal distance to source location than in scenarios where the 152 

rate of subsidence was made gradual.   153 

The influence of the input parameters on the simulation is evident whenever there is a slight change of 154 

value in sediment diffusion, and tectonic rates or dimension of the hypothetical topographic surfaces. For 155 

example, sediment source position has a strong impact on the extent and depth to which sediments are 156 
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deposited in the basin. Shifting the source point to the mid-section of the topography resulted in the 157 

accumulation of distal elements that are identical to turbidite lobe systems. This is consistent with 158 

morphodynamic experiments (e.g. de Leeuw et al., 2016) where abrupt discharge of sediments from the 159 

basin slope leads to the build-up of basin floor fan units. Stratigraphic patterns generated using different 160 

input parameters provides 3-D perspective into subsurface property variations under alternating initial 161 

conditions. 162 

Property Classification in Stratigraphic Model 163 

In our opinion, the most appropriate model in this work is Figure 5d. This is because, it produced a 164 

stratigraphic sequence that mimics the depositional sequence in the shallow marine depositional 165 

environment under study. The stratigraphic model was converted into a 3-D format, 20 m x 20 m x 2 m 166 

grid cells in order to be used in the property modeling tool in PetrelTM. Lithofacies, porosity, and 167 

permeability properties are characterized in the stratigraphic using a rule based approach (Table 3). 168 

Sediment distribution in each time step of the simulation were stacked into a single zone framework to 169 

attain a simplified model. This was done with the assumption that sedimentary processes that lead to the 170 

final build-up of genetic related units within zones of the forward stratigraphic architecture will not vary 171 

significantly over the simulation period. Property classification in the model was achieved with the 172 

property calculator tool in Petrel. The classification is driven by depositional depth, geologic flow 173 

velocity, and sediment distribution patterns as indicated in Figure 7. Lithofacies representation in the 174 

stratigraphic model was based on the sediment grain size pattern, and proximity to sediment source. For 175 

example, shoreface lithofacies units were characterized using medium-to-coarse grained sediments to that 176 

are proximal sediment source, whiles mudstone units are constrained to the distal parts of the stratigraphic 177 

model, where fine grained sediments accumulate at the end of the simulation. 178 

Porosity and permeability variations were estimated from published wireline-log attributes (e.g. Kieft et 179 

al., 2011), which is outlined in Table 1. Based on petrophysical report of the Sleipner Øst, and Volve field 180 

(Statoil, 2006), a deduction was made to the effect that high net-to-gross zones will be associated with 181 

the best quality reservoir units; classified as shoreface lithofacies units, whilst low net-to-gross zones 182 

https://doi.org/10.5194/gmd-2020-37
Preprint. Discussion started: 24 June 2020
c© Author(s) 2020. CC BY 4.0 License.



9 
 

were interpreted to be connected with high proportions of shale or mudstone deposits. The porosity and 183 

permeability values in Table 4 were derived from equations in Statoil’s petrophysical report of the Volve 184 

field (Statoil, 2016): 185 

Øer = ØD + α x (NPHI - ØD) + β; where Øer is the estimated porosity range, ØD is density porosity, α and 186 

β are regression constants; ranging between -0.02 – 0.01 and 0.28 – 0.4 respectively, NPHI is neutron 187 

porosity. In instances where NPHI values for lithofacies units is not available from the published 188 

references, an average of 0.25 was used. 189 

KLOGHer = 10(2 + 8 * PHIF – 5 * VSH); where KLOGHer is the estimated permeability range, VSH is the volume 190 

of clay/shale in the lithofacies unit, and PHIF, the fractured porosity. The VSH range between 0.01 – 0.12 191 

for the shoreface units, and 0.78 – 0.88 for lagoonal deposits. 192 

Property Modeling in PetrelTM 193 

The workflow (Figure 2b) used for subsurface property (e.g. lithofacies, and petrophysical) modeling in 194 

PetrelTM is extended to the representation of lithofacies, porosity, and permeability properties in the 195 

forward stratigraphic model. These processes include: 196 

1. Structure modelling; where identified faults within the model area are modelled together with 197 

interpreted surfaces from seismic and well data to generate the main structural framework 198 

within which the entire property model will be built. The key procedures involve modification 199 

of fault pillars and connecting fault bodies to one another to attain the kind of fault framework 200 

interpreted from seismic and core data. 201 

(i) Pillar gridding: a “grid skeleton” that is made up of a top, middle and base architectures. 202 

Typically, there are pillars which join corresponding corners of every grid cell of the adjacent 203 

grid, forming the foundation of each cell within the model; hence its nomenclature as a corner 204 

point gridding. The prominent orientation of faults within the model is set the major direction 205 

along which grid cells align.  206 

https://doi.org/10.5194/gmd-2020-37
Preprint. Discussion started: 24 June 2020
c© Author(s) 2020. CC BY 4.0 License.



