Table 3 Lithofacies classification in the forward stratigraphic model; showing the command used in the property calculator tool in PetrelTM.

Lithofacies Classification							
Facies Code	Lithofacies	Command Used in Petrel's Property Calculator					
0	Marine Shale	If(Sand_fine>=0.19 And Sand_fine<=0.21 Or Silt>=0.19 And Silt<=0.2 Or Clay>=0.2 And Clay<=0.21 Or Depth_of_deposition>					
1	Muddy Shallow Bay Fill	If(Sand_fine>=0.36 And Sand_fine<=0.38 Or Silt>=0.18 And Silt<=0.2 Or Clay>0.18 And Clay<=0.19 Or Depth_of_deposition>=-30 And Depth_of_deposition<=-20)					
2	Sandy Shallow Bay Fill	If(Sand_coarse>=0.65 And Sand_coarse<=0.73 Or Sand_fine>=0.18 And Sand_fine<=0.22 Or Silt>=0.18 And Silt<=0.2 Or Clay>=0.17 And Clay<=0.18 Or Depth_of_deposition>=-3 And Depth_of_deposition<=0)					
3	Channel Fill Sandstone	If(Sand_coarse>=0.5 And Sand_coarse<=0.68 Or Sand_fine>=0.23 And Sand_fine<=0.25 Or Silt>=0.17 And Silt<=0.18 Or Depth_of_deposition>=0 And Depth_of_deposition<=2)					
4	Lower Shoreface Units	If(Sand_coarse>=0.19 And Sand_coarse<=0.31 Or Sand_fine>=0.19 And Sand_fine<=0.24 Or Silt>=0.4 And Silt<=0.48 Or Clay>=0.19 And Clay<=0.31 Or Depth_of_deposition>=-83 And Depth_of_deposition<=50)					
5	Middle Shoreface Units	If(Sand_coarse>=0.32 And Sand_coarse<=0.53 Or Sand_fine>=0.25 And Sand_fine<=0.32 Or Silt>=0.26 And Silt<=0.32 Or Clay>=0.19 And Clay<=0.21 Or Depth_of_deposition>=-38 And Depth_of_deposition<=-12)					
6	Upper Shoreface Units	If(Sand_coarse>=0.53 And Sand_coarse<=0.72 Or Sand_fine>=0.28 And Sand_fine<=0.33 Or Silt>=0.16 And Silt<=0.21 Or Depth_of_deposition>=-10 And Depth_of_deposition<=6)					
7	Distal Mouth Bar Units	If(Sand_fine>=0.23 And Sand_fine<=0.27 Or Silt>=0.38 And Silt<=0.43 Or Clay>=0.19 And Clay<=0.21 Or Depth_of_deposition>=-95 And Depth_of_deposition<=-80)					
8	Proximal Mouth Bar Units	If(Sand_coarse>=0.53 And Sand_coarse<=0.71 Or Sand_fine>=0.27 And Sand_fine<=0.32 Or Silt>=0.16 And Silt<=0.21 Or Clay>=0.06 And Clay<=0.07 Or Depth_of_deposition>=-30 And Depth_of_deposition<=-27)					
9	Tide Influenced Sandstones	If(Sand_coarse>=0.53 And Sand_coarse<=0.71 Or Sand_fine>=0.26 And Sand_fine<=0.31 Or Silt>=0.35 And Silt<=0.41 Or Depth_of_deposition>=-5 And Depth_of_deposition<=1)					
10	Fluvial Channel Sandstones	If(Sand_coarse>=0.54 And Sand_coarse<=0.56 Or Sand_fine>=0.27 And Sand_fine<=0.29 Or Silt>=0.19 And Silt<=0.21 Or Depth_of_deposition>=-2 And Depth_of_deposition<=2)					
11	Coal	Estimated as background attribute					
12	Coastal plain fines	If(Silt>=0.31 And Silt<=0.43 Or Clay>=0.31 And Clay<=0.35 Or Depositional_depth>=-100 And Depositional_depth<=-40)					
13	Marine Mudstone	If(Sand_fine>=0.36 And Sand_fine<=0.38 Or Silt>=0.4 And Silt<=0.52 Or Clay>=0.45 And Clay<=0.78 Or Depth_of_deposition>=-105 And Depth_of_deposition<=-90)					

