List of symbols

- a soil exponent (unitless). See table S25. 50
- a_i soil exponent per layer *i* (unitless). See table S25. 50
- a_{uz} exponent for the unsaturated zone (unitless). See table S26. 51
- 5 *A* water abstraction ($L^3 L^{-2} T^{-1}$). See tables S32, S35. 57, 60
 - A_{act}^{gw} actual groundwater abstraction (L³ L⁻² T⁻¹). See table S53. 78
 - A_{act}^{sw} actual surface water abstraction (L³ L⁻² T⁻¹). See table S53. 78
 - $A_{act,irr}$ actual water abstraction for irrigation (L³ L⁻² T⁻¹). See table S43. 68

 $A_{dem,dam}$ mean annual total water demand of the dam (L³ T⁻¹). See table S37. 62

- 10 $A_{dem,5dcells}$ long term averaged water demand of 5 donwstream cells of a reservoir (L³ T⁻¹). See table S37. 62
 - $A_{dem,5dcells,month}$ mean water demand of 5 downstream cells of a reservoir averaged over a specific month (L³ T⁻¹). See table S37. 62
 - A_{dom} water abstraction for domestic sector (L³ L⁻² T⁻¹). See tables S35, S59, S60, S61, S62, S63, S64. 60, 84–89
 - A_{dom}^{aq} water abstraction from river for domestic sector, at the origin of an aqueduct (L³ L⁻² T⁻¹). See table S62. 87
- 15 A_{dom}^{gw} water abstraction from groundwater storage for domestic sector (L³ L⁻² T⁻¹). See tables S29, S59, S60 S61, S77. 54, 84–86, 102
 - $A_{dom}^{gw,nrw}$ water abstraction from non-renewable groundwater storage for domestic sector (L³ L⁻² T⁻¹). See table S59. 84
 - $A_{dom}^{gw,rw}$ water abstraction from renewable groundwater storage for domestic sector (L³ L⁻² T⁻¹). See table S59. 84
 - A_{dom}^{pond} water abstraction from pond, from local reservoir, for domestic sector (L³ L⁻² T⁻¹). See tables S35, S62. 60, 87
- 20 A_{dom}^{re} water abstraction from reservoir for domestic sector (L³ L⁻² T⁻¹). See tables S62, S79. 87, 104
 - A_{dom}^{ri} water abstraction from river for domestic sector (L³ L⁻² T⁻¹). See tables S43, S62. 71, 87
 - A_{dom}^{sw} water abstraction from surface water bodies for domestic sector (L³ L⁻² T⁻¹). See tables S43, S59, S62, S63, S64, S78, S79, S80. 68, 84, 87–89, 103–105
- A_{dom}^{usw} water abstraction from unlimited (unspecified) surface water source for domestic sector (L³ L⁻² T⁻¹). See table S62. 87
 - $A_{dom,cons}$ domestic consumption (L³ L⁻² T⁻¹). See tables S60, S61, S63. 85, 86, 88
 - $A_{dom \ cons}^{sw}$ domestic surface water consumption (L³ L⁻² T⁻¹). See table S63. 88
 - $A_{dom.cons}^{gw}$ domestic groundwater consumption (L³ L⁻² T⁻¹). See table S60. 85
 - $A_{dom.dem}$ water demand for domestic sector (L³ T⁻¹). See tables S59, S60, S61, S62, S63, S78, S79. 84–88, 103, 104
- 30 $A_{dom,loss}^{sw}$ domestic surface water losses (L³ L⁻² T⁻¹). See table S63. 88
 - $A_{dom \ loss}^{gw}$ domestic groundwater losses (L³ L⁻² T⁻¹). See table S60. 85

 $A_{dom,month}$ monthly water abstraction for domestic sector (L³ L⁻² T⁻¹). See tables S37, S79. 62, 104 $A_{dom,rf}$ return flow from domestic sector (L³ L⁻² T⁻¹). See tables S60, S61, S63, S64. 85, 86, 88, 89 $A_{dom,rf}^{gw}$ return flow from domestic groundwater abstraction (L³ L⁻² T⁻¹). See tables S61, S60. 85, 86

- 35 $A_{dom,rf}^{sw}$ return flow from domestic surface water abstraction (L³ L⁻² T⁻¹). See tables S64, S63. 88, 89
 - $A_{dom}^{re,global}$ water abstraction from a global reservoir for domestic sector (L³ L⁻² T⁻¹). See tables S35, S62. 60, 87
 - A_{ele}^{sw} water abstraction from surface water bodies for electricity sector (L³ L⁻² T⁻¹). See tables S75, S76, S78, S79, S80. 100, 101, 103–105

 A_{fgw} fossil groundwater abstraction (L³ L⁻² T⁻¹). See table S53. 78

- 40 A_{qw} water abstraction from groundwater storage (L³ L⁻² T⁻¹). See tables S29, S77. 54, 102
 - $A_{qw,cons}$ groundwater consumption (L³ L⁻² T⁻¹). See table S54. 79
 - $A_{qw,rw}$ water abstraction from renewable groundwater storage (L³ L⁻² T⁻¹). See table S53. 78
 - $A_{hil,G}$ household, industry, and livestock demand, at the grid cell (G) (L³ L⁻² T⁻¹). See tables S78, S79. 103, 104

 A_{ind} water abstraction for industry sector (L³ L⁻² T⁻¹). See tables S35, S81. 60, 106

- 45 A_{ind}^{gw} groundwater abstraction for industry sector (L³ L⁻² T⁻¹). See tables S77, S69, S70. 94, 95, 102
 - A_{ind}^{pond} water abstraction from pond, local reservoir, for industry sector (L³ L⁻² T⁻¹). See tables S35, S72. 60, 97
 - A_{ind}^{re} water abstraction from reservoir for industry sector (L³ L⁻² T⁻¹). See table S79. 104
 - A_{ind}^{ri} water abstraction from river for industry sector (L³ L⁻² T⁻¹). See tables S46, S72. 71, 97
 - A_{ind}^{sw} surface water abstraction for industry sector (L³ L⁻² T⁻¹). See tables S69, S72, S73, S75. 94, 97, 98
- 50 $A_{ind,cons}^{sw}$ surface water consumption for industry sector (L³ L⁻² T⁻¹). See tables S73. 98
 - $A_{ind \ cons}^{gw}$ groundwater consumption for industry sector (L³ L⁻² T⁻¹). See tables S70. 95
 - $A_{ind.dem}$ water demand abstraction for industry sector (L³ T⁻¹). See tables S69, S78, S79. 94, 103, 104
 - $A_{ind,month}$ monthly water abstraction for industry sector (L³ L⁻² T⁻¹). See tables S37, S79. 62, 104
 - $A_{ind}^{re,global}$ water abstraction from a global reservoir for industry sector (L³ L⁻² T⁻¹). See tables S35, S72. 60, 97
- 55 A_{irr} water abstraction for irrigation sector (L³ L⁻² T⁻¹). See tables S1, S35, S43, S52, S53, S54, S55, S56, S57, S58. 26, 60, 77, 79–83, 105
 - A_{irr}^{aq} water abstraction from river for irrigation sector, at the origin of an aqueduct (L³ L⁻² T⁻¹). See table S56. 81
 - A_{irr}^{gw} water abstraction from groundwater storage for irrigation sector (L³ L⁻² T⁻¹). See tables S29, S53, S54, S55, S77. 54, 78–80, 102
- 60 $A_{irr}^{gw,nrw}$ water abstraction from non-renewable groundwater storage for irrigation sector (L³ L⁻² T⁻¹). See table S53. 78 $A_{irr}^{gw,rw}$ water abstraction for irrigation sector taken from renewable groundwater storage (L³ L⁻² T⁻¹). See table S53. 78

 A_{irr}^{la} water abstraction for irrigation sector taken from lake (L³ L⁻² T⁻¹). See table S56. 81

 $A_{irr}^{neigh,cell}$ water abstraction for irrigation sector taken from neighboring cell surplus (L³ L⁻² T⁻¹). See table S56. 81

 A_{irr}^{pond} water abstraction for irrigation sector taken from pond, local reservoir (L³ L⁻² T⁻¹). See tables S35, S56. 60, 81

- A^{re}_{irr} water abstraction from reservoir for irrigation sector ($L^3 L^{-2} T^{-1}$). See tables S56, S79. 81, 104
 - A_{irr}^{ri} water abstraction for irrigation from river (L³ L⁻² T⁻¹). See tables S46, S56. 71, 81
 - *A*^{sw}_{irr} water abstraction for irrigation sector taken from surface water (L³ L⁻² T⁻¹). See tables S43, S53, S56, S57, S58, S78, S79, S80. 68, 78, 81–83, 103–105
 - A_{irr}^{usw} irrigation surface water abstraction from unlimited (unspecified) surface water source (L³ L⁻² T⁻¹). See table S56. 81
- 70 $A_{irr,app}$ application requirement for an irrigation system due to irrigation conveyance inefficiencies (L³ L⁻² T⁻¹). See tables S57, S58. 82, 83
 - $A_{irr,cons}$ consumptive water use for irrigation sector (L³ L⁻² T⁻¹). See tables S53, S54, S56, S57. 78, 79, 81, 82
 - $A_{irr,cons}^{sw}$ irrigation surface water consumption (L³ L⁻² T⁻¹). See tables S57, S58. 82, 83

 $A_{irr, cons}^{gw}$ irrigation groundwater consumption (L³ L⁻² T⁻¹). See tables S54, S55. 79, 80

75 $A_{irr,dem}$ water demand for irrigation sector (L³ T⁻¹). See tables S53, S78, S79, 78, 103, 104

 $A_{irr, gross, G}$ gross irrigation requirement, at the grid cell (G) (L³ L⁻² T⁻¹). See tables S57, S58, S78, S79, 82, 83, 103, 104

 $A_{irr \ loss}^{sw}$ irrigation surface water losses (L³ L⁻² T⁻¹). See table S57. 82

 $A_{irr,month}$ monthly water abstraction for irrigation sector (L³ L⁻² T⁻¹). See tables S37, S79. 62, 104

 $A_{irr,net}$ daily net irrigation requirement. Amount of water required in the upper 50 cm soil to avoid crop water limitation (L³ L⁻² T⁻¹). See tables S57, S58. 82, 83

 $A_{irr,rf}^{gw}$ return flow from irrigation groundwater abstraction (L³ L⁻² T⁻¹). See table S55. 80

- $A_{irr,rf}^{sw}$ return flow from irrigation surface water abstraction (L³ L⁻² T⁻¹). See tables S57, S58. 82, 83
- $A_{irr}^{re,global}$ water abstraction from a global reservoir for irrigation sector (L³ L⁻² T⁻¹). See tables S29, S56. 60, 81
- A_{la} water abstraction from lake (L³ L⁻² T⁻¹). See tables S43, S78, S79, 57, 103, 104
- 85 A_{liv}^{gw} water abstraction for livestock sector taken from groundwater storage (L³ L⁻² T⁻¹). See tables S29, S65. 54, 90
 - A_{liv}^{sw} water abstraction for livestock sector taken from surface water (L³ L⁻² T⁻¹). See tables S43, S67, S78, S79, S80. 68, 92, 103–105
 - $A_{liv,cons}$ water consumption for livestock sector (L³ L⁻² T⁻¹). See tables S66, S68. 91, 93
 - $A_{liv,cons}^{gw}$ water consumption use for livestock sector taken from groundwater (L³ L⁻² T⁻¹). See table S66. 91
- 90 $A_{liv,cons}^{sw}$ water consumption use for livestock sector taken from surface water (L³ L⁻² T⁻¹). See tables S67, S68. 92, 93 $A_{liv,dem}$ water demand for livestock sector (L³ T⁻¹). See tables S65, S66, S67, S68, S78, S79. 90–93, 103, 104 $A_{liv,dem}^{aw}$ water demand for livestock sector (L³ T⁻¹). See tables S65, S66, S67, S68, S78, S79. 90–93, 103, 104
 - $A_{man,rf}^{gw}$ return flow for manufacturing groundwater abstraction (L³ L⁻² T⁻¹). See tables S71, S70. 95, 96

 $A_{man,rf}^{sw}$ return flow for manufacturing from surface water abstraction (L³ L⁻² T⁻¹). See tables S74, S73. 98, 99

- A_{man}^{aq} water abstraction for manufacturing sector from river, at the origin of an aqueduct (L³ L⁻² T⁻¹). See table S72. 97
- $A_{man}^{coo,c}$ manufacturing cooling water per country (L³ T⁻¹). See tables S70, S71, S73, S74. 95, 96, 98, 99

95

- A_{man}^c water abstraction for manufacturing sector per country (L³ T⁻¹). See tables S69, S70, S72, S73. 94, 95, 97, 98
- $A_{man}^{gw,nrw}$ water abstraction for manufacturing sector taken from non-renewable groundwater storage (L³ L⁻² T⁻¹). See table S69. 94

 $A_{man}^{gw,rw}$ water abstraction for manufacturing sector taken from renewable groundwater storage (L³ L⁻² T⁻¹). See table S69. 100 94

- A_{man}^{re} water abstraction from reservoir for manufacturing sector (L³ L⁻² T⁻¹). See table S72. 97
- A_{man}^{ri} water abstraction from river for manufacturing sector (L³ L⁻² T⁻¹). See table S72. 97
- A_{man}^{sw} water abstraction for manufacturing sector taken from surface water (L³ L⁻² T⁻¹). See tables S43, S72, S73, S74, S78, S79, S80. 68, 97–99, 103–105
- 105 A_{man}^{usw} manufacturing surface water abstraction from unlimited (unspecified) surface water source (L³ L⁻² T⁻¹). See table S72. 97

 $A_{man}^{ww,c}$ manufacturing wastewater per country (L³ T⁻¹). See tables S70, S71, S73, S74. 95, 96, 98, 99

- $A_{man,cons}$ water consumption for manufacturing sector (L³ L⁻² T⁻¹). See tables S70, S71, S73. 95, 96, 98
- $A_{man,cons}^{gw}$ water consumption for manufacturing sector taken from groundwater storage (L³ L⁻² T⁻¹). See table S70. 95
- 110 $A_{man,cons}^{sw}$ water consumption for manufacturing sector taken from surface water (L³ L⁻² T⁻¹). See table S73. 98
 - $A_{man,dem}$ water demand for manufacturing sector (L³ T⁻¹). See tables S69, S70, S71, S72 S73. 94–98
 - $A_{man.loss}^{gw}$ manufacturing groundwater losses (L³ L⁻² T⁻¹). See table S70.95

$$A_{man,loss}^{sw}$$
 manufacturing surface water losses (L³ L⁻² T⁻¹). See table S73. 98

- $A_{man,rf}^c$ return flow for manufacturing abstraction per country (L³ L⁻² T⁻¹). See tables S71, S70. 95, 98
- 115 A_{man}^{gw} water abstraction for manufacturing sector taken from groundwater storage (L³ L⁻² T⁻¹). See tables S29, S69, S70, S71. 54, 94–96

 A_{muni} water abstraction for municipal sector (L³ L⁻² T⁻¹). See table S81. 106

 A_{ocean} seawater abstraction (L³ L⁻² T⁻¹). See tables S81, S82, S83. 106–108

 $A_{ocean.cons}$ seawater consumption (L³ L⁻² T⁻¹). See table S82. 107

- 120 $A_{ocean,rf}$ return flow from seawater abstraction (L³ L⁻² T⁻¹). See table S83. 108
 - A_{not}^{gw} potential groundwater abstraction (L³ L⁻² T⁻¹). See table S53. 78
 - A_{re} water abstraction from local reservoir (L³ L⁻² T⁻¹). See tables S35, S79. 60, 104
 - A_{rf} return flow from water abstraction (L³ L⁻² T⁻¹). See table S32. 57, 60, 68
 - A_{ri} water abstraction from river (L³ L⁻² T⁻¹). See tables S43, S80. 68, 105

125 $A_{sw,cons}$ surface water consumption (L³ L⁻² T⁻¹). See table S54. 79

 A_{tot} total abstraction (L³ L⁻² T⁻¹). See tables S29, S53. 54, 78

 $A_{tot,cons}$ total consumption (L³ L⁻² T⁻¹). See table S54. 79

- AET total amount of water from transpiration, evaporation, interception losses, and sublimation (L³ L⁻² T⁻¹). See tables S1, S11, S20. 26, 36, 45
- 130 b_{weir} width weir (L). See tables S34, S37. 59, 62
 - B area (L²). See tables S35, S46. 60, 71
 - B_{calm} fraction of the calm areas (unitless). See table S21. 46
 - B_G area of a grid cell (L²). See table S29, S43. 54, 68
 - $B_{la,global}$ global lake area (L²). See table S32. 57
- 135 $B_{la,global,max}$ maximum global lake area (L²). See tables S32, S49. 57, 76
 - $B_{la,local}$ local lake area (L²). See table S32. 57
 - $B_{la,local,max}$ maximum local lake area (L²). See tables S32, S49. 57, 76
 - B_{re} reservoir area (L²). See tables S35, S38. 60, 63
 - $B_{re,max}$ maximum reservoir area (L²). See table S35. 60
- 140 B_{stormy} fraction of the stormy areas (unitless). See tables S4, S21. 29, 46
 - $B_{we,global}$ global wetland area (L²). See table S39. 64
 - $B_{we,global,max}$ maximum global wetland area (L²). See tables S39, S49. 64, 76
 - $B_{we,local}$ local wetland area (L²). See table S39. 64

 $B_{we,local,max}$ maximum local wetland area (L²). See tables S39, S49. 64, 76

- 145 c_{air} specific heat of air (unitless). See tables S2, S7, S11, S23, S24. 27, 32, 36, 48, 49 c_{ice} specific heat ice (unitless). See tables S10, S12. 35, 37
 - $\mathcal{C}_{bulk}\;$ bulk transfer coefficient (unitless). See table S2. 27
 - $C_{bulk,Eq}$ bulk coefficient for evaporation from snow-free ground (unitless). See table S11.36
 - $C_{bulk,Eq}^{sn}$ bulk coefficient for evaporation from snow-covered ground (unitless). See table S11. 36
- 150 $C_{bulk,Ei}$ bulk coefficient for evaporation, from intercepted liquid water by canopy (unitless). See table S7. 32 $C_{bulk,Ei}^{sn}$ bulk coefficient for evaporation, from intercepted snow by canopy (unitless). See table S7. 32 $C_{B,red}$ area reduction factor (unitless). See tables S32, S35, S39. 57, 60, 64 C_{crop} crop coefficient (unitless). See tables S23, S24. 48, 49 C_{cropGN} crop group number (GN) is an indicator of adaptation to dry climate (unitless). See table S23. 48

- $C_{dam,G}$ allocation coefficient for grid cell that can be supply by more than one dam (unitless). See table S37. 62 155 $C_{dom}^{wu,ints}$ domestic water use intensity (L³ capita⁻¹ T⁻¹). See tables S59, S62. 84, 87 $C_{dom.cons}$ domestic consumptive use coefficient (unitless). See tables S60, S61, S63, S64. 85, 86, 88, 89 $C_{ele}^{techchangerate}$ technological change rate for the electricity sector (unitless). See tables S75, S76. 100, 101 $C_{gw,Q}$ groundwater outflow coefficient or recession coefficient of groundwater zone (T⁻¹). See table S31. 56 $C^{sw}_{aw,rech}$ groundwater recharge rate below surface water bodies (L³ L⁻² T⁻¹). See tables S32, S35, S39. 57, 60, 64 160 C_H surface exchange coefficient for sensible and latent heat fluxes between the surface and the lowest atmospheric level (unitless). See tables S23, S24. 48, 49 C_{ice} ice impedance coefficient determined from the ice content of the soil layers (unitless). See table S31. 56 $C_{liv}^{w,req}$ livestock specific animal water requirement (L³ capita⁻¹ T⁻¹). See table S68. 93 C_m degree-day factor (L Θ^{-1} T⁻¹). See table S12. 37 165 $C_{m \ season}$ seasonal degree-day factor (unitless). See table S12. 37 $C_{man}^{w,ints,2005}$ manufacturing structural water intensity of 2005 per country (L³ money⁻¹). See tables S69, S70, S72, S73. 94, 95.97,98 $C_{man cons}$ manufacturing consumptive use coefficient (unitless). See tables S73, S70, S74, S71, 95, 96, 98, 99 C^{tech,cr} technological change rate for the manufacturing sector (unitless). See tables S69, S70, S72, S73. 94, 95, 97, 98 170
- C_{man} recention great change rate for the manufacturing sector (unitess), see tables 509, 570, 572, 575, 94, 95, 97, C_{month} monthly provisional release coefficient (L⁻³ T⁻¹). See table S37. 62

 C_M Manning's roughness coefficient for river bed (unitless). See table S46. 71

 C_{M1} Manning coefficient 1 (unitless). See table S46. 71

 C_{M2} Manning coefficient 2 (unitless). See table S46. 71

175 C_{M3} Manning coefficient 3 (unitless). See table S46. 71

 $C_{MS,we}$ Manning-Strickler coefficient for wetlands (unitless). See table S39. 67

 $C_{P,l}$ extinction coefficient for rainfall (unitless). See table S5, S4. 29, 30

 $C_{P_{th}}$ throughfall coefficient (unitless). See table S5. 30

C_{PT} Priestley-Taylor coefficient: 1.26 in humid areas, 1.74 in semiarid / arid areas Kaspar [26] (unitless). See table S2. 27

180 $C_{ri,hydraulic}$ hydraulic radius coefficient of the river channel (L). See table S46. 71

 $C_{so,F}$ reduction factor for frozen soil (unitless). See table S13. 38

 $C_{so,i}$ soil matric potential coefficient (unitless). See table S28. 53

 C_{su} surface drag coefficient (unitless). See tables S7, S11, S23, S24. 32, 36, 48, 49

 $C_{sw,out}$ surface water outflow coefficient (T⁻¹). See tables S34, S42. 59, 67

185 C_{tot} total annual release coefficient (L⁻³ T⁻¹). See table S37. 62

Cweir coefficient friction of the reservoir weir (unitless). See tables S34, S37, S45, S46. 59, 62, 70, 71

- C_{ws} reduction factor because of water stress (unitless). See table S23. 48
- C_{year} yearly release coefficient (L⁻³ T⁻¹). See table S37. 62
- d_0 threshold depth (L). See table S31. 56
- 190 $d_{n,i}$ layer *i* node depth (L). See table S13. 38
 - $d_{n,i+1}$ layer i+1 node depth (L). See table S13. 38
 - d_{naddy}^{sw} actual surface water depth for paddy irrigation (L). See table S57. 82
 - $d_{paddu max}^{sw}$ maximal surface water depth for paddy irrigation (L) (50 mm). See table S57. 82
 - d_{sn} grid-average of depth of the snow cover (L). See table S13. 38
- 195 d_{so} total soil depth (L). See tables S14, S20, S25, S29, S30. 39, 45, 50, 54, 55
 - $d_{so,i}$ soil depth for layer index *i* (L). See tables S14, S24, S25, S49. 39, 49, 50, 75
 - $d_{so,root}$ rooting depth (L). See tables S18, S22, S49. 43, 47, 75
 - d_{wt} water table depth (L). See tables S29, S30, S31. 54–56
 - $d_{wt,i}$ depth of the layer *i* directly above the water table (L). See table S30. 55
- 200 D_w soil water diffusivity (L² T⁻¹). See table S14. 39
 - e vapor pressure (kPa). See tables S7, S11, S23, S24. 32, 36, 48, 49
 - e_{act} actual vapor pressure (kPa). See table S2. 27
 - e_{ca} vapor pressure in canopy air space (kPa). See tables S7, S11, S23, S24. 32, 36, 48, 49
 - e_{sat} saturation vapor pressure (kPa); for Mac-PDM.20 (mb). See table S2. 27
- $e_{sat.dew}$ saturation vapor pressure at dew point; for Mac-PDM.20 (mb). See table S2. 27
 - E_{ca} evaporation, water changes from liquid to vapour, from canopy storage (L³ L⁻² T⁻¹). See tables S1, S3, S5, S7, S9, S23, S24. 26, 28, 30, 32, 34, 45, 49
 - $E_{ca}^{sn,cov}$ evaporation from snow-covered canopy (L³ L⁻² T⁻¹). See table S1. 26
 - $E_{ca}^{sn,free}$ evaporation from snow-free canopy (L³ L⁻² T⁻¹). See table S1. 26
- 210 $E_{ca,l}$ amount of water, from rainfall, accumulated on the vegetation that changes from liquid to vapor (L³ L⁻² T⁻¹). See tables S3, S7, S10. 28, 32, 35
 - $E_{ca,max}$ maximum amount of water accumulated on the vegetation that changes from liquid to vapor (L³ L⁻² T⁻¹). See table S7. 32
- $E_{ca,s}$ amount of water, from snowfall, accumulated on the vegetation that changes from solid to vapor (L³ L⁻² T⁻¹). See tables S3, S7, S9. 28, 32, 34

 E_{dew} liquid dew, accumulated on the ground or snow that changes from vapor to liquid (L³ L⁻² T⁻¹). See tables S8, S10. 33, 35

 E_{eq} evaporation at the equilibrium (L³ L⁻² T⁻¹). See table S24. 49

 $E_{floodplain}$ evaporation from floodplain, it can be wetland (L³ L⁻² T⁻¹). See table S1. 26

- 220 E_{la} evaporation from lake storage (L³ L⁻² T⁻¹). See tables S1, S32, S33, S45, S47. 26, 57, 58, 70, 72
 - $E_{la,pot}$ potential evaporation from lake storage (L³ L⁻² T⁻¹). See tables S33, S47. 58, 72

 E_{lfsm} leaf and stem surface evaporation (L³ L⁻² T⁻¹). See table S9. 34

 E_{osw} evaporation from open water surfaces (L³ L⁻² T⁻¹). See tables S57, S58. 82, 83

- E_{re} evaporation from reservoir storage (L³ L⁻² T⁻¹). See tables S1, S35, S38, S45. 26, 60, 63, 70
- 225 $E_{re,pot}$ potential evaporation from reservoir storage (L³ L⁻² T⁻¹). See table S38. 63
 - E_{ri} evaporation from river storage (L³ L⁻² T⁻¹). See tables S1, S47. 26, 72
 - E_{sn} sublimation, water that changes from solid (snow and ice) to vapor (L³ L⁻² T⁻¹). See tables S1, S8, S9, S11, S12. 26, 33, 34, 36, 37

 E_{sn}^{covgr} sublimation on snow covered ground (L³ L⁻² T⁻¹). See table S11. 36

230 E_{sn}^{freegr} sublimation on snow free ground (L³ L⁻² T⁻¹). See table S11. 36

 $E_{sn,so}$ sublimation on soil, water that changes from solid (snow and ice) to vapor (L³ L⁻² T⁻¹). See tables S10. 35

 E_{sn,SG_i} sublimation in a subgrid cell Müller Schmied et al. [34] (L³ L⁻² T⁻¹). See tables S8, S11. 33, 36

- $E_{snunderca}$ sublimation under canopy, water that changes from solid (snow and ice) to vapor (L³ L⁻² T⁻¹). See table S10, S11. 35, 36
- 235 E_{so} soil evaporation, water changes from liquid to vapor (L³ L⁻² T⁻¹). See tables S1, S8, S11, S14, S23, S24, S25. 26, 33, 36, 39, 48–50
 - $E_{so,i}$ soil evaporation from soil layer *i* (L³ L⁻² T⁻¹). See table S14. 39

 $E_{so,ice}$ soil evaporation from ground covered with ice (L³ L⁻² T⁻¹). See table S1. 26

 $E_{sol}^{sn,freegr}$ soil evaporation from snow free ground (L³ L⁻² T⁻¹). See tables S1, S24. 26, 49

240 E_{we} evaporation from wetland storage (L³ L⁻² T⁻¹). See tables S1, S39, S41. 26, 64, 66

 $ET_{so,i}$ evapotranspiration from soil layer i (L³ L⁻² T⁻¹). See tables S1, S14, S24. 26, 39, 49

 $ET_{so,i-1}$ evapotranspiration from soil layer i-1 (L³ L⁻² T⁻¹). See table S24. 49

- f fractional coverage (unitless). See tables S5, S7. 30, 32
- f_a fraction of the tile which is saturated and hence has aerodynamic resistance only (unitless). This represents 1 for lake, ice or snow-covered tiles (unitless). See tables S7, S24. 32, 49
 - f_{ah} roughness length of the surface beneath the canopy (unitless). See table S11. 36
 - f_{bu} fraction of the built-up areas (unitless). See tables S18, S20, S25. 43, 45, 50

- f_{B_P} fraction of the area that receives precipitation rate greater than or equal to precipitation rate (unitless). See table S6. 31
- f_{ca} fraction of the vegetation or canopy class in a grid cell (unitless). See tables S4, S5, S23, S24, S50, S52. 29, 30, 48, 49, 75, 77
 - $f_{ca,ex}$ fraction of the exposed canopy (unitless). See table S48. 73
 - $f_{ca,G}$ fraction of the vegetation in a grid cell. See table S24. 49
 - $f_{ca,max}$ maximum fraction of vegetation type including non-biological fraction (unitless). See table S5. 30
 - $f_{ca,n}$ vegetation fractional coverage for the *n* vegetation tile. See table S1. 26
- 255 $f_{ca,sn}$ canopy wetness-snow cover fraction (unitless). See tables S7, S11. 32, 36
 - $f_{ca,wet}$ fractional wetted area of the canopy (unitless). See table S23. 48
 - *f_{cons,A}* ratio of consumption to abstraction (unitless). See tables S54, S55, S57, S58, S60, S61, S63, S64, S70, S71, S73, S74, S82, S83. 79, 80, 82, 83, 85, 86, 88, 89, 95, 96, 98, 99, 107, 108
 - $f_{day.ca.wet}$ fraction of the day-time when the canopy is wet (unitless). See table S23. 48
- 260 f_{drai} drainage decay factor (L⁻¹). See table S31. 56
 - f_F frozen ration in the uppermost soil layer (unitless). See table S11. 36
 - *f*_{gw,use} sector- and cell-specific groundwater use fraction (unitless). See tables S53, S54, S56, S57, S59, S60, S61, S62, S63, S64, S69, S70, S72, S73. 78, 79, 81, 82, 84–89, 94–99
- $f_{G,sat}$ fraction of the grid area which is saturated (unitless). It is determined by the topographic characteristics and soil moisture state of a grid cell. See tables S22, S58. 47, 83
 - $f_{G,unsat}$ fraction of the grid area which is unsaturated (unitless). See table S21. 46
 - f_{h2o} fraction of the ground covered by water (unitless). See tables S21, S25. 46, 50
 - f_{hq} hydrogeology-related factor (unitless). See table S30. 55
 - f_{if} factor interflow (unitless). See table S26. 51
- 270 f_{irr} storage reduction factor due to irrigation water abstraction (unitless). See tables S29, S39, S43, S52, S53, S56. 54, 64, 68, 77, 78, 81
 - $f_{irr,eff}$ irrigation efficient (unitless). See tables S56, S58. 81, 83
 - $f_{irr,sw,eff}$ country-specific surface water irrigation efficient (unitless). See table S56. 81
 - f_{la} lake area fraction of the grid cell (unitless). See table S49. 74
- 275 f_{lost} proportion lost during delivery (unitless). See tables S55, S57, S58, S60, S61, S63, S64, S70, S73, S71, S74, S83. 80, 82, 83, 85, 86, 88, 89, 95, 96, 98, 99, 108
 - f_{LAI} interception efficiency of leaf area index (unitless). See tables S4, S9. 29, 34
 - f_{pq} permafrost / glacier-related factor (unitless). See table S30. 55
- f_P percentage that receives a precipitation rate greater than or equal to precipitation rate over the fractions of a grid cell (unitless). See table S6. 31

 $f_{Pc,G}$ fraction of the grid cell occupied by convective precipitation (unitless). See tables S5, S20. 30, 45

- f_{re} fraction of the reservoir fill equal to 1 at total storage capacity (unitless). See table S37. 62
- f_r relief-related factor (unitless). See table S30. 55

 $f_{ri,sat}$ river channel fraction in the saturated area (unitless). See table S22. 47

- 285 $f_{root,i}$ fraction of the roots per soil layer *i* (unitless). See table S24. 49
 - f_R runoff component factor (surface, interflow, baseflow) (unitless). See table S19. 44
 - $f_{R_{if,max}}$ fraction of the maximum interflow or subsurface flow (unitless). See table S31. 42
 - $f_{R_{in,0}}$ fraction of the area for which the maximum rate of infiltration (infiltration capacity) is less than rate of the infiltration (unitless). See table S24. 49
- 290 f_{sn} fraction of the ground covered by snow (unitless). See tables S7, S8, S10, S11, S12, S25. 32, 33, 35–37, 50

 $f_{so,bare}$ fraction of the bare soil in a grid cell (unitless). See tables S1, S24. 26, 49

- $f_{so,bare,sat}$ fraction of the bare soil in a grid cell that is saturated (unitless). See table S24. 49
- $f_{so,dep}$ soil depletion fraction (unitless). See table S23. 48

 $f_{so,tex}$ soil-texture-related factor (unitless). See table S30. 55

295 $f_{su,gr}$ fractional area of surface ground (unitless). See table S24. 49

 f_{swb} fraction of the surface water bodies (lakes, wetlands, reservoirs) (unitless). See tables S32, S43. 57, 68

 $f_{S_{so,max}}$ fraction of the maximum soil moisture (unitless). See table S31. 42

 $f_{w,lf}$ coverage of the water on leaf (unitless). See table S7. 32

 f_{we} fraction coverage of wetland in a grid cell (unitless). See tables S20, S25, S27, S39, S40, S41. 45, 50, 52, 55, 64–66

- 300 *F* mass gain due to frost ($L^3 L^{-2} T^{-1}$). See table S8, S13. 33, 38
 - F_{so} frozen soil (Θ). See table S13. 38
 - g_{ca} canopy conductance (M L T⁻³ Θ^{-1}). See table S23. 48
 - g_{ca}^{air} water vapor conductance from the canopy air to the atmosphere (M L T⁻³ Θ^{-1}). See table S23. 48
 - $g_{ca}^{H_s}$ vegetation sensible heat conductance (M L T⁻³ Θ^{-1}). See table S23. 48
- 305 g_{qr}^{ca} water vapor conductance from ground to canopy air (M L T⁻³ Θ^{-1}). See table S23. 48
 - g_{so} soil conductance (M L T⁻³ Θ^{-1}). See table S24. 49
 - g_{st}^w water vapor leaf level stomatal conductance (M L T⁻³ Θ^{-1}). See tables S7, S23. 32, 48

 $g_{st,pot}$ potential leaf level stomatal conductance, non-water stressed (M L T⁻³ Θ^{-1}). See table S23. 48 *G* grid cell (1). See table S49. 74