10 
 

(ii) Horizons, Zones and Vertical Layering: stratigraphic horizons and subdivisions (zones) 207 

delineates the formations boundaries. As stratigraphic horizons are inserted into the model 208 

grid, the surfaces are trimmed iteratively and modified along faults to correspond with 209 

displacements across multiple faults. Vertical layering on the other hand defines the 210 

thicknesses and orientation between the layers of the model, in order to honour the fault 211 

framework, pillar grid and horizons that have been derived. Cell thicknesses are defined to 212 

control the vertical scale, in which subsurface properties such as lithofacies, porosity, and 213 

permeability attributes are modelled.  214 

2. Upscaling; which involves averaging of finer cells in order to assign property values to the 215 

cells and evaluate which discrete value suits each data point. It also encompasses the 216 

generation of coarser grids (i.e. lower resolution grids) in the geological model, in order to 217 

make simulation faster. 218 

Porosity and Permeability Modeling  219 

The original Volve field porosity and permeability model built by Equinor for their operations was 220 

adopted as the base model. The model, which cover an area of 17.9 km2 was generated with the reservoir 221 

management software (RMS), developed by Irap and Roxar (EmersonTM). The original petrophysical 222 

model has a grid dimension of 108 m x 100 m x 63 m, and compressed by 75.27% of cell size. To achieve 223 

a comparable model in resolution to the original porosity and permeability model, the forward 224 

stratigraphic output was upscaled to a grid cell of 107 m x 99 m x 63 m. Two options were explored with 225 

respect to the use of variogram parameters derived from forward model-based synthetic wells. Option 1 226 

was to assign porosity and permeability values to the synthetic lithofacies wells to correspond to known 227 

facies-associations as indicated in Table 4. The synthetic wells with porosity and permeability data are 228 

placed in-between actual well (known data) locations to guide porosity and permeability property 229 

distribution in the model. For option 2 the best-fit forward stratigraphic model was populated with 230 

porosity, and permeability attributes. Porosity and permeability synthetic logs are then extracted from the 231 

forward stratigraphic output to build the porosity and permeability models (Figure 8). The second option 232 

provides a broader framework for evaluating the reliability of forward stratigraphic simulation on 233 
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property distribution in areas of sparse data. Taking into account the possibility that vertical trends in 234 

options 1 and 2 will most likely produce a similar trend in a sampled interval, it is our opinion that option 235 

2 will provide a viable 3-D representation of property variations in the major and minor directions of the 236 

forward stratigraphic model. Ten synthetic wells, 80 m to 120 m were positioned in the forward model to 237 

capture the distribution of porosity-permeability at different sections of the stratigraphic model. Typically, 238 

sediment distribution, and associated petrophysical attributes are directly related to depth within the 239 

geological model; thus aiding in the analysis of the most likely proportions of subsurface properties that 240 

match with observations in known well data.  241 

The forward-based synthetic wells prefixed SW (Figure 9 c) with porosity and permeability logs were 242 

upscaled to populated the original structural model using the sequential Gaussian simulation method. The 243 

variogram model (Figure 10), of dominant lithofacies units in the formation served as a guide in the 244 

estimation of variogram parameters from the forward model. A major and minor range of 1400 m and 245 

400 m respectively, and an average sill value of 0.75 derived from forward stratigraphic-based synthetic 246 

wells were used to populate porosity and permeability properties in the model. Porosity models were 247 

derived with a normal distribution, whilst the permeability models were produced using a log-normal 248 

distribution and the corresponding porosity property for collocated co-kriging. Out of fifty model 249 

realizations, six realizations that showed some similarity to the original petrophysical model are presented 250 

(Figure 11).  251 

Results 252 

The stratigraphic model in stage 4 (Figure 5d iv) shows the final geometry after 700, 000 years of 253 

simulation time. Initial simulation produced a progradation sequence with foreset-like features (Figure 254 