 $\textbf{Table i.} \ Porosity \ estimates \ for \ additional \ realizations \ in \ validation \ well \ 1 \ (VP1)$

Model Realization	5 m	10 m	15 m	20 m	25 m	30 m
R1	0.22	0.19	0.22	0.22	0.22	0.22
R2	0.23	0.17	0.26	0.21	0.24	0.18
R3	0.17	0.16	0.22	0.27	0.21	0.24
R4	0.24	0.21	0.23	0.25	0.22	0.17
R5	0.18	0.21	0.2	0.27	0.21	0.24
R6	0.23	0.22	0.27	0.22	0.22	0.23
R7	0.23	0.25	0.22	0.21	0.22	0.25
R8	0.23	0.21	0.22	0.19	0.17	0.25
R9	0.18	0.24	0.25	0.25	0.25	0.27
R10	0.23	0.22	0.20	0.18	0.27	0.25
R11	0.21	0.19	0.21	0.25	0.21	0.20
R12	0.20	0.20	0.23	0.26	0.22	0.22
R13	0.27	0.20	0.26	0.20	0.23	0.18
R15	0.17	0.18	0.18	0.19	0.21	0.21
R16	0.17	0.18	0.22	0.15	0.17	0.19
R17	0.24	0.21	0.26	0.16	0.20	0.22
R18	0.20	0.23	0.15	0.25	0.27	0.24
R19	0.20	0.19	0.19	0.27	0.23	0.24
R21	0.25	0.21	0.26	0.23	0.26	0.18
R22	0.21	0.13	0.20	0.25	0.15	0.22
R23	0.19	0.14	0.26	0.21	0.21	0.25
R24	0.19	0.19	0.22	0.24	0.26	0.14
R25	0.25	0.22	0.20	0.26	0.22	0.27
R27	0.21	0.21	0.24	0.23	0.18	0.24
R28	0.18	0.18	0.23	0.25	0.21	0.19
R29	0.19	0.18	0.20	0.19	0.26	0.24
R30	0.26	0.20	0.21	0.19	0.23	0.21
R31	0.21	0.20	0.24	0.19	0.27	0.26
R32	0.25	0.25	0.26	0.23	0.23	0.26
R33	0.23	0.22	0.23	0.21	0.15	0.23
R34	0.24	0.14	0.19	0.23	0.25	0.21
R35	0.19	0.20	0.23	0.24	0.21	0.20
R37	0.17	0.19	0.18	0.22	0.17	0.25
R38	0.16	0.19	0.23	0.18	0.13	0.22
R39	0.22	0.15	0.20	0.21	0.18	0.14
R40	0.22	0.17	0.19	0.24	0.20	0.25
R41	0.21	0.23	0.23	0.23	0.23	0.22
R42	0.22	0.18	0.22	0.16	0.16	0.18
R43	0.21	0.19	0.23	0.22	0.24	0.24
R44	0.22	0.18	0.26	0.25	0.24	0.26
R46	0.22	0.19	0.16	0.22	0.27	0.24
R47	0.14	0.19	0.24	0.19	0.21	0.21
R48	0.27	0.18	0.26	0.23	0.19	0.20
R50	0.17	0.2	0.19	0.24	0.25	0.2

 $\textbf{Table ii.} \ \text{Permeability estimates for additional realizations in validation well 1 (VP1)}$