310 GAV gross added value per country (money T⁻¹). See tables S69, S70, S72, S73. 94, 95, 97, 98

- h_{of} overflow height (L). See tables S34, S37. 59, 62
- h_w water height (L). See tables S34, S37. 59, 62
- $h_{w,we}$ wetland water level (L). See table S42. 67
- H heat (M L² T⁻²). See table S12. 37
- 315 H_{atm} heat flux from the overlaying atmosphere (M L² T⁻³ L⁻²). See table S13. 38
 - H_i excess or deficit of energy needed to change the soil layer temperature to freezing temperature (M T⁻²). See table S12. 37
 - H_l latent heat (M T⁻³). See tables S2, S7, S8, S10, S12. 27, 32, 33, 35, 37
 - $H_{l,E}$ latent heat of evaporation (M T⁻³). See tables S7, S8, S9, S11, S23, S24. 27, 32, 33, 36, 48, 49
 - $H_{l,E_{sn}}$ latent heat of sublimation (M T⁻³). See tables S7, S11. 32, 36
- 320 H_M latent heat of melt (M T⁻³). See tables S8, S12. 33, 37
 - $H_{M,ice}$ latent heat of ice (M T⁻³). See table S12. 37
 - H_{se} sensible heat flux (M T⁻³). See tables S10,S12. 35, 37
 - H_{sn} snow heat content (M T⁻³). See table S12. 37
 - $H_{sn,i}$ snow heat content of layer i (M T⁻³). See table S12. 37
- 325 H_{so} soil heat flux density (M T⁻³). See table S2. 27
 - H_{soTL} reciprocal areal heat capacity of the top soil layer (M T⁻³). See table S12. 37
 - $H_{so,i}$ specific heat capacity of layer *i* (M L² T⁻²). See table S13. 38
 - H_{tot} total surface heat capacity (M L² T⁻²). See table S12. 37
 - i number of element or layer or space index (unitless). See tables S8, S12, S19. 33, 37, 44
- 330 i_{GS} growing-season index (unitless). See table S7. 32
 - I_0 initial intercepted canopy snow load (unitless). See table S9. 34
 - I_{cap} interception capacity (L). See table S3. 29
 - j weighting parameter that varies between 0 and 1. See table S52. 77
 - $J_{ele,A,ints,i}$ water abstraction intensity of powerplant *i*. See table S75. 100
- 335 $J_{ele,cons,ints,i}$ water consumption intensity of powerplant *i*. See table S76. 101
 - $J_{ele,coo,i}$ cooling system of powerplant *i*. See tables S75, S76. 100, 101
 - $J_{ele,pt,i}$ plant type of powerplant *i*. See tables S75, S76. 100, 101
 - $J_{ele, prod, i}$ thermal electricity production of powerplant i (MWh T⁻¹). See tables S75, S76. 100, 101
 - k soil hydraulic conductivity (L T⁻¹). See tables S13, S14, S21, S25, S27, S28. 38, 39, 46, 50, 52, 53
- 340 k_{3so} hydraulic conductivity from the third soil layer to the deeper soil (L T⁻¹). See tables S27, S28, S30. 52, 53, 55

- k_{aq} hydraulic conductivity of the layer containing the water table (unitless). See table S30. 55
- k_{bot} hydraulic conductivity of the bottom soil with free gravitational drainage (L T⁻¹). See table S31. 56
- k_i hydraulic conductivity at the interface j (unitless). See table S25. 50
- k_b recession coefficient of the saturated/groundwater storage, producing baseflow /groundwater runoff (T⁻¹). See table S31. 345 56
 - k_0 recession coefficient of the unsaturated zone storage, upper outlet for fast interflow (T⁻¹). See table S26. 51
 - k_1 recession coefficient of the unsaturated zone reservoir, lower outlet for slow interflow (T⁻¹). See table S26. 51
 - k_{uz} recession coefficient of the unsaturated zone reservoir to the saturated/groundwater reservoir (groundwater recharge / percolation) (T⁻¹). See table S30. 55
- 350 k_{sat} effective saturated hydraulic conductivity (unitless). See tables S13, S25, S28. 38, 50, 53
 - k_{sat}^{gw} saturated hydraulic conductivity for groundwater (unitless). See table S31. 56
 - k_{th} thermal conductivity (unitless). See table S13. 38
 - K_f generatio ratio for interflow (unitless). See table S26. 51
 - K_{ff} generatio ratio for overflow of the uppermost layer, i.e. the Horton runoff (unitless). See table S22. 47
- 355 l_G distance between centers of neighboring grid cells (L). See table S46. 71
 - $l_{G,ri}$ distance between centers of neighboring grid cells, in river flow direction (L). See table S42. 67
 - l_{ri} length of river sections (L). See tables S45, S46. 24, 70, 71
 - $l_{ri,hom}$ length of homogeneous rivers segments (L). See table S46. 71
 - LAI leaf area index (L L^{-1}). See tables S4, S5, S6, S7, S9, S49. 29–32, 34, 73–76
- 360 LAI_{max} maximum leaf area index (L L⁻¹). See table S7. 32
 - LAI_{min} minimum leaf area index (L L⁻¹). See table S7. 32
 - LAI_{month} leaf area index of monthly vegetation (unitless). See table S7. 32
 - LC land cover (unitless). See table S19. 44
- M snowmelt, water that changes from solid to liquid (L³ L⁻²T⁻¹). See tables S8, S11, S12, S14, S20, S21, S25, S39. 33, 36, 37, 39, 45, 46, 50, 64
 - M_{ca} snowmelt on canopy (L³ L⁻² T⁻¹). See table S9. 34
 - M_i snowmelt of layer i (L³ L⁻²T⁻¹). See table S12. 37
 - M_{in} flow of liquid water into layer *i* from the layer above (L³ L⁻² T⁻¹). See table S8. 33
 - M_{out} flow of liquid water out of layer i to the layer below (L³ L⁻² T⁻¹). See table S8. 33
- 370 M_{pot} potential snowmelt, amount of water that could change from solid to liquid independent of snow storage state (L³ L⁻²T⁻¹). See tables S8, S12. 33, 37

 M_{SG_i} snowmelt in a subgrid cell Müller Schmied et al. [34] (L³ L⁻² T⁻¹). See table S8. 33 M_t snowmelt at the time t (L³ L⁻²T⁻¹). See table S12. 37 $M_{underca}$ snowmelt under canopy (L³ L⁻² T⁻¹). See table S10. 35 375 *n* linear reservoir cascade index (unitless). See table S46. 71 NR net radiation flux (M L⁻² T⁻³). See tables S2, S10, S12, 27, 35, 37 NR_n net radiation at crop surface (M J L⁻² T⁻¹). See table S2. 27 P_{conv} relative amount of convective precipitation (L³ L⁻² T⁻¹). See table S21. 46 P_{dr} drip, dripping of water at the edge of the canopy (L³ L⁻² T⁻¹). See tables S5, S9. 30, 34 $P_{dr,l}$ dripping of rain at the edge of the canopy(L³ L⁻² T⁻¹). See table S5. 30 380 $P_{dr.s}$ dripping of snow at the edge of the canopy (L³ L⁻² T⁻¹). See tables S5, S9. 30, 34 P_{eff} effective precipitation reaching the soil surface (L³ L⁻² T⁻¹). See table S57. 82 P_{qr} total precipitation falls directly to the ground (snow or soil surface) (L³ L⁻² T⁻¹). See table S6. 31 $P_{ar,l}$ rainfall falls directly to the ground (L³ L⁻² T⁻¹). See table S6. 31 $P_{ar.l.calm}$ rainfall falling to the ground in calm areas (L³ L⁻² T⁻¹). See table S4. 29 385 $P_{ar,l.stormy}$ rainfall falling to the ground in stormy areas (L³ L⁻² T⁻¹). See table S4. 29 $P_{ar.s}$ snowfall falls directly to the ground (L³ L⁻² T⁻¹). See tables S6, S10. 31, 35 $P_{ar \ s \ calm}$ snowfall falling to the ground in calm areas (L³ L⁻² T⁻¹). See table S4. 29 $P_{ar.s.stormy}$ snowfall falling to the ground in stormy areas (L³ L⁻² T⁻¹). See table S4. 29 P_{int} precipitation intercepted by canopy (L³ L⁻² T⁻¹). See tables S4, S7, S3, 28–30, 32 390 $P_{int,l}$ interception of rainfall by canopy (L³ L⁻² T⁻¹). See tables S3, S4, S5, S10. 28–30, 35 $P_{int,l,calm}$ interception of rainfall by canopy in calm areas (L³ L⁻² T⁻¹). See table S4. 29 $P_{int,l,stormy}$ interception of rainfall by canopy in stormy areas (L³ L⁻² T⁻¹). See table S4. 29 $P_{int,max}$ calibration parameter of the canopy storage (L). See table S49.75 $P_{int.s}$ interception of snowfall by canopy (L³ L⁻² T⁻¹). See tables S3, S4, S5, S9. 28–30, 34 395 $P_{int,s,calm}$ interception of snowfall by canopy in calm areas (L³ L⁻² T⁻¹). See table S4. 29 $P_{int,s,stormy}$ interception of snowfall by canopy in stormy areas (L³ L⁻² T⁻¹). See table S4. 29 P_{ra} rainfall (L³ L⁻² T⁻¹). See tables S4, S5, S6, S8, S9, S12, S20, S25, S39, 29–31, 33, 37, 45, 50, 64 $P_{mean,G}$ grid cell average precipitation (L³ L⁻² T⁻¹). See tables S5, S6. 30, 31 P_{sn} snowfall (L³ L⁻² T⁻¹). See tables S4, S5, S6, S9, S12. 29–31, 33, 34 400 $P_{s,ca}$ snowfall that is affected by the canopy interception and dripping (L³ L⁻² T⁻¹). See table S8. 33

 P_{s,SG_i} snowfall in a subgrid (SG) cell Müller Schmied et al. [34] (L³ L⁻² T⁻¹). See table S8. 33

- P_{th} throughfall, total precipitation falls to the ground through canopy spaces (L³ L⁻² T⁻¹). See tables S3, S5, S8, S9, S12, S14, S20, S21, S22, S25, S30. 28, 30, 33, 34, 37, 39, 45–47, 50, 55
- 405 $P_{th,l}$ rainfall falls to the ground through canopy spaces (L³ L⁻² T⁻¹). See tables S3, S5. 28, 30
 - $P_{th,s}$ snowfall falls to the ground through canopy spaces (L³ L⁻² T⁻¹). See tables S3, S5. 28, 30
 - P_{tot} total precipitation which includes rainfall and snowfall (L³ L⁻² T⁻¹). See tables S3, S4, S5, S7, S8, S9, S10, S20, S21, S25, S32, S33, S35, S38, S39, S47. 28–30, 32–35, 39, 45, 46, 50, 57, 58, 60, 63, 64, 72
- PAR photosynthetically active radiation. It is assumed to be 50% of shortwave incoming solar radiation (M L² T⁻³). See table S2. 27
 - PET total amount of water from transpiration, evaporation, interception losses, and sublimation that would occur if a sufficient water source were available (L³ L⁻² T⁻¹). See tables S2, S7, S11, S23, S24, S33, S38, S41, S47, S52, S57. 27, 32, 36, 48, 49, 58, 63, 66, 72, 77, 82

- PET_{ows} total amount of water from transpiration, evaporation from the impervious areas, defined here as open water storage (L³ L⁻² T⁻¹). See tables S20, S24. 45, 49
- PFT plant functional type (unitless). See tables S48, S49. 73, 74
- POP population within the gridcell. See tables S59, S62. 84, 87
- 420 $POP_{liv,t}$ livestock type specific animal population within the gridcell. See table S68. 93
 - POP_u urban population within the gridcell. See tables S69, S70, S71, S72, S73, S74. 94–99
 - POP_u^c urban population of a country. See tables S69, S70, S71, S72, S73, S74. 94–99
 - q specific humidity of near-surface air (M M⁻¹). See tables S2, S7, S11, S23, S24. 27, 32, 36, 48, 49
 - q_{qr} specific humidity at ground surface (M M⁻¹). See tables S2, S23. 27, 48
- 425 q_{sat}^{ca} saturated specific humidity at canopy temperature (M M⁻¹). See tables S7, S11, S23, S24. 32, 36, 48, 49
 - q_{sat}^{gr} saturated specific humidity at ground surface (M M⁻¹). See tables S2, S11, S24. 27, 36, 49
 - $q_{sat}^{gr,sn}$ saturated specific humidity at ground surface with snow (M M⁻¹). See table S11. 36
 - q_{sat}^{sn} saturated specific humidity at snow (M M⁻¹). See table S7. 32
 - q_{so} relative humidity of the soil pore space (M M⁻¹). See table S24. 49
- 430 q_{su} relative humidity at the near-surface (M M⁻¹) dimensions. See table S11. 36
 - Q_{ef} environmental flow (L³ T⁻¹). See tables S35, S56, S62, S72, S75. 60
 - Q_i vertical water flux from soil layer above, including infiltration in the upper layer and percolation and capillary rise in all layers (L³ T⁻¹). See table S14. 39
- Q_{i-1} vertical water flux to soil layer below, including infiltration in the upper layer and percolation and capillary rise in all layers (L³ T⁻¹). See table S14. 39

PET' overall PET flux reduced by canopy evaporation and evaporation from open-surface-bodies (L³ L⁻² T⁻¹). See table 415 S24. 49

 $Q_{in,so}$ soil moisture flux (L³ T⁻¹). See table S13. 38

 $Q_{in,surf}$ surface moisture flux remaining after surface runoff has been removed (L³ T⁻¹). See table S25. 50

- *Q_{iu}* inflow upstream of a grid cell (L³ T⁻¹). See tables S32, S35, S43, S45, S46, S54, S55, S56, S57, S59, S60, S61, S62, S63, S65, S66, S67, S68, S69, S70, S71, S72, S73. 57, 60, 68, 70, 71, 79–82, 84–88, 90–98
- 440 $Q_{iu,la}$ mean total annual inflow in a lake (L³ T⁻¹). See tables S34, S43. 59, 68

 $Q_{iu,mean}$ mean annual inflow in a reservoir (L³ T⁻¹). See table S37. 62

 $Q_{iu,re}$ inflow reservoir (L³ T⁻¹). See tables S35, S37, S43. 60, 62, 68

 $Q_{iu,tot,re}$ mean total annual inflow in a reservoir (L³ T⁻¹). See table S37. 62

- $Q_{iu,we,up}$ inflow from the wetland of an upstream grid cell (L³ T⁻¹). See tables S39, S40, S45. 64, 65, 70
- 445 Q_{la} outflow from a lake (L³ T⁻¹). See tables S32, S34, S43. 57, 59, 60

 $Q_{la,alobal}$ outflow from a global lake (L³ T⁻¹). See tables S32, S34, S39. 57, 59, 64

 $Q_{la,local}$ outflow from a local lake (L³ T⁻¹). See tables S32, S34, S39. 57, 59, 64

 Q_{mean} outflow mean (L³ T⁻¹). See table S35. 60

 Q_{od} outflow downstream of a grid cell (L³). See table S43. 68

450 $Q_{rv,up}$ outflow from rivulet storage of upstream grid cells (L³ T⁻¹). See tables S40, S45. 65, 70

 Q_{pf} preferential flow (L³ T⁻¹). See tables S21, S29, S30. 46, 54, 55

 Q_{re} outflow from a local reservoir that flows directly into the river channel of the cell (L³ T⁻¹). See tables S35, S37, S39, S43, S46. 60, 62, 64, 68, 71

 $Q_{re,de}^{irr}$ outflow from a irrigation reservoir driven by water demand in downstream cells (L³T⁻¹). See table S37. 62

455 $Q_{re,global}$ outflow from a global reservoir (L³ T⁻¹). See table S37. 62

 $Q_{re,alobal}^{irr}$ outflow from a global reservoir designed for irrigation (L³ T⁻¹). See table S37. 62

 $Q_{re,alobal}^{non-irr}$ outflow from a global reservoir designed for other purposes than irrigation (L³ T⁻¹). See table S37. 62

 $Q_{re,alobal}^{purpose}$ outflow from a global reservoir for irrigation or others purposes (L³ T⁻¹). See table S37. 62

 $Q_{re,mean}$ long-term mean outflow from a reservoir (L³ T⁻¹). See table S37. 62

460 $Q_{re,min}$ minimum outflow from reservoir (L³ T⁻¹). See table S37. 62

 $Q_{re,nd}$ non-damaging outflow from reservoir (L³ T⁻¹). See table S37. 62

 $Q_{re,norm}$ normal outflow from reservoir (L³ T⁻¹). See table S37. 62

 $Q_{re,local}$ outflow from a local reservoir (L³ T⁻¹). See tables S43, S37, S46. 60, 62, 71

 Q_{ri} streamflow (L³). See tables S35, S43, S45, S46. 60, 68, 70, 71

465 $Q_{ri,in}$ streamflow inflow (L³ T⁻¹). See tables S32, S35, S46. 57, 60, 71

 $Q_{ri,n}$ outflow of river storage cascade n (L³ T⁻¹). See table S43. 68

 $Q_{ri,n-1}$ outflow of prior river storage cascade n-1 (L³ T⁻¹). See table S43.68

 $Q_{ri,out}$ streamflow outflow (L³ T⁻¹). See tables S32, S35, S46. 57, 60, 71

 $Q_{ri,up}$ streamflow from the upstream grid cell (L³ T⁻¹). See tables S40, S45. 65, 70

470 Q_{we} outflow from wetland (L³ T⁻¹). See tables S39, S42. 64, 67

 $Q_{we,global}$ outflow from a global wetland (L³ T⁻¹). See tables S39, S42, S43. 64, 67, 68

 $Q_{we,local}$ outflow from a local wetland (L³ T⁻¹). See tables S32, S35, S39, S42. 57, 60, 64, 67

 r_b bulk canopy resistance (T L⁻¹). See tables S7, S11, S23. 32, 36, 48

 r_{ca} vegetation or canopy aerodynamic resistance (T L⁻¹; for Mac-PDM.20 cms⁻¹). See tables S2, S7, S11, S23. 27, 32, 36, 475 48

 $r_{ca,dry}$ aerodynamic resistance of the dry leaves (T L⁻¹). See table S23. 48

 $r_{floodplain}$ floodplain resistance (unitless). See tables S11, S24. 36, 49

 r_o architectural resistance (T L⁻¹). See tables S7, S23. 32, 48

 r_{sn} snow resistance (unitless). See tables S7, S11, S23, S24. 32, 36, 48, 49

480 r_{so} bare soil resistance (T L⁻¹). See tables S11, S24. 36, 49

 r_{tot} total resistance to water vapor transfer from the canopy to the canopy air (T L⁻¹). See table S7.32

 r_w aerodynamic resistance (T L⁻¹; for Mac-PDM.20 cms⁻¹). See tables S2, S7, S23. 27, 32, 48

 r_{wca} aerodynamic resistance under canopy air space (T L⁻¹). See tables S11, S24. 49

 R_0 runoff 0 (L³ L⁻² T⁻¹). See table S20. 45

485 R_1 runoff 1 (L³ L⁻² T⁻¹). See table S20. 45

 R_2 runoff 2 (L³ L⁻² T⁻¹). See table S20. 45

 R_{bu} immediate runoff in urban areas (L³ L⁻² T⁻¹). See table S18. 43

 R_{cr} capillary rise (L³ L⁻² T⁻¹). See tables S14, S26, S28, S29, S30. 39, 51, 53–55

 $R_{cr,max}$ maximum capillary rise in a cell fraction, depending on height of ground water table and relative elevation of grid (L³ L⁻² T⁻¹). See table S28. 53

 R_G total runoff of a grid (G) cell, a lag process between runoff generation and river routing for each grid cell (L³ L⁻² T⁻¹). See table S19, S44. 44, 69

 $R_{gl,we,la}$ liquid runoff from glaciers, wetlands, and lakes / is this a part of saturation excess flow? (M L⁻² T⁻¹). See table S20. 45

495 R_{gw} groundwater runoff, outflow of the groundwater storage (L³ L⁻² T⁻¹). See tables S14, S29, S30, S31, S32, S43, S54, S55, S56, S57, S59, S60, S61, S62, S63, S65, S66, S67, S68, S69, S70, S71, S72, S73. 39, 42, 43, 54–57, 68, 79–82, 84–88, 90–98

 R_{av}^{ri} groundwater runoff which recharges rivers (L³ L⁻² T⁻¹). See table S43. 68

- $R_{qw,max}$ Maximum drainage when the water table depth is at the surface (L³ L⁻² T⁻¹). See table S31. 56
- 500 $R_{qw,rout}$ groundwater routing parameter for Mac-PDM.20 (unitless). See table S31. 56
 - $R_{aw,up}$ groundwater runoff from the upstream grid cell (L³ L⁻² T⁻¹). See tables S40, S45. 65, 70
 - R_{qwr} groundwater recharge (L³ L⁻² T⁻¹). See tables S14, S20, S29, S30, S54. 39, 42, 45, 54, 55
 - R_{awr}^{swb} groundwater recharge below surface water bodies (L³ L⁻² T⁻¹). See tables S32, S35, S39. 57, 60, 64

 $R_{awr,i}$ groundwater recharge in layer *i* (L³ L⁻² T⁻¹). See table S14. 39

- 505 $R_{qwr,i-1}$ groundwater recharge in layer i 1 (L³ L⁻² T⁻¹). See table S14. 39
 - $R_{qwr,max}$ maximum groundwater recharge (L³ L⁻² T⁻¹). See tables S30, S39. 55, 64

 $R_{qwr,min}$ minimum groundwater recharge (L³ L⁻² T⁻¹). See table S27. 55

510

- R_G^n runoff concentration in a grid (G) cell, of a time step *n*, represents the lag process between runoff generation and river routing, for each grid cell. The runoff generated for each grid cell is routed to the corner of each cell and a concentration time is determined before it enters into the river storage (L³ L⁻² T⁻¹). See table S19. 44
- R_G^1 runoff concentration in a grid cell of the first time step (L³ L⁻² T⁻¹). See table S44. 69
- R_{ho} hortonian overland flow or infiltration excess overland flow occurs when precipitation exceeds the infiltration capacity of the soil. The water excess runs off over the ground surface because soil cannot absorb it (L³ L⁻² T⁻¹). See tables S20, S21, S25. 45, 46, 50
- 515 $R_{ho,calm}$ hortonian overland flow in calm areas (L³ L⁻² T⁻¹). See table S21. 46

 $R_{ho,stormu}$ hortonian overland flow in stormy areas (L³ L⁻² T⁻¹). See table S21.46

- R_{if} interflow or subsurface flow, outflow of the soil storage that discharges into river, lake, and wetland storages. It doesn't reach the groundwater storage (L³ L⁻² T⁻¹). See tables S14, S17, S20, S26, S43. 39, 42, 45, 51, 68
- $R_{if,fast}$ fast interflow from the unsaturated storage (L³ L⁻² T⁻¹). This does not flow from the soil storage. See tables S17, S18, S26. 42, 43, 51
 - $R_{if,max}$ maximum subsurface flow (L³ L⁻² T⁻¹). See table S31. 42
 - $R_{if,slow}$ slow interflow from the unsaturated storage (L³ L⁻² T⁻¹). This does not flow from the soil storage. See tables S17, S18, S26. 42, 43, 51
 - R_{in} infiltration (L³ L⁻² T⁻¹). See tables S8, S10, S14, S20, S18, S21, S25, S27, S57. 33, 35, 39, 43, 45, 46, 50, 52, 82

525 $R_{in,0}$ corresponding point infiltration capacity (L³ L⁻² T⁻¹). See tables S20, S24. 45, 49

 $R_{in,BL}$ infiltration from the base layer (BL) (L³ L⁻² T⁻¹). See table S30. 55

 $R_{in,cum}$ cumulative infiltration (L³ L⁻² T⁻¹). See table S25. 50

 $R_{in,i}$ infiltration in layer *i* (L³ L⁻² T⁻¹). See tables S8, S14, S20, S25, 33, 39, 45, 50

 $R_{in,i-1}$ infiltration in layer i - 1 (L³ L⁻² T⁻¹). See tables S8, S25. 33, 50

530 $R_{in,L}$ infiltration from layer (L) (L³ L⁻² T⁻¹). See table S26. 51

 $R_{in,max}$ infiltration capacity or the maximum rate of infiltration (L³ L⁻² T⁻¹). See tables S20, S21, S24, S25, 45, 46, 49, 50

 $R_{in,over-so}$ infiltration over soil covered cell fraction (L³ L⁻² T⁻¹). See table S25. 50

 $R_{in,pot}$ potential infiltration (L³ L⁻² T⁻¹). See table S25. 50

 $R_{in,r}$ re-infiltration (L³ L⁻² T⁻¹). See table S14. 39

540

545

535 $R_{in,sat}$ infiltration at saturation level (L³ L⁻² T⁻¹). See table S26. 51

 $R_{in,TL}$ infiltration from the top soil layer (TL) (L³ L⁻² T⁻¹). See table S20. 45

- R_{of} runoff induced by the over saturation at the surface / is this similar to saturation excess flow (L³ L⁻² T⁻¹). See table S20, S56. 45, 81
- R_{pe} percolation or drainage, infiltrated water into the soil that runs off toward the groundwater storage (L³ L⁻² T⁻¹). See tables S14, S18, S25, S26, S27, S29, S30, S39, 39, 50–52, 54, 55, 64

 $R_{pe,h2osfc}$ bottom drainage from the surface water store (L³ L⁻² T⁻¹). See table S25. 50

 R_s water that leaves the surface layer (topsoil layer) e.g. as overland flow / fast runoff in ISIMIP2b (L³ L⁻² T⁻¹). See table S16. 40, 41

 R_{sat} saturation excess overland flow occurs when the soil is saturated or filled with water, and any additional precipitation or irrigation causes runoff. (L³ L⁻² T⁻¹). See tables S20, S18, S22, S25. 43, 45, 47, 50

- R_{sb} sum of water that flows out from subsurface layer(s) including the groundwater layer (if present). Equals groundwater runoff in case of a groundwater layer below only one soil layer in ISIMIP2b (L³ L⁻² T⁻¹). See table S17. 40, 42
- R_{sn} snow runoff, melted water that runs off on the ground surface covered with snow (L³ L⁻² T⁻¹). See table S12. 37

 $R_{snwcp,ice}$ ice runoff from snow-capped surfaces / is this a part of saturation excess flow (M L⁻² T⁻¹). See table S20. 45

550 $R_{sof,i}$ infiltration from soil layer i (L³ L⁻² T⁻¹). See table S14. 39

 $R_{sof,i-1}$ infiltration from soil layer i - 1 (L³ L⁻² T⁻¹). See table S8. 39

- R_{su} surface runoff or overland flow, water excess that runs off over the ground surface as Hortonian overland flow and (rainfall rate dependent) / or Saturation excess overland flow (soil saturated or filled with water) (L³ L⁻² T⁻¹). See tables S14, S16, S18, S20, S22, S25, S32, S43, S44, S46. 39, 41, 43, 45, 47, 50, 57, 68, 69, 71
- 555 $R_{su,ice}$ ice water runoff at the land model resolution / is this the water that runs off over the ground surface covered with ice / part of saturation excess flow (M L⁻² T⁻¹). See table S20. 45
 - $R_{su,l}$ liquid water runoff at the land model resolution / is this the saturation excess flow (M L⁻² T⁻¹). See tables S20, S43. 45, 68
- $R_{su_{LC,R}}$ runoff generated for each cell that is routed towards the corner of each cell, with a concentration time, depending on land cover class, slope, and runoff component (surface, interflow, or baseflow). Runoff generated for a grid cell is then calculated using a triangular-weighting-function (L³ L⁻² T⁻¹). See tables S19, S44. 44, 69
 - R_{tot} total runoff from land includes surface runoff, subsurface runoff, and groundwater recharge (L³ L⁻² T⁻¹). See tables S14, S20, S18, S30, S35, S37, S43, S46. 39, 43, 45, 55, 60, 62, 68, 71

 $R_{tot,ISIMIP2b}$ total runoff ISIMIP2b, it includes surface runoff and subsurface runoff (L³ L⁻² T⁻¹). See table S15. 40

565 s_{ri} river bed slope (L L⁻¹). See table S46. 71

 $s_{vp,sat}$ slope of saturated vapour pressure (M L⁻¹ T⁻² Θ^{-1}). See table S2. 27

 $s_{we,mean}$ mean slope within wetland (L). See table S42. 67

 S_{buf} storage buffer (L³ L⁻² T⁻¹). See table S57. 82

 S_{ca} canopy compartment that retains water from precipitation and loses water through throughfall, stemflow and interception loss (evaporation) (L³ L⁻²). See tables S3, S4, S5, S7, S20, S23, S26. 28–30, 32, 45, 48, 51

 $S_{ca,dif}$ the difference between the canopy storage capacity and the water stored on the canopy (L³ L⁻²). See table S5. 30

 $S_{ca,int}$ canopy compartment that retains water after precipitation is intercepted by canopy (L³ L⁻²). See table S5. 30

575 $S_{ca,max}$ maximum value of canopy storage compartment (L³ L⁻²). See tables S4, S5, S7, S20, S23, S49, S51. 29, 30, 32, 45, 48, 74, 76

 $S_{ca,min}$ minimum value of canopy storage compartment (L³ L⁻²). See table S49. 74

 $S_{ca,p}$ interception storage parameter (unitless). See tableS49. 74

 $S_{ca,s}$ canopy compartment that retains snowfall and loses water through throughfall, stemflow and sublimation (L³ L⁻²). See tables S3, S4, S5. 28–30

 S_{cons} conservative storage limit (unitless). See table S37. 62

 S_f storage of the fast response reservoir (L³ T⁻¹). See table S22, S26. 47, 51

 S_{flood} flood storage limit (unitless). See table S37. 62

 S_{ftr} specified threshold of the fast response reservoir (L³ T⁻¹). See table S22. 47

585 S_{qw} groundwater storage (L³ L⁻²). See tables S29, S31, S53. 54, 56, 78

 $S_{aw,nrw}$ groundwater storage non-renewable (L³ L⁻²). See table S29. 54

 $S_{qw,rw}$ groundwater storage renewable (L³ L⁻²). See tables S29, S31, S53, S59, S69. 54, 56, 78, 84, 94

 S_i storage of *i* element = overland, baseflow, river or wetland (unitless). See table S52. 77

 S_{ice} ice storage (L³ L⁻²). See table S12. 37

590 S_{ice,sn,i+1} solid water stored in the upper snow layer (i + 1), i is the snow layer index (L³ L⁻²). See table S11. 36 S_{la} lake storage (L³ L⁻²). See tables S32, S33, S34, S47. 57–59, 72 S_{la,global} global lake storage (L³ L⁻²). See tables S32, S34. 57, 59 S_{la,global,max} maximum global lake storage (L³ L⁻²). See tables S32, S34. 57, 59

 $S_{la,local}$ local lake stolage (L L). See tables 552, 554. 57, 59

595 $S_{la,local,max}$ maximum local lake storage (L³ L⁻²). See tables S32, S34, S49. 57, 59, 76

 $S_{la,max}$ maximum amount of water in the lake storage (L³ L⁻²). See table S34. 59

 $S_{ca,l}$ canopy compartment that retains rainfall and loses water through throughfall, stemflow and evaporation (L³ L⁻²). See tables S3, S4, S5. 28–30

 $S_{l,sn,i+1}$ liquid water stored in the upper snow layer (i + 1), *i* is snow layer index $(L^3 L^{-2})$. See table S11. 36 S_{norm} normal storage limit (unitless). See table S37. 62 S_{paddy} storage of flooded paddy rice $(L^3 L^{-2})$. See table S22. 81

- 600 S_{pon} ponding storage (sealed areas) (L³ L⁻²). See table S20, S24. 45, 49
 - $S_{pon,max}$ maximum ponding zone storage (L). See tables S20, S24. 45, 49

 S_{re} reservoir storage (L³ L⁻²). See tables S35, S37, S38. 60, 62, 63

- $S_{re,act}$ actual reservoir storage (L³). See table S35. 60
- $S_{re,C}$ reservoir storage capacity (L³). See tables S35, S37, S49. 60, 62, 76
- 605 $S_{re,global}$ global reservoir storage (L³ L⁻²). See tables S35, S43. 62, 68 $S_{re,global}^{purpose}$ global reservoir storage for irrigation or others purposes (L³ L⁻²). See table S37. 62
 - $S_{re,local}$ local reservoir storage (L³ L⁻²). See table S37. 62
 - $S_{re,max}$ maximum water amount of reservoir storage (L³ L⁻²). See tables S35, S37. 60, 62
 - S_{ri} river storage (L³ L⁻²). See tables S43, S45, S46. 68, 70, 71
- 610 $S_{ri,n}$ state of the n^{th} cascade in the river storage (L³ L⁻²). See tables S43, S46, S56. 68, 71, 81
 - S_{rv} rivulet storage that collects water of small creeks, streams. (L³ L⁻²). See tables S19, S44. 44, 69
 - S_{rz} root zone water storage (L³ L⁻²). See tables S7, S18, S24. 32, 43, 49
 - $S_{rz,max}$ maximum root zone water storage or root zone storage capacity (L³ L⁻²). See tables S7, S18, S24, S51. 32, 43, 49, 76
- 615 S_{sn} snow storage, compartment that accumulates snow below freezing temperature and loses snow by melting and sublimation (L³ L⁻²). See tables S8, S11, S12. 33, 36, 37
 - S_{soc} compartment that accumulates snow on canopy below freezing temperature and loses snow by melting and sublimation (L³ L⁻²). See tables S9, S10. 34, 35
 - $S_{sn,i}$ snow storage of layer i (L³ L⁻²). See table S12. 37
- 620 $S_{sn,i}$ number of snow layers *i* (unitless). See tables S8,S12. 33, 37
 - $S_{sn,ice}$ frozen water content in snow storage (L³ L⁻²). See table S8. 33
 - $S_{sn,l}$ liquid water content in snow storage (L³ L⁻²). See tables S8, S12. 33, 37
 - S_{sn,SG_i} subcompartment that accumulates snow in subgrid cells below freezing temperature and loses snow by melting and sublimation Müller Schmied et al. [34] (L³ L⁻²). See table S12. 37
- 625 S_{suc} compartment that accumulates snow under canopy below freezing temperature and loses snow by melting and sublimation (L³ L⁻²). See table S10. 35
 - S_{so} soil water storage compartment (L³ L⁻²). See tables S14, S20, S18, S22, S23, S24, S27, S30, S49, S57. 27, 39, 43, 45, 47–49, 55, 76, 82

 $S_{so,3L}$ soil moisture or soil water content for the third layer (3L) (L³). See table S27. 42

630 $S_{so,crit}$ critical volumetric soil moisture concentration that corresponds to a critical water suction potential (L³ L⁻²). See tables S23, S24, S57. 48, 49, 82

 S_{so,E_i} frozen soil water or frozen soil moisture at layer index i (L³ L⁻²). See tables S14, S29. 39, 54