5d i). A sequence boundary, which indicates the highest sea level in the model separates the initial 255 

simulated output from the next prograding phase (Figure 5d ii). Initiation of an aggradation stacking 256 

pattern starts, and becomes prominent in stage 3 (Figure 5d iii). This is consistent with real-world 257 

scenario where sediment supply matchup with accommodation space generated as a result of the relative 258 

constant sea level rise within a period. The diffusion process in GPMTM was used to define the 259 
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stratigraphic architecture before introducing additional geological processes such as steady flow, unsteady 260 

flow, wave events to capture the range of possible depositional styles that have been discussed in 261 

published literatures (e.g. Folkestad & Satur, 2006; Kieft et al., 2011). 262 

The impact of the stratigraphic simulation on porosity and permeability representation in the model is 263 

evaluated by comparing its outcomes to the original porosity and permeability models of the Volve using 264 

two synthetic wells prefixed VP1 and VP2. The synthetic wells were sampled at a 5 m intervals vertically 265 

to estimate the distribution of porosity and permeability attributes along wells. Considering that the 266 

original porosity and permeability model (Figure 11a) have undergone phases of history matching to 267 

enable well planning and guide production strategies in the Volve field, it is reasonable to assume that 268 

porosity and permeability distribution in such model will be geologically realistic and less uncertain. A 269 

good match in porosity was observed in validations wells that penetrate the model realizations; R14, R20, 270 

R26, R36, R45, and R49 (Table 5a). The vertical distribution (Figure 12 ) of porosity in selected model 271 

realizations shows a modal distribution range (i.e. 0.18 – 0.24) that is consistent with the original model, 272 

although there is notable general increase in porosity proportion in synthetic wells as compared to pseudo 273 

wells from the original model. The forward stratigraphic-based model have been derived with an 274 

assumption that variogram parameters, stratigraphic inclination within zones remain constant. However, 275 

the original petrophysical model takes into account other measured attributes, which could be the main 276 

driver of the differences in permeability estimates noted in Table 5b. Typically, a petrophysical model 277 

like the Sleipner Øst and Volve field model will take into account other sources of data such as detailed 278 

special core analysis (SCAL), and other petrophysical evaluations from the reservoir section, so it is 279 

reasonably reliable to suggest that the forward stratigraphic-based porosity and permeability models have 280 

been adequately conditioned to known subsurface data.   281 

Discussions 282 

The results show the influence of sediment transport rate, or in this example, diffusion rate, initial basin 283 

topography and proximity to sediment source location on stratigraphic simulation in the GPMTM software. 284 

Notably, variations in sea level controls the volume of sediment that could be retained or transported 285 
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further into the basin; therefore controlling the kind of stratigraphic sequences that are generated. In a 286 

related work by Burges et al. (2008), it was established that; for example, sediment-wedge topset width 287 

was directly linked to the initial bathymetry, in which the sediment-wedge structure was formed, as well 288 

as the correlation between sediment supply and accommodation rate. This is in line with observations in 289 

this work, where the initial sediment deposit in large parts control the geometry of subsequent phase of 290 

depositions. Since the initial conditions of this basin is uncertain, multiple simulation scenarios were 291 

carried out to account for the range of bathymetries that may have influenced the build-up of sediments 292 

to form the Hugin formation. The simulation produced well defined clinoform and sequence boundaries 293 

that depict the pattern observed in the seismic data. As indicated in other studies, (e.g. Allen and 294 

Posamentier, 1993; Ghandour and Haredy, 2019) sequence stratigraphy is vital in the characterization of 295 

lithofacies in shallow marine settings; hence, the forward stratigraphic simulation outputs provide a good 296 

framework to better understand the variation of lithofacies units in the reservoir through  a 3-D 297 

perspective. A porosity-permeability model that match the original petrophysical model was produced 298 

using synthetic porosity and permeability logs from the forward stratigraphic model as input datasets in 299 

the sequential Gaussian simulation method. Since this work did not take into account variations in the 300 

layering scheme that develops in different zones of the stratigraphic model; we concede that there is a 301 

possibility to overestimate and or underestimate of porosity and permeability properties as observed in 302 

some sampled intervals of the validation wells. In view of this, it is our suggestion that forward 303 

stratigraphic simulation outputs should be applied as additional dataset to understanding sediment 304 

distribution patterns, and associated vertical and horizontal petrophysical trends in the depositional 305 

environment than using its outputs as an absolute conditioning data in subsurface property modeling.  306 