Model Realization	5 m	10 m	15 m	20 m	25 m	30 m
R1	379.31	260.66	185.88	185.19	329.09	328.35
R2	384.34	195.97	59.06	163.29	200.77	136.18
R3	118.83	174.67	172.82	178.25	110.80	241.07
R4	187.04	166.46	104.98	70.26	204.86	373.47
R5	201.90	175.34	83.27	66.96	167.18	103.90
R6	264.63	148.19	104.12	211.01	115.75	183.53
R7	219.98	138.02	263.07	62.54	163.68	275.60
R8	248.14	385.98	237.65	311.84	359.39	427.61
R9	498.38	232.63	227.79	76.59	84.16	116.22
R10	398.47	242.10	56.23	122.51	112.90	372.70
R11	151.35	318.87	98.52	127.63	503.26	141.26
R12	352.74	312.38	61.37	179.67	310.16	203.55
R13	245.65	125.45	123.16	155.68	236.63	272.13
R15	183.90	385.07	134.21	113.91	276.87	140.77
R16	849.34	102.83	195.27	222.62	174.72	298.23
R17	122.66	253.21	122.16	219.00	241.98	179.78
R18	370.54	166.05	74.44	116.93	95.25	90.68
R19	261.38	95.90	233.35	82.87	230.17	174.61
R21	253.12	154.08	68.50	134.08	136.13	212.08
R22	347.55	145.00	137.37	367.13	220.15	137.84
R23	365.95	172.31	63.81	203.99	183.25	176.33
R24	195.54	198.98	147.49	98.15	177.45	338.20
R25	589.85	96.96	60.41	162.41	393.90	215.91
R27	183.77	234.90	180.59	75.82	276.10	222.50
R28	165.27	157.76	217.18	63.85	323.63	295.20
R29	310.78	326.10	103.89	446.21	215.21	146.43
R30	419.11	209.80	208.55	81.47	128.24	215.83
R31	393.50	233.34	128.40	231.34	170.30	307.12
R32	278.48	149.37	116.93	59.62	134.66	166.98
R33	756.08	209.10	61.51	173.62	62.08	243.39
R34	176.57	157.58	65.83	65.75	220.10	216.13
R35	418.03	203.27	103.22	69.08	168.93	181.13
R37	348.58	260.47	242.77	40.5	496.53	299.73
R38	187.07	183.05	113.43	163.43	94.32	427.80
R39	291.87	118.40	108.90	236.13	337.48	161.13
R40	185.04	192.87	169.04	209.17	459.44	182.28
R41	323.40	272.29	166.90	99.29	316.77	343.22
R42	337.60	106.86	206.92	206.12	51.21	211.49
R43	376.63	396.70	66.75	141.02	127.55	258.62
R44	161.55	140.87	68.15	248.66	162.83	190.65
R46	452.95	160.70	79.39	141.91	166.07	113.03
R47	127.18	115.43	168.50	78.86	102.83	149.16
R48	370.88	129.33	292.19	333.32	175.53	354.65
R50	245.45	407.80	167.88	157.98	327.08	248.71

 $\textbf{Table iii}.\ Porosity\ estimates\ for\ additional\ realizations\ in\ validation\ well\ 2\ (VP2)$

Model Realization	5 m	10 m	15 m	20 m	25 m	30 m
R1	0.21	0.21	0.21	0.21	0.21	0.21
R2	0.25	0.23	0.27	0.21	0.22	0.18
R3	0.19	0.23	0.15	0.19	0.21	0.20
R4	0.19	0.20	0.14	0.22	0.23	0.22
R5	0.21	0.27	0.18	0.26	0.22	0.19
R6	0.26	0.20	0.23	0.15	0.25	0.27
R7	0.26	0.24	0.13	0.25	0.14	0.20
R8	0.14	0.14	0.22	0.15	0.24	0.23
R9	0.23	0.27	0.23	0.22	0.24	0.23
R10	0.25	0.16	0.20	0.22	0.20	0.18
R11	0.21	0.19	0.26	0.25	0.24	0.22
R12	0.24	0.14	0.22	0.21	0.22	0.18
R13	0.24	0.23	0.21	0.24	0.13	0.24
R15	0.21	0.24	0.25	0.20	0.23	0.19
R16	0.14	0.19	0.25	0.23	0.16	0.26
R17	0.16	0.26	0.21	0.22	0.21	0.25
R18	0.23	0.27	0.19	0.21	0.19	0.23
R19	0.19	0.25	0.23	0.18	0.26	0.26
R21	0.18	0.17	0.14	0.19	0.25	0.19
R22	0.22	0.20	0.18	0.22	0.23	0.21
R23	0.23	0.26	0.26	0.21	0.27	0.21
R24	0.25	0.16	0.17	0.23	0.22	0.26
R25	0.17	0.21	0.22	0.24	0.20	0.18
R27	0.14	0.15	0.25	0.25	0.16	0.24
R28	0.24	0.21	0.22	0.15	0.18	0.23
R29	0.16	0.15	0.23	0.18	0.24	0.21
R30	0.20	0.17	0.21	0.19	0.24	0.24
R31	0.21	0.25	0.27	0.22	0.21	0.26
R32	0.25	0.18	0.18	0.20	0.17	0.14
R33	0.15	0.26	0.26	0.24	0.24	0.19
R34	0.16	0.19	0.23	0.23	0.22	0.26
R35	0.25	0.21	0.24	0.25	0.26	0.25
R37	0.22	0.20	0.26	0.21	0.24	0.21
R38	0.18	0.24	0.24	0.17	0.23	0.25
R39	0.23	0.21	0.18	0.21	0.17	0.24
R40	0.24	0.26	0.25	0.22	0.19	0.22
R41	0.22	0.25	0.23	0.24	0.17	0.19
R42	0.16	0.26	0.21	0.24	0.16	0.23
R43	0.25	0.18	0.21	0.23	0.22	0.20
R44	0.27	0.21	0.22	0.19	0.25	0.17
R46	0.23	0.19	0.25	0.20	0.17	0.23
R47	0.20	0.16	0.25	0.25	0.24	0.20
R48	0.18	0.18	0.19	0.21	0.23	0.22
R50	0.17	0.19	0.18	0.22	0.22	0.22