- $S_{so,FC}$ soil water content at field capacity (FC) (L³ L⁻²). See tables S2, S20, S23, S24, S25, S30, S57. 27, 45, 48–50, 52, 55, 82
- 635 $S_{so,FL}$ soil water content in first layer (FL) (L³ L⁻²). See table S24. 49
 - $S_{so,i}$ soil storage in layer *i* (L³ L⁻²). See tables S14, S24, S25. 39, 49, 50
 - $S_{so,ini}$ initial soil water content or soil moisture (L³ L⁻²). See table S25. 50
 - $S_{so,l,i}$ liquid soil storage in layer $i (L^3 L^{-2})$. See table S14. 39
 - $S_{so,max}$ maximum soil storage (L³ L⁻²). See tables S20, S23, S24, S30. 45, 48, 49, 55
- 640 $S_{so,pot}$ potential soil water content or soil moisture (L³ L⁻²). See table S25. 50

S_{so,max,3L} maximum soil moisture or soil water content of the third soil layer (3L) (L). See tables S17, S30. 42, 55

 $S_{so,ready}$ ready available soil water content (L³ L⁻²). See table S57. 82

 $S_{so,rel}$ relative soil water content or soil moisture (L³ L⁻²). See tables S21, S23, S24, S25. 46, 48–50

- $S_{so,SG}$ subgrid soil storage (L³ L⁻²). See table S20. 45
- 645 $S_{so,SG,min}$ minimum subgrid soil moisture storage (L³ L⁻²). See table S20. 45
 - $S_{so,SG,max}$ maximum subgrid soil moisture storage (L³ L⁻²). See table S20. 45
 - $S_{so,sat}$ soil water content at saturation (SAT) (L³ L⁻²). See tables S21, S25, S26, S28, S30, S57. 46, 50–53, 55, 77, 82
 - $S_{so,sat,i}$ soil water content at saturation in top layer (L³ L⁻²). See table S25. 50
 - $S_{so,sat,p}$ soil water content at saturation parameter (unitless). See tables S49, S50. 74, 75
- 650 $S_{so,T2L}$ volumetric soil moisture content or soil storage for the top two layers (T2L) (L³). See tables S20, S57. 45, 82
 - $S_{so,TL}$ total available water capacity for the top soil layer (L³ L⁻¹ L⁻²). See tables S18, S22, S49. 43, 47, 75
 - $S_{so,cur}$ current soil water content or current soil moisture (L³ L⁻²). See table S52. 77
 - $S_{so,tot}$ total soil water content or total soil moisture (L³ L⁻²). See tables S20, S21, S23, S24, S25, S26, S28, S30. 45, 46, 48–51, 53, 55
- 655 $S_{so,uF}$ unfrozen soil water or unfrozen soil moisture (L³ L⁻²). See table S14. 38
 - S_{so, uF_i} unfrozen soil water or unfrozen soil moisture at layer index i (L³ L⁻²). See tables S14, S29. 39, 54
 - $S_{so, uF_{i,gw}}$ unfrozen soil water or unfrozen soil moisture at the layer *i* that has groundwater table (L³ L⁻²). See table S30. 55
 - $S_{so,WP}$ soil water content at wilting point (WP) (L³ L⁻²). See tables S20, S21, S23, S25, S26, S30, S52, S57. 45, 46, 48, 50, 51, 55, 77, 82

- 660 $S_{so,F}$ frozen soil water or frozen soil moisture (L³ L⁻²). See table S14. 38
 - S_{tot} total reservoir storage capacity (L³). See table S37. 62
 - S_{uz} unsaturated zone storage (L³ L⁻²), with two possible outflows: fast interflow and slow interflow. See tables S26, S30. 51, 55
 - $S_{uz,thr}$ threshold for the unsaturated zone storage (L) which triggers fast interflow. See table S26. 51
- 665 $S_{w, first}$ the water storage at the beginning of the year (L³ L⁻²). See table S37. 62
 - S_{we} wetland storage, compartment filled by precipitation or inflow and emptied by evapo(transpi)ration, outflow and ground-water recharge (L³ L⁻²). See tables S39, S42, S56. 64, 67, 81
 - $S_{we,global}$ global wetland storage (L³ L⁻²). See tables S39, S42. 64, 67
 - $S_{we,global,max}$ maximum global wetland storage (L³ L⁻²). See tables S39, S49. 64, 76
- 670 $S_{we,local}$ local wetland storage (L³ L⁻²). See tables S39, S42. 64, 67
 - $S_{we,local,max}$ maximum local wetland storage (L³ L⁻²). See tables S39, S42, S49. 64, 67, 76
 - S_u specific yield depending on soil properties and water table location (M L⁻¹). See table S29. 54
 - SAI exposed stem area index (unitless). See tables S4, S6. 29, 31
 - SR incoming solar radiation (M T⁻³). See table S2. 27
- 675 SWE snow water equivalent ($L^3 L^{-2} T^{-1}$). See tables S10, S13. 35, 38
 - *t* time (T). See tables S3, S7, S8, S9, S10, S11, S13, S14, S19, S25, S29, S31, S32, S34, S35, S39, S43, S44, S46. 28, 32–36, 38, 39, 44, 45, 50, 54, 56, 57, 59, 60, 64, 68, 69, 71
 - t_{ret} topographic index of the retention time (L). See tables S43, S45, S46. 68, 70, 71
 - $t_{ri, fast}$ property of the fast reservoir (25 T L⁻¹). See table S43. 68
- 680 $t_{ri,slow}$ property of the slow reservoir (3 T L⁻¹). See table S43. 68
 - $t_{ri,stream}$ property of the stream reservoir (0.24 T L⁻¹). See tables S43, S45, S46. 68, 70, 71
 - t_{we} lag time for outflow computation of the wetland storage (T). See table S42. 67
 - t_{day} day of year (L). See table S12. 37
 - t_{year} number of days in the actual year (L). See tables S2, S12. 27, 37
- 685 tri_x triangular function (unitless). See table S19. 44
 - T transpiration, water evaporated by plants through their stomata (L³ L⁻² T⁻¹). See tables S1, S14, S23, S25, S52. 26, 39, 48, 50, 77
 - T_{act} actual transpiration, the initial water evaporated by plants through their stomata (L³ L⁻² T⁻¹). See table S23. 48
 - $T_{ca}^{sn,cov}$ transpiration of snow-covered canopy (L³ L⁻² T⁻¹). See table S23. 48
- 690 $T_{ca}^{sn,free}$ transpiration of snow-free canopy (L³ L⁻² T⁻¹). See table S23. 48

- T_i water removed by transpiration in each layer i (L³ L⁻² T⁻¹). See table S14. 39
- T_{max} maximum transpiration (L³ L⁻² T⁻¹). See table S23. 48
- T_{pot} potential transpiration, water evaporated by plants through their stomata, if a sufficient water source is available (L³ L⁻² T⁻¹). See table S23. 48
- 695 $U_{ca,sn}$ canopy snow unloading from wind speed and above-freezing temperatures (L³ L⁻² T⁻¹). See table S9. 34
 - v flow velocity (L T⁻¹). See tables S45, S46. 70, 71
 - v_{mean} mean flow velocity (L T⁻¹). See table S46. 71
 - W wind speed (L T⁻¹). See tables S2, S7, S11, S23, S24. 27, 32, 36, 48, 49
 - W_2 wind speed at 2m height (L T⁻¹). See tables S2, S23, S24. 27, 48, 49
- 700 w_{sfc} balance of surface water (M). See table S25. 50
 - X irrigation efficiency (unitless). See tables S54, S55, S57. 79, 80, 82
 - X_{conv} conveyance efficiency (unitless). See table S57. 82
 - X_{dom} water use efficiency of the domestic sector (unitless). See tables S60, S63. 85, 88
 - X_{et} evaporation efficiency (unitless). See table S2. 27
- X_{ind} water use efficiency of the industrial sector (unitless). See tables S70, S73. 95, 98
 - z gravitational potential (M L⁻¹ T⁻²). See table S13. 38
 - Z vertical coordinate (L). See table S28. 53
 - Z_{cr} matric head induced by capillary action (L). See table S28. 53
 - α empirical parameter (unitless). See tables S13, S24, S25, S46, S52. 38, 49, 50, 71, 77
- 710 β empirical shape parameter. It needs to be fitted during the calibration processes (unitless). See tables S13, S18, S21, S24, S25, S31, S46. 38, 43, 46, 49, 50, 56, 71
 - γ psychrometric constant. See tables S2, S7, S11, S23, S24. 27, 32, 36, 48, 49
 - Λ_{rz} root zone soil moisture stress parameter (unitless). See table S7. 32
 - Γ gamma function (unitless). See tables S31, S46. 56, 71
- 715 δ time variation (unitless). See tables S3, S8, S9, S10, S11, S12, S13, S14, S20, S24, S25, S28, S29, S30, S32, S35, S39, S43, S44, S45, S46. 28, 33–35, 37–39, 45, 49, 50, 53–55, 57, 60, 64, 68–71
 - Δt time step (T). See tables S4, S5, S7, S8, S9, S10, S11, S12, S13, S20, S25, S30, S34, S35, S37, S43, S45, S46, S53, S59, S69. 29, 30, 32–38, 45, 50, 52, 55, 59, 62, 70, 71, 77, 78, 84, 94
 - ϵ_c empirical constant (17.8), found by calibration [25] (unitless). See table S2. 27
- 720 ζ_{sn} snow layer thickness of layer j (L³ L⁻²). See table S12. 37
 - $\zeta_{so,i}$ soil layer thickness of layer *i* (L). See table S13, S52. 38, 77

- η parameter (unitless). See table S31. 56
- θ air temperature (Θ). Note: in the equations, air temperature is in Kelvin degrees. See tables S2, S7, S8, S9, S10, S11, S12, S25. 27, 32–35, 37, 50
- 725 $\theta_{day,max}$ daily maximum air temperature (Θ). See table S2. 27 $\theta_{day,mean}$ daily mean air temperature (Θ). See table S2. 27 $\theta_{day,min}$ daily minimum air temperature (Θ). See table S2. 27 θ_f triple point temperature for water Θ). See table S12. 37

 θ_{freeze} freezing temperature (Θ). See table S12. 37

730 θ_{min} minimum air temperature (Θ). See table S7. 32

 θ_{month} mean monthly air temperature (Θ). See table S2. 27

- θ_M air temperature above 0 (Θ). See tables S8, S12. 33, 37
- θ_{sn} snow temperature (Θ). See table S12. 37
- $\theta_{sn,i}$ snow temperature of layer $i(\Theta)$. See table S12. 37
- 735 θ_{so} soil temperature (Θ). See tables S12, S23, S25. 37, 48, 50
 - $\theta_{so,i}$ soil temperature of soil layer $i(\Theta)$. See table S13. 38
 - $\theta_{so,i+1}$ soil temperature of soil layer i + 1 (Θ). See table S13. 38
 - θ_{su} temperature of the surface layer (Θ). See table S10. 35
 - θ_{SG_i} mean air temperature in a subgrid cell Müller Schmied et al. [34] (Θ). See tables S8, S12, S13. 33, 37, 38
- 740 θ_{veq} vegetation temperature (Θ). See table S23. 48
 - ι storage parameter, defined as the hydraulic retention time of a single linear reservoir segment of length l_{ri} . It can be calculated as the average travel time of water through a single river segment (unitless). See table S46. 71
 - κ calibration constant (2.3×10^3) that approximately compensates for the differences in advection or in vapour transfer effect [25] (unitless). See tables S2. 27
- 745 κ_{gw} retention time for water in the groundwater storage (L). See table S30. 56
 - κ_{ol} retention time for water in the overland flow storage (L). See table S44. 44
 - κ_{ri} retention time for water in the river flow storage (L). See tables S43, S46. 68, 71
 - λ water distribution uniformity scalar, depending on the irrigation system. See table S57. 82
 - ν decay coefficient (T). See table S13. 38
- 750 $\Pi_{R_{in}}$ infiltration shape parameter (unitless). See tables S20, S24. 45, 49
 - ρ_{air} density of atmospheric air (M L⁻³). See tables S2, S7, S11, S23, S24. 27, 32, 36, 48, 49
 - ρ_{ice} intrinsic density of ice (M L⁻³). See table S12. 37

 $\rho_{sn,i}$ snow density of layer *i* (M L⁻³). See table S12. 37

- $\rho_w\,$ density water (M $\rm L^{-3}$). See tables S8, S9, S10, S11. 33, 35, 36, 77
- 755 σ subgrid topographical variability (unitless). See table S20. 45
 - τ time constant (T). See table S25. 50
 - v scale parameter (unitless). See tables S31, S24. 49, 56
 - $\phi_{a,i}$ simulated actual soil moisture content of layer *i* (L³ L⁻³). See tables S52, S56. 77, 81

 $\phi_{min,i}$ minimum soil moisture content of layer *i* that results in no water stress in that layer (L³ L⁻³). See table S56. 81

- 760 $\phi_{r,i}$ residual soil moisture content of layer i (L³ L⁻³) See tables S24, S25. 49, 50
 - $\phi_{s,i}$ maximum soil moisture content of layer *i* (L³ L⁻³) See table S25. 50, 75, 81
 - ϕ_{so} soil porosity (L³). See tables S13, S20, S22. 38, 45, 77
 - $\phi_{t,i}$ target soil moisture content of layer i (L³ L⁻³). See tables S52, S56. 77, 81
 - $\phi_{w,i}$ soil moisture limit above which the actual transpiration is equated with the PET at layer *i* (L³ L⁻³). See table S24. 49
- 765 χ constant, energy needed to melt ice (M L⁻² T⁻² L⁻³). See table S12. 37
 - χ_f energy of fusion (M L² T⁻³ L⁻²). See table S12. 37
 - χ_M energy flux given to the pack because of liquid water refreezing or removed from the pack during melt (M L⁻² T⁻² L⁻³). See tables S8, S10. 33, 35
 - χ_{rs} energy flux advected to the snowpack by rain or snow (M L⁻² T⁻² L⁻³). See tables S10, S12. 35, 37
- 770 χ_{to} total energy (M L² T⁻² L⁻²). See table S12. 37
 - Ψ matric potential(M L⁻¹ T⁻²). See table S13. 38
 - Ψ_i soil matric potential of layer i (M L⁻¹ T⁻²). See table S28. 53
 - Ψ_{jwt} matric potential of the layer directly above the water table (M L⁻¹ T⁻²). See table S30. 55
 - Ψ_{sat} saturated soil matric potential (M L⁻¹ T⁻²). See table S13. 38
- 775 $\Psi_{sat.i}$ saturated soil matric potential of layer i (M L⁻¹ T⁻²). See table S28. 53
 - Ψ_{wt} matric potential at the water table (i.e. 0) (M L⁻¹ T⁻²). See table S30. 55

Table S1. Actual evapotranspiration AET

Model	Equation
CLM4.5	$AET = E_{ca} + E_{so} + T$
CLM5.0	$AET = E_{ca} + E_{so} + T$
CWatM	$AET = E_{ca} + E_{la} + E_{re} + E_{ri} + E_{sn} + E_{so} + T$
DBH	$AET = E_{ca} + E_{so} + T$
H08	$AET = E_{so}$
JULES-W1	$AET = E_{ca} + E_{sn} + E_{so} + T$
LPJmL	$AET = E_{ca} + E_{la} + E_{re} + E_{ri} + E_{sn} + E_{so} + T$
Mac-PDM.20	$AET = E_{ca} + E_{so}$
MATSIRO	$AET = E_{ca}^{sn,cov} + E_{ca}^{sn,free} + E_{sn} + E_{so,ice} + E_{so,i}^{sn,freegr}$
mHM	$AET = E_{ca} + ET_{so,i}$
MPI-HM	$AET = A_{irr} + E_{so} + E_{we} + T$
ORCHIDEE	$AET = E_{ca} + E_{floodplain} + E_{sn} + E_{so}$
PCR-GLOBWB	$AET = E_{ca} + E_{la} + E_{re} + E_{ri} + E_{so}$
VIC	$AET = \sum_{n=1}^{N} f_{ca,n} \times (E_{ca} + T) + f_{so,bare} \times E_{so}$
	n=1 N+1
	for: $\sum f_{ca,n} = 1$ see details [28]; [29]; [20]
WaterGAP2	$AET = E_{ca} + E_{la} + E_{re} + E_{sn} + E_{so} + E_{we}$
WAYS	$AET = E_{so}$

Model	Equation
CLM4.5	not represented
CLM5.0	not represented
CWatM	$PET = \frac{0.408 \times s_{vp,sat} \times (NR_n - H_{so}) + \gamma \times \frac{900}{\theta} \times W_2 \times (e_{sat} + e_{act})}{s_{vp,sat} + \gamma \times (1 + 0.34 \times W_2)}$
DBH	not represented
H08	$\begin{split} PET &= \begin{cases} \rho_{air} \times r_w \times (q_{sat}^{gr} - q_{gr}), & \text{snow present} \\ \rho_{air} \times r_w \times (q_{sat}^{gr} - q_{gr}) \times \frac{(1 + zeta \times X_{et})}{(1 + zeta)}, & \text{snow absence} \end{cases} \\ \text{Where zeta is } \zeta \text{ in Milly [31].} \\ \text{And } X_{et} &= \begin{cases} 1.0, & 0.75 \times S_{so,FC} < S_{so} \\ \frac{W \times S_{so}}{0.75 \times S_{so,FC}}, & 0.75 \times S_{so,FC} > S_{so} \end{cases} \end{split}$
JULES-W1	$PET = \frac{0.408 \times s_{vp,sat} \times (NR_n - H_{so}) + \gamma \times \frac{900}{\theta} \times W_2 \times (e_{sat} + e_{act})}{s_{wp,sat} + \gamma \times (1 + 0.34 \times W_2)}$
LPJmL	$PET = \frac{s_{vp,sat}}{(a + v) \times \theta} \times \frac{2 \times PAR}{H}$
Mac-PDM.20	$PET = \frac{s_{vp,sat} + \gamma \times 0}{(597.3 - (\theta - 273.15) \times 0.564) \times (s_{vp,sat} + \gamma \times (1 + \frac{r_w}{r_{ca}}))} \times r_w}{(s_{vp,sat} + \gamma \times (1 + \frac{r_w}{r_{ca}}))}$
MATSIRO	$PET = \frac{0.408 \times s_{vp,sat} \times (NR_n - H_{so}) + \gamma \times \frac{900}{\theta} \times W_2 \times (e_{sat} + e_{act})}{s_{vp,sat} + \gamma \times (1 + 0.34 \times W_2)}$ (used only in group growth scheme)
mHM	$PET = \kappa \times SR \times ((\theta_{day,mean} - 273.15) + \epsilon_c) \times \sqrt{\theta_{day,max} - \theta_{day,min}}).$ See [25]
MPI-HM	$PET = \frac{0.408 \times s_{vp,sat} \times (NR_n - H_{so}) + \gamma \times \frac{900}{\theta} \times W_2 \times (e_{sat} + e_{act})}{s_{vp,sat} + \gamma \times (1 + 0.34 \times W_2)}$
ORCHIDEE	$PET = \rho_{air} \times C_{bulk} \times W \times (q_{sat}^{gr} - q)$. See [33]; [31]
PCR-GLOBWB	$PET = 1 \times 0.165 \times 216.7 \times t_{year} \times \frac{e_{sat}}{(\theta_{,month} - 273.15) + 273.3}$
VIC	$PET = \frac{0.408 \times s_{vp,sat} \times (NR_n - H_{so}) + \rho_{air} \times c_{air} \times \frac{(e_{sat} + e_{act})}{r_w}}{r_w}$
WaterGAP2	$PET = C_{PT} \times \frac{s_{vp,sat}}{c} \times NR$
	$\int 1.26, \mathbf{G} = \text{humid}$
	$C_{PT} = \begin{cases} 1.74, & G = arid or semi-arid \end{cases}$
	$s_{vp,sat} = \frac{4098 \times 0.6108 \times \exp\left(\frac{17.27 \times (\theta - 273.15)}{\theta - 35.85}\right)}{(\theta - 35.85)^2}$ $\gamma = \frac{0.0016286 \times 101.3}{H_1}$
	$H_l = \begin{cases} 2.501 + 0.334 (\text{MJ kg}^{-1}), & \theta < 273.15\\ 2.501 - 0.002361 (\text{MJ kg}^{-1}) \times (\theta - 273.15), & \theta \ge 273.15 \end{cases}. \text{See [13]}$
WAYS	$PET = \frac{0.408 \times s_{vp,sat} \times (NR_n - H_{so}) + \gamma \times \frac{900}{\theta} \times W_2 \times (e_{sat} + e_{act})}{s_{vp,sat} + \gamma \times (1 + 0.34 \times W_2)}$

Table S2. Potential evapotranspiration PET

Table S3.	Canopy	storage	(S_{ca})
-----------	--------	---------	------------

Model	Equation	Water Flux	
		Inflows	Outflows
CLM4.5	$\frac{\delta S_{ca}}{\delta t} = P_{int} - (P_{th,l} + P_{th,s}) - E_{ca}$	P_{int}	$\begin{array}{c} P_{th,l} \ P_{th,s} \\ E_{ca} \end{array}$
CLM5.0	$\frac{\delta S_{ca}}{\delta t} = P_{int} - (P_{th,l} + P_{th,s}) - E_{ca}$	P_{int}	$\begin{array}{c} P_{th,l} & P_{th,s} \\ E_{ca} \end{array}$
CWatM	$\frac{\delta S_{ca}}{\delta t} = P_{tot} - P_{th} - E_{ca}$	P_{tot}	$E_{ca} P_{th}$
DBH H08	$\frac{\delta S_{ca}}{\delta t} = P_{tot} - P_{th} - E_{ca}$ not represented	P_{tot}	$E_{ca} P_{th}$
JULES-W1	$\frac{\delta S_{ca}}{\delta t} = P_{tot} - P_{th} - E_{ca}$	P_{tot}	$E_{ca} P_{th}$
LPJmL	$\frac{\delta S_{ca}}{\delta t} = P_{tot} - P_{th} - E_{ca}$	P_{tot}	$E_{ca} P_{th}$
Mac-PDM.20 MATSIRO	not represented (all water intercepted is assumed to evaporate) $\frac{\delta S_{ca}}{\delta t} = \frac{\delta S_{ca,l}}{\delta t} + \frac{\delta S_{ca,s}}{\delta t}$ $\frac{\delta S_{ca,l}}{\delta t} = P_{int,l} - P_{th,l} - E_{ca,l}$	P _{int,l} P _{int,s}	$\frac{E_{ca,l}}{P_{th,l}} \frac{E_{ca,s}}{P_{th,s}}$
mHM	$\frac{\partial S_{ca,s}}{\partial t} = P_{int,s} - P_{th,s} - E_{ca,s}$ $\frac{\partial S_{ca}}{\partial t} = P_{tot} - P_{th} - E_{ca}$	P_{tot}	$E_{ca} P_{th}$
MPI-HM	not represented		
ORCHIDEE	$\frac{\delta S_{ca}}{\delta t} = P_{tot} - P_{th} - E_{ca}$	P_{tot}	$E_{ca} P_{th}$
PCR-GLOBWB	$\frac{\delta S_{ca}}{\delta t} = P_{tot} - P_{th} - E_{ca}$	P_{tot}	$E_{ca} P_{th}$
VIC	$\frac{\delta S_{ca}}{\delta t} = P_{tot} - P_{th} - E_{ca} \text{ See [28]}$	P_{tot}	$E_{ca} P_{th}$
WaterGAP2	$\frac{\delta S_{ca}}{\delta t} = P_{tot} - P_{th} - E_{ca}$	P_{tot}	$E_{ca} P_{th}$
WAYS	$\frac{\partial \mathcal{S}_{ca}}{\delta t} = P_{tot} - P_{th} - E_{ca}$	P_{tot}	$E_{ca} P_{th}$

Table S4. Precipitation intercepted by canopy storage (P_{int})

Model	Equation
CLM4.5	$P_{int} = 0.25 \times (P_{ra} + P_{sn}) \times \left(1 - exp\left(-0.5 \times (LAI + SAI)\right)\right)$
	0.25 = scales interception from point to grid cell
CLM5.0	$P_{int} = 0.25 \times (P_{ra} + P_{sn}) \times \left(1 - exp\left(-0.5 \times (LAI + SAI)\right)\right)$
CWatM	0.25 = scales interception from point to grid cell $P_{int} = min(P_{tot}, S_{ca,max})$ $S_{ca,max}$ from Global Land Cover Characteristics database version 2.0 varying every 10 days depending on land use class
DBH	$P_{int} = P_{tot} \times \left(f_{ca} + f_{ca} \times \exp \frac{C_{P,l} \times LAI}{t} \right)$
H08 JULES-W1 LPJmL Mac-PDM.20	not represented not represented not represented $P_{int} = I_{cap} \times (1.0 - \exp(-0.5 \times P_{tot}))$
MATSIRO	$P_{int,l} = (B_{stormy} \times P_{int,l,stormy}) + \left((1 - B_{stormy}) \times P_{int,l,calm} \right)$
	$P_{int,s} = (B_{stormy} \times P_{int,s,stormy}) + \left((1 - B_{stormy}) \times P_{int,s,calm} \right)$
	$P_{int,l,stormy} = min\left(f_{LAI} \times \left(P_{gr,l,calm} + \frac{P_{gr,l,stormy}}{B_{stormy}}\right), \frac{S_{ca,max} - S_{ca,l}}{\Delta t}\right)$
	$P_{int,l,calm} = min\left(f_{LAI} \times P_{gr,l,calm}, \frac{S_{ca,max} - S_{ca,l}}{\Delta t}\right)$
	$P_{int,s,stormy} = min\left(f_{LAI} \times \left(P_{gr,s,calm} + \frac{P_{gr,s,stormy}}{B_{stormy}}\right), \frac{S_{ca,max} - S_{ca,s}}{\Delta t}\right)$
	$P_{int,s,calm} = min\left(f_{LAI} \times P_{gr,s,calm}, \frac{S_{ca,max} - S_{ca,s}}{\Delta t}\right)$
mHM	$P_{int} = min(P_{tot}, S_{ca,max}) \qquad \Delta t \qquad f$
MPI-HM	not represented
ORCHIDEE	not represented
PCK-GLOBWB	not represented
VIC Water GAD?	$P = P \left(S \right)$
WAYS	$P_{int} = P_{int} - \left(S_{ca,max} - S_{ca}\right)$
11110	i int, l = 1 ra ($b ca, max = b ca$)

Table S5. Throughfall (P_{th})

Model	Equation
CLM4.5	$P_{th,l} = \frac{S_{ca,int} - S_{ca,max}}{\Delta t} \times \frac{P_{ra}}{P_{ra} + P_{sn}} \ge 0$
	$P_{th,s} = \frac{S_{ca,int} - S_{ca,max}}{\Delta t} \times \frac{P_{sn}}{D + D} \ge 0$
	$S_{ca,int} = S_{ca} + P_{int} \times \Delta t \ge 0$
CLM5.0	$P_{th,l} = \frac{S_{ca,int} - S_{ca,max}}{\Delta t} \times \frac{P_{ra}}{P_{ra} + P_{sn}} \ge 0$
	$P_{th,s} = \frac{S_{ca,int} - S_{ca,max}}{\Delta t} \times \frac{P_{sn}}{P_{ra} + P_{sn}} \ge 0$
CWatM	$S_{ca,int} = S_{ca} + P_{int} \times \Delta t \ge 0$ $P_{th} = P_{tot} + S_{ca} - E_{ca}$
DBH	$P_{th} = P_{tot} \times \left(1 - f_{ca} + \left(f_{ca} \times exp^{\frac{-C_{P,l} \times LAI}{f_{ca}}} \right) \right)$
H08	not represented
Jules-W1	$P_{th} = P_{tot} \times \left(\left(1 - \frac{S_{ca}}{S_{ca,max}} \right)^{\frac{JP_{c,G} \times Sca,max}{P_{tot} \times \Delta t}} \right) + \left(P_{tot} \times \frac{S_{ca}}{S_{ca,max}} \right). \text{ See [5]}$
LPJmL	$P_{th} = P_{tot} - \vec{E}_{ca} $
Mac-PDM.20	not represented
MATSIRO	$P_{th} = P_{dr} + (P_{tot} - P_{int})$
	$P_{int} = P_{int,l} + P_{int,s}$
	$P_{dr} = P_{dr,l} + P_{dr,s}$ $P_{r,l} = 1.14 \times 10^{-11} \times err(3.7 \times 10^3 \times S_{r,l})$
	$P_{tr,l} = 1.14 \times 10^{-11} \times exp(3.7 \times 10^{3} \times S_{ca,l})$ $P_{tr,l} = 1.14 \times 10^{-11} \times exp(3.7 \times 10^{3} \times S_{ca,l})$
mHM	$P_{it} = mar \left(0 P_{it} = \left(S - S \right) \right)$
MDI HM	not represented
ORCHIDEE	$P_{tb} = (P_{tot} \times (f_{eq} \max \times (1 - exp(-LAI)))) \times C_{P_{tb}}$
	$\begin{cases} P_{tot}, S_{co} > S_{co} \text{ max} \\ \end{cases} $
PCR-GLOBWB	$P_{th} = \begin{cases} 1.0c, & Sca \leq Sca, max \\ 0, & S_{ca} < S_{ca}, max \end{cases}$
VIC	$P_{th} = P_{mean,G} \times exp\left(\frac{-f \times S_{ca,dif}}{P_{mean,G}}\right)$
	$S_{ca,dif} = \frac{S_{ca,max} - S_{ca}}{\Delta t}$
WaterGAP2	$P_{th} = \begin{cases} 0, & P_{tot} < (S_{ca,max} - S_{ca}) \\ P_{tot} - (S_{ca,max} - S_{ca}), & \text{other} \end{cases}$
WAYS	$P_{th} = max \Big(0, P_{tot} - (S_{ca,max} - S_{ca}) \Big)$

Table S6. Precipitation falls directly to the ground (P_{gr})

Model	Equation
CLM4.5	$P_{gr,l} = P_{ra} \times (1 - 0.25 \times (1 - exp(-0.5 \times (LAI + SAI))))$
CL) (5 0	$P_{gr,s} = P_{sn} \times (1 - 0.25 \times (1 - exp(-0.5 \times (LAI + SAI))))$
CLM5.0	$P_{gr,l} = P_{ra} \times (1 - 0.25 \times (1 - exp(-0.5 \times (LAI + SAI))))$
CWetM	$P_{gr,s} = P_{sn} \times (1 - 0.25 \times (1 - exp(-0.5 \times (LAI + SAI)))))$
DRH	not represented
H08	no canony compartment rainfall and snowfall fall directly to the ground $P_{ab} = P_{ab} + P_{ab}$
JULES-W1	not represented
LPJmL	not represented
Mac-PDM.20	not represented
MATSIRO	computed same as table S5
mHM	not represented
MPI-HM	not represented
ORCHIDEE	not represented
PCR-GLOBWB	not represented
VIC	$P_{gr} = -\left(\frac{P_{mean,G}}{f_{B_P}}\right) \times \ln(f_P); \text{ for } 0 < f_P \le 1. \text{ See details [29]}$
WaterGAP2	not represented
WAYS	not represented

Table S7. Canopy evaporation (E_{ca})

Model	Equation
CLM4.5	$E_{ca} = -\rho_{air} \times \left(\frac{g_{st}^w + q}{r_{tot}}\right)$
CLM5.0	$E_{ca} = -\rho_{air} \times \left(\frac{g_{st}^w + q}{r_{tot}}\right)$
CWatM	$E_{ca} = PET \times \left(\frac{S_{ca}}{S_{ca,max}}\right)^{\frac{4}{3}}$ where: $S_{ca,max} = LAI$
	LAI is varying every 10 days depending on land use class
DBH	$E_{ca} = \frac{1}{H_{l,E}} \times \left(\frac{e_{ca} - e}{r_b}\right) \times \left(\frac{\rho_{air} \times c_{air}}{\gamma}\right) \times f_{ca,sn}$
H08	not represented
Jules-W1	$E_{ca} = f_a \times PET.$ See [4]
LPJmL	$E_{ca} = min\{PET, S_{ca}\}$
Mac-PDM.20	$= P_{int}$ (all intercepted precipitation is assumed to evaporate)
MAISIKO	$L_{ca} = (L_{ca,l} + L_{ca,s}),$ where:
	where, $E_{a}^{t+1} = (1 - f_{a}) \times f_{a} \times H_{b} \times a \times X C_{b} \times H_{b} \times W \times (a^{ca} \cdot t^{t+1} - a)$
	$E_{ca,l} = (1 - f_{sn}) \times f_{w,lf} \times H_{l,E} \times \rho_{air} \times C_{bulk,Ei} \times W \times (q_{sat} - q),$ $E_{ca,l} = (1 - f_{sn}) \times f_{sat} \times H_{l,E} \times \rho_{air} \times C_{bulk,Ei} \times W \times (q_{sat} - q),$
	$ \sum_{ca,s} -(1 - j_{sn}) \wedge j_{w,lj} \wedge m_{l,E_{sn}} \wedge p_{air} \wedge O_{bulk,Ei} \wedge w \wedge (q_{sat} - q), $
	$H_l = \begin{cases} H_{l,E}, & \theta < 273.15 \\ H_l = 0 & 0.075 \\ H_l = 0 & 0.07$
	$\left(\begin{array}{c}H_{l,E_{sn}}, \theta > 273.15\end{array}\right)$
	$PET \times \left(\frac{S_{ca}}{S}\right)^{\frac{5}{3}}, S_{ca,max} > 0$
шпм	$E_{ca} = \begin{cases} 0 & S & -0 \\ 0 & S & -0 \end{cases}$
MPI-HM	not represented
ORCHIDEE	$E_{ca} = (q_{sat}^{ca} - q) \times W \times C_{su} \times (1 - r_{sn}) \times r_{ca}$
PCR-GLOBWB	$E_{ca} = PET$
	Γ Γ $(S_{ca})^{\frac{2}{3}}$ r_w
VIC	$E_{ca,max} = PET \times \left(\frac{1}{S_{ca,max}}\right) \times \frac{1}{(r_w + r_o)}$
	$S_{ca,max} = 0.2 \times LAI_{month}$
	$E_{ca} = E_{ca,max} \times f$
	$f = min\left(1, \frac{S_{ca} + P_{tot} \times \Delta t}{E_{ca,max} \times \Delta t}\right). \text{ See [28]}$
WaterGAP2	$E_{ca} = PET \times \left(\frac{S_{ca}}{S_{ca,max}}\right)^{\frac{5}{3}}$
	where:
	$S_{ca,max} = 0.3 \text{mm} \times LAI$
	LAI is calculated based on simple growth model and based on land cover characteristics, see [34].
WAYS	$E_{ca} = PET \times \left(\frac{S_{ca}}{S_{ca,max}}\right)^3$ where: $S_{ca,max} = 0.3 \text{mm} \times LAI$
	The leaf area index (LAI) is seasonal varying which is determined by the growing-season index (i_{GS}),
	day length (t) and the current root zone water storage (S_{rz}) , see [54].
	$LAI = LAI_{min} + i_{GS} \times (LAI_{max} - LAI_{min}) \mathbf{x}$ $i_{min} = f(0, \dots) \times f(t) \times f(C, \dots)$
	$i_{GS} = \int (\theta_{min}) \times \int (t) \times \int (S_{rz})$
	$\theta_{min} = 271.15$ $\theta_{min} = 271.15$ $\theta_{min} = 271.15$
	$J(\theta_{min}) = \begin{cases} \frac{-mm}{278.15 - 271.15}, & 2/1.15 < \theta_{min} < 2/8.15; \\ \frac{-mm}{278.15 - 271.15}, & 0 < 0 < 0 \end{cases}$
	$(1, \qquad \theta_{min} \ge 278.15$
	$0, t \le 36000$
	$f(t) = \left\{ \frac{t - 36000}{39600 - 36000}, 36000 < t < 39600 \right.$
	$1, t \ge 39600$
	$S_{rz} \times (S_{rz,max} + \Lambda_{rz})$
	$S_{rz,max} \times (S_{rz} + \Lambda_{rz})$
	The root zone soil moisture stress parameter Λ_{rz} is fixed at 0.07.