The assumptions made in the type of geological processes, and input parameters to use in the simulation 307 

significantly differ from what may have existed during the period of deposition. Applying stratigraphic 308 

models that fit a basin scale description to a smaller scale reservoir context presents another degree of 309 

uncertainty in the approach used here. For example, in their study, Burges et al., (2008) shows that the 310 

diffusion geological process fits the description of large scale sediment transportation; suggesting that an 311 

extrapolation of its outputs into a well-scale framework could produce results that deviate from the real 312 
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world architecture. In reality, sediment deposition into a geological basin is also controlled by mechanical 313 

and geochemical processes, which modify a formations petrophysical attributes (Warrlich et al. 2010), 314 

hence, the application of different geological processes and initial conditions to produce different 315 

depositional scenarios, from which a best fits stratigraphic framework of the reservoir can be selected. 316 

Many forward stratigraphic-based subsurface modeling studies (e.g. Bertoncello et al. 2013; Aas et al. 317 

2014; and Huang et al. 2015), have identified and discussed some limitations with the technique. 318 

Considering that similar challenges were faced in this work, caution must be taken in using the outputs 319 

from forward stratigraphic simulations in real reservoir modeling as this could rather increase uncertainty 320 

in the representation of lithofacies and petrophysical properties. The correlation between reservoir 321 

lithofacies and petrophysics have been examined in previous studies, e.g. Falivene et al. (2006) Hu and 322 

Chugunova, (2008), but the difference in predicted and actual reservoir character is less understood. This 323 

in large part is due to the absence of a realistic 3-D stratigraphic framework to guide reservoir property 324 

representation in geocellular models. It is our opinion that forward stratigraphic modeling methods 325 

provide reservoir modeling practitioners a better platform to generate appropriate 3-D lithofacies models 326 

to improve petrophysical property prediction in a reservoir, but its outputs should be used cautiously and 327 

together with verifiable subsurface patterns from seismic and well datasets. 328 

Conclusion  329 

In this paper, spatial data from a forward stratigraphic simulation is combined with subsurface data from 330 

the Volve field, Norway to constrain porosity and permeability distribution in inter-well regions of the 331 

model area. As caution, the forward stratigraphic simulation scenarios presented in this contribution do 332 

not ultimately prove that spatial and geometrical data derived from stratigraphic modeling can be used as 333 

absolute input parameters for a real-world reservoir modeling task. Uncertainties in the choice of initial 334 

condition and processes for the stratigraphic simulation led the variation of input parameters in order to 335 

attain a depositional architecture that is geologically realistic and comparable to the stratigraphic 336 

correlation suggested in some published studies of the study area. Significantly, the good match obtained 337 

from validation wells in the original and stratigraphic-based petrophysical model, leads us to the 338 
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suggestion that an integration of variogram parameters from real well data and forward stratigraphic 339 

simulation outputs will improve property prediction away from data. In addition, this work also made 340 

some key findings:  341 

1. For a specific application of forward stratigraphic modeling in GPMTM and a range of model 342 

parameters, the process of sediment deposition is influenced by diffusion rate, and proximity to 343 

sediment source. This is consistent with several published works on sequence stacking and or 344 

system tracts in shallow marine settings, but further work with different stratigraphic modeling 345 

simulators could be useful in mitigating some of the challenges faced in this work. 346 

2. A geologically viable 3-D lithofacies distribution in the shallow marine Hugin formation was 347 

achieved, which is evident in scenarios where sediment distribution vertically matches with 348 

lithofacies variation in a sampled interval in an actual well log.  349 

Geologically feasible stratigraphic patterns generated in the forward stratigraphic model provide 350 

additional confidence in the representation of lithofacies, and therefore porosity and permeability 351 

property variations in the depositional setting under study. By reducing the level of property 352 

uncertainty between wells, a reliable reservoir model can be generated to guide field planning and 353 

development in the hydrocarbon exploration and production industry.  354 

Future studies will focus on using an artificial neural network approach to classify lithofacies-355 

associations in the forward stratigraphic model in order to reduce uncertainties that arise from 356 

cognitive or sampling biases in the calculator (or rule-based) approach for estimating lithofacies 357 

proportion in a forward stratigraphic model.   358 
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Data and Code Availability 359 

The datasets used in this work was obtained from Equinor on their Volve field operations, Norway. This 360 

include: 24 suits of well logs, and 3-D reservoir models in Eclipse and RMS formats. The data, models 361 