 $\textbf{Table iv.} \ Permeability \ estimates \ for \ additional \ realizations \ in \ validation \ well \ 2 \ (VP2)$

Model Realization	5 m	10 m	15 m	20 m	25 m	30 m
R1	249.86	225.22	246.61	242.39	247.71	248.00
R2	95.20	285.68	248.40	129.46	259.32	225.79
R3	210.15	249.43	188.74	169.56	153.44	150.78
R4	261.12	166.09	230.64	141.59	162.11	425.82
R5	789.17	168.73	258.06	305.51	141.85	261.91
R6	222.61	236.47	383.56	333.38	161.19	614.10
R7	376.97	156.81	277.21	188.69	170.06	382.66
R8	324.07	231.58	319.35	117.89	144.11	326.74
R9	314.09	292.84	325.72	341.66	182.97	170.39
R10	206.30	199.17	162.96	221.21	206.78	214.83
R11	498.74	352.02	111.43	220.14	204.01	73.44
R12	320.34	364.45	151.08	382.86	271.56	237.48
R13	310.92	168.93	101.24	903.17	294.32	432.77
R15	232.79	255.19	268.45	85.29	234.97	252.18
R16	282.88	240.28	197.54	170.48	126.56	316.02
R17	339.86	168.33	147.77	309.62	153.24	172.51
R18	314.12	219.46	183.26	161.30	228.06	290.04
R19	255.03	144.89	253.03	253.29	80.39	331.35
R21	230.07	148.77	135.18	191.74	224.57	352.67
R22	108.40	353.74	259.81	128.19	356.51	476.83
R23	314.54	146.52	294.84	359.42	154.85	213.29
R24	249.64	93.13	295.11	162.75	312.53	382.09
R25	65.74	325.92	210.69	159.77	274.75	216.15
R27	180.03	98.51	272.17	343.36	126.86	276.55
R28	605.71	284.30	475.18	76.64	183.92	245.18
R29	424.41	479.04	299.31	357.95	295.87	323.31
R30	404.93	203.29	194.22	166.63	369.01	160.38
R31	146.73	457.63	355.88	310.11	185.30	208.33
R32	314.20	143.63	177.56	273.10	154.19	482.85
R33	344.27	347.94	302.71	168.65	104.95	112.74
R34	274.43	167.98	159.12	97.46	130.56	220.56
R35	264.95	238.51	283.41	159.71	226.63	470.54
R37	229.77	190.45	146.58	423.58	172.59	111.28
R38	203.36	403.54	178.82	110.61	90.45	281.38
R39	432.48	144.75	462.12	172.01	226.16	188.94
R40	125.30	197.07	222.82	262.67	216.51	267.67
R41	339.85	164.82	155.85	576.46	296.95	145.37
R42	91.44	155.31	268.61	134.41	336.38	101.83
R43	145.94	302.80	366.89	210.76	241.69	297.30
R44	285.47	101.72	175.48	199.55	291.47	229.55
R46	125.20	133.55	194.17	386.73	146.38	142.73
R47	117.57	337.95	541.82	143.06	162.88	458.12
R48	396.18	313.38	137.42	141.91	636.48	560.63
R50	387.84	173.45	57.70	385.97	183.59	318.98