Table S8. Snow storage S_{sn}

Model	Equation	Water Flux	
		Inflows	Outflows
CLM4.5	$\frac{\delta S_{sn,ice}}{\delta t} = \begin{cases} f_{sn} \times (P_{sn} + (F - E_{sn})) - M, & i = S_{sn,i} + 1\\ -M, & i = S_{sn,i} + 2,, 0 \end{cases}$	P _{sn} P _{ra} E _{dew} F	$E_{sn} \ M \ M_{out}$
CLM5.0	$\begin{split} \frac{\delta S_{sn,l}}{\delta t} &= \begin{cases} (f_{sn} \times (P_{ra} + (E_{dew} - E_{so})) - M_{out}) + M, & i = S_{sn,i} + 1\\ (M_{in} - M_{out}) + M, & i = S_{sn,i} + 2,, 0 \end{cases} \\ \frac{\delta S_{sn,ice}}{\delta t} &= \begin{cases} f_{sn} \times (P_{sn} + (F - E_{sn})) - M, & i = S_{sn,i} + 1\\ -M, & i = S_{sn,i} + 2,, 0 \end{cases} \\ \frac{\delta S_{sn,l}}{\delta t} &= \int (f_{sn} \times (P_{ra} + (E_{dew} - E_{so})) - M_{out}) + M, & i = S_{sn,i} + 1 \end{cases} \end{split}$	$P_{sn} P_{ra} E_{dew}$ F	E _{sn} M M _{out}
CWatM	$\delta t = \begin{cases} \delta t & = \\ (M_{in} - M_{out}) + M, & i = S_{sn,i} + 2,, 0 \\ \frac{\delta S_{sn}}{\delta t} & = P_{sn} - M - E_{sn} \\ P_{tot}, \theta < 273.15 \end{cases}$	P_{sn}	$M E_{sn}$
DBU	$P_{sn} = \begin{cases} 0, & \theta \ge 273.15 \\ \delta S_{sn} = B, & E = B \end{cases}$	D	E D
	$\frac{\delta t}{\delta S_{sn}} = \frac{1}{L_{sn}} - $	I tot	$L_{sn} n_{in}$
	$\frac{\delta t}{\delta S_{sn}} = \frac{1}{2} \frac{S_{sn}}{S_{sn}} = \frac{1}{2} \frac$	Γ_{sn}	M E
JULES-WI	$\frac{1}{\delta t} = P_{tot} - M - E_{sn}$	P_{tot} for $\theta < 273.15$	$M E_{sn}$
LPJmL	$\frac{\delta S_{sn}}{\delta t} = \begin{cases} S_{sn} - P_{th} - M - E_{sn}, & \theta < 273.15\\ S_{sn} - M - E_{sn}, & \theta > 273.15 \end{cases}$	P_{th}	$M E_{sn}$
Mac-PDM.20	$\frac{\delta S_{sn}}{\delta t} = P_{sn} - MP_{sn} = \begin{cases} P_{tot}, & \theta < \theta_M \\ 0, & \theta > \theta_M \end{cases}$	P_{sn}	M
MATSIRO	$\frac{\delta S_{sn}}{\delta t} = P_{s,ca} - E_{sn} - M + F$	$P_{s,ca} \; F$	$E_{sn} M$
mHM	$\frac{\delta S_{sn}}{\delta t} = P_{sn} - MP_{sn} = \begin{cases} P_{tot}, & \theta < \theta_M \\ 0, & \theta \ge \theta_M \end{cases}$	P_{sn}	M
MPI-HM	$\frac{\delta S_{sn}}{\delta \xi} = \frac{\delta S_{sn,ice}}{\delta t} + \frac{\delta S_{sn,i}}{\delta t}$	$P_{sn} F$	M
	$\frac{\delta S_{sn,tce}}{\delta t} = P_{sn} - M + F$ $\frac{\delta S_{sn,l}}{\delta t} = M_{pot} - M - F$ $F = \begin{cases} S_{sn,l}, & \theta < 273.15 \\ 0, & \theta > 273.15 \end{cases}$		
ORCHIDEE	$\frac{\delta S_{sn,i}}{\delta t} = \begin{cases} P_{sn} + P_{ra} - R_{in,i} - M_{,i} - E_{sn}, & i = 1\\ R_{in,i-1} - R_{in,i} - M_{i}, & i = 2,3 \end{cases}$ See [53]	$P_{sn} P_{ra}$	$R_{in,i} \ M \ E_{sn}$
PCR-GLOBWB	$\frac{\delta S_{sn}}{\delta t} = P_{sn} - M$	P_{sn}	M
VIC	$\frac{\delta \widehat{S}_{sn,l}}{\delta t} = P_{ra} + \left(\frac{H_l}{\rho_w \times H_{l,E}} - \frac{\chi_M}{\rho_w \times H_M}\right) \times \Delta t$ $\frac{\delta S_{sn,ice}}{\delta t} = P_{sn} + \left(\frac{H_l}{\rho_w \times H_{l,E}} + \frac{\chi_M}{\rho_w \times H_M}\right) \times \Delta t. \text{ See [2]}$	$P_{ra} P_{sn}$	$\begin{array}{c} H_l \ H_{l,E} \\ \chi_M \ H_M \end{array}$
WaterGAP2	$\frac{\delta S_{sn}}{\delta t} = \frac{1}{100} \times \sum_{i=1}^{100} (P_{s,SG_i} - M_{SG_i} - E_{sn,SG_i})$	P_{sn}	$M_s E_{sn}$
	$P_{s,SG_i} = \begin{cases} P_{tot}, & \theta_{SG_i} < 273.15\\ 0, & other \end{cases}$		
WAYS	$\frac{\delta S_{sn}}{\delta t} = P_{sn} - M$	P_{sn}	M

Model	Equation	Water Flux	
_		Inflows	Outflows
CLM4.5	Interception by vegetation does not distinguish between liquid and solid phases		
CLM5.0	$\frac{\delta S_{soc}}{\delta t} = P_{int,s} - (P_{dr,s} - U_{ca,sn}) \times \Delta t - E_{lfsm} \times \Delta t$	$P_{int,s}$	$E_{lfsm} U_{ca,sn}$ $P_{dr.s}$
CWatM	not represented		,-
DBH	$\frac{\delta S_{soc}}{\delta t} = P_{tot} - P_{th} - P_{dr} - E_{ca}$	P_{tot}	$P_{th} P_{dr} E_{ca}$
H08	σ_{t}^{0} for ambient temperature lower than the freezing temperature, precipitation is retreated as snow. not represented		
JULES-W1	$\frac{\delta S_{soc}}{\delta t} = \left(0.7 \times \left(\left(4.4 \times LAI\right) - I_0\right) \times \left(1 - exp^{\frac{-T_{tot}}{4.4 \times LAI}}\right)\right) - E_{sn} - M_{ca} - 0.4 \times M_{ca}. \text{ See [5]}$	P_{tot} for $\theta < 273.15; I_0$	$M_{ca} E_{sn}$
LPJmL	not represented		
Mac-PDM.20	not represented		
MATSIRO	$\frac{\partial S_{soc}}{\delta t} = P_{int,s} - P_{dr,s} - E_{ca,s}$	$P_{int,s}$	$P_{dr,s} E_{ca,s}$
mHM	not represented		
MPI-HM	not represented		
ORCHIDEE	not represented		
PCR-GLOBWB	not represented		
VIC	$\frac{\delta S_{soc}}{\delta t} = f_{LAI} \times P_{sn}.$	P_{sn}	
WaterGAP2 WAYS	$f_{LAI} = 0.6$ See [2], [48] not represented not represented		

Table S9. Snow held on the canopy S_{soc}

Table S10.	Snow	under	canopy	Sen
10010 0100	011011	cincient.	e anopj	$\sim suc$

Model	Equation	Water Flux	
		Inflows	Outflows
CLM4.5	see table S8		
CLM5.0	$\frac{\delta S_{suc}}{\delta t} = f_{sn} \times (P_{int,l} + E_{dew} - E_{ca,l}) \times \Delta t$	$P_{int,l} E_{dew}$	$E_{ca,l}$
CWatM	not represented		
DBH	$\frac{\delta S_{suc}}{\delta t} = P_{gr,s} - E_{sn,so} - R_{in}$	$P_{gr,s}$	$E_{sn,so} R_{in}$
H08	not represented		
JULES-W1	$\frac{\delta S_{suc}}{\delta t} = P_{tot} - \frac{S_{soc}}{\delta t} - M_{underca} - E_{snunderca}$	P_{tot} for $\theta < 273.15$	$M_{underca}$
LPJmL	not represented	0 (275.15	Dsnunaerca
Mac-PDM.20	not represented		
MATSIRO	see table S8		
mHM	not represented		
MPI-HM	not represented		
ORCHIDEE	see table S8		
PCR-GLOBWB	not represented		
VIC	$ \rho_w \times c_{ice} \times \frac{\delta S_{suc} \times \theta_{su}}{\Delta t} = H_l + H_{se} + NR + \chi_M + \chi_{rs}. \text{ See [2]} $	P_{tot}	SWE
WaterGAP2	not represented		
WAYS	not represented		

Table S11. Sublimation E	sn
--------------------------	----

Model	Equation
CLM4.5	$E_{sn} = E_{so} - max \left(E_{so} \times \frac{S_{l,sn,i+1}}{S_{ice,sn,i+1} + S_{l,sn,i+1}}, 0 \right) \text{ for } E_{so} \ge 0$
CLM5.0	$E_{sn} = min\left(AET, \frac{S_{sn}}{\Delta t}\right)$
CWatM	$E_{sn} = \min(M, E_{so})$
DBH	$E_{sn} = \frac{1}{H_{l,E}} \times \left(\frac{e_{ca} - e}{r_{b}}\right) \times \left(\frac{\rho_{air} \times c_{air}}{\gamma}\right) \times f_{ca,sn} \times \frac{H_{l,E}}{H_{l,E} + H_{l,E}}$
H08	$E_{sn} = PET$
JULES-W1	$E_{sn} = \frac{\rho_{air}}{r_{so} + r_{ca}} \times (q_{sat}^{ca} - q)$
	$E_{snunderca} = \frac{\rho_{air}}{f_{ab} + r_{ca}} \times (q_{sat}^{gr} - q). \text{ See [17]; [47]}$
I DIm I	$F = \int 0.1 (\text{mm day}^{-1}), S_{sn} \ge 0.1 (\text{mm})$
LFJIIIL	$L_{sn} = \begin{cases} 0 \ (\text{mm day}^{-1}), & S_{sn} < 0.1 \ (\text{mm}) \end{cases}$
Mac-PDM.20	not represented
MATSIRO	$E_{sn}^{freegr^{t+1}} = (1 - f_{sn}) \times f_F \times H_{l,E_{sn}} \times \rho_{air} \times C_{bulk,Eg} \times W \times \left(q_{su} \times q_{sat}^{gr\ t+1} - q\right)$
	$E_{sn}^{covgrt+1} = f_{sn} \times H_{l,E_{sn}} \times \rho_{air} \times C_{bulk,Eg}^{sn} \times W \times \left(q_{sat}^{gr,snt+1} - q\right)$
mHM	not represented
MPI-HM	not represented
ORCHIDEE	$E_{sn} = (q_{sat}^{ca} - q) \times W \times C_{su} \times (1 - r_{floodplain}) \times r_{sn}$
PCR-GLOBWB	not represented
VIC	$E_{sn} = rac{H_{l,E}}{ ho_w imes H_{l,E_{sn}}}.$ See [2]
WaterGAP2	$E_{sn,SG_i} = PET$ see [42]
WAYS	not represented
Table S12. Snowmelt M

Model	Equation
CLM4.5	$M = \frac{H_i \times \Delta t}{H_M} \text{ for } i = S_{sn,i} + 1,, 0$
CLM5.0	$M = \min\left(S_{ice}, \frac{\chi}{H_{M}}\right)$
CWatM	$M = C_m \times C_{m,season} \times (1 + 0.01 \times P_{ra}) \times (\theta_{SG_i} - \theta_M) \times \Delta t - E_{sn}; \text{ See[45]}$
	for 10 elevation zones per grid.
	$M_{glacier} = C_{mglacier} \times C_{m,seasonglacier} \times (\theta_{SG_i} - \theta_M)$ for 3 elevation zones per grid
DBH	$M = \theta_{freeze} \times (H_{tot} + \delta H_{tot}) - (\theta_{so} \times H_{tot} + \theta \times \delta H_{tot})$
H08	$M = \frac{\chi_f}{H_{M,ice}} \text{ with } H_{M,ice} = 0.333 \times 10^6$
	$\min\left(S_{sn}, \frac{\theta - \theta_M}{H_M \times H_{soTL}}\right)$
JULES-W1	$M = \underbrace{- (I - M - SOLD)}_{\Delta t} \text{ for } \theta > \theta_M; M \times \Delta t \le S_{sn}; H_M \times M \times \Delta t \le \underbrace{- (I - M - SOLD)}_{H_{soTL}} \text{ for details see}$
	$\begin{bmatrix} 22 \end{bmatrix} \qquad $
LPJmL	$M = \begin{cases} 0.3x^{9}, & 0.21010\\ R_{en} = P_{eh}, & S_{en} > 20,000 \text{ (mm)} \end{cases}$
	$\begin{cases} -\sin^{-1} - \sin^{-1} - 2\sin^{-1} - 2\cos^{-1} - \cos^{-1} - \cos^{-1$
Mac-PDM.20	$M = \begin{cases} 0, & \theta \le 273.15 \end{cases}$
MATCIDO	$M = \sum_{n=1}^{N} M$
MAISIKO	$M = \sum_{i=1}^{M} M_t$
	for $k = 1, N$
	for $k = 1$ (starting from top layer) for $S_{en(1)} \neq 0$ and $\theta_M < \theta_{en(1)}$
	$H_{en} = H_{en} 2 - H_{en} 1 - \frac{c_{ice} \times S_{sn1} \times (\theta_M - \theta_{sn1})}{c_{ice} \times S_{sn1} \times (\theta_M - \theta_{sn1})}$
	Δt
	$M = \min\left(\frac{-\sin t}{\Delta t}, \frac{\sin t}{H_M}\right)$
	$M_1 = f_{sn} \times M$
	$\frac{n_{sn} - n_{sn} - (M \times n_M)}{for \ 2 \le k \le N}$
	$\theta_{sn,k} = \theta_{sn,k} + \frac{H_{sn}}{1 + 1 + 1} \times \Delta t$
	$C_{ice} \times S_{sn,k} $ $\left(c_{ice} \times S_{sn,k} \times (\theta_{sn,k} - \theta_M) \right) $
	$H_{sn} = max \left(\underbrace{\Delta t}, 0 \right)$
	$M = \min\left(\frac{S_{sn,i}}{\Delta t}, \frac{H_{sn}}{H_M}\right)$
	$M_i = f_{sn} \times M$
	$M = \min(S_{sn}, (b - b_M) \times C_m) \text{where } b > b_M$ $M = \max\left(0, \left(\sin\left(\pi \times \frac{t_{day}}{2}\right) \times 8.2 + 0.7\right) \times (0, -b_M)\right)$
	$M_{pot} = max \left(0, \left(\sin\left(\pi \times \frac{1}{t_{year}}\right) \times 0.5 + 0.7\right) \times \left(0 - 0_{freeze}\right)\right)$ $M = M_{ext} + max \left(0, S_{ext} = 0.06 \times S_{ext}\right)$
	$\frac{1.9 \times 10^6 \times \frac{\rho_{sn,i} - 0.00 \times 0.5n}{\sigma_{sn,i} \times \zeta_{sn} \times (\theta_{sn,i} - \theta_f) - H_{sn,i}}$
ORCHIDEE	$M_i = S_{sn,i} - \frac{Pice}{H_{M,ice}}.$ See [53]
PCR-GLOBWB	$M = \min(S_{sn}, (\theta - \theta_M) \times C_m) \text{where } \theta > \theta_M$
VIC	$\begin{cases} C_m \times (\theta_{SG} - 273.15), \theta_{SG} > 273.15, S_{sn,SG} > 0 \ mm \end{cases}$
WaterGAP2	$M = \begin{cases} 0, & \text{other} \end{cases}$
	C_m = landcover specific degree-day factor, see [34]
WAYS	$M = \begin{cases} \min(S_{sn}, C_m \times (\theta - 273.15)), & \theta > 273.15 \\ 0 & \theta < 973.15 \end{cases}$
	$(0, \qquad \theta \le 273.15$

Table S13. Frozen soil

Equation
$\frac{H_{so,i} \times \zeta_{so,i}}{\Delta t} \times \left(\theta_{so,i}^{n+1} - \theta_{so,i}^{n}\right) = H_{atm}^{n} + \frac{\delta H_{atm}}{\delta \theta_{acc}} \times \left(\theta_{so,i}^{n+1} - \theta_{so,i}\right) - \alpha \times \frac{k_{th} \times \left(\theta_{so,i}^{n} - \theta_{so,i+1}^{n}\right)}{d_{acc}} - \frac{\delta H_{atm}}{\delta \theta_{acc}} + \frac{\delta H_{atm}}{\delta \theta_{acc}} \times \left(\theta_{so,i}^{n+1} - \theta_{so,i}\right) - \alpha \times \frac{k_{th} \times \left(\theta_{so,i}^{n} - \theta_{so,i+1}^{n}\right)}{d_{acc}} - \frac{\delta H_{atm}}{\delta \theta_{acc}} + \frac{\delta H_{atm}}{\delta \theta_{acc}} \times \left(\theta_{so,i}^{n+1} - \theta_{so,i+1}^{n}\right) - \alpha \times \frac{\delta H_{atm}}{\delta \theta_{acc}} + \frac{\delta H_{atm}}{\delta \theta_{acc}} \times \left(\theta_{so,i}^{n+1} - \theta_{so,i+1}^{n}\right) - \alpha \times \frac{\delta H_{atm}}{\delta \theta_{acc}} + \frac{\delta H_{atm}}{\delta \theta_{acc}} \times \left(\theta_{so,i+1}^{n} - \theta_{so,i+1}^{n}\right) - \alpha \times \frac{\delta H_{atm}}{\delta \theta_{acc}} + \frac{\delta H_{atm}}{\delta \theta_{acc}} \times \left(\theta_{so,i+1}^{n} - \theta_{so,i+1}^{n}\right) - \alpha \times \frac{\delta H_{atm}}{\delta \theta_{acc}} + \frac{\delta H_{atm}}{\delta \theta_{acc}} \times \left(\theta_{so,i+1}^{n} - \theta_{so,i+1}^{n}\right) - \alpha \times \frac{\delta H_{atm}}{\delta \theta_{acc}} + \frac{\delta H_{atm}}{\delta \theta_{acc}} \times \left(\theta_{so,i+1}^{n} - \theta_{so,i+1}^{n}\right) - \alpha \times \frac{\delta H_{atm}}{\delta \theta_{acc}} + \frac{\delta H_{atm}}{\delta \theta_{acc}} \times \left(\theta_{so,i+1}^{n} - \theta_{so,i+1}^{n}\right) - \alpha \times \frac{\delta H_{atm}}{\delta \theta_{acc}} + \frac{\delta H_{atm}}{\delta \theta_{acc}} \times \left(\theta_{so,i+1}^{n} - \theta_{so,i+1}^{n}\right) - \alpha \times \frac{\delta H_{atm}}{\delta \theta_{acc}} + \frac{\delta H_{atm}}{\delta \theta_{acc}} \times \left(\theta_{so,i+1}^{n} - \theta_{so,i+1}^{n}\right) - \alpha \times \frac{\delta H_{atm}}{\delta \theta_{acc}} + \frac{\delta H_{atm}}{\delta \theta_{acc}$
$(1 \circ k_{th} \times (\theta_{so,i}^{n+1} - \theta_{so,i+1}^{n+1}))$
$(1-\alpha) \times \frac{d_{n,i+1}-d_{n,i}}{d_{n,i+1}-d_{n,i}}$
Where the superscripts n and $n + 1$ indicate values at the beginning and end of the time step, respectively
See [3/] $H_{so,i} \times \zeta_{so,i} \dots \langle o = n+1 = o = n \rangle$ If $n + \delta H_{atm} \dots \langle o = n+1 = o = \rangle \dots \dots h_{th} \times (\theta_{so,i}^n - \theta_{so,i+1}^n)$
$\frac{-\cos(-\cos)}{\Delta t} \times (\theta_{so,i})^{-1} - \theta_{so,i}) = H_{atm} + \frac{\cos(-\cos)}{\delta \theta_{so,i}} \times (\theta_{so,i})^{-1} - \theta_{so,i}) - \alpha \times \frac{\cos(-\cos)}{d_{n,i+1} - d_{n,i}} - \frac{\cos(-\cos)}{d_{n,i+1} - d_{n,i}} = 0$
$(1-\alpha) \times \frac{k_{th} \times (\theta_{so,i})^{n+1} - \theta_{so,i+1}^{n+1}}{d_{n,i+1} - d_{n,i}}$ See Oleson et al. [37]
$\frac{\delta F_{so}}{\delta F_{so}} = -(1-\mu) \times F - \theta_{ac} \times erro(-0.04 \times \mu \times \frac{d_{sn}}{\delta F_{so}}); F_{s} = F_{so} + \frac{\delta F_{so}}{\delta F_{so}} \times \Delta t \text{ See [32]}$
$\delta t = (1 \nu) \times 1 \delta SG_i \times exp(-0.04 \times \nu \times SWE), 1 t = 1 t = 1 \delta t \Delta t See [52]$
not represented
not represented. When a surface is snow-covered, soil moisture does not change through precipitation
of evaporation.
not represented
not represented
$\delta \Psi$
$Q_{in,so} = k \times \left(\frac{1}{\delta z} - 1\right)$
$k = C_{so,F} \times k_{sat} \times \left(\frac{S_{so,uF}}{C}\right)^{2 \times \beta + 3}$
$\phi_{so} - S_{so,F}$
$\Psi = \Psi_{sat} \times \left(\frac{D_{so,uF}}{\phi - S_{vo}}\right)^{-\beta}$
$\psi_{so} = J_{so,F}$
$C_{so,F} = \left(1 - \frac{1}{S_{so,F} + S_{so,F}}\right)^{\alpha}$. See [44]
α is unity. k and Ψ are calculated after the formula in Clapp and Hornberger [10]. For more detail, see
[49].
not represented
not represented
not represented
not represented
The motivation for development of the frozen soil algorithm is to represent the effects of seasonally
frozen ground on surface hydrologic response and the surface energy balance, at a level of complexity
consistent with the previously developed VIC algorithms. In this spirit, the VIC soil moisture transport
scheme was retained, and the thermal and moisture fluxes are solved separately. At each time step
sequently moisture flying are computed using the undeted ice contents. Finally, soil thermal manartic
for the payt time step are estimated from the rayised distribution of soil moisture and ice. See for details
Tor the next time step are estimated from the revised distribution of son moisture and ice. See for details
Section 2.1 in Cherkauer and Lettenmaier [8]
Section 2.1 in Cherkauer and Lettenmaier [8]

Table	S14.	Soil	storage	S_{so}
	~	0011	otorage	~ 30

Model	Equation	Water Flux	
		Inflows	Outflows
CLM4.5	$\frac{\delta d_{so} \delta S_{so,l,i}}{\delta t} = Q_i - Q_{i-1} - T_i$	Q_i	$Q_{i-1} T_i$
CLM5.0	$\frac{\delta d_{so}\delta S_{so,l,i}}{\delta t} = Q_i - Q_{i-1} - T_i$	Q_i	$Q_{i-1} T_i$
CWatM	$\frac{\delta S_{so}}{\delta t} = R_{cr} + R_{in} - R_{gwr} - R_{if} - E_{so} - T$	$R_{cr} R_{in}$	$E_{so} R_{gwr} R_{if}$ T
DBH	$\frac{\delta S_{so,i}}{\delta t} = \begin{cases} R_{in,i} - E_{so,i} - R_{gwr,i}, & i = 0 \text{ (top layer)} \\ R_{gwr,i-1} - R_{gwr,i} - T_i, & i > 0 \end{cases}$	$R_{in,i} R_{gwr,i-1}$	$E_{so,i} R_{gwr,i} T_i$
H08	$\frac{\delta S_{so,i}}{\delta t} = M + P_{th} - E_{so} - R_{in}$	$M P_{th}$	$E_{so} R_{in}$
JULES-W1	$\frac{\delta S_{so}^{*}}{\delta t} = M + P_{th} - E_{so} - R_{if} - R_{su}$	$M P_{th}$	$E_{so} R_{if} R_{su}$
LPJmL	$\frac{\delta S_{so}}{\delta t} = (R_{if} + R_{in}) - R_{gwr} - R_{if} - E_{so} - T$	$R_{if} R_{in}$	$E_{so} R_{gwr} T$
Mac-PDM.20M	$\frac{\delta S_{so}}{\delta t} = M + P_{tot} - E_{so} - R_{su}$	$P_{tot} M$	$E_{so} R_{su}$
MATSIRO	$\frac{\delta S_{so}}{\delta t} = \sum \left[(S_{so,F_i} + S_{so,uF_i}) \times d_{so} \right]$		
mHM	$\frac{\delta S_{so,i}}{\delta t} = \begin{cases} R_{in,i} - ET_{so,i} - R_{sof,i}, & i = 0 \text{ (top soil layer)} \\ R_{sof,i-1} - ET_{so,i} - R_{sof,i}, & i > 0 \end{cases}$	$R_{in,i}$	$ET_{so,i} R_{sof,i}$
MPI-HM	$\frac{\delta S_{so}}{\delta t} = R_{in} - R_{pe} - E_{so} - T$	R_{in}	$E_{so} R_{pe} T$
ORCHIDEE	$\frac{\delta S_{so}}{\delta t} = R_{in} + R_{in,r} - R_{su} - E_{so}$	$R_{in} \; R_{in,r}$	$E_{so} R_{su}$
PCR-GLOBWB	$\frac{\delta S_{so}^{\prime}}{\delta t} = R_{in} - R_{gwr} - R_{if} - E_{so} - T$	R_{in}	$E_{so} R_{gwr} R_{if}$ T
VIC	$\frac{\delta S_{so}}{\delta t} = \frac{\delta}{\delta d_{so}} \times \left(D_w \times \frac{\delta S_{so}}{\delta d_{so}} \right) + \frac{\delta k}{\delta d_{so}}$ for the top two soil layers: δS_{so}	$\frac{D_{wd_{so,1}}}{R_{in}} k_{d_{so,1}}$	$\begin{array}{c} k_{d_{so,1}} \ D_{wd_{so,2}} \\ E_{so} \ T \ R_{gw} \end{array}$
	$\frac{\delta S_{so}}{\delta t} \times d_{so,i} = R_{in} - E_{so} - T - k \times d_{so,i} - D_w \times d_{so,i}$ for details see Gao et al. [20]: Liang et al. [20]		
	for lower soil layer:		
	$\frac{oS_{so3}}{s\delta t} \times (d_{so,3} - d_{so,2}) = k_{d_{so,2}} + D_{w,2} - T - R_{gw}$		
WaterGAP2	$\frac{\delta S_{so}}{c\delta t} = R_{in} - R_{tot} - E_{so}$	R_{in}	$R_{tot} E_{so}$
WAYS	$\frac{\delta S_{so}}{\delta t} = M + P_{th} - E_{so} - R_{tot}$	$M P_{th}$	$E_{so} R_{tot}$

Table S15. Total runoff in ISIMIP2b $R_{tot,ISIMIP2b}$

Model	Equation
CLM4.5	$R_{tot,ISIMIP2b} = R_s + R_{sb}$
CLM5.0	$R_{tot,ISIMIP2b} = R_s + R_{sb}$
CWatM	$R_{tot,ISIMIP2b} = R_s + R_{sb}$
DBH	$R_{tot,ISIMIP2b} = R_s + R_{sb}$
H08	$R_{tot,ISIMIP2b} = R_s + R_{sb}$
JULES-W1	$R_{tot,ISIMIP2b} = R_s + R_{sb}$
LPJmL	$R_{tot,ISIMIP2b} = R_s + R_{sb}$
Mac-PDM.20	$R_{tot,ISIMIP2b} = R_s + R_{sb}$
MATSIRO	$R_{tot,ISIMIP2b} = R_s + R_{sb}$
mHM	$R_{tot,ISIMIP2b} = R_s + R_{sb}$
MPI-HM	$R_{tot,ISIMIP2b} = R_s + R_{sb}$
ORCHIDEE	$R_{tot,ISIMIP2b} = R_s + R_{sb}$
PCR-GLOBWB	$R_{tot,ISIMIP2b} = R_s + R_{sb}$
VIC	$R_{tot,ISIMIP2b} = R_s + R_{sb}$
WaterGAP2	$R_{tot,ISIMIP2b} = R_s + R_{sb}$
WAYS	$R_{tot,ISIMIP2b} = R_s + R_{sb}$

Table S16.Surface runoff in ISIMIP2 R_s

Model	Equation
CLM4.5	$R_s = R_{su}$
CLM5.0	$R_s = R_{su}$
CWatM	$R_s = R_{su}$
DBH	$R_s = R_{su}$
H08	$R_s = R_{su}$
JULES-W1	$R_s = R_{su}$
LPJmL	$R_s = R_{su}$
Mac-PDM.20	$R_s = R_{su}$
MATSIRO	$R_s = R_{su}$
mHM	$R_s = R_{su}$
MPI-HM	$R_s = R_{su}$
ORCHIDEE	$R_s = R_{su}$
PCR-GLOBWB	$R_s = R_{su}$
VIC	$R_s = R_{su}$
WaterGAP2	$R_s = R_{su}$
WAYS	$R_s = R_{su}$

Table S17. Subsurface runoff in ISIMIP2b R_{sb}

Model	Equation
CLM4.5	$R_{sb} = R_{gw}$
CLM5.0	$R_{sb} = R_{gw}$
CWatM	$R_{sb}=R_{if}+gw$
DBH	not represented
H08	$R_{sb} = R_{qw}$
JULES-W1	$R_{sb}=R_{if}$
LPJmL	$R_{sb}=R_{if}$
Mac-PDM.20	$R_{sb} = R_{gw}$
MATSIRO	$R_{sb} = R_{gw}$
mHM	$R_{sb} = R_{if,fast} + R_{if,slow} + R_{gw}$
MPI-HM	$R_{sb} = R_{gwr}$
ORCHIDEE	$R_{sb} = R_{gw}$
PCR-GLOBWB	$R_{sb}=R_{if}$
VIC	$R_{sb} =$
	$\left(\frac{R_{if,max} \times I_{R_{if,max}}}{\sqrt{2}} \times S_{so,3L}, \qquad 0 \le S_{so,3L} \le f_{S_{so,max}} \times S_{so,max,3L}\right)$
	$\frac{JS_{so,max} \times S_{so,max} 3L}{R_{i} + max \times R_{i}} = \frac{1}{r} + $
	$\left\{\frac{1}{S_{so,max} \times S_{so,max,3L}} \times S_{so,3L} + \left(R_{if,max} - \frac{r_{if,max}}{S_{so,max}}\right) \times \left(S_{so,3L} - \frac{S_{so,max}}{S_{so,max,3L}} - \frac{r_{if,max}}{S_{so,max,3L}}\right)\right\}$
	$S_{so,3L} \ge f_{S_{so,max}} \times S_{so,max,3L}$
WaterGAP2	$\dot{R}_{sb}=R_{gw}$
WAYS	$R_{sb} = R_{if} + R_{gw}$

Table S18. Total runoff from land R_{tot}

Model	Equation
CLM4.5	not represented
CLM5.0	not represented
CWatM	not represented
DBH	not represented
H08	not represented
JULES-W1	not represented
LPJmL	not represented
Mac-PDM.20	not represented
MATSIRO	not represented
mHM	$R_{tot} = R_{su} + R_{if,fast} + R_{if,slow} + R_{gw}$
MPI-HM	not represented
ORCHIDEE	not represented
PCR-GLOBWB	not represented
VIC	not represented
WaterGAP2	$R_{tot} = R_{in} \times \left(\frac{S_{so}}{S_{so,max}}\right)^{\gamma} + R_{bu} + R_{sat} \text{ with } S_{so,max} = S_{so,TL} \times d_{so,root} \text{ and } R_{bu} = 0.5 \times R_{in} \times f_{bu}, R_{in} \times f_{bu}$
	is reduced by R_{bu} before calculating R_{tot} , γ is the calibration parameter according to [3, 34].
WAYS	$R_{tot} = \left(1 - \left(1 - \frac{S_{rz}}{(1+\beta) \times S_{rz,max}}\right)\right)^{\beta} \times R_{in}$

Model	Equation
CLM4.5	not represented
CLM5.0	not represented
CWatM	$R_G^n = \sum_{LC} \times \sum_{f_R} \times \sum_{i}^{max} \times tri_x \times R_{su_{LC,R}} \times (t-i+1); \text{ for "i" runs from 1 to maximum number of days.}$
	$tri_x = \int\limits_{i=1}^{i} imes rac{2}{max} - u? - rac{max}{2} imes rac{4}{max^2}du$
DBH	not represented
H08	not represented
JULES-W1	not represented
LPJmL	not represented
Mac-PDM.20	not represented
MATSIRO	not represented
mHM	not represented
MPI-HM	$R_G = \frac{S_{rv}}{\kappa_A}$
ORCHIDEE	not represented
PCR-GLOBWB	not represented
VIC	not represented
WaterGAP2	not represented
WAYS	not represented

 Table S19.
 Runoff concentration in a grid cell

Table S20). Surface	runoff R_{su}
-----------	-------------------	-----------------