(eclipse and RMS formats), and the rule-based calculation script to generate lithofacies and porosity/permeability 362 

proportions are archived on Zenodo as Otoo & Hodgetts, (2020). 363 

GPMTM Software 364 

The version (2019.1) of GPMTM software was used in completing this work after an initial 2018.1 version. Available 365 

on: https://www.software.slb.com/products/gpm. The software license and code used in the GPMTM cannot be 366 

provided, because Schlumberger does not allow the code for its software to be shared in publications. 367 

Model Availability in PetrelTM 368 

PetrelTM software (2017.1) was initially used for the task, but completed with PetrelTM software (2019.1); 369 

available on: https://www.software.slb.com/products/petrel. The software run on a windows PC with the 370 

following specifications: Processor; Intel Xeon CPU E5-1620 v3 @3.5GHz 4 cores-8 threads, Memory; 371 

64 GB RAM. The computer should be high end, because a lot of processing time is required to execute a 372 

task. The forward stratigraphic models are achieved in Zenodo as Otoo & Hodgetts, (2020). 373 

Author Contribution 374 

Daniel Otoo designed the model workflow, conducted the simulation using the GPMTM software, and 375 

evaluated the results. David Hodgetts converted the Volve field data into Petrel compactible format for 376 

easy integration with outputs from the stratigraphic simulation.  377 
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List of Figures 

Fig 1. Location map of the Volve field, showing gas and oil fields in quadrant 15/9, Norwegian North Sea (Adapted from Ravasi et al., 2015). 
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Figure 2. Schematic workflow of processes involved this work. a. providing information of initial conditions (or 

input parameters) that were used in the forward stratigraphic simulation in GPMTM, b. demonstrating how the 

forward stratigraphic were converted into a grid that is usable in the PetrelTM environment for onward 3-D porosity 

and permeability modeling. 
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Fig 3. 3-D seismic section of the study area, from which the hypothetical topographic surface was derived for the 

simulation. The sedimentary entry point into the basin is located in the North Eastern section, based on previous 

study in the model area (e.g. Kieft et al. 2011). 
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Fig 4. Inferred paleo topographic surface from seismic, also illustrating different topographic surface scenarios 

used in the simulation. 
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Fig 5. a. present day top and bottom topographic surfaces of the Hugin formation; b. hypothetical topographic 

surface derived from seismic data; c. geological processes involved in the simulation; d. forward stratigraphic 

models at different simulation time.  
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Figure 6. Stratigraphic simulation scenarios depicting sediment deposition in a shallow marine framework. a. 

scenario 1 involves equal proportions of sediment input, a relatively low subsidence rate and low water depth, b. 

scenario 10 uses high proportions of fine sand and silt (i.e. 70%) in the sediment mix, abrupt changes in subsidence 

rate, and a relatively high water depth, c. scenario 15 involves very high proportions of fine sand and silt (i.e. 80%), 

steady rate of subsidence and uplift in the sediment source area, and a relatively low water depth.
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Fig 7 a. a. Sediment distribution patterns in the geological process modeling software. b. lithofacies classification 

using the property calculator tool in PetrelTM.
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Fig 8. Property characterization in the stratigraphic using the property calculator tool in Petrel. Also showing a 

cross-sectional view through the model.  
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Fig 9. Synthetic wells derived from a forward stratigraphic-driven porosity and permeability models. 
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Fig 10. Variogram model of dominant lithofacies units extracted from the forward stratigraphic model.
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Fig 11. Original and forward modeling-based petrophysical models. 
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Fig 12. Illustrating how; a. validation well 1, and b. validation well 2 samples in the synthetic forward-based model 

compares to pseudo wells from the original Volve field petrophysical model. 
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Table 1 Lithofacies-associations in the Hugin formation, Volve Field (after Kieft et al. 2011). 
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Table 2. Input parameters applied in running the simulations in GPMTM 
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Table 3. Lithofacies classification in the forward stratigraphic model; showing the command used in the property 

calculator tool in PetrelTM. 
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Table 4. Porosity and Permeability estimate in identified lithofacies packages. 
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Table 5. Comparison of a) porosity, and b) permeability estimates in original petrophysical model and forward 

modeling-based porosity and permeability models. 

 

 

https://doi.org/10.5194/gmd-2020-37
Preprint. Discussion started: 24 June 2020
c© Author(s) 2020. CC BY 4.0 License.