Model	Equation
CLM4.5	$R_{su,l} = R_{gl,we,la} + R_{su,l} + R_{if}$
CI M5 0	$R_{su,ice} = R_{snwcp,ice}$
CLWD.0	$n_{su,l} - n_{gl,we,la} + n_{su,l} + n_{if}$ $R_{su,ice} = R_{suwcn,ice}$
CWatM	$R_{su} = R_{ho} + R_{if} + R_{of}$
DBH	$R_{su} = R_{ho} + R_{sat}$
H08	$R_{su} = \begin{cases} \frac{(\sigma_{so,tot} - u_{so} \times 1000 \times (v_{so,FC} - v_{so,WP}))}{t}, & \frac{\sigma_{so,tot}}{d_{so} \times 1000 \times (S_{so,FC} - S_{so,WP})} \ge 1\\ 0, & \frac{\sigma_{so,tot}}{d_{so} \times 1000 \times (S_{so,FC} - S_{so,WP})} < 1 \end{cases}$
JULES-W1	$R_{su} = \begin{cases} \left(P_{ra} \times \frac{S_{ca}}{S_{ca,max}} \times exp\left(-\frac{j_{Pc,G}(N_{ca,max} \times N_{ta})}{P_{ra} \times S_{ca}} \right) \right) + \left(P_{ra} \times \left(1 - \frac{S_{ca,max}}{S_{ca,max}} \right) \times exp\left(-\frac{j_{Pc,G}(N_{ca,max} \times N_{ta})}{P_{ra} \times \Delta t} \right) \right) \\ for R_{in} \times \delta P_{th} \le S_{ca} \\ P_{ra} \times exp\left(-\frac{j_{Pc,G}(R_{in} \times \delta P_{th} + S_{ca,max} - S_{ca})}{P_{ra} \times \Delta t} \right) \\ for R_{in} \times \delta P_{in} > S \end{cases}$
LPJmL	$R_{su} = P_{tot} - R_{in,TL}$
Mac-PDM.20	$R_{su} = \begin{cases} P_{ra} - AET, & S_{so,FC} < S_{so,tot} \\ 0 & S_{so,tot} < S_{so,FC} \end{cases}$
	Runoff is generated from excess rainfall (rainfall minus evaporation) when the soil water content exceeds the capacity of the
MATSIDO	soil (field capacity). $P_{-} = P_{-} + P_{-} + P_{-}$
MAISIKO	$n_{su} = n_{ho} + n_{sat} + n_{of}$
mHM	$R_{su} = f_{bu} \times R_{in,i} - \frac{1}{S_{pon,max}} \left(PEI_{ows} - E_{ca} \right)$
	occurs only on the fraction of the impervious/sealed land cover class, at the top soil layer: $i = 0$
MPI-HM	$R_{in} = 1 - f_{ini} \times \begin{pmatrix} P + M - \max(0 S g_{a, i} - S) - R_{a} \\ P + M - \max(0 S g_{a, i} - S) - R_{a} \\ R_{ini} = 1 - f_{ini} \times \begin{pmatrix} P + M - \max(0 S g_{a, i} - S) - R_{a} \\ R_{ini} = 1 - f_{ini} \\ R_{ini} = 1 -$
	$\begin{array}{c} 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \\$
	$R_0 = \frac{S_{so,SG,max} - S_{so,SG,min}}{1 + \sigma} \times (R_1 - R_2)$
	$R_1 = \min\left(1, \left(\frac{S_{so,SG,max} - S_{so,SG}}{S_{so,SG,max} - S_{so,SG}}\right)^{1+\sigma}\right)$
	$R_{2} = \max\left(\frac{0, S_{so,SG,max} - S_{so,SG} - P_{ra} - M}{S_{so,SG,max} - S_{so,SG,min}}\right)^{1+\sigma}$
	$S_{so,SG} = \left\{ S_{so,SG,max} - (S_{so,SG,max} - S_{so,SG,min}) \times \left(1 - \frac{S_{so} - S_{so,SG,min}}{S_{so,max} - S_{so,SG,min}} \right)^{\frac{1}{1+\sigma}}, S_{so} > S_{so,SG,min} = \frac{1}{1+\sigma} \right\}$
ODCHIDEE	$S_{so} \le S_{so,SG,min}$
PCR-GLOBWB	$R_{su} = P_{th} - R_{in}$ $R_{su} = R_{t} + R_{in}$
VIC	Since the top thin soil layer has a very small water holding capacity, the direct runoff (surface runoff) within each time step is
	calculated for the entire upper layer (layer 1 and layer 2) as (Liang et al. [29]; Gao et al. [20]):
	$R_{su} = \begin{cases} P_{tot} - d_{so2} \times (\phi_{so} - S_{so,T2L}) + d_{so2} \times \phi_{so} \times \left(1 - \frac{R_{in,0} + P_{tot}}{R_{in,max}}\right)^{1 + 11R_{in}}, & P_{tot} + R_{in,0} \le R_{in,max} \end{cases}$
WaterGAP2	$ \begin{array}{l} P_{tot} - a_{so2} \times (\phi_{so} - S_{so,T2L}), \\ P_{tot} + R_{in,0} \ge R_{in,max} \end{array} $
WAYS	$R_{su} = R_{tot} - R_{gwr}$ $R_{su} = R_{tot} - R_{gwr}$

Table S21. Hortonian overland flow

ModelEquationCLM4.5 $R_{ho} = \max(R_{in} - (1 - f_{h2o})R_{in,max}, 0)$ CLM5.0 $R_{ho} = \max(R_{in} - (1 - f_{h2o})R_{in,max}, 0)$ CWatM $R_{ho} = M + P_{th} - Q_{pf} - R_{in}$ Preferential flow, that bypass the soil matrix $Q_{pf} = (P_{th} + M) \times \left(\frac{Ss_{o,rel}}{S_{so,sat}}\right)^{\beta}$ DBH $R_{ho} = \int_{0}^{f_{G,unsat}} P_{th} \times P_{conv} - k$ H08not representedJULES-W1not representedLPJmLit is taken into account when surface runoff is computed, but not separately considered.MATSIRO $R_{ho} = B_{stormy} \times R_{ho,stormy} + (1 - B_{calm}) \times R_{ho,calm})$ mHMnot representedORCHIDEEnot representedORCHIDEEnot representedVICnot representedVICnot representedWAYSnot represented		
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Model	Equation
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	CLM4.5	$R_{ho} = \max(R_{in} - (1 - f_{h2o})R_{in,max}, 0)$
CWatM $R_{ho} = M + P_{th} - Q_{pf} - R_{in}$ Preferential flow, that bypass the soil matrix $Q_{pf} = (P_{th} + M) \times \left(\frac{S_{so,rel}}{S_{so,sat}}\right)^{\beta}$ DBH $R_{ho} = \int_{0}^{f_{G,unsat}} P_{th} \times P_{conv} - k$ H08not representedJULES-W1not representedLPJmLit is taken into account when surface runoff is computed, but not separately considered.Mac-PDM.20not representedMHMnot representedMTSIRO $R_{ho} = B_{stormy} \times R_{ho,stormy} + (1 - B_{calm}) \times R_{ho,calm})$ mHMnot representedORCHIDEEnot representedPCR-GLOBWB $R_{ho} = 1 - \frac{S_{so,sat} - S_{so,tot}}{S_{so,tot} - S_{so,WP}} \times P_{tot}$ $R_{ho} = max(R_{in} - (1 - f_{h2o}) \times R_{in,max}, 0)$ VICnot representedWaySrepresented	CLM5.0	$R_{ho} = \max(R_{in} - (1 - f_{h2o})R_{in,max}, 0)$
Preferential flow, that bypass the soil matrix $Q_{pf} = (P_{th} + M) \times \left(\frac{S_{so,rel}}{S_{so,sat}}\right)^{\beta}$ DBH $R_{ho} = \int_{0}^{f_{G,unsat}} P_{th} \times P_{conv} - k$ H08 not represented JULES-W1 not represented LPJmL it is taken into account when surface runoff is computed, but not separately considered. Mac-PDM.20 not represented MATSIRO $R_{ho} = B_{stormy} \times R_{ho,stormy} + (1 - B_{calm}) \times R_{ho,calm})$ mHM not represented MPI-HM not represented PCR-GLOBWB $R_{ho} = 1 - \frac{S_{so,sat} - S_{so,tot}}{S_{so,tot} - S_{so,WP}} \times P_{tot}$ $R_{ho} = max(R_{in} - (1 - f_{h2o}) \times R_{in,max}, 0)$ VIC not represented WaYS protection	CWatM	$R_{ho} = M + P_{th} - Q_{pf} - R_{in}$
$\begin{aligned} Q_{pf} &= (P_{th} + M) \times \left(\frac{S_{so,rel}}{S_{so,sat}}\right)^{\beta} \\ \text{DBH} & R_{ho} &= \int_{0}^{f_{G,unsat}} P_{th} \times P_{conv} - k \\ \text{H08} & \text{not represented} \\ \text{JULES-W1} & \text{not represented} \\ \text{LPJML} & \text{it is taken into account when surface runoff is computed, but not separately considered.} \\ \text{Mac-PDM.20} & \text{not represented} \\ \text{MATSIRO} & R_{ho} = B_{stormy} \times R_{ho,stormy} + (1 - B_{calm}) \times R_{ho,calm}) \\ \text{mHM} & \text{not represented} \\ \text{ORCHIDEE} & \text{not represented} \\ \text{PCR-GLOBWB} & R_{ho} = 1 - \frac{S_{so,sat} - S_{so,tot}}{S_{so,tot} - S_{so,WP}} \times P_{tot} \\ R_{ho} = max(R_{in} - (1 - f_{h2o}) \times R_{in,max}, 0) \\ \text{VIC} & \text{not represented} \\ \text{WaterGAP2} & \text{not represented} \\ \end{aligned}$		Preferential flow, that bypass the soil matrix
$\begin{array}{llllllllllllllllllllllllllllllllllll$		$Q_{pf} = (P_{th} + M) \times \left(\frac{S_{so,rel}}{S_{so,sat}}\right)^{\beta}$
DBH $R_{ho} = \int_{0}^{} P_{th} \times P_{conv} - k$ H08not representedJULES-W1not representedLPJmLit is taken into account when surface runoff is computed, but not separately considered.Mac-PDM.20not representedMATSIRO $R_{ho} = B_{stormy} \times R_{ho,stormy} + (1 - B_{calm}) \times R_{ho,calm})$ mHMnot representedMPI-HMnot representedORCHIDEEnot representedPCR-GLOBWB $R_{ho} = 1 - \frac{S_{so,sat} - S_{so,tot}}{S_{so,tot} - S_{so,WP}} \times P_{tot}$ $R_{ho} = max(R_{in} - (1 - f_{h2o}) \times R_{in,max}, 0)$ VICnot representedWaterGAP2not represented		J _G ,unsat
H08not representedJULES-W1not representedLPJmLit is taken into account when surface runoff is computed, but not separately considered.Mac-PDM.20not representedMATSIRO $R_{ho} = B_{stormy} \times R_{ho,stormy} + (1 - B_{calm}) \times R_{ho,calm})$ mHMnot representedMPI-HMnot representedORCHIDEEnot representedPCR-GLOBWB $R_{ho} = 1 - \frac{S_{so,sat} - S_{so,tot}}{S_{so,tot} - S_{so,WP}} \times P_{tot}$ $R_{ho} = max(R_{in} - (1 - f_{h2o}) \times R_{in,max}, 0)$ VICnot representedWaterGAP2not represented	DBH	$R_{ho} = \int P_{th} \times P_{conv} - k$
InterpresentedJULES-W1not representedLPJmLit is taken into account when surface runoff is computed, but not separately considered.Mac-PDM.20not representedMATSIRO $R_{ho} = B_{stormy} \times R_{ho,stormy} + (1 - B_{calm}) \times R_{ho,calm})$ mHMnot representedMPI-HMnot representedORCHIDEEnot representedPCR-GLOBWB $R_{ho} = 1 - \frac{S_{so,sat} - S_{so,tot}}{S_{so,tot} - S_{so,WP}} \times P_{tot}$ $R_{ho} = max(R_{in} - (1 - f_{h2o}) \times R_{in,max}, 0)$ VICnot representedWaterGAP2not represented	H08	0 not represented
JOLDSWIInterpresentedLPJmLit is taken into account when surface runoff is computed, but not separately considered.Mac-PDM.20not representedMATSIRO $R_{ho} = B_{stormy} \times R_{ho,stormy} + (1 - B_{calm}) \times R_{ho,calm})$ mHMnot representedMPI-HMnot representedORCHIDEEnot representedPCR-GLOBWB $R_{ho} = 1 - \frac{S_{so,sat} - S_{so,tot}}{S_{so,tot} - S_{so,WP}} \times P_{tot}$ $R_{ho} = max(R_{in} - (1 - f_{h2o}) \times R_{in,max}, 0)$ VICnot representedWaterGAP2not represented	III FS-W1	not represented
Lef mileIt is taken into account when surface function is computed, but not separately considered.Mac-PDM.20not representedMATSIRO $R_{ho} = B_{stormy} \times R_{ho,stormy} + (1 - B_{calm}) \times R_{ho,calm})$ mHMnot representedMPI-HMnot representedORCHIDEEnot representedPCR-GLOBWB $R_{ho} = 1 - \frac{S_{so,sat} - S_{so,tot}}{S_{so,tot} - S_{so,WP}} \times P_{tot}$ $R_{ho} = max(R_{in} - (1 - f_{h2o}) \times R_{in,max}, 0)$ VICnot representedWaterGAP2not represented	I DImI	it is taken into account when surface supoff is computed but not constately considered
Mac-FDM.20InterpresentedMATSIRO $R_{ho} = B_{stormy} \times R_{ho,stormy} + (1 - B_{calm}) \times R_{ho,calm})$ mHMnot representedMPI-HMnot representedORCHIDEEnot representedPCR-GLOBWB $R_{ho} = 1 - \frac{S_{so,sat} - S_{so,tot}}{S_{so,tot} - S_{so,WP}} \times P_{tot}$ $R_{ho} = max(R_{in} - (1 - f_{h2o}) \times R_{in,max}, 0)$ VICnot representedWaterGAP2not represented	Mag DDM 20	not separately considered.
MATSIKO $R_{ho} = B_{stormy} \times R_{ho,stormy} + (1 - B_{calm}) \times R_{ho,calm})$ mHMnot representedMPI-HMnot representedORCHIDEEnot representedPCR-GLOBWB $R_{ho} = 1 - \frac{S_{so,sat} - S_{so,tot}}{S_{so,tot} - S_{so,WP}} \times P_{tot}$ $R_{ho} = max(R_{in} - (1 - f_{h2o}) \times R_{in,max}, 0)$ VICnot representedWaterGAP2not represented	MATSIDO	not represented $P = P + (1 P) + (2 P)$
mHMnot representedMPI-HMnot representedORCHIDEEnot representedPCR-GLOBWB $R_{ho} = 1 - \frac{S_{so,sat} - S_{so,tot}}{S_{so,tot} - S_{so,WP}} \times P_{tot}$ $R_{ho} = max(R_{in} - (1 - f_{h2o}) \times R_{in,max}, 0)$ VICnot representedWaterGAP2not representedWAXSnot represented	MAISIKO	$R_{ho} = B_{stormy} \times R_{ho,stormy} + (1 - B_{calm}) \times R_{ho,calm})$
MPI-HMnot representedORCHIDEEnot representedPCR-GLOBWB $R_{ho} = 1 - \frac{S_{so,sat} - S_{so,tot}}{S_{so,tot} - S_{so,WP}} \times P_{tot}$ $R_{ho} = max(R_{in} - (1 - f_{h2o}) \times R_{in,max}, 0)$ VICnot representedWaterGAP2not representedWAXSnot represented	mHM	not represented
ORCHIDEEnot representedPCR-GLOBWB $R_{ho} = 1 - \frac{S_{so,sat} - S_{so,tot}}{S_{so,tot} - S_{so,WP}} \times P_{tot}$ $R_{ho} = max(R_{in} - (1 - f_{h2o}) \times R_{in,max}, 0)$ VICnot representedWaterGAP2not representedWAXSnot represented	MPI-HM	not represented
PCR-GLOBWB $R_{ho} = 1 - \frac{S_{so,sat} - S_{so,tot}}{S_{so,tot} - S_{so,WP}} \times P_{tot}$ $R_{ho} = max(R_{in} - (1 - f_{h2o}) \times R_{in,max}, 0)$ VICnot represented waterGAP2WAYSnot represented	ORCHIDEE	not represented
$R_{ho} = max(R_{in} - (1 - f_{h2o}) \times R_{in,max}, 0)$ VIC not represented WaterGAP2 not represented WAYS not represented	PCR-GLOBWB	$R_{ho} = 1 - \frac{S_{so,sat} - S_{so,tot}}{S_{so,tot} - S_{so,WP}} \times P_{tot}$
VIC not represented WaterGAP2 not represented		$R_{ho} = max(R_{in} - (1 - f_{h2o}) \times R_{in,max}, 0)$
WaterGAP2 not represented	VIC	not represented
WAVS not represented	WaterGAP2	not represented
wA15 not represented	WAYS	not represented

Model	Equation
CLM4.5	not represented
CLM5.0	not represented
CWatM	not represented
	$f_{G,sat}$
DBH	$R_{sat} = \int P_{th}$
H08	not represented
JULES-W1	any saturation excess is moved to the soil layer below (the move of excess water to upper soil layers due to
	saturation is restricted. The excess saturation water is forced down to lower layers, and if the bottom soil layer
	becomes super-saturated, then the excess water is added to the interflow (Best et al. [5]).
LPJmL	$R_{sat} = R_{su}$
Mac-PDM.20	$R_{sat} = R_{su}$
MATSIRO	$R_{sat} = f_{G,sat} \times f_{ri,sat} \times P_{th}$
mHM	not represented
MPI-HM	implicitly included in surface runoff computation
ORCHIDEE	not represented
PCR-GLOBWB	not represented
VIC	same as Table S20.
W. CADO	$\int S_{so} - S_{so,max}, S_{so} > S_{so,max}$
waterGAP2	$R_{sat} = \begin{cases} 0, & \text{other cases} \end{cases}$
	with $S_{so,max} = d_{so,root} \times S_{so,TL}$
WANG	$max(0,S_f-S_{ftr})$
WAYS	$R_{sat} = \frac{K_{ff}}{K_{ff}}$
	The Overflow of the uppermost layer is only active when the storage of the fast response reservoir exceeds the
	specified threshold S_{ftr}

 Table S22. Saturation excess overland flow

_

Table S23. Transpiration

Model	Equation
CLM4.5	$T = -r_{ca,dry} \times \rho_{air} \left(g_{ca}^{air} \times q + g_{gr}^{ca} \times q_{gr} - \left(g_{ca}^{air} + g_{gr}^{ca} \right) \times \left(q_{sat}^{ca} + \frac{\delta q_{sat}^{ca}}{\delta \theta_{veg}} \Delta \theta_{veg} \right) \right) \times \frac{g_{ca}^{H_s}}{g_{ca}^{air} + g_{gt}^{w} + g_{gr}^{ca}}$
CLM5.0	$T = -r_{ca,dry} \times \rho_{air} \left(g_{ca}^{air} \times q + g_{gr}^{ca} \times q_{gr} - \left(g_{ca}^{air} + g_{gr}^{ca} \right) \times \left(q_{sat}^{ca} + \frac{\delta q_{sat}^{ca}}{\delta \theta_{rea}} \Delta \theta_{reg} \right) \right) \times \frac{g_{ca}^{air}}{q_{aat}^{air} + q_{at}^{w} + q_{aa}^{ca}}$
CWatM	$T_{act} = C_{ws} \times (T_{pot} - E_{so})$
	$C_{ws} = \frac{S_{so,tot1sol} - S_{so,WP1sol}}{S_{sol} + S_{sol} + S_{sol}}$
	$S_{so,crit1sol} = (1 - f_{so,dep}) \times (S_{so,FC1sol} - S_{so,WP1sol}) + S_{so,WP1sol}$
	$f_{so,dep} = \frac{1}{0.76 + 1.5 \times T} - 0.1 \times (5 \times C_{cropGN})$
DBH	$T = \frac{1}{H_{l,E}} \times \frac{\frac{e_{ca} - e}{a_{ca}} + 2 \times r_b}{\frac{1}{a_{ca}} + 2 \times r_b} \times \frac{\rho_{air} \times c_{air}}{\gamma} \times (1 - f_{ca,wet})$
H08	Transpiration is not explicitly computed, but is considered in the parameter snow-free albedo, taken from the
	GSWP2 standard monthly land use data set and included plant phenological aspects.
JULES-W1	$T = PET \times f_{ca} \times \frac{g_{ca}}{g_{ca} + C_H \times W_2}$
LPJmL	$T = min\left(T_{max} \times S_{so,rel}, (1 - f_{day,ca,wet}) \times PET \times \frac{1.391}{1 + \frac{g_{st,pot}}{3.26}}\right)$
	$(1 - f_{day,ca,wet})$ is remaining day time canopy available energy.
MaC-PDM.20	Transpiration is not modeled separately, see Table S24. $T = T^{sp} f^{ree} = T^{sp} f^{cov}$
MATSIRO	$T = T_{ca}^{(a,b)} + T_{ca}^{(a,b)}$
mHM	used.
MPI-HM	$T = f_{ca} \times PET \times \min\left(1, \max\left(0, \frac{S_{so} - S_{so,WP}}{0.75 \times S_{so,max} - S_{so,WP}}\right)\right)$
ORCHIDEE	$T = (q_{sat}^{ca} - q) \times W \times C_{su} \times (1 - r_{sn}) \times r_{ca})$
PCR-GLOBWB	$T = min(C_{crop} \times PET, \theta_{so})$
VIC	$T = \left(1 - \left(\frac{S_{ca}}{S_{ca,max}}\right)^{\frac{2}{3}}\right) \times PET \times \frac{r_w}{r_w + r_o + r_{ca}}$
	See details in: Blondin [6]; Ducoudré et al. [16]
WaterGAP2	Transpiration is not modeled separately, see Table S24.
WAYS	Transpiration is not modeled separately, see Table S24.

Table S24. Evaporation from soil E_{so}

$ \begin{array}{llllllllllllllllllllllllllllllllllll$
CLM5.0 $E_{so} = -\frac{\rho_{air} \left(\frac{r_{so}}{q} - \frac{q_{sat}}{r_{so}}\right)}{r_{so}}$ CWatM $E_{so} = C_{crop} \times PET$ DBH $E_{so} = \frac{1}{H_{l,E}} \times \frac{q_{so} \times (e_{ca} - e)}{r_{so} + r_{wca}} \times \frac{\rho_{air} \times c_{air}}{\gamma} \times (1 - f_{su,gr})$
CWatM $E_{so} = C_{crop} \times PET$ DBH $E_{so} = \frac{1}{H_{l,E}} \times \frac{q_{so} \times (e_{ca} - e)}{r_{so} + r_{wca}} \times \frac{\rho_{air} \times c_{air}}{\gamma} \times (1 - f_{su,gr})$
DBH $E_{so} = \frac{1}{H_{l,E}} \times \frac{q_{so} \times (e_{ca} - e)}{r_{so} + r_{wca}} \times \frac{\rho_{air} \times c_{air}}{\gamma} \times (1 - f_{su,gr})$
$H_{l,E}$ $r_{so} + r_{wca}$ γ
H08 $E_{so} = \alpha \times PET$
where: $\begin{cases} \alpha - 1 & \beta \\ \beta & \gamma - 1 \end{cases} > \beta$
$ \begin{array}{l} \alpha = 1, & S_{so,tot} \geq S_{so,crit} \\ \alpha = \frac{S_{so,tot}}{S_{so,tot}}, & S_{so,crit} \leq S_{so,crit} \end{array} $
$S_{so,crit} = 0.75 \times S_{so,FC}$ (fixed at 150 $[kgm^{-2}]$). For detail see [40].
JULES-W1 $E_{so} = PET \times (1 - f_a) \times \frac{(1 - f_{ca}) \times g_{so}}{(1 - f_{ca}) \times g_{so} + C_H \times W_2}$
$a_{so} = \frac{1}{1} \times \left(\frac{S_{so,FL}}{S}\right)^2$
LPImL $E_{so} = E_{so} \times \alpha \times S_{so,rel} \times (1 - f_{co,G})$
Mac-PDM.20 E_{so} is assumed to occur at the <i>PET</i> rate until $S_{so,FC}$ is reached, below which the ratio of E_{so} to <i>PET</i>
declines linearly to zero:
$\frac{E_{so}}{PET} = 1, \qquad \qquad S_{so} \ge S_{so,FC}$
$\frac{E_{so}}{S_{so}} = \frac{S_{so}}{S_{so}}, S_{so} \leq S_{so,FC}$
MATSIRO $E_{eo} = E^{sn, freegr}$
$\sum_{i=1}^{n} \sum_{so,i} \alpha \times f_{root,i} \times PET', \qquad \text{for } i = 0 \text{ (first layer)}$
mHM $ET_{so,i} = \left\{ \alpha \times f_{root,i} \times \left(PET' - \sum_{l=0}^{i-1} ET_{so,i-1} \right), \text{for } i > 0 \right\}$
$PET' = PET - E_{ca} - \frac{S_{pon}}{S_{max}} \left(PET_{ows} - E_{ca} \right)$
$ \begin{pmatrix} 0, & \frac{S_{so,i}}{d_{ro,i}} \leq \phi_{r,i} \\ \end{pmatrix} $
$\alpha = \begin{cases} \frac{S_{so,i}}{d_{so,i}} - \phi_{r,i} & \phi_{r,i} \leq \phi \end{cases}$
$\begin{bmatrix} \phi_{w,i} - \phi_{r,i} & \phi_{r,i} \\ 1 & \phi_{w,i} < \frac{S_{so,i}}{s} \end{bmatrix} \neq \psi_{w,i}$
$ \begin{array}{c} (\begin{array}{c} & & \\ \end{array} \\ (\begin{array}{c} \\ \end{array} \\ (\end{array} \\ \end{array} \\ (\begin{array}{c} \\ \end{array} \\ (\begin{array}{c} \\ \end{array} \\ (\end{array} \\ \\ (\end{array} \\ \end{array} \\ (\begin{array}{c} \\ \end{array} \\ (\end{array} \\ \\ (\end{array}) \\ (\end{array} \\ \end{array} \\ \end{array} \\ \end{array} $
$E_{so} = \int_{so,bare} \times T ET \times \min\left(1, \max\left(0, \frac{1}{S_{so,max}} - 0.05 \times S_{so,max}\right)\right)$
ORCHIDEE $E_{so} = (q_{sat} - q) \times W \times C_{su} \times (1 - r_{floodplain}) \times (1 - r_{sn}) \times r_{so}$ PCR-GLOBWB $E_{so} = C_{crop} \times PET$
VIC The bare soil evaporation only occurs on the top thin layer. When the surface soil is saturated, it evapo-
rates at the potential evaporation rate. When the top soil layer is not saturated, its evaporation rate (E1) is calculated using the Arno formulation by Franchini and Pacciani [19].
$\begin{pmatrix} f_{so,bare,sat} & 1 \\ & & & \\ \end{pmatrix}$
$E_{so} = PET \times \int \delta f_{R_{in,0}} + \int \times \frac{R_{in,0}}{\sqrt{1-1}} \delta f_{R_{in,0}}$
$ \begin{pmatrix} J \\ i=0 \end{pmatrix} \begin{pmatrix} J \\ f_{so,bare,sat} \end{pmatrix} = R_{in,max} \begin{pmatrix} 1 - (1 - f_{R_{in,0}})^{\Pi_{R_{in}}} \end{pmatrix} $
WaterGAP2 $E_{so} = min\left(PET - E_{ca}, (PET_{max} - E_{ca}) \times \frac{S_{so}}{S_{so,max}}\right)$
$PET_{max} = 15 \text{ (mm day}^{-1})$
WAVS $F = (PFT - F) \times min \left(1 - S_{rz}\right)$
$E_{so} = (1 D 1 - E_{ca}) \wedge mm \left(1, \frac{1}{v \times S_{rz,max} \times (1+\beta)}\right)$ the code perpendicular ways at the 0.5 and the above permute β and the before the fitted during the $10 v$
the scale parameter v is set to 0.5, and the snape parameter β need to be fitted during the calibration processes.
Note: Evaporation and transpiration are calculated together.

Table	S25.	Infiltration	R_{in}
-------	------	--------------	----------

Model	Equation
CLM4.5	$R_{in} = R_{in,over-so} + R_{pe,h2osfc}$
	$R_{in,over-so} = (1 - f_{h2o})Q_{in,surf} - R_{ho} - (1 - f_{sn} - f_{h2o})E_{so}$
	$R_{pe,h2osfc} = min\left(f_{h2o}R_{in,max}, \frac{w_{sfc}}{\Delta t}\right)$
CLM5.0	$R_{in} = R_{in,over-so} + R_{pe,h2osfc}$
	$R_{in,over-so} = (1 - f_{h2o})Q_{in,surf} - R_{ho} - (1 - f_{sn} - f_{h2o})E_{so}$
	$R_{pe,h2osfc} = min\left(f_{h2o}R_{in,max}, \frac{w_{sfc}}{\Delta t}\right)$
CWatM	$R_{in,pot} = \frac{S_{so,sat}}{\beta+1} - \frac{S_{so,sat}}{\beta+1} \times \left(1 - (1-\alpha)^{\frac{\beta+1}{\beta}}\right)$
	$\alpha = 1 - \left(1 - \frac{S_{so,rel}}{c}\right)^{\beta}$
	$B_{in} = \min(P_{tot}, R_{in, not})$
	The infiltration capacity of the soil is estimated using the Xinanjiang (also known as VIC/ARNO) model
	β = shape parameter of the Xinanjiang model
DBH	$R_{in} = k_{sat} \times \left(1 + \frac{(S_{so,sat} - S_{so,ini}) \times S_{so,pot}}{R_{in,cum}}\right)$
H08	$R_{in} = \frac{S_{so,FC}}{t} \times \frac{S_{so,tot}}{S_{so,FC}}^{T}.$ See [21]
	$t = 100 \text{ [days]} = 86400 \times 100 \text{ [s]}; \tau \text{ is set at } 2.$
JULES-W1	$R_{in} = k \times \left(\frac{\delta I}{\delta d_{so}} + 1\right); k = k_{sat} \left(\frac{\sigma}{\theta_{so}}\right)^{2 \times 3 + 5}$
LPJmL	$R_{in} = P_{tot} \times \sqrt{1 - \frac{S_{so,tot} - S_{so,WP}}{S_{so,sat,i} - S_{so,WP}}} \text{ i = top layer}$
Mac-PDM.20	$R_{in} = P_{tot} - \dot{R}_{sat}$
MATSIRO	$R_{in} = P_{th} - R_{ho} - R_{sat}$
	$\int P_{th} + M - R_{su}, \qquad i = 0 \text{ (top soil layer)}$
mHM	$R_{in,i} = \begin{cases} R_{in,i-1} - \left(\frac{\frac{S_{so,i}}{d_{so,i}} - \phi_{r,i}}{\phi_{s,i} - \phi_{r,i}}\right)^{a_i}, i > 0 \end{cases}$
MPI-HM	$R_{in} = (P_{ra} + M) \times (1 - f_{we}) - R_{su}$
ORCHIDEE	$R_{in,j} = \frac{k_{j,j} + k_{sat,j}}{2}$
PCR-GLOBWB	$R_{in} = min(P_{ra} + M, k_{sat})$
VIC	for there is no vegetation coverage:
	$R_{in} = P_{ra} - R_{pe}$
	for there is vegetation coverage:
	$\kappa_{in} = F_{th} - \kappa_{pe}$
WaterGAP2	$R_{in} = M + P_{th} - (0.5 \times (M + P_{th}) \times f_{hu})$
WAYS	$R_{in} = M + P_{th}$

Table S26. Interflow

Model	Equation	
CLM4.5	not represented	
CLM5.0	not represented	
CWatM	$R_{if} = f_{if} \times R_{pe}$	
DBH	not represented	
H08	not represented	
	(0,	$S_{so,tot} < S_{so,WP}$
JULES-W1	$R_{if} = \left\{ R_{in,sat} \times S_{ca} \times \frac{S_{so,tot} - S_{so,WP}}{R_{in,sat} - S_{so,WP}}, \right.$	$S_{so,WP} \le S_{so,tot} < S_{so,sat}$
	$R_{in,sat},$	$S_{so,tot} > S_{so,sat}$
LPJmL	$R_{if} = R_{in,L} \sqrt{1 - \frac{S_{so,tot} - S_{so,WP}}{S_{so,sat} - S_{so,WP}}}$	
Mac-PDM.20	not represented	
MATSIRO	not included in the version used in ISIMIP2b	
mHM	$R_{if,fast} = \begin{cases} k_0 \times (S_{uz} - S_{uz,thr}), & S_{uz} > \\ 0, & S_{uz} \le \end{cases}$	$S_{uz,thr}$
	$R_{if,slow} = k_1 \times (S_{uz})^{1+a_{uz}}$	
	Interflow originates from the unsaturated zon	e storage, a bucket below the soil storage.
MPI-HM	not represented	
ORCHIDEE	not represented	
PCR-GLOBWB	$R_{if} = R_{pe} - R_{cr}$ for $R_{pe} > R_{cr}$	
VIC	not represented	
WaterGAP2	not represented	
WAYS	$R_{if} = \frac{S_f}{K_c}$	
	K_f needs to be fitted.	

Table S27. Percolation R_{pe}

Model	Equation
CLM4.5	not represented
CLM5.0	not represented
CWatM	$R_{pe} = (1 - f_{we}) \times min(R_{in}, k_{3so})$
	Unsaturated conductivity using Van Genuchten equation for each soil layer
DBH	not represented
H08	not represented
JULES-W1	not represented
LPJmL	$R_{pe} = (S_{so,sat} - S_{so,FC}) \times \left[1 - exp\left(\frac{-\Delta t}{\frac{S_{so,FC}}{k}}\right) \right]$
Mac-	not represented
PDM.20	
MATSIRO	not explicitly represented
mHM	not represented (defined as groundwater recharge, see Table S30)
MPI-HM	not represented
ORCHIDEE	not represented
PCR-	not represented
GLOBWB	
VIC	not represented
WaterGAP2	not represented
WAYS	not explicitly represented

Table S28. Capillary rise R_{cr}

Model	Equation
CLM4.5	Represented through the concept of soil matrix potential:
	$\Psi_i = \Psi_{sat,i} \left(\frac{S_{so,tot}}{S_{so,sat}}\right)^{C_{so,i}} \ge -1 \times 10^8$
CLM5.0	Represented through the concept of soil matrix potential:
	$\Psi_i = \Psi_{sat,i} \left(\frac{S_{so,tot}}{S_{so,sat}} \right)^{C_{so,i}} \ge -1 \times 10^8$
CWatM	$R_{cr} = 0.5 \times \sqrt{k_{3so} \times k_{sat} \times R_{cr,max}}$
	$R_{cr,max}$: cell fraction, depending on height of ground water table and relative elevation of grid
DBH	not represented
H08	not represented
JULES-W1	not represented
LPJmL	not represented
Mac-PDM.20	not represented
MATSIRO	$R_{cr} = k imes \left(rac{\delta Z_{cr}}{\delta Z} - 1 ight)$
mHM	not represented
MPI-HM	not represented
ORCHIDEE	not represented
PCR-GLOBWB	$R_{cr} = 0.5 imes \sqrt{k_{3so} imes k_{sat}} imes R_{cr,max}$
	$R_{cr,max}$: cell fraction, depending on height of ground water table and relative elevation of grid
VIC	not represented
WaterGAP2	not represented
WAYS	not represented

Table S29. Groundwater storage S_{gw}

Model	Equation	Water Flux	
		Inflows	Outflows
CLM4.5	Only represented indirectly through changes in the water table depth (unconfined aquifer) $\Delta d_{wt} = \frac{(R_{gwr} - R_{gw})}{\alpha} \Delta t$	R_{gwr}	R_{gw}
CLM5.0	Only represented indirectly through changes in the water table depth (unconfined aquifer) $\Delta d_{wt} = \frac{(R_{gwr} - R_{gw})}{S_y} \Delta t$	R_{gwr}	R_{gw}
CWatM	$\frac{\delta S_{gw}}{\delta t} = Q_{pf} + R_{pe} - R_{cr} - R_{gw} - A_{irr}^{gw} - A_{dom}^{gw} - A_{man}^{gw} - A_{liv}^{gw}$	$R_{pe} Q_{pf}$	$\begin{array}{c} R_{cr} \; R_{gw} \\ A_{irr}^{gw} \; A_{dom}^{gw} \\ A_{man}^{gw} \; A_{liv}^{gw} \end{array}$
DBH	not represented δS		
H08	$\frac{\delta S_{gw}}{\delta t} = S_{gw,rw} - S_{gw,nrw}$	R_{gwr}	$R_{gw} A_{tot}$
	$S_{gw,rw} = R_{gwr} - R_{gw} - \frac{A_{tot}}{B_G}$		
JULES-W1	not represented		
LPJmL	not represented		
Mac-PDM.20	$\frac{\delta S_{gw}}{\delta t} = R_{gwr} - R_{gw}$	R_{gwr}	R_{gw}
MATSIRO	$\frac{\delta S_{gw}}{\delta t} = \sum_{n=1,13} \left((S_{so,F_i} + S_{so,uF_i}) \times d_{so} \right)$		
	It explicitly diagnoses groundwater table depth and calculate water flux between groundwater storage and unsaturated soil based on the condition of the soil layer		
	that has groundwater table. Groundwater pumping and baseflow are used in-		
	stead of root uptake and interflow.		
	to water table depth of confined aquiters are considered. δS_{aw} , \mathcal{D}	5	D
	$\frac{1}{\delta t} = R_{gwr} - R_{gw}$	R_{gwr}	R_{gw}
MPI-HM	sidered		
	$\frac{\delta S_{gw}}{S_{e}} = R_{gwr} - R_{gw} - f_{irr} \times S_{gw}$	R_{gwr}	R_{gw}
ORCHIDEE	ot not represented	-	-
PCR-GLOBWB	$\frac{\delta S_{gw}}{\delta t} = R_{pe} - R_{cr} - R_{gw} - A_{irr}^{gw} - A_{dom}^{gw} - A_{man}^{gw} - A_{liv}^{gw}$	R_{pe}	$\begin{array}{c} R_{cr} \ R_{gw} \\ A_{irr}^{gw} \ A_{dom}^{gw} \\ A_{man}^{gw} \ A_{liv}^{gw} \end{array}$
VIC	not represented		
WaterGAP2	$\frac{\partial S_{gw}}{\delta t} = R_{gwr} - R_{gw} - A_{gw}$	R_{gwr}	$R_{gw} A_{gw}$
WAYS	$\frac{\delta S_{gw}}{\delta t} = R_{gwr} - R_{gw}$	R_{gwr}	R_{gw}

Table S30. Groundwater recharge R_{gwr}

Model	Equation
CLM4.5	$R_{gwr} = -k_{aq} \frac{\left(\Psi_{wt} - \Psi_{jwt}\right)}{\left(d_{wt} - d_{wt,i}\right)}$
CLM5.0	$R_{gwr} = -k_{aq} \frac{(\Psi_{wt} - \Psi_{jwt})}{(d_{wt} - d_{wt})}$
CWatM	$R_{gwr} = R_{pe} + Q_{pf} - R_{cr}$
DBH	$R_{gwr} = k_{3so} \times \left(\frac{\delta S_{so,max,3L}}{\delta d_{so,2}} + 1\right)$
H08	$R_{gwr} = min(R_{gwr,max}, f_r \times f_{so,tex} \times f_{hg} \times f_{pg} \times R_{tot}).$ See [11]
JULES-W1	not represented
LPJmL	$R_{gwr} = R_{in,BL} \sqrt{1 - \frac{S_{so,tot} - S_{so,WP}}{S_{so,sat} - S_{so,WP}}}$
Mac-PDM.20	$R_{gwr} = S_{so} - S_{so,FC}$
MATSIRO	$R_{gwr} = \frac{\delta S_{so, wF_{i,gw}}}{\Delta t}$
mHM	$R_{gwr} = k_{uz} \overline{S_{uz}}$
MPI-HM	$R_{gwr} = (1 - f_{we}) \times R_{gwr,min} \times \frac{S_{so}}{S_{so,max}} + (R_{gwr,max} - R_{gwr,min}) \times \left(\min\left(1, \max\left(0, \frac{S_{so} - 0.90 \times S_{so,max}}{S_{so,max} - 0.90 \times S_{so,max}}\right)\right)^{1.5} \right)$
	if $S_{so} > 0.05 \times S_{so,max}$
ORCHIDEE	$R_{gwr} = max(0, 1 - \frac{S_{so}}{S_{somax}}) \times R_{gw} \text{ See [15]}$
PCR-GLOBWB	$R_{qwr} = R_{pe} - R_{cr}$
VIC	not represented
WaterGAP2	$R_{gwr} = \begin{cases} 0 & (\text{semi)arid grid cell, sandy texture and } P_{th} \le 12.5 (\text{mm day}^{-1}) \\ min(R_{gwr,max}, f_r \times f_{so,tex} \times f_{hg} \times f_{ro} \times R_{tot}) & \text{other cases} \end{cases}$
WAYS	where $R_{gwr,max}$ is set to 7, 4.5, 2.5 mm d ⁻¹ for sandy, loamy, and clayey soils. See [11] $R_{gwr} = min(R_{gwr,max}, f_r \times f_{so,tex} \times f_{hg} \times f_{pg} \times R_{tot})$. See [11]

Table S31. Groundwater runoff R_{gw}

Model	Equation
CLM4.5	$R_{gw} = C_{ice} imes R_{gw,max} \exp\left(-f_{drai}d_{wt} ight)$
CLM5.0	$R_{gw} = C_{ice} \times R_{gw,max} \exp\left(-f_{drai}d_{wt}\right)$
CWatM	$R_{gw} = C_{gw,Q} \times S_{gw}$
DBH	not represented
H08	$R_{gw} = \frac{S_{gwmax}}{t} \times \left(\frac{S_{gw,rw}}{S_{gwmax}}\right)^{\eta}$ where $n = 2$ and $t = 100$ days.
JULES-W1	not represented
LPJmL	not represented
Mac-PDM.20	$R_{aw} = R_{aw,rout} \times (S_{aw}/100)^3$
MATSIRO	$R_{gw} = \frac{k_{sat}^{gw} \times \upsilon^{\beta}}{\Gamma_{\beta}} \left(d_0 \times \left(\frac{(\beta-1)!}{\upsilon^{\beta}} - e^{(-\upsilon \times d_0)} \times \sum_{n=0}^{\beta-1} \frac{(\beta-1)!}{n!} \times \frac{d_0^n}{\upsilon^{\beta-n}} \right) - \left(\frac{\beta!}{\upsilon^{\beta+1}} - e^{(-\upsilon \times d_0)} \times \sum_{n=0}^{\beta} \frac{\beta!}{n!} \times \frac{d_0^n}{\upsilon^{\beta-n+1}} \right) \right). \text{ See [27]; [55]}$
mHM	$R_{gw} = k_b S_{gw}$
MPI-HM	$R_{gw} = \frac{S_{gw}}{\kappa_{gw}}$
ORCHIDEE	$R_{gw} = k_{bot}^{gw}$
PCR-GLOBWB	$R_{aw} = C_{aw,Q} imes S_{aw}$
VIC	not represented
WaterGAP2	$R_{gw} = \begin{cases} 0, & S_{gw} \leq 0 \\ C_{gw,Q} \times S_{gw}, & S_{gw} > 0 \end{cases}$
WAYS	where $C_{gw,Q} = 0.01d^{-1}$ $R_{gw} = C_{gw,Q} \times S_{gw}$ where $C_{gw,Q} = 0.01d^{-1}$

Table S32.Lake storage S_{la}

Model	Equation	Water Flux	
		Inflows	Outflows
CLM4.5	virtual storage, i.e. P-E automatically balanced by lake runoff term		
CLM5.0	virtual storage, i.e. P-E automatically balanced by lake runoff term		
CWatM	it has two types of lakes: "global lakes" are lakes that receive inflow not only from the grid cell itself and "local lakes" receive inflow from the grid cell itself. $\frac{\delta S_{la}}{\delta t} = Q_{ri,in} - Q_{ri,out}$	$Q_{ri,in}$	$Q_{ri,out}$
DBH	not represented		
H08	not represented		
JULES-W1	not represented		
LPJmL	$\frac{\delta S_{la}}{\delta t} = P_{tot} + Q_{la} - Q_{la} - E_{la} - A$	P_{tot}, Q_{iu}	E_{la}, A
Mac-PDM.20	not represented		
MATSIRO	Lake storage is a part of river storage. Not explicitly included in the version used for ISIMIP2b.		
mHM	not represented		
MPI-HM	Lake storage is part of the wetland storage.		
ORCHIDEE	not represented		
PCR-GLOBWB	Lake storage is a part of river storage.		
VIC WeberCAD2	Not represented	ם ם	Dswb A
waterGAP2	waterGAP2 has two types of representations of lakes. Local lakes receive water only from	$R_{su}, R_{gw}, $	$R_{gwr}, A_{la},$
	une grid cell fisen, while global lakes receive water from grid cell fisen and the fillow from	$P_{tot}, Q_{iu},$	$Q_{la,local},$
	$\delta S_{la logal}$	$Q_{we,local}, \Delta$	$Q_{la,global}, E_{i}$
	$\frac{\delta = a_{la,local}}{\delta t} = (R_{su} \times f_{swb}) + R_{gw} + A_{rf} + B_{la,local} \times (P_{tot} - E_{la}) - R_{gwr}^{swb} - A_{la} - Q_{la,local}$	21_{rf}	L_{la}
	$B_{la,local} = C_{B,red} \times B_{la,local,max}$		
	$C_{B,red} = 1 - \left(\frac{ S_{la,local} - S_{la,local,max} }{2S_{la,local,max}}\right)^{3.32}$		
	$b_{\text{number of }} = \begin{cases} 0, & \text{humid cell} \end{cases}$		
	$R_{gwr}^{out} = \begin{cases} C_{sw}^{sw} + C_{B,red} \times B_{la,local}, & \text{arid and semi-arid cells} \end{cases}$		
	$\frac{\delta S_{la,global}}{S_{la}} = Q_{iu} + A_{rf} + Q_{we,local} + B_{la,global} \times (P_{tot} - E_{la}) - R_{gwr}^{swb} - A_{la} - Q_{la,global}$		
	$ bt \\ B_{la,global} = C_{B,red} \times B_{la,global,max} $		
	$C_{B,red} = 1 - \left(\frac{ S_{la,global} - S_{la,global,max} }{2S_{la,global,max}}\right)^{3.32}$		
	$b_{\text{pswb}} \int 0,$ humid cell		
	$K_{gwr}^{} = \begin{cases} C_{gw,rech}^{sw} \times C_{B,red} \times B_{la,global}, & \text{arid and semi-arid cells} \end{cases}$		
WAYS	not represented		

Table S33. Evaporation from lake E_{la}

Model	Equation
CLM4.5	not represented
CLM5.0	not represented
CWatM	$E_{la} = min(S_{la}, E_{la,pot} - min(P_{tot}, E_{la,pot}))$
DBH	not represented
H08	not represented
JULES-W1	not represented
LPJmL	$E_{la} = \min(S_{la}, E_{la,pot})$
Mac-PDM.20	$E_{la} = P_{tot} - PET$
MATSIRO	not represented
mHM	not represented
MPI-HM	not represented
ORCHIDEE	not represented
PCR-GLOBWB	$E_{la} = PET$
VIC	not represented
WaterGAP2	$E_{la} = PET$ with albedo = 0.08
WAYS	not represented

Table S34. Outflow from lake Q_{la}

Model	Equation
CLM4.5	not represented
CLM5.0	not represented
CWatM	Modified Puls approach (Chow et al. [9]; Maniak [30]). Routing, reservoirs and
	lakes are done in sub steps of a day.
	$\frac{S_{la1}+S_{la2}}{S_{la1}+S_{la2}} = \frac{Q_{iu,la1}+Q_{iu,la2}}{Q_{la1}+Q_{la2}} - \frac{Q_{la1}+Q_{la2}}{Q_{la1}+Q_{la2}}$
	for: $1 = \text{first time step}(t)$; $2 = \text{second time step}(t + \Delta t)$
DBH	not represented
H08	not represented
JULES-W1	not represented
LPJmL	for $S_{la} \ge S_{la,max}, Q_{la} = (S_{la,max} - S_{la})$, else $Q_{la} = 0$
Mac-PDM.20	not represented
MATSIRO	not included in the version used for ISIMIP2b
mHM	not represented
MPI-HM	not represented
ORCHIDEE	not represented
PCR-GLOBWB	$Q_{la} = 1.7 \times C_{weir} \times max(h_w - h_{of})^{1.5} \times b_{weir}$
VIC	not represented
WaterGAP2	$Q_{la,local} = C_{sw,out} \times S_{la,local} \times \left(\frac{S_{la,local}}{S_{la,local,max}}\right)^{1.5}$
	$Q_{la,global} = C_{sw,out} imes S_{la,global}$
	for $C_{sw,out} = 0.01d^{-1}$
WAYS	not represented

Table S35. Reservoir storage S_{re}

Model	Equation	Water Flux	
		Inflows	Outflows
CLM4.5 CLM5.0	not represented not represented		
CWatM	$\frac{\delta S_{re}}{\delta t} = Q_{ri,in} - Q_{ri,out}$	$Q_{ri,in}$	$Q_{ri,out}$
DBH	not represented		
H08	$\frac{\delta S_{relocal}}{\delta t} = R_{tot} \times B_{re} - A_{re} - Q_{re}$	$R_{tot} \; Q_{ri,in}$	$\begin{array}{c} A_{re} R_{tot} \\ Q_{ri,out} \end{array}$
	$\frac{\delta S_{reglobal}}{\delta t} = Q_{ri,in} - Q_{ri,out}$		
JULES-W1	not represented		
LPJmL	$\frac{\delta S_{re}}{\delta t} = P_{tot} + Q_{iu} - Q_{la} - E_{re} - A$	$P_{tot} Q_{iu}$	$Q_{la} E_{re} A$
Mac-PDM.20	not represented		
MATSIRO	$\frac{\delta S_{re}}{\delta t} = S_{reglobal} + S_{relocal}$	$Q_{iu,re}$	$Q_{re} A_{dom}$
	$\frac{\delta S_{relocal}^{ol}}{\delta S_{relocal}} = R_{relocal} - A^{pond} - A^{pond} - A^{pond}$		$A_{irr} A_{ind}$
	$\frac{\delta t}{\delta S_{\text{realshal}}} = \frac{B_{\text{tot}}}{Q_{\text{in}} + Q_{\text{realshal}}} = \frac{B_{\text{dom}}}{Q_{\text{realshal}}} = \frac{B_{\text{ind}}}{Q_{\text{realshal}}} = \frac{B_{\text{ind}}}{Q_{\text{realshal}}} = \frac{B_{\text{realshal}}}{Q_{\text{realshal}}} = B_{\text{rea$		
	$\frac{\delta t}{\delta t} = \frac{\varphi_{ii} + \varphi_{re,iocal}}{B} - A_{dom}^{re,global} - A_{ind}^{re,global} - A_{irr}^{re,global}$		
mHM	not represented		
MPI-HM OPCHIDEE	not represented		
ORCHIDEE	$\int (O_{1} - O_{2}) for S \ge 0.7 \times S$		
DCD CLODWD	$\delta S_{re} = \begin{cases} \varphi_{ri} - \varphi_{mean}(0) & S_{re}(0) \\ \varphi_{ri} - \varphi_{mean}(0) & S_{ri}(0) \\ \varphi_{ri} - \varphi_{mean}(0) & S_{ri}(0) \\ \varphi_{ri} - \varphi_{mian}(0) & S_{ri}(0) \\ \varphi_{ri} - \varphi_{ri}(0) \\ \varphi_{ri} -$		
FCK-OLODWD	$\frac{-\delta t}{\delta t} = \begin{cases} Q_{ri} - max \left(Q_{mean} \times \frac{1}{S_{re,act} - 0.3 \times S_{re,C}}, Q_{ef}\right) for \ 0.3 > S_{re} > 0.1 \times S_{re,C} \\ Q_{ef} for \ 0.3 < S_{re} \end{cases}$		
VIC	not represented		
WaterGAP2	$\frac{\delta S_{re}}{\delta t} = Q_{iu} + A_{rf} + Q_{we,local} + B_{re} \times (P_{tot} - E_{re}) - R_{gwr}^{swb} - A_{re} - Q_{re}$	$Q_{iu}, Q_{we,local},$	$E_{re}, R^{swb}_{gwr},$
	for $B_{re} = C_{B,red} \times B_{re,max}$	P_{tot}, A_{rf}	$B_{re}, Q_{re},$
	for $C_{B,red} = 1 - \left(\frac{ S_{re} - S_{re,max} }{S_{re,max}}\right)^{2.014}$		A_{re}
	for $D^{swb} = \int 0$ for humid cell		
	$C_{gwr} = C_{gw,rech}^{sw} \times C_{B,red} \times B_{re}$ for arid and semi-arid cells		
WAYS	not represented		

Table S36. Inflow from upstream surface water bodies for reservoir storage

Model	Equation
CLM4.5	not represented
CLM5.0	not represented
CWatM	sum of inflows of water from neighboring upstream grid cells routed with kinematic wave approach
DBH	not represented
H08	not represented
JULES-W1	not represented
LPJmL	not represented
Mac-PDM.20	not represented
MATSIRO	not represented
mHM	not represented
MPI-HM	not represented
ORCHIDEE	not represented
PCR-GLOBWB	sum of inflows of water from neighboring upstream grid cells routed with kinematic wave approach
VIC	not represented
WaterGAP2	not represented
WAYS	not represented

Table 557. Outliow from reservoir Q_r	Tal	37. Outflow	m reservoir	Q_{re}
--	-----	--------------------	-------------	----------

Model	Equation
CLM4.5	not represented
CLM5.0	not represented
	$fmin(O_{re} \min_{i=1} \frac{1}{1} \times f_{re} \times S_{re} C, \qquad f_{re} \leq 2 \times S_{rons}$
	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
CWatM	$Q_{re} = \begin{cases} Q_{re,min} + (Q_{re,morm} - Q_{re,min}) \land (S_{norm} - 2 \times S_{cons}), \\ S_{norm} - 2 \times S_{cons} \end{cases}, \qquad S_{norm} \ge J_{re} \ge 2 \land S_{cons} \end{cases}$
	$Q_{re,norm} + \frac{I_{re} - S_{norm}}{S_{Ilood} - S_{norm}} \times max \left((Q_{iu,re} - Q_{re,norm}), (Q_{re,nd} - Q_{re,norm}) \right), S_{flood} \ge f_{re} > S_{norm}$
	$max(\frac{fre-S_{flood}}{X} \times S_{re,C}, Q_{re,rd}),$ $f_{re} > S_{flood}$
DBH	not represented
H08	Non-irrigation dam
	$Q_{re} = \widetilde{Q}_{in,mean}$
	Irrigation reservoir dam
	$C_{vear} \times C_{month}$
	$Q_{re} = \left\{ \begin{array}{c} S_{re,C}^2 \\ S_{re,C}^2 \\ \end{array} \right\} \left\{ \begin{array}{c} C \\ C \\ \end{array} \right\} \left\{ \left\{ \begin{array}{c} C \\ C \\ \end{array} \right\} \left\{ \begin{array}{c} C \\ C \\ \end{array} \right\} \left\{ \left\{ \begin{array}{c} C \\ C \\ \end{array} \right\} \left\{ \left\{ \begin{array}{c} C \\ C \\ \end{array} \right\} \left\{ \left\{ \begin{array}{c} C \\ C \\ \end{array} \right\} \left\{ \left\{ \begin{array}{c} C \\ C \\ \end{array} \right\} \left\{ \left\{ \begin{array}{c} C \\ C \\ \end{array} \right\} \left\{ \left\{ \left\{ \begin{array}{c} C \\ C \\ \end{array} \right\} \left\{ \left\{ \begin{array}{c} C \\ C \\ \end{array} \right\} \left\{ \left\{ \left\{ \begin{array}{c} C \\ C \\ \end{array} \right\} \left\{ \left\{ \left\{ \left\{ \begin{array}{c} C \\ C \\ \end{array} \right\} \right\} \left\{ $
	$\left(\frac{1}{0.5} - \sqrt{0} \sqrt{0} \sqrt{0} \sqrt{0} \sqrt{1} + \left(1 - \left(\frac{1}{0.5}\right)\right)\right)$
	10r: $\left(Q_{iu,mean}, \left(1 + \sum_{cdam,G} \times (A_{irr,month} + A_{ind,month} + A_{dom,month})\right)\right)$
	$S_{re,C} = \begin{cases} \hline 2 \\ 2 \\$
	$\Big(Q_{iu,mean} + \sum C_{dam,G} \times (A_{irr,month} + A_{ind,month} + A_{dom,month}) - A_{dem,dam}, A_{dem,dam} < 0.5 \times Q_{iu,mean} + A_{iud,month} + A_{iud,month$
	$\sum C_{dam,G}$ = for an area downstream of the dam up to 10 grid cells;
	$\overline{C_{tot}} = C_{month} \times Q_{iu.tot.re};$
	$C = \frac{S_{w,first}}{S}$
	$C_{month} = 0.85 \times S_{tot}$
	$S_{re,C} = \frac{S_{tot}}{C}$
I PImI	$\int_{C_{tot}} \int_{C_{tot}} \int_{C$
Mac-PDM.20	not recessented
MATSIRO	$Q_{re} = Q_{re} \operatorname{alobal} + Q_{re} \operatorname{local}$
	$ = \frac{max(S_{re,local} + R_{tot} \times \Delta t - S_{re,global}, 0)}{max(S_{re,local} + R_{tot} \times \Delta t - S_{re,global}, 0)} $
	$Q_{re,local} = \frac{\Delta t}{\Delta t}$
	$\left(\begin{array}{c} S^{purpose}_{re, alphab} - S_{re, global} - S_{re, global} \\ S^{purpose}_{re, alphab} - S_{re, global} \\ \end{array}\right)$
	$Q_{re,global}^{\prime} + \frac{1}{\Delta t}, S_{re,global}^{\prime} + (Q_{re,local} - Q_{re,global}) \times \Delta t > S_{re,global}$
	$Q_{re,global} = \begin{cases} Q_{re,global}^{purpose} + \frac{\varphi_{re,global}}{\Delta t}, \qquad \qquad S_{re,global}^{purpose} + (Q_{re,local} - Q_{re,global}^{purpose}) \times \Delta t < 0 \end{cases}$
	$Q_{purpose}^{purpose}$ else
	$O^{purpose} = O^{irr}$, or $O^{non-irr}$
mHM	∀re.global − ∀re.global 61 ∀re.global
MPI-HM	not represented
PCR-GLOBWB	$Q_{rs} = 1.7 \times C_{unsir} \times max(h_w - h_{ot})^{1.5} \times h_{unsir}$
WaterGAP2	irrigation reservoir type:
	$Q_{inv,der}^{irr} = 0.5$
	$Q_{re} = \begin{cases} \nabla r_{e,ae,i} & Q_{re,max} \\ A \ge (S_{re,max})^2 \ge O^{irr} + (1 - A \ge (S_{re,max})^2 \ge O_{e}) & S_{re,max} \ge 0.5 \end{cases}$
	$\left(\frac{1}{2} \wedge \left(\frac{1}{Q_{re,mean}}\right) \wedge \left(\frac{1}{2} r_{e,mean}\right) + \left(\frac{1}{2} r_{e,mean}\right) \wedge \left(\frac{1}{2} r_{e,mean}\right) + \left(\frac{1}{2$
	with $Q_{rred}^{irred} = \begin{cases} C_{year} \times \frac{e_{red}mean}{2} \times (1 + \frac{r_{aem, sdeells}, monin}{2}), & A_{dem, 5deells} \ge \frac{e_{red}, mean}{2} \end{cases}$
	$C_{year} \times Q_{re,mean} + A_{dem,5dcells,month} - A_{dem,5dcells}, A_{dem,5dcells} < \frac{Q_{re,mean}}{2}$
	non-irrigation reservoir type:
	$C_{pear} = \int C_{year} \times Q_{re,mean}, \qquad \qquad \frac{S_{re,maa}}{Q_{re,mean}} \ge 0.5$
	$V^{re} = \int 4 \times \left(\frac{S_{re,max}}{2}\right)^2 \times C_{year} \times Q_{re,mean} + \left(1 - 4 \times \left(\frac{S_{re,max}}{2}\right)^2 \times Q_{iu,re}\right), \frac{S_{re,max}}{2} < 0.5$
	both reservoir types:
	$\int (0.1, \qquad \text{filling phase for } S_{re} < (S_{re,max} \times 0.1)$
	$C_{year} = \begin{cases} \frac{S_{re}}{2} & \text{sree} \end{cases}$, not filling phase
	$(S_{Pe,max} \times 0.85)$, $(S_{Pe,max} \times 0.85)$
	and $Q_{re} = \begin{cases} Q_{re}, & S_{re} \ge S_{re,max} \times 0.85 \times 0.1 \\ S_{re,max} \ge 0.85 \times 0.1 \end{cases}$
	$Q_{re} \times 0.1, S_{re} < S_{re,max} \times 0.85 \times 0.1$
WAVS	For details on the calculation of reservoir outflow please see [23] and [14]
WAIS	norrepresented

Table S38. Evaporation from reservoir E_{re}

Model	Equation
CLM4.5	not represented
CLM5.0	not represented
CWatM	$E_{re} = min(S_{re}, E_{re, pot} - min(P_{tot}, E_{re, pot}) \times B_{re}$
DBH	not represented
H08	not represented
JULES-W1	not represented
LPJmL	$E_{re} = min(S_{re}, E_{re, pot})$
Mac-PDM.20	not represented
MATSIRO	not represented
mHM	not represented
MPI-HM	not represented
ORCHIDEE	not represented
PCR-GLOBWB	$E_{re} = PET$
VIC	not represented
WaterGAP2	$E_{re} = PET$ with albedo = 0.08
WAYS	not represented

Table S39. Wetland storage S_{we}

Model	Equation	Water Flux	
		Inflows	Outflows
CLM4.5	not represented		
CLM5.0	not represented		
CWatM	not represented		
DBH	not represented		
H08	not represented		
JULES-W1	not represented		
LPJmL	not represented		
Mac-PDM.20	not represented		
MATSIRO	not represented		
mHM	not represented		
MPI-HM	$\frac{\delta S_{we}}{\delta t} = f_{we} \times \left(P_{ra} + M - \frac{R_{gwr,max}}{10} \right) - E_{we} + Q_{iu,we,up} - Q_{we} - f_{irr} \times S_{we}$	$Q_{iu,we,up},$ P_{re}, M	R_{pe}, E_{we}, Q_{we}
ORCHIDEE	not represented	- ra,	
PCR-GLOBWB	not represented		
VIC	not represented		
WaterGAP2	WaterGAP2 has two types of representations of wetlands. Global wetlands are wetlands	$Q_{la,local}, P_{tot},$	$E_{we}, R_{gwr}^{swb},$
	that receive inflow from the grid cell itself and the upstream grid cells, while local	$Q_{la,global}, Q_{re}$	$Q_{we,local}$,
	wetlands receive inflow only from the grid cell where have been identified.		$Q_{we,global}$
	$\frac{\delta S_{we,local}}{\delta S_{we,local}} = Q_{la,local} + B_{we,local} \times (P_{tot} - E_{we}) - R_{ww}^{swb} - Q_{we,local}$		
	$ \int dt \qquad $		
	for $C_{B,red} = 1 - \left(\frac{ S_{we,local} - S_{we,local,max} }{S_{we,local,max} }\right)^{3.32}$		
	() we,local,max /		
	for $R_{gwr}^{sub} = \begin{cases} 0, & \text{for number cell} \\ C_{gw,rech}^{sw} \times C_{B,red} \times B_{we,local}, & \text{for arid and semi-arid cells} \end{cases}$		
	$\frac{\delta S_{we,global}}{\frac{\delta t}{\delta t}} = Q_{la,global} + Q_{re} + B_{we,global} \times (P_{tot} - E_{we}) - R_{gwr}^{swb} - Q_{we,global}$		
	for $B_{we,global}^{ol} = C_{B,red} \times B_{we,global,max}$		
	for $C_{B,red} = 1 - \left(\frac{ S_{we,global} - S_{we,global,max} }{S_{we,global,max}}\right)^{3.32}$		
	for $R_{gwr}^{swb} = \begin{cases} 0, & \text{for humid cell} \\ C^{sw} & i \neq C_{D} = i \neq B \\ \vdots \neq i \neq i \neq i \neq j \neq j \neq j \neq j \neq j \neq j \neq j$		
WAYS	not represented		

Table S40. Inflow from upstream grid cell for wetland storage $Q_{iu,we,up}$

Model	Equation
CLM4.5	not represented
CLM5.0	not represented
CWatM	not represented
DBH	not represented
H08	not represented
JULES-W1	not represented
LPJmL	not represented
Mac-PDM.20	not represented
MATSIRO	not represented
mHM	not represented
MPI-Hm	$Q_{iu,we,up} = f_{we}^2 \times (Q_{rv,up} + R_{gw,up} + Q_{ri,up})$
ORCHIDEE	not represented
PCR-GLOBWB	not represented
VIC	not represented
WaterGAP2	not represented
WAYS	not represented

Table S41. Evaporation from wetland E_{we}

Model	Equation
CLM4.5	not represented
CLM5.0	not represented
CWatM	not represented
DBH	not represented
H08	not represented
JULES-W1	not represented
LPJmL	not represented
Mac-PDM.20	not represented
MATSIRO	not represented
mHM	not represented
MPI-HM	$E_{we} = PET \times f_{we}$
ORCHIDEE	not represented
PCR-GLOBWB	not represented
VIC	not represented
WaterGAP2	$E_{we} = PET$ with albedo = 0.08
WAYS	not represented

Table S42. Outflow from wetland Q_{we}

Model	Equation
CLM4.5	not represented
CLM5.0	not represented
CWatM	not represented
DBH	not represented
H08	not represented
JULES-W1	not represented
LPJmL	not represented
Mac-PDM.20	not represented
MATSIRO	not represented
mHM	not represented
MPI-Hm	$Q_{we} = \frac{S_{we}}{t_{we}}$
	for $t_{we} = \frac{l_{G,ri}}{C_{MS,we} \times h_{w,we}^{\frac{2}{3}} \times s_{we,mean}^{\frac{1}{2}}}$
ORCHIDEE	not represented
PCR-GLOBWB	not represented
VIC	not represented
WaterGAP2	$Q_{we,local} = C_{sw,out} \times S_{we,local} \times \left(\frac{S_{we,local}}{S_{we,local,max}}\right)^{2.5}$
	$Q_{we,global} = C_{sw,out} \times S_{we,global}$ with $C_{very out} = 0.01d^{-1}$
WAYS	not represented

Table	S43.	River	storage	S_{ri}

Model	Equation Water Flux		
		Inflows	Outflows
CLM4.5	$\frac{\delta S_{ri}}{\delta t} = Q_{iu} - Q_{ri} + R_{su,l}$	Q_{ri}	Q_{iu}
CLM5.0	$\frac{\delta S_{ri}}{\delta t} = Q_{iu} - Q_{ri} + R_{su,l}$	Q_{ri}	Q_{iu}
CWatM DBH	$\frac{\delta S_{ri}}{\delta t} = R_{if} + R_{gw} + R_{su} + Q_{iu} - Q_{od} - A^{sw}_{dom} - A^{sw}_{irr} - A^{sw}_{liv} - A^{sw}_{man}$ not represented		
H08 JULES-W1	$\frac{\delta S_{ri}}{\delta t} = Q_{ri} - Q_{iu}; \ Q_{iu} \text{ is modified if a reservoir is present. See [36]}$ not represented	Q_{ri}	Q_{iu}
LPJmL	$\frac{\delta S_{ri}}{\delta t} = Q_{iu} - Q_{iu,la} - Q_{ri} - A_{act,irr}$	Q_{iu}	$Q_{iu,la}, Q_{ri}, A_{act,irr}$
Mac-PDM.20 MATSIRO	not represented at a grid without reservoir $\frac{\delta S_{ri}}{\delta t} = Q_{iu,re} - Q_{re}$ for $Q_{iu,re} = \frac{Q_{iu} + R_{tot}}{B_C}$	$egin{array}{llllllllllllllllllllllllllllllllllll$	Q_{re}
mHM	at a grid with reservoir $\frac{\delta S_{ri}}{\delta t} = \frac{\delta S_{re,global}}{\delta t}$ $\frac{\delta S_{ri}}{\delta t} = R_{tot} + Q_{iu} - Q_{ri}$	Q_{iu}	Q_{ri}
MPI-HM	$\frac{\delta S_{ri,n}}{\delta t} = Q_{ri,n-1} - Q_{ri,n} - f_{irr} \times S_{ri,n}$ for n = [1,,5] and $Q_{ri0} = Q_{iu}$	Q_{iu}	Q_{ri}
	$Q_{ri,n} = \frac{S_{ri,n}}{\kappa_{ri}} \text{ for } \mathbf{n} = [1,,5]$		
ORCHIDEE	$\frac{\delta S_{ri,fast,i+1}}{\delta t} = S_{ri,fast,i} + R_{su} - \frac{S_{ri,fast,i}}{t_{ret} \times t_{ri,fast}}$ $\frac{\delta S_{ri,slow,i+1}}{\delta t} = S_{ri,slow,i} + R_{gw} - \frac{S_{ri,slow,i}}{t_{ret} \times t_{ri,slow}}$ $\frac{\delta S_{ri,stream,i+1}}{\delta t} = S_{ri,stream,i} + \frac{S_{ri,fast,i}}{t_{ret} \times t_{ri,fast}} + \frac{S_{ri,slow,i}}{t_{ret} \times t_{ri,slow}} - \frac{S_{ri,stream,i}}{t_{ret} \times t_{ri,slow}}$	R_{su}, R_{gw}	
PCR-GLOBWB	$\frac{\delta S_{ri}}{\delta t} = R_{if} + R_{gw} + R_{su} + Q_{iu} - Q_{od} - A_{dom}^{sw} - A_{irr}^{sw} - A_{liv}^{sw} - A_{man}^{sw}$	$\begin{array}{l} R_{if}, R_{gw}, \\ R_{su}, Q_{iu} \end{array}$	$Q_{od}, A_{dom}^{sw}, A_{irr}^{sw}, A_{liv}^{sw}, A_{man}^{sw}$
VIC	not represented		
WaterGAP2	$\frac{\delta S_{ri}}{\delta t} = Q_{iu} + R_{su} \times (1 - f_{swb}) + R_{gw}^{ri} + A_{rf} - A_{ri} - Q_{ri}$	$Q_{we,global}, R_{eu}, R_{eu}^{ri}$	A_{ri}, Q_{ri}
	with $R_{nw}^{ri} = \begin{cases} R_{gw} & \text{arid and semi-arid cells} \\ R_{mw} & R_{mw} & R_{mw} & R_{mw} & R_{mw} & R_{mw} \\ R_{mw} & R_{mw} & R_{mw} & R_{mw} \\ R_{mw} & R_{mw} & R_{mw} & R_{mw} & R_{mw} \\ R_{mw} & R_{mw} & R_{mw} & R_{mw} & R_{mw} \\ R_{mw} & R_{mw} & R_{mw} & R_{mw} & R_{mw} \\ R_{mw} & R_{mw} & R_{mw} & R_{mw} & R_{mw} & R_{mw} \\ R_{mw} & R_{m$	105u, 10gw	
WAYS	$\mathcal{L}_{gw} \times (1 - f_{swb})$ humid cells not represented		

Table S44	I. Rivulet	storage S_{rv}
-----------	------------	------------------

Model	Equation	Water Flux	Water Flux	
		Inflows	Outflows	
CLM4.5	not represented			
CLM5.0	not represented			
CWatM	$\frac{\delta S_{rv}}{\delta t} = R_{su_{LC,R}} - R_G^1$	$R_{su_{LC,R}}$	R_G^1	
DBH	not represented			
H08	not represented			
JULES-W1	not represented			
LPJmL	not represented			
Mac-PDM.20	not represented			
MATSIRO	not represented			
mHM	not represented			
MPI-HM	$\frac{\delta S_{rv}}{\delta t} = R_{su} - R_G$	R_{su}	R_G	
ORCHIDEE	not represented			
PCR-GLOBWB	not represented			
VIC	not represented			
Water-GAP2	not represented			
WAYS	not represented			

Table S45. Inflow from upstream surface water bodies Q_{iu}

Model	Equation
CLM4.5	sum of inflows of water from neighboring upstream grid cells
CLM5.0	sum of inflows of water from neighboring upstream grid cells
CWatM	sum of inflows of water from neighboring upstream grid cells, lakes and reservoirs. Kinematic wave approach.
DBH	not represented
H08	$Q_{iuG} = v \times S_{riG-1}$ for $v = 0.5$
JULES-W1	not represented
LPJmL	$Q_{iu} = Q_{ri} - E_{la} - E_{re}$
Mac-PDM.20	not represented
MATSIRO	$Q_{iu} = \sum \times Q_{ri}^{upstreamG}$
mHM	upstreamG sum of inflows of water from neighboring unstream grid cells
MPI-HM	$Q_{iu} = R_{gw,up} + Q_{rv,up} + Q_{ri,up} - Q_{iu,we,up}$
ORCHIDEE	$Q_{iu} = \sum_{int} \frac{S_{ri,stream,upper}}{t_{ret} \times t_{ri,stream}}$
PCR-GLOBWB	$Q_{iu} = \frac{\delta Q_{ri}}{\delta l_{wi}} + C_{weir} \times C_{weir} \times Q_{ri}^{(C_{weir}-1)} \times \frac{\delta Q_{ri}}{\Delta t}$
VIC	not represented
WaterGAP2	inflow from upstream grid cells is routed through global lakes see Table S32.
WAYS	not represented

Table S46. Streamflow Q_{ri}

Model	Equation
CLM4.5	$Q_{ri} = \frac{v}{L} \times S_{ri}$
	$\frac{l_G}{G}$
CLM5.0	$Q_{ri} = \frac{C_{ri,hydraulic} + S_{ri}}{C_M}$
CWatM	$\frac{\Delta t}{l_{ri}} \times Q_{ri_{i+1}}^{t+1} + \alpha \times (Q_{ri_{i+1}}^{t+1})^{\beta} = \frac{\Delta t}{l_{ri}} \times Q_{ri_{i}}^{t+1} + \alpha \times (Q_{ri_{i+1}}^{t})^{\beta} + \Delta t \times (\frac{Q_{ri_{i+1}}^{t+1} + Q_{ri_{i+1}}^{t}}{2})$
	For each cell and for each time step using an iterative approach given in Chow et al. [9]. The coefficients can
	be calculated using Manning's equation.
DBH	not represented
H08	$Q_{ri} = \sum R_{su} + Q_{iu}$
	When a dam is present, outflow from dam is used, see Table 35.
JULES-W1	not represented
LPJmL	$Q_{ri,out} = Q_{ri,in} \times \frac{1}{\iota \times \Gamma \times n} \times \frac{t}{\iota}^{(n-1)} \times e^{\frac{-t}{\iota}}$
	for: $n = \frac{l_{ri}}{l_{ri,hom}}$; $r = \frac{l_{ri,hom}}{v_{mean}}$; Γ = gamma function which allows for non-integer values of "n".
Mac-PDM.20	not represented
MATSIRO	at a grid without reservoir
	$Q_{ri,t} = (Q_{iu} + R_{tot}^{*}) - \frac{S_{ri,(t+\Delta t)} - S_{ri,t}}{\Delta t} \times B - (A_{irr}^{ri} + A_{dom}^{ri} + A_{ind}^{ri}) \times B$
	A part of R_{tot} flows into a pond and is stored in the pond, then R_{tot} becomes R_{tot}^* which = $Q_{re,local}$
	at a grid with reservoir
	$Q_{ri} = Q_{re} - (A_{irr}^{ir} + A_{ind}^{re}) \times B$
mHM	$Q_{rii+1} = C_{M1} \times Q_{rii} + C_{M2} \times Q_{rii} + C_{M3} \times Q_{rii+1}$
	for each cen t and for each time step t using an iterative approach given in Chow et al. [9]. The coefficients $C_{M1} - C_{M2}$ are fully derived in Thober et al. [50]
MPI-HM	$Q_{ri} = \frac{S_{ri,n}}{ri}$ for n = 5
	κ_{ri}
ORCHIDEE	$Q_{ri} = \frac{1}{t_{ret} \times t_{ri,stream}}$
PCR-GLOBWB	$Q_{ri} = \frac{\delta Q_{ri}}{SI} + C_{weir} \times C_{weir} \times Q_{ri}^{(C_{weir}-1)} \times \frac{\delta Q_{ri}}{\Delta t}$
VIC	Δt not represented
WaterGAP2	$Q_{ri} = \frac{v}{L} \times S_{ri}$
	for $v = C_M^{-1} \times C_{ri,hydraulic}^{\frac{2}{3}} \times s_{ri}^{\frac{1}{2}}$
	for details see Verzano et al. [52]
WAYS	not represented

Table S47. Evaporation from river E_{ri}

Model	Equation							
CLM4.5	not represented							
CLM5.0	not represented							
CWatM	$E_{ri} = E_{la,pot} - min(P_{tot}, E_{la,pot})$							
DBH	not represented							
H08	not represented							
JULES-W1	not represented							
LPJmL	$E_{ri} = E_{la} = min(S_{la}, E_{la,pot})$							
Mac-PDM.20	not represented							
MATSIRO	not represented							
mHM	not represented							
MPI-HM	not represented							
ORCHIDEE	not represented							
PCR-GLOBWB	$E_{ri} = PET$							
VIC	not represented							
WaterGAP2	not represented							
WAYS	not represented							
Water Storage	CLM4.5		CLI	M5.0	CWatM		DBH	
---------------------	-----------------	---	-----------------	---	-----------------	---	---	--
	Min	Max	Min	Max	Min	Max	Min	Max
Canopy storage	0	depends on vegetation characteristics (> 20 PFT) and state (LAI)	0	depends on vegetation characteristics (> 20 PFT) and state (LAI)	0	specific to each land cover class and time of the year	0	$(2 \times 10^{-4} \text{and } 5 \times 10^{-4}) \times LAI$
Snow storage	0	no upper limit	0	no upper limit	0	no upper limit	$\begin{cases} 0, & \text{for canopy} \\ 0.002m, & \text{for ground} \\ & \text{surface} \end{cases}$	$\begin{cases} 10 & \times & \text{for catopy} \\ LAI \times \\ f_{ca,ex}, \\ \text{no limit, for ground} \end{cases}$
Soil storage	0	100%	0	100%	0	(saturated soil layer water content - residual soil layer water content) x soil layer depth	0	surface 100%, absolute capacity is determined by soil properties
Groundwater storage	0	no upper limit the storage is forced constant (any imbalance between P and ET is	0	4800mm the storage is forced constant (any imbalance between P and ET is	0	no upper limit	not represented	not represented
Lake storage	0	compensated by an artificial runoff term, keeping lake depth at a	0	compensated by an artificial runoff term, keeping lake depth at a	0	no upper limit	not represented	not represented
Wetland storage	not represented	not represented	not represented	not represented	not represented	not represented	not represented	not represented
Reservoir storage	not represented	not represented	not represented	not represented	0	defined for each reservoir, cannot be exceed because of included non damaging outflow function	0	Reservoir storage capacity
River storage	not represented	not represented	not represented	not represented	0	no upper limit	0	∞

Table S48. Minimum and Maximum values of each water storage Part I

Water Storage	H08		JULES-W1		LPJmL		MATSIRO
	Min	Max	Min	Max	Min	Max	
Canopy storage	not represented	not represented	$S_{ca,min} = 0.5$	$S_{ca,max} = S_{ca,min} + 0.05 \times LAI$ Minimum LAI permitted in calculation of the albedo in snow-free conditions is set to 0.5 m2/m2, maximum LAI value ranges between 1 and 5 depending on the plant functional type (PFT). [5]	0	$S_{ca,p}$ specific to each <i>PFT</i> , respectively, tropical and temperate trees 0.02, boreal trees 0.06, grasses 0.01. Canopy water storage is assumed to be the product of daily precipita2on, leaf area index, and a PFTand CFT-specific parameter that approximates the leaf form of the PFTs and the precipita2on regime (rainfall intensity) where they typically grow. The parameter is tabulated in Gerten et al. (2004).	not represented
Snow storage	0	no upper limit	0	no upper limit	0 mm	20000 mm	not represented
Soil storage	wilting point	field capacity	Depends on the soil type per grid cell. Defined per grid cell (0.5 degrees). Volumetric soil moisture content at the wilting point (m3 water per m3 soil) i.e. the point at which soil moisture stress completely prevents transpiration, ranges between 0 (for ice covered regions) and 0.263. The configuration uses soil data from the Harmonized World Soil Database	Depends on the soil type per grid cell. Defined per grid cell (0.5 degrees). The volumetric soil moisture content at saturation (m3 water per m3 soil) ranges between 0 (for ice covered regions) and 0.458. The configuration uses soil data from the Harmonized World Soil Database. [35]	0	$S_{so,sat,p}$ specific to soil type clay=0.468; sinty clay=0.468; sandy clay=0.406; clay loam=0.465; silty clay loam=0.464; sandy clay loam=0.404; loam=0.439; silt loam=0.476; loamy sand=0.474; sandy loam=0.476; loamy sand=0.421; sand=0.339; rock and ice=0.006.	Soil storage is constrained by soil layer thickness and porosity
Groundwater storage Lake storage Wetland storage	0 not represented not represented	no upper limit not represented not represented	not represented not represented not represented	not represented not represented not represented	not represented 0 not represented	not represented $f_{la} \times 5 \times G \times 1000$ not represented	not represented not represented not represented
Reservoir storage	0	dam capacity	not represented	not represented	0	Reservoir dependent, this is an input to the model	Reservoir storage cannot exceed storage capacity specified in GRanD data
River storage	no limit	no limit	not represented	not represented	0	no upper limit	not represented

Table S49. Minimum and Maximum values of each water storage Part II

Water Storage	Mac-PDM.20	0	mHM		MPI-	HM	ORCHIDEE		PCR-	GLOBWB
	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Canopy storage	not represented	not represented	0	$P_{int,max} = 0.15 - 0.4mm$	0	no upper limit	0	$0.02 \times LAI \times f_{ca}$	0	no upper limit
Snow storage	0	nd upper	0	ho upper	0	no upper limit	0	no upper limit	0	no upper limit
Soil storage	0	no upper limit	0	$\sum_{i=1}^{N} \phi_{s,i} d_{so,i},$ where $N = 6$ is number of soil layers	0	$S_{so,max} = S_{so,TL} imes d_{so,root}$	0	$S_{sol,sat,p}$ specific to soil type (m ³ m ⁻³) clay=0.3; silty clay=0.36; sandy clay=0.36; clay loam=0.41; silty clay loam=0.43; sandy clay loam=0.43; sandy clay loam=0.45; sandy loam=0.41; silt=0.46; loamy sand=0.41;	0	porosity * layer depth
Groundwater storage	0	no upper limit	0	no upper limit	0	no upper limit	not represented	not represented	0	no upper limit
Lake storage	not represented	not	not represented	not represented	0	no upper limit	not	not	0	no upper
Wetland storage	represented	represented	not represented	not represented	0	no upper limit	represented	not represented	0	no upper limit
Reservoir storage	not represented	not represented	not represented	not represented			not represented	not represented	0	design capacity of
River storage	not represented	not represented	0	no upper limit		not represented	0	no upper limit	0	reservoir no upper limit

Table S50. Minimum and Maximum values of each water storage Part III

Water Storage	VIC		W	VaterGAP2	WAYS		
	Min	Max	Min	Max	Min	Max	
Canopy storage	0	no upper limit	0	$S_{ca,max} = 0.3 \times LAI$	0	$f(LAI_{max})$	
Snow storage	0	no upper limit	0	1000 mm	0	no upper limit	
Soil storage	0	porosity * layer depth	0	$S_{so,max}$	0	$S_{rz,max}$	
Groundwater storage	0	no value	no limit	no limit	0	no upper limit	
Lake storage	0	no upper limit	$-S_{la,local,max}$	$S_{la,local,max} =$		not represented	
			$-S_{la,global,max}$	$B_{la,local,max} \times 5m$			
				$S_{la,global,max} =$			
				$B_{la,global,max} \times 5m$			
Wetland storage	0	no upper limit	0	$S_{we,local,max} =$		not represented	
				$B_{we,local,max} \times 2m$			
				$S_{we,global,max} =$			
				$B_{we,global,max} \times 2m$			
Reservoir storage	0	design capacity of reservoir	0	$S_{re,C} imes 0.85$		not represented	
River storage	0	no value	0	no limit	0	no upper limit	

Table S51. Minimum and Maximum values of each water storage Part IV

Table S52. Irrigation water demand A_{irr}

Madal	Equation
Model	Equation
CLM4.5	not represented
CLM5.0	$A_{irr} = j \times S_{so,sat} + (1-j) \times S_{so,WP} - S_{so,cur}$
CWatM	not represented
DBH	not represented
H08	not represented
JULES-W1	not represented
LPJmL	not represented
Mac-PDM.20	not represented
MATSIRO	$A_{irr} = \frac{\rho_w}{\Delta t} \times \sum_{i=1}^{3} max[(\phi_{t,i} - \phi_{a,i}), 0] \times \zeta_{so,i}$
	$\phi_{t,i} = \alpha imes \phi_{so}$
	α is set at 1 for rice and 0.75 for the other crops, see [38].
mHM	not represented
MPI-HM	$A_{irr} = \left(T \times \frac{f_{ca} - f_{irr}}{f_{ca}} + PET \times f_{irr}\right) - T$
	$f_{irr} = 1 - \frac{A_{irr}}{\sum S_i}$; for i = baseflow, river, wetland
ORCHIDEE	not represented
PCR-GLOBWB	not represented
VIC	not represented
WaterGAP2	not represented
WAYS	not represented

Model	Equation
CLM4.5	not represented
CLM5.0	not represented
CWatM	$A_{not}^{gw} = A_{tot} - A_{act}^{sw}$
	$A_{act}^{gw} = min(S_{gw} - A_{pot}^{gw})$
	$A_{fgw} = A_{pot}^{gw} - A_{act}^{gw}$
DBH	not represented
H08	$A_{irr}^{gw} = A_{irr}^{gw,rw} + A_{irr}^{gw,nrw}$
	$A_{irr}^{gw,rw} = min(f_{gw,use} \times A_{irr,dem} \times \frac{S_{gw,rw}}{\Lambda t})$
	$A_{irr}^{gw,nrw} = f_{gw,use} \times A_{irr,dem} - A_{gw,rw}$
JULES-W1	not represented
LPJmL	not represented
Mac-PDM.20	not represented
MATSIRO	Given the amount of water requirement for irrigation, water is firstly taken from local river flow (potentially
	regulated by global reservoir), then from local reservoir (same cell or upstream cell). Then, rest of water require-
	ment unmet is taken from groundwater resource. Here MATSIRO assumes unlimited groundwater resource.
	$A^{gw}_{irr} = A_{irr,dem} - A^{sw}_{irr}$
mHM	not represented
MPI-HM	$A_{irr}^{gw} = f_{irr} imes S_{gw}$
ORCHIDEE	not represented
PCR-GLOBWB	not represented
VIC	not represented
WaterGAP2	$A_{irr}^{gw} = \frac{A_{irr,cons}}{0.7} \times f_{gw,use}$
WAYS	$A_{irr,cons}$ is calculated with a Global Irrigation Model, see [34] and [12].

Table S53. Irrigation groundwater abstraction A_{irr}^{gw}

Table S54. Irrigation groundwater consumption $A^{gw}_{irr,cons}$

Model	Equation
CLM4.5	not represented
CLM5.0	not represented
CWatM	$A_{gw,cons} = A_{tot,cons} - A_{sw,cons}$
DBH	not represented
H08	$A^{gw}_{irr,cons} = f_{cons,A} \times A^{gw}_{irr}$
JULES-W1	not represented
LPJmL	not represented
Mac-PDM.20	not represented
MATSIRO	Theoretically speaking, $A_{irr,cons}^{gw} = X \times A_{irr}^{gw}$ where X is overall irrigation efficiency (which does not consider
	combinations of irrigation system type and water sources.)
mHM	not represented
MPI-HM	no water losses are computed
ORCHIDEE	not represented
PCR-GLOBWB	$A_{irr,cons}^{gw} = \frac{R_{gw}}{R_{gw} + Q_{iu}} \times A_{irr} \times X$
VIC	not represented
WaterGAP2	$A_{irr,cons}^{gw} = A_{irr,cons} \times f_{gw,use} A_{irr,cons}$ is calculated with a Global Irrigation Model, see [34] and [12].
WAYS	not represented

Table S55. Return flow from irrigation groundwater abstraction $A^{gw}_{irr,rf}$

Model	Equation
CLM4.5	not represented
CLM5.0	not represented
CWatM	not represented
DBH	not represented
H08	$A_{irr,f}^{gw} = (1 - f_{lost}) \times (1 - f_{cons,A}) \times A_{irr}^{gw} [24]$
JULES-W1	not represented
LPJmL	not represented
Mac-PDM.20	not represented
MATSIRO	In MATSIRO, return flow is implicitly accounted for.
	MATSIRO estimates potential irrigation water amount to keep soil moisture at the target level of 0.75. Irrigation
	water added, added as sprinkler irrigation, can percolate into deeper layers, ultimately recharging groundwater,
	or contribute to local runoff depending on the rate of consumptive use by crops and soil wetness conditions.
mHM	not represented
MPI-HM	not represented
ORCHIDEE	not represented
PCR-GLOBWB	$A_{irr,rf}^{gw} = \frac{R_{gw}}{R_{gw} + Q_{iu}} \times A_{irr} \times (1 - X)$
VIC	not represented
WaterGAP2	$A_{irrrr}^{gw} = A_{irrr}^{gw} - A_{irrrcons}^{gw}$
WAYS	not represented

Model	Equation
CLM4.5	$A_{irr}^{sw} = \sum_{i} max(\phi_{t,i} - \phi_{a,i}, 0)$
	with: $\phi_{t,i} = (1-0.7) \times \phi_{min,i} + 0.7 \times \phi_{s,i}$
CLM5.0	$A_{irr}^{sw} = A_{irr}$
CWatM	$A_{irr}^{sw} = rac{A_{irr,cons}}{f_{irr,eff}}$
	$f_{irr,eff}$: see [46].
	It also simulates overflow of the flooded topsoil for paddy rice land use. This saturation excess it is not controlled by acil by denuise restrice, but by burgent interpretion
	by sol invariante properties, but by minimum intervention: $R_{od} = max(0, S_{odd}, -0.05 \text{ m})$; S_{odd} = the storage of flooded paddy rice (only for paddy rice land use)
DBH	not represented
H08	$A^{sw}_{inr} = A^{aq}_{inr} + A^{re}_{irr} + A^{ri}_{irr} + A^{usw}_{irr}$
JULES-W1	not represented
LPJmL	$A_{irr}^{sw} = A_{irr}^{la} + A_{irr}^{neigh,cell} + A_{irr}^{re} + A_{irr}^{ri}$
Mac-PDM.20	not represented
MATSIRO	Given the amount of water requirement for this sector, water is firstly taken from local river flow (potentially
	regulated by global reservoir), then from local reservoir (same cell or upstream cell).
	$A_{irr}^{sw} = A_{irr}^{pona} + A_{irr}^{re,global} + A_{irr}^{ri}$
mHM	not represented
MPI-HM	$A_{irr}^{sw} = \sum_{i=1}^{3} (f_{irr} \times S_{ri,n}) + f_{irr} \times S_{we}$
ORCHIDEE	not represented
PCR-GLOBWB	$A_{irr}^{sw} = \frac{Q_{iu}}{R_{aw} + Q_{iu}} \times A_{irr}$
VIC	not represented
WaterGAP2	$A_{irr}^{sw} = \frac{A_{irr,cons}}{f_{irr,sw,eff}} \times (1 - f_{gw,use}) A_{irr,cons} \text{ is calculated with a Global Irrigation Model, see [34] and [12].}$
WAYS	not represented

Table S56. Irrigation surface water abstraction A_{irr}^{sw}

Model	Equation
CLM4.5	not represented
CLM5.0	$A_{irr,cons}^{sw} = A_{irr,r}^{sw} - A_{irr,rf}^{sw}$
CWatM	For paddy irrigation:
	$A_{irr,cons} = (d_{paddy,max}^{sw} - (d_{paddy}^{sw}^{t-1} - P_{eff}^{t}))$
	$d_{paddy}^{sw} = d_{paddy}^{sw} = t^{-1} + P_{eff} + A_{irr} + R_{in} - E_{osw}^{d,t}$
	For non paddy:
	$\int S_{so,T2L} - S_{so,ready} (S_{so,ready} < S_{so,crit})$
	$A_{irr,cons} = \begin{cases} 0 & (S_{so,ready} \ge S_{so,crit}) \end{cases}$
	$S_{so,T2L} = S_{so,FC} - S_{so,WP}$
	$S_{so,ready} = S_{so} - S_{so,WP}$
	$S_{so,crit} = (1-p) \times S_{so,T2L} + S_{so,WP} $
	$p = \frac{1}{(0.76 + 1.5 \times PET)} - 0.4 + \frac{(PET - 0.6)}{4}$, see [51].
DBH	not represented
H08	$A_{irr}^{sw} = A_{irr,cons}^{sw} + A_{irr,loss}^{sw} + A_{irr,rf}^{sw}$
	$A_{irr,cons}^{sw} = f_{cons,A} \times A_{irr}^{sw}$
	$A_{irr,loss}^{sw} = f_{lost} \times (1 - f_{cons,A}) \times A_{irr}^{sw}$
JULES-WI	not represented
LPJmL	$A_{irr,net} = max(0, S_{so,FC} - S_{so,ready})$
	$A_{irr,gross,G} = \frac{\Lambda_{irr,net} + \Lambda_{irr,app} - B_{buf}}{X_{conv}}, X_{conv} = 0.95, \text{see} [7]$
	$A_{irr,app} = max(0, (S_{so,sat} - S_{so,FC}) \times \lambda - S_{so,ready}), \text{ see [41]}$
Mac-PDM.20	not represented
MATSIRO	Theoretically speaking, $A_{irr,cons}^{sw} = X \times A_{irr}^{sw}$
mHM	not represented
MPI-HM	not represented
ORCHIDEE	not represented
PCR-GLOBWB	$A_{irr,cons}^{sw} = \frac{Q_{iu}}{R_{gw} + Q_{iu}} \times A_{irr}$
VIC	not represented
WaterGAP2	$A_{irr,cons}^{sw} = A_{irr,cons} \times (1 - f_{gw,use})$
WAYS	$A_{irr,cons}$ is calculated with a Global Irrigation Model, see [34] and [12]. not represented

Table S57. Irrigation surface water consumption $A_{irr,cons}^{sw}$

Model	Equation
CLM4.5	not represented
CLM5.0	$A^{sw}_{irr,rf} = f_{G,sat} \times A^{sw}_{irr}$
CWatM	$A^{sw}_{irr,rf} = f_{irr,eff} \times A_{irr}, see[12]$
DBH	not represented
H08	$A_{irr,rf}^{sw} = (1 - f_{lost}) \times (1 - f_{cons,A}) \times A_{irr}^{sw}$. See [12], [24]
JULES-W1	not represented
LPJmL	$A_{irr,rf}^{sw} = A_{irr,gross,G} - A_{irr,net} - A_{irr,app} - E_{osw}$
	Where: $E_{osw} = (A_{irr,gross,G} - A_{irr,net} - A_{irr,app}) \times 0.5$
Mac-PDM.20	not represented
MATSIRO	Return flow from irrigation using surface water is not separately estimated in MATSIRO; this component is a
	part of the return flow from the total water use within a grid cell.
mHM	not represented
MPI-HM	not represented
ORCHIDEE	not represented
PCR-GLOBWB	not represented
VIC	not represented
WaterGAP2	$A^{sw}_{irr,rf} = A^{sw}_{irr} - A^{sw}_{irr,cons}$
WAYS	not represented

Table S58. Return flow from irrigation surface water abstraction ${\cal A}^{sw}_{irr,rf}$

Model	Equation
CLM4.5	not represented
CLM5.0	not represented
CWatM	not represented
DBH	not represented
H08	$A_{dom}^{gw} = A_{dom}^{gw,rw} + A_{dom}^{gw,nrw}$
	$A_{dom}^{gw,rw} = min(f_{gw,use} \times A_{dom,dem} \times \frac{S_{gw,rw}}{\Delta t})$
	$A_{dom}^{gw,nvw} = f_{gw,use} imes A_{dom,dem} - A_{dom}^{gw,nw}$
JULES-W1	not represented
LPJmL	prescribed data offered by ISIMIP2b framework
Mac-PDM.20	not represented
MATSIRO	Given the amount of water requirement from the domestic sector, water is firstly taken from local river flow (potentially regulated by global reservoir), then from local reservoir (same cell or upstream cell). Then, rest of water requirement unmet is taken from groundwater resource. Here, MATSIRO assumes unlimited groundwater
	resource. $A_{dom}^{gw} = A_{dom,dem} - A_{dom}^{sw}$
	where $A_{dom,dem}$ is domestic sectoral water requirement.
mHM	not represented
MPI-HM	not represented
ORCHIDEE	not represented
PCR-GLOBWB	$A_{dom}^{gw} = \frac{R_{gw}}{R_{gw} + Q_{iu}} \times A_{dom,dem}$
VIC	not represented
WaterGAP2	$A_{dom}^{gw} = A_{dom} imes f_{gw,use}$
	$A_{dom} = C_{dom}^{wu,ints} \times POP$
	for $C_{dom}^{wu,ints}$ see [18].
WAYS	not represented

Table S59. Equations for domestic groundwater abstraction A_{dom}^{gw}

Model	Equation
CLM4.5	not represented
CLM5.0	not represented
CWatM	not represented
DBH	not represented
H08	$\begin{array}{l} A_{dom}^{gw} = A_{dom,cons}^{gw} + A_{dom,loss}^{gw} + A_{dom,rf}^{gw} \\ A_{dom,cons}^{gw} = f_{cons,A} \times A_{dom}^{gw} \\ A_{dom,loss}^{gw} = f_{lost} \times (1 - f_{cons,A}) \times A_{dom}^{gw} \end{array}$
JULES-W1	not represented
LPJmL	prescribed data offered by ISIMIP2b
Mac-PDM.20	not represented
MATSIRO	only 10 % of domestic water use is assumed to be consumptively used.
	Theoretically speaking: $A_{dem}^{gw} = X_{dem} \times A_{dem}^{gw}$
mHM	adm.coms adm
MPI-HM	not represented
ORCHIDEE	not represented
PCR-GLOBWB	$A_{dom,cons}^{gw} = \frac{R_{gw}}{R_{aw} + Q_{iu}} \times \frac{A_{dom,cons}}{A_{dom,dem}}$
VIC	not represented
WaterGAP2	$A_{dom,cons}^{gw} = A_{dom,cons} imes f_{gw,use}$
	$A_{dom,cons} = \begin{cases} A_{dom} \times C_{dom,cons}, & year < 2000 \end{cases}$
	$\begin{bmatrix} A_{dom} - A_{dom, rf}, & year \ge 2000 \end{bmatrix}$
WAVS	Starting with 2000 $A_{dom,cons}$ is based on return flow data, see [18].
WAI 5	not represented

Table S60. Equations for domestic groundwater consumption $A_{dom,cons}^{gw}$

Table S61. Equations for return flow from domestic groundwater abstraction $A_{dom,rf}^{gw}$

Model	Equation
CLM4.5	not represented
CLM5.0	not represented
CWatM	not represented
DBH	not represented
H08	$A_{dom,rf}^{gw} = (1 - f_{lost}) \times (1 - f_{cons,A}) \times A_{dom}^{gw}, \text{see [24]}$
JULES-W1	not represented
LPJmL	not represented
Mac-PDM.20	not represented
MATSIRO	90 % of domestic water use is implicitly assumed to have returned to the original source (groundwater; see
	[39]).
mHM	not represented
MPI-HM	not represented
ORCHIDEE	not represented
PCR-GLOBWB	$A_{dom,rf}^{gw} = \frac{R_{gw}}{R_{gw} + Q_{iu}} \times \frac{A_{dom,dem} - A_{dom,cons}}{A_{dom,dem}}$
VIC	not represented
WaterGAP2	$A_{dom,rf}^{gw} = A_{dom,rf} \times f_{gw,use}$
	$A_{dom,rf} = \begin{cases} A_{dom} - (A_{dom} \times C_{dom,cons}) & year < 2000\\ A_{dom,rf} & year \ge 2000 \end{cases}$ Starting with 2000 $A_{dom,rf}$ is based on wastewater volume data, see [18].
WAYS	not represented

Table S62. Equations for domestic surface water abstraction A_{dom}^{sw}

Model	Equation
CLM4.5	not represented
CLM5.0	not represented
CWatM	not represented
DBH	not represented
H08	$A_{dom}^{sw} = A_{dom}^{aq} + A_{dom}^{re} + A_{dom}^{ri} + A_{dom}^{usw}$
JULES-W1	not represented
LPJmL	prescribed data offered by ISIMIP2b
Mac-PDM.20	not represented
MATSIRO	Given the amount of water requirement for this sector, water is firstly taken from local river flow (potentially
	regulated by global reservoir), then from local reservoir (same cell or upstream cell).
	$A_{dom}^{sw} = A_{dom}^{pond} + A_{dom}^{re,global} + A_{dom}^{ri}$
mHM	not represented
MPI-HM	not represented
ORCHIDEE	not represented
PCR-GLOBWB	$A_{dom}^{sw} = \frac{Q_{iu}}{R_{aw} + Q_{iu}} \times A_{dom,dem}$
VIC	not represented
WaterGAP2	$A_{dom}^{sw} = A_{dom} \times (1 - f_{aw.use})$
	$A_{dom} = C_{dom}^{wu,ints} \times POP$
	for $C_{wu,ints}^{down}$ see [18].
WAYS	not represented

Model	Equation
CLM4.5	not represented
CLM5.0	not represented
CWatM	not represented
DBH	not represented
H08	$A^{sw}_{dom} = A^{sw}_{dom,cons} + A^{sw}_{dom,loss} + A^{sw}_{dom,rf}$
	$A_{dom,cons}^{sw} = f_{cons,A} \times A_{dom}^{sw}, \text{see [12]}$
	$A_{dom,loss}^{sw} = f_{lost} \times (1 - f_{cons,A}) \times A_{dom}^{sw}$
JULES-W1	not represented
LPJmL	prescribed data offered by ISIMIP2b
Mac-PDM.20	not represented
MATSIRO	only 10 % of domestic water use, from surface water bodies, is assumed to be consumptively used. Theoretically
	speaking: $A_{dom,cons}^{sw} = X_{dom} \times A_{dom}^{sw}$
mHM	not represented
MPI-HM	not represented
ORCHIDEE	not represented
PCR-GLOBWB	$A_{dom,cons}^{sw} = \frac{Q_{iu}}{R_{aw} + Q_{iu}} \times \frac{A_{dom,cons}}{A_{dom,dem}}$
VIC	not represented
WaterGAP2	$A_{dom,cons}^{sw} = A_{dom,cons} \times (1 - f_{gw,use})$
	for $A_{dom\ cons} = \begin{cases} A_{dom} \times C_{dom,cons}, & year < 2000 \end{cases}$
	$A_{dom} - A_{dom,rf}, year \ge 2000$
	Starting with 2000 $A_{dom,cons}$ is based on return flow data, for details see [18].
WAYS	not represented

Table S63. Equations for domestic surface water consumption $A_{dom,cons}^{sw}$

Table S64. Equations for return flow from domestic surface water abstraction $A^{sw}_{dom,rf}$

Model	Equation
CLM4.5	not represented
CLM5.0	not represented
CWatM	not represented
DBH	not represented
H08	$A_{dom,rf}^{sw} = (1 - f_{lost}) \times (1 - f_{cons,A}) \times A_{dom}^{sw}$ [24]; [12]
JULES-W1	not represented
LPJmL	not represented
Mac-PDM.20	not represented
MATSIRO	90 % of domestic water use, from surface water bodies, is implicitly assumed to have returned to the original
	source (surface water; [39]).
mHM	not represented
MPI-HM	not represented
ORCHIDEE	not represented
PCR-GLOBWB	not represented
VIC	not represented
WaterGAP2	$A_{dom,rf}^{sw} = A_{dom,rf} \times (1 - f_{gw,use})$
	$\int A_{dom} - (A_{dom} \times C_{dom,cons}) year < 2000$
	$A_{dom,rf} = \begin{cases} A_{dom,rf} & year \ge 2000 \end{cases}$
	Starting with 2000 $A_{dom,rf}$ is based on wastewater volume data, for details see [18].
WAYS	not represented

Table S65. Equations for livestock groundwater abstraction A_{liv}^{gw}

Model	Equation
CLM4.5	not represented
CLM5.0	not represented
CWatM	not represented
DBH	not represented
H08	not represented
JULES-W1	not represented
LPJmL	not represented
Mac-PDM.20	not represented
MATSIRO	not represented
mHM	not represented
MPI-HM	not represented
ORCHIDEE	not represented
PCR-GLOBWB	$A_{liv}^{gw} = \frac{R_{gw}}{R_{gw} + Q_{iu}} \times A_{liv,dem}$
VIC	not represented
WaterGAP2	water used in the livestock sector is solely abstracted from surface water bodies
WAYS	not represented

Table S66. Equations for livestock groundwater consumption $A^{gw}_{liv,cons}$

Model	Equation
CLM4.5	not represented
CLM5.0	not represented
CWatM	not represented
DBH	not represented
H08	not represented
JULES-W1	not represented
LPJmL	not represented
Mac-PDM.20	not represented
MATSIRO	not represented
mHM	not represented
MPI-HM	not represented
ORCHIDEE	not represented
PCR-GLOBWB	$A_{liv,cons}^{gw} = \frac{R_{gw}}{R_{gw} + Q_{iu}} \times \frac{A_{liv,cons}}{A_{liv,dem}}$
VIC	not represented
WaterGAP2	not represented

Table S67. Equations for livestock surface water abstraction A_{liv}^{sw}

Model	Equation
CLM4.5	not represented
CLM5.0	not represented
CWatM	not represented
DBH	not represented
H08	not represented
JULES-W1	not represented
LPJmL	not represented
Mac-PDM.20	not represented
MATSIRO	not represented
mHM	not represented
MPI-HM	not represented
ORCHIDEE	not represented
PCR-GLOBWB	$A_{liv}^{sw} = \frac{Q_{iu}}{R_{qw} + Q_{iu}} \times A_{liv,dem}$
VIC	not represented
WaterGAP2	$A_{liv}^{sw} = A_{liv,cons}^{sw}$
WAYS	not represented

Table S68. Equations for livestock surface water consumption $A_{liv,cons}^{sw}$

Model	Equation
CLM4.5	not represented
CLM5.0	not represented
CWatM	not represented
DBH	not represented
H08	not represented
JULES-W1	not represented
LPJmL	not represented
Mac-PDM.20	not represented
MATSIRO	not represented
mHM	not represented
MPI-HM	not represented
ORCHIDEE	not represented
PCR-GLOBWB	$A_{liv,cons}^{sw} = \frac{Q_{iu}}{R_{qw} + Q_{iu}} \times \frac{A_{liv,cons}}{A_{liv,dem}}$
VIC	not represented
WaterGAP2	$A_{liv,cons}^{sw} = \sum_{i=1}^{10} POP_{liv,t} \times C_{liv}^{w,req}$ for 10 livestock types [1], [34].
WAYS	not represented

Model	Equation
CLM4.5	not represented
CLM5.0	not represented
CWatM	not represented
DBH	not represented
H08	$A_{man}^{gw} = A_{man}^{gw,rw} + A_{man}^{gw,nrw}$
	Where:
	$A_{man}^{gw,rw} = min(f_{gw,use} \times A_{man,dem} \times \frac{S_{gw,rw}}{\Delta t})$
	$A_{man}^{gw,nrw} = f_{gw,use} \times A_{man,dem} - A_{man}^{gw,rw}$
JULES-W1	not represented
LPJmL	not represented
Mac-PDM.20	not represented
MATSIRO	combines manufacturing sector and electricity sector and calls this sector industrial sector. Given the amount
	of water requirement for the industrial sector, water is firstly taken from local river flow (potentially regulated
	by global reservoir), then from local reservoir (same cell or upstream cell). Then, rest of water requirement
	unmet is taken from groundwater resource. Here, here MATSIRO assumes unlimited groundwater resource.
	$A_{ind}^{i} = A_{ind,dem} - A_{ind}^{i}$ where $A_{ind,dem}$ is water requirement of the industrial sector.
mHM	not represented
MPI-HM	not represented
ORCHIDEE	not represented
PCR-GLOBWB	$A_{man}^{gw} = \frac{R_{gw}}{R_{gw} + Q_{iu}} \times A_{man,dem}$
VIC	not represented
WaterGAP2	$A_{man}^{gw} = A_{man}^c \times \frac{POP_u}{POP_u^c} \times f_{gw,use}$
	$A_{man}^{c} = C_{man}^{w,ints,2005} \times GAV \times C_{man}^{tech,cr}$
WAYS	not represented

Table S69. Equations for manufacturing groundwater abstraction A_{man}^{gw}

_

Model	Equation
CLM4.5	not represented
CLM5.0	not represented
CWatM	not represented
DBH	not represented
H08	$A^{gw}_{man} = A^{gw}_{man,cons} + A^{gw}_{man,loss} + A^{gw}_{man,rf}$
	$A_{man,cons}^{gw} = f_{cons,A} \times A_{man}^{gw} $ [43]
	$A_{man,loss}^{gw} = f_{lost} \times (1 - f_{cons,A}) \times A_{man}^{gw}$
JULES-W1	not represented
LPJmL	not represented
Mac-PDM.20	not represented
MATSIRO	10 % of domestic water use is assumed to be consumptively used. Theoretically speaking:
	$A_{ind,cons}^{gw} = X_{ind} \times A_{ind}^{gw}$
	where X_{ind} is overall water use efficiency of the industrial sector.
mHM	not represented
MPI-HM	not represented
ORCHIDEE	not represented
PCR-GLOBWB	$A_{man,cons}^{gw} = \frac{R_{gw}}{R_{cw} + Q_{in}} \times \frac{A_{man,cons}}{A_{man,dom}}$
VIC	not represented
WaterGAP2	$A_{man,cons}^{gw} = (A_{man}^c - A_{man,rf}^c) \times \frac{POP_u}{POP_c} \times f_{gw,use}$
	$A_{man}^{c} = C_{man}^{w,ints,2005} \times GAV \times C_{man}^{tech,cr}$
	$A_{man}^c = \begin{cases} A_{man}^c \times C_{man,cons} & year < 2000 \end{cases}$
	$A_{man}^{coo,c} + A_{man}^{ww,c} \qquad year \ge 2000$
	For details on manufacturing cooling and waste water see [18].
WAYS	not represented

Table S70. Equations for manufacturing groundwater consumption $A_{man,cons}^{gw}$

_

Table S71. Equations for return flow from manufacturing groundwater abstraction $A_{man,rf}^{gw}$

Model	Equation
CLM4 5	not represented
CLM5.0	not represented
CWatM	not represented
DBH	not represented
H08	$A_{man,rf}^{gw} = (1 - f_{lost}) \times (1 - f_{cons,A}) \times A_{man}^{gw}$
JULES-W1	not represented
LPJmL	not represented
Mac-PDM.20	not represented
MATSIRO	90 % of domestic water use is implicitly assumed to have returned to the original source (groundwater; [39]).
mHM	not represented
MPI-HM	not represented
ORCHIDEE	not represented
PCR-GLOBWB	$A_{man,rf}^{gw} = \frac{R_{gw}}{R_{gw} + Q_{iu}} \times \frac{A_{man,dem} - A_{man,cons}}{A_{man,dem}}$
VIC	not represented
WaterGAP2	$A_{man,rf}^{gw} = \begin{cases} A_{man}^{gw} \times C_{man,cons}, & year < 2000\\ (A_{man}^{coo,c} + A_{man}^{ww,c}) \times \frac{POP_u}{POPc} \times f_{gw,use}, & year \ge 2000 \end{cases}$
WAYS	For details on manufacturing cooling and waste water see [18]. not represented

Model Equation CLM4.5 not represented CLM5.0 not represented CWatM not represented DBH not used for ISIMIP2b $A^{sw}_{man} = A^{aq}_{man} + A^{re}_{man} + A^{ri}_{man} + A^{usw}_{man}$ H08 not represented JULES-W1 LPJmL prescribed data offered by ISIMIP2b Mac-PDM.20 not represented MATSIRO combines manufacturing sector and electricity sector and calls this sector industrial sector. Given the amount of water requirement for this sector, water is firstly taken from local river flow (potentially regulated by global reservoir), then from local reservoir (same cell or upstream cell). $A_{ind}^{sw} = A_{ind}^{pond} + A_{ind}^{re,global} + A_{ind}^{ri}$ not represented mHM MPI-HM not represented ORCHIDEE not represented $A^{sw}_{man} = \frac{Q_{iu}}{R_{gw} + Q_{iu}} \times A_{man,dem}$ not represented PCR-GLOBWB VIC
$$\begin{split} A^{sw}_{man} &= A^c_{man} \times \frac{POP_u}{POP_u^c} \times (1-f_{gw,use}) \\ A^c_{man} &= C^{w,ints,2005}_{man} \times GAV \times C^{tech,cr}_{man} \\ \text{not represented} \end{split}$$
WaterGAP2 WAYS

Table S72. Equations for manufacturing surface water abstraction A_{man}^{sw}

Model	Equation
CLM4.5	not represented
CLM5.0	not represented
CWatM	not represented
DBH	not represented
H08	$A_{man}^{sw} = A_{man,cons}^{sw} + A_{man,loss}^{sw} + A_{man,rf}^{sw}$
	$A_{man,cons}^{sw} = f_{cons,A} \times A_{man}^{sw} [12]$
	$A_{man,loss}^{sw} = f_{lost} \times (1 - f_{cons,A}) \times A_{man}^{sw}$
JULES-W1	See [12]
LPJmL	prescribed data offered by ISIMIP2b
Mac-PDM.20	not represented
MATSIRO	only 10 % of domestic water use is assumed to be consumptively used. Theoretically speaking:
	$A_{ind,cons}^{sw} = X_{ind} \times A_{ind}^{sw}$
mHM	not represented
MPI-HM	not represented
ORCHIDEE	not represented
PCR-GLOBWB	$A_{man,cons}^{sw} = \frac{Q_{iu}}{R_{gw} + Q_{iu}} \times \frac{A_{man,cons}}{A_{man,dem}}$
VIC	not represented
WaterGAP2	$A_{man,cons}^{sw} = (A_{man}^c - A_{man,rf}^c) \times \frac{POP_u}{POP_u^c} \times (1 - f_{gw,use})$
	$A_{man}^{c} = C_{man}^{w,ints,2005} \times GAV \times C_{man}^{tech,cr}$
	$A_{man,rf}^{c} = \begin{cases} A_{man}^{c} \times C_{man,cons} & year < 2000 \end{cases}$
	$A^{coo,c}_{man} + A^{ww,c}_{man}$ $year \ge 2000$
	For details on manufacturing cooling and waste water see [18].
WAYS	not represented

Table S73. Equations for manufacturing surface water consumption $A^{sw}_{man,cons}$

Table S74. Equations for return flow from manufacturing surface water abstraction $A^{sw}_{man,rf}$

Model	Equation
CLM4.5	not represented
CLM5.0	not represented
CWatM	not represented
DBH	not represented
H08	$A_{man,rf}^{sw} = (1 - f_{lost}) \times (1 - f_{cons,A}) \times A_{man}^{sw}.$ See [24]
JULES-W1	not represented
LPJmL	not represented
Mac-PDM.20	not represented
MATSIRO	90 % of domestic water use is implicitly assumed to have returned to the original source (surface water; [39]).
mHM	not represented
MPI-HM	not represented
ORCHIDEE	not represented
PCR-GLOBWB	not represented
VIC	not represented
Wata CAD2	$\int A_{man}^{sw} \times C_{man,cons} \qquad year < 2000$
waterGAP2	$A_{man,rf} = \begin{cases} (A_{man}^{coo,c} + A_{man}^{ww,c}) \times \frac{POP_u}{POP^c} \times (1 - f_{gw,use}) & year \ge 2000 \end{cases}$
	For details on manufacturing cooling and waste water see [18].
WAYS	not represented

Table S75. Equations for electricity surface water abstraction

Model	Equation
CLM4.5	not represented
CLM5.0	not represented
CWatM	not represented
DBH	not represented
H08	not represented
JULES-W1	not represented
LPJmL	not represented
Mac-PDM.20	not represented
MATSIRO	represented in table S72.
mHM	not represented
MPI-HM	not represented
ORCHIDEE	not represented
PCR-GLOBWB	not represented
VIC	not represented
WaterGAP2	$A_{ele}^{sw} = \sum_{i=1}^{n} J_{ele, prod, i} \times J_{ele, A, ints, i} (J_{ele, coo, i}, J_{ele, pt, i}) \times C_{ele}^{techchangerate}$
WAYS	not represented

Table S76. Equations for electricity surface water consumption

Model	Equation
CLM4.5	not represented
CLM5.0	not represented
CWatM	not represented
DBH	not represented
H08	not represented
JULES-W1	not represented
LPJmL	not represented
Mac-PDM.20	not represented
MATSIRO	not represented
mHM	not represented
MPI-HM	not represented
ORCHIDEE	not represented
PCR-GLOBWB	not represented
VIC	not represented
WaterGAP2	$A_{ele}^{sw} = \sum_{i=1}^{n} J_{ele, prod, i} \times J_{ele, cons, ints, i}(J_{ele, coo, i}, J_{ele, pt, i}) \times C_{ele}^{techchangerate}$
WAYS	not represented

Table S77. Groundwater abstraction A_{gw}

Model	Equation
CLM4.5	not represented
CLM5.0	not represented
CWatM	not represented
DBH	not represented
H08	not represented
JULES-W1	not represented
LPJmL	not represented
Mac-PDM.20	not represented
MATSIRO	$A_{gw} = A_{irr}^{gw} - A_{dom}^{gw} - A_{ind}^{gw}$
mHM	not represented
MPI-HM	$A_{gw} = A_{irr}^{gw}$
ORCHIDEE	not represented
PCR-GLOBWB	not represented
VIC	not represented
WaterGAP2	$A_{gw} = A_{irr}^{gw} - A_{dom}^{gw} - A_{ind}^{gw}$
WAYS	not represented

Table S78. Total lake abstraction A_{la}

Model	Equation
CLM4.5	not represented
CLM5.0	not represented
CWatM	not represented
DBH	not represented
H08	not represented
JULES-W1	not represented
LPJmL	$A_{la} = (A_{irr,gross,G} + A_{hil,G}) + (A_{irr,gross,Gdownstream} + A_{hil,Gdownstream})$
Mac-PDM.20	not represented
MATSIRO	not represented
mHM	not represented
MPI-HM	$A_{la} = A^{sw}_{irr}$
ORCHIDEE	not represented
PCR-GLOBWB	$A_{la} = A_{dom,dem} + A_{ind,dem} + A_{irr,dem} + A_{liv,dem}$
VIC	not represented
WaterGAP2	$A_{la} = A_{dom}^{sw} + A_{ele}^{sw} + A_{irr}^{sw} + A_{liv}^{sw} + A_{man}^{sw}$
	The net surface water abstraction is satisfied in WaterGAP2 in following order 1. River, 2. global lakes and
MANG	reservoirs and 3. local lakes
WAYS	not represented

Table S79. Total reservoir abstraction A_{re}

Model	Equation
CLM4.5	not represented
CLM5.0	not represented
CWatM	not represented
DBH	not used for ISIMIP2b
H08	$A_{re} = A_{dom,month} + A_{ind,month} + A_{irr,month}$
JULES-W1	not represented
LPJmL	$A_{re} = (A_{irr,gross,G} + A_{hil,G}) + (A_{irr,gross,Gdownstream} + A_{hil,Gdownstream})$
Mac-PDM.20	not represented
MATSIRO	$A_{re} = A_{dom}^{re} + A_{ind}^{re} + A_{irr}^{re}$
mHM	not represented
MPI-HM	not represented
ORCHIDEE	not represented
PCR-GLOBWB	$A_{la} = A_{dom,dem} + A_{ind,dem} + A_{irr,dem} + A_{liv,dem}$
VIC	not represented
WaterGAP2	$A_{re} = A_{dom}^{sw} + A_{ele}^{sw} + A_{irr}^{sw} + A_{liv}^{sw} + A_{man}^{sw}$
	The net surface water abstraction is satisfied in WaterGAP2 in following order 1. River, 2. global lakes and
	reservoirs and 3. local lakes
WAYS	not represented

Table S80. Total river abstraction A_{ri}

Model	Equation
CLM4.5	not represented
CLM5.0	$A_{ri} = A_{irr}$
CWatM	not represented
DBH	not represented
H08	not represented
JULES-W1	not represented
LPJmL	not represented
Mac-PDM.20	not represented
MATSIRO	not represented
mHM	not represented
MPI-HM	combined with lake abstraction
ORCHIDEE	not represented
PCR-GLOBWB	not represented
VIC	not represented
WaterGAP2	$A_{ri} = A_{dom}^{sw} + A_{ele}^{sw} + A_{irr}^{sw} + A_{liv}^{sw} + A_{man}^{sw}$
	The net surface water abstraction is satisfied in WaterGAP2 in following order 1. River, 2. global lakes and
WAYS	reservoirs and 3. local lakes not represented

 Table S81. Seawater abstraction A_{ocean}

Model	Equation
CLM4.5	not represented
CLM5.0	not represented
CWatM	not represented
DBH	not represented
H08	To have the potential to use desalination three conditions must be met:
	1) GDP > 14000 USD person / year in terms of purchasing power parity (PPP)
	2) humidity index below 8%
	3) within 3 grid cells of the seashore
	It is assumed that seawater desalination is not used for irrigation and all demand for municipal and industrial
	water is abstracted by desalination if available. Therefore:
	$A_{ocean} = A_{ind} + A_{muni}$
JULES-W1	not represented
LPJmL	not represented
Mac-PDM.20	not represented
MATSIRO	not represented
mHM	not represented
MPI-HM	not represented
ORCHIDEE	not represented
PCR-GLOBWB	not represented
VIC	not represented
WaterGAP2	not represented
WAYS	not represented

Table S82. Seawater consumption $A_{ocean,cons}$

Model	Equation
CLM4.5	not represented
CLM5.0	not represented
CWatM	not represented
DBH	not represented
H08	Desalination is not used for irrigation.
	$A_{ocean,cons} = f_{cons,A} \times A_{ocean}$
	Where $f_{cons,A}$ is the ratio of consumption to withdrawal and is equal to 0.1 and 0.15 for industrial and municipal
	water use, respectively.
JULES-W1	not represented
LPJmL	not represented
Mac-PDM.20	not represented
MATSIRO	not represented
mHM	not represented
MPI-HM	not represented
ORCHIDEE	not represented
PCR-GLOBWB	not represented
VIC	not represented
WaterGAP2	not represented
WAYS	not represented

Table S83. Return flow from seawater abstraction $A_{ocean,rf}$

Model	Equation
CLM4.5	not represented
CLM5.0	not represented
CWatM	not represented
DBH	not represented
H08	Desalination is never used for irrigation.
	$A_{ocean,rf} = (1 - f_{lost}) \times (1 - f_{cons,A}) \times A_{ocean}$
	Where, $f_{cons,A}$ is the ratio of consumption to withdrawal (-) and f_{lost} is the proportion lost during delivery (-).
	The fist factor is set to 0.1 for industrial use and 0.15 for municipal use, the second factor is set to 0.
JULES-W1	not represented
LPJmL	not represented
Mac-PDM.20	not represented
MATSIRO	not represented
mHM	not represented
MPI-HM	not represented
ORCHIDEE	not represented
PCR-GLOBWB	not represented
VIC	not represented
WaterGAP2	not represented
WAYS	not represented
References

- [1] Alcamo, J., Döll, P., Henrichs, T., Kaspar, F., Lehner, B., Rösch, T., and Siebert, S.: Development and testing of the WaterGAP 2 global model of water use and availability, Hydrological Sciences Journal, 48, 317–338, https://doi.org/10.1623/hysj.48.3.317.45290, 2003.
- [2] Andreadis, K. M., Storck, P., and Lettenmaier, D. P.: Modeling snow accumulation and ablation processes in forested environments, Water Resources Research, 45, W05 429, https://doi.org/10.1029/2008WR007042, URL https://agupubs. onlinelibrary.wiley.com/doi/abs/10.1029/2008WR007042, 2009.
- [3] Bergström, S.: The HBV model, in: Computer models of watershed hydrology, edited by Singh, V., pp. 443–476, Water
 Resources Publications, Lone Tree, USA, 1995.
 - [4] Best, J. R., Miller, P. H., and Jones, L. L.: Executive functions after age 5: Changes and correlates., Developmental review : DR, 29, 180–200, https://doi.org/10.1016/j.dr.2009.05.002, 2009.
 - [5] Best, M. J., Pryor, M., Clark, D. B., Rooney, G. G., Essery, R. L. H., Ménard, C. B., Edwards, J. M., Hendry, M. A., Porson, A., Gedney, N., Mercado, L. M., Sitch, S., Blyth, E., Boucher, O., Cox, P. M., Grimmond, C. S. B., and Harding, R. J.: The Joint UK Land Environment Simulator (JULES), model description – Part 1: Energy and water fluxes, Geoscientific Model Development, https://doi.org/10.5194/gmd-4-677-2011, 2011.
 - [6] Blondin, C.: Parameterization of Land-Surface Processes in Numerical Weather Prediction, in: Land Surface Evaporation, edited by Schmugge, T. and Andre, J., pp. 31–54, Springer-Verlag, New York, https://doi.org/10.1007/978-1-4612-3032-8_3, 1991.
- 795 [7] Brouwer, C., Prins, K., and Heibloem, M.: Irrigation water management: irrigation scheduling, Training manual No. 4, FAO Land and Water Development Division, Rome, 1989.
 - [8] Cherkauer, K. A. and Lettenmaier, D. P.: Hydrologic effects of frozen soils in the upper Mississippi River basin, Journal of Geophysical Research: Atmospheres, 104, 19 599–19 610, https://doi.org/10.1029/1999JD900337, 1999.
 - [9] Chow, V. T., Maidment, D. R., and Mays, L. W.: Applied hydrology, McGraw-Hill, New York, 1998.
- 800 [10] Clapp, R. B. and Hornberger, G. M.: Empirical equations for some soil hydraulic properties, Water Resources Research, 14, 601–604, https://doi.org/10.1029/WR014i004p00601, URL https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/ WR014i004p00601, 1978.
 - [11] Döll, P. and Fiedler, K.: Global-scale modeling of groundwater recharge, Hydrology and Earth System Sciences, 12, 863–885, https://doi.org/10.5194/hess-12-863-2008, URL http://www.hydrol-earth-syst-sci.net/12/863/2008/, 2008.
- 805 [12] Döll, P. and Siebert, S.: Global modeling of irrigation water requirements, Water Resources Research, 38, 8–1, https://doi.org/10.1029/2001wr000355, 2002.
 - [13] Döll, P., Kaspar, F., and Lehner, B.: A global hydrological model for deriving water availability indicators: Model tuning and validation, Journal of Hydrology, 270, 105–134, https://doi.org/10.1016/S0022-1694(02)00283-4, 2003.
 - [14] Döll, P., Fiedler, K., and Zhang, J.: Global-scale analysis of river flow alterations due to water withdrawals and reservoirs, Hydrology and Earth System Sciences, 13, 2413–2432, https://doi.org/10.5194/hess-13-2413-2009, 2009.
 - [15] D'Orgeval, T., Polcher, J., and de Rosnay, P.: Sensitivity of the West African hydrological cycle in ORCHIDEE to infiltration processes, Hydrology and Earth System Sciences, 12, 1387–1401, https://doi.org/10.5194/hess-12-1387-2008, 2008.

810

780

- [16] Ducoudré, N. I., Laval, K., and Perrier, A.: SECHIBA, a new set of parameterizations of the hydrologic exchanges at the land-atmosphere interface within the LMD atmospheric general circulation model, Journal of Climate, 6, 248–273, https://doi.org/10.1175/1520-0442(1993)006<0248:SANSOP>2.0.CO;2, 1993.
 - [17] Essery, R., Pomeroy, J., Parviainen, J., and Storck, P.: Sublimation of snow from coniferous forests in a climate model, Journal of Climate, 16, 1855–1864, https://doi.org/10.1175/1520-0442(2003)016<1855:SOSFCF>2.0.CO;2, 2003.
- [18] Flörke, M., Kynast, E., Bärlund, I., Eisner, S., Wimmer, F., and Alcamo, J.: Domestic and industrial water uses of the past 60 years as a mirror of socio-economic development: A global simulation study, Global Environmental Change, 23, 144–156, https://doi.org/10.1016/j.gloenvcha.2012.10.018, 2013.
 - [19] Franchini, M. and Pacciani, M.: Comparative analysis of several conceptual rainfall-runoff models, Journal of Hydrology, 122, 161–219, https://doi.org/10.1016/0022-1694(91)90178-k, 1991.
- [20] Gao, H., Tang, Q., Shi, X., Zhu, C., Bohn, T., and Su, F.: Water budget record from variable infiltration capacity (VIC)
 model, in: Algorithm Theoretical Basis Document for Terrestrial Water Cycle Data Records, pp. 120–173, UNSPECI-FIED, 2010.
 - [21] Gerten, D., Schaphoff, S., Haberlandt, U., Lucht, W., and Sitch, S.: Terrestrial vegetation and water balance—hydrological evaluation of a dynamic global vegetation model, Journal of Hydrology, 286, 249– 270, https://doi.org/https://doi.org/10.1016/j.jhydrol.2003.09.029, URL http://www.sciencedirect.com/science/article/pii/ S0022169403003901, 2004.

830

- [22] Gregory, D., S. R. C. P.: Canopy, surface and soil hydrology, Tech. rep., Climate Research Meteorological Office, London, 1994.
- [23] Hanasaki, N., Kanae, S., and Oki, T.: A reservoir operation scheme for global river routing models, Journal of Hydrology, 327, 22–41, https://doi.org/10.1016/j.jhydrol.2005.11.011, 2006.
- 835 [24] Hanasaki, N., Yoshikawa, S., Pokhrel, Y., and Kanae, S.: A global hydrological simulation to specify the sources of water used by humans, Hydrology and Earth System Sciences, 22, 789–817, https://doi.org/10.5194/hess-22-789-2018, 2018.
 - [25] Hargreaves, G. and Samani, Z.: Estimating potential evapotranspiration, Journal of Irrigation and Drainage Engineering, 108, 223–230, 1982.
- [26] Kaspar, F.: Entwicklung und Unsicherheitsanalyse eines globalen hydrologischen Modells, Ph.D. thesis, University ofKassel, Kassel, 2003.
 - [27] Koirala, K., Mishra, A., and Mohanty, S.: Determinants of rice productivity and technical efficiency in the Philippines, in: Southern Agricultural Economics Association (SAEA) Annual Meeting, pp. 1–19, Dallas, https://doi.org/10.13140/2.1.3275.1360, 2014.
- [28] Liang, X., Lettenmaier, D., Wood, E., and Burges, S.: A simple hydrologically based model of land-surface water and enery fluxes for general-circulation models, Journal of Geophysical Research Atmospheres, 99, 14415–14428, https://doi.org/10.1029/94JD00483, 1994.
 - [29] Liang, X., Wood, E. F., and Lettenmaier, D. P.: Surface soil moisture parameterization of the VIC-2L model: Evaluation and modification, Global and Planetary Change, https://doi.org/10.1016/0921-8181(95)00046-1, 1996.
- [30] Maniak, U.: Hydrologie und Wasserwirtschaft, Springer-Verlag, Berlin Heidelberg, https://doi.org/10.1007/3-540-27839 7, 1997.
 - [31] Milly, P. C. D.: Potential evaporation and soil moisture in general circulation models, Journal of Climate, 5, 209–226, https://doi.org/10.1175/1520-0442(1992)005<0209:PEASMI>2.0.CO;2, 1992.

110

[32] Molnau, M. and Bissell, V.: A continuous frozen ground index for flood forecasting, 1983.

855

- [33] Monteith, J.: MonteithEvaporationandenvironment1965, Symposia of the Society for Experimental Biology, pp. 205–234, 1965.
 - [34] Müller Schmied, H., Eisner, S., Franz, D., Wattenbach, M., Portmann, F. T., Flörke, M., and Döll, P.: Sensitivity of simulated global-scale freshwater fluxes and storages to input data, hydrological model structure, human water use and calibration, Hydrology and Earth System Sciences, 18, 3511–3538, https://doi.org/10.5194/hess-18-3511-2014, 2014.
- [35] Nachtergaele, F., von Velthuizen, H., Vereist, L., Batjes, N. H., Dijkshoorn, J. A., van Engelen, V. W. P., Fischer, G.,
 Jones, A., Montanarella, L., Petri, M., Prieler, S., Teixeira, E., Wilberg, D., and Shi, X.: Harmonized world soil database (version 1.0), FAO, Rome, Italy and IIASA, Laxenburg, Austria, 2008.
 - [36] Oki, T., Nishimura, T., and Dirmeyer, P.: Assessment of annual runoff from land surface models using total runoff integrating pathways (TRIP), Journal of the Meteorological Society of Japan, 77, 235–255, https://doi.org/10.2151/jmsj1965.77.1B_235, 1999.
- 865 [37] Oleson, K., Lawrence, D., Bonan, G., Drewniak, B., Huang, M., Koven, C., Levis, S., Li, F., Riley, W., Subin, Z., Swenson, S., Thornton, P., Bozbiyik, A., Fisher, R., Heald, C., Kluzek, E., Lamarque, J.-F., Lawrence, P., Leung, L., and Yang, Z.-L.: Technical description of version 4.5 of the Community Land Model (CLM), Tech. rep., National Center for Atmospheric Research, Boulder, Colorado, https://doi.org/10.5065/D6RR1W7M, 2013.
- [38] Pokhrel, Y., Hanasaki, N., Koirala, S., Cho, J., Yeh, P. J., Kim, H., Kanae, S., and Oki, T.: Incorporating anthropogenic water regulation modules into a land surface model, Journal of Hydrometeorology, 13, 255–269, https://doi.org/10.1175/JHM-D-11-013.1, 2012.
 - [39] Pokhrel, Y. N., Koirala, S., Yeh, P. J., Hanasaki, N., Longuevergne, L., Kanae, S., and Oki, T.: Incorporation of groundwater pumping in a global Land Surface Model with the representation of human impacts, Water Resources Research, 51, 78–96, https://doi.org/10.1002/2014WR015602, 2015.
- 875 [40] Robock, A., Vinnikov, K. Y., Schlosser, C. A., Speranskaya, N. A., and Xue, Y.: Use of midlatitude soil moisture and meteorological observations to validate soil moisture simulations with biosphere and bucket models, Journal of Climate, 8, 15–35, https://doi.org/10.1175/1520-0442(1995)008<0015:UOMSMA>2.0.CO;2, 1995.
 - [41] Rogers, D. H., Lamm, F. R., Alam, M., Troolen, T. P., Clark, G. A., Barnes, P. L., and Mankin, K.: Efficiencies and water losses of irrigation systems, Irrigation Management Series, MF-2243, 1997.
- 880 [42] Schulze, K. and Döll, P.: Neue Ansätze zur Modellierung von Schneeakkumulation und -schmelze im globalen Wassermodell WaterGAP, Tagungsband zum 7. Workshop zur großskaligen Modellierung in der Hydrologie, edited by: Ludwig, R., Reichert, D., and Mauser, W., Kassel University Press, Kassel, 2004.
 - [43] Shiklomanov, I. A.: Appraisal and Assessment of world water resources, Water International, 25, 11–32, https://doi.org/10.1080/02508060008686794, 2000.
- 885 [44] Smirnova, T., Brown, J., Benjamin, S., and Kim, D.: Parameterization of cold-season processes in the MAPS land-surface scheme, Journal of Geophysical Research, 105, 4077–4086, https://doi.org/10.1029/1999JD901047, 2000.
 - [45] Speers, D. D. and Versteeg, J. D.: Runoff forecasting for reservoir operations the past and the future, 1979.
 - [46] Steduto, P., Hsiao, T. C., Fereres, E., and Raes, D.: Crop yield response to water, Irrigation and Drainage Paper No. 66, FAO, Rome, URL http://www.fao.org/docrep/016/i2800e/i2800e.pdf, 2012.
- 890 [47] Storck, P.: Trees, snow and flooding: An investigation of forest canopy effects on snow accumulation and melt at the plot and watershed scales in the Pacific Northwest, Water Resources Series Technical Report, 161, 176, 2000.

- [48] Storck, P., Lettenmaier, D. P., and Bolton, S. M.: Measurement of snow interception and canopy effects on snow accumulation and melt in a mountainous maritime climate, Oregon, United States, Water Resources Research, 38, 5–16, https://doi.org/10.1029/2002WR001281, 2002.
- 895 [49] Takata, K., Emori, S., and Watanabe, T.: Development of the minimal advanced treatments of surface interaction and runoff, Global and Planetary Change, 38, 209–222, https://doi.org/10.1016/S0921-8181(03)00030-4, 2003.
 - [50] Thober, S., Cuntz, M., Kelbling, M., Kumar, R., Mai, J., and Samaniego, L.: The multiscale routing model mRM v1.0: simple river routing at resolutions from 1 to 50 km, Geoscientific Model Development Discussions, 12, 2501–2521, https://doi.org/10.5194/gmd-12-2501-2019, 2019.
- 900 [51] Van Diepen, C., Rappoldt, C., and Wolf, J.: CWFS crop growth simulation model WOFOST documentation: version 4.1, Centre for World Food Studies, Amsterdam, 1988.
 - [52] Verzano, K., Bärlund, I., Flörke, M., Lehner, B., Kynast, E., Voß, F., and Alcamo, J.: Modeling variable river flow velocity on continental scale: Current situation and climate change impacts in Europe, Journal of Hydrology, 424-425, 238–251, https://doi.org/10.1016/j.jhydrol.2012.01.005, 2012.
- 905 [53] Wang, T., Ottlé, C., Boone, A., Ciais, P., Brun, E., Morin, S., Krinner, G., Piao, S., and Peng, S.: Evaluation of an improved intermediate complexity snow scheme in the ORCHIDEE land surface model, Journal of Geophysical Research Atmospheres, 118, 6064–6079, https://doi.org/10.1002/jgrd.50395, 2013.
 - [54] Wang-Erlandsson, L., van der Ent, R. J., Gordon, L. J., and Savenije, H. H. G.: Contrasting roles of interception and transpiration in the hydrological cycle - Part 1: Temporal characteristics over land, Earth System Dynamics, 5, 441–469, https://doi.org/10.5194/esd-5-441-2014, 2014.

910

[55] Yeh, P.-F. and Eltahir, E.: Representation of water table dynamics in a land surface scheme. Part II: Subgrid variability, Journal of Climate, 18, 1881–1901, 2005.

Symbol	Dimension ($L = length;$ T = time)	Variable: with synonyms	Definition
A	L ³ L ⁻² T ⁻¹	water abstraction: water withdrawal	amount of water extracted, from surface water or groundwater, by humans for various economic sectors. It represents the sum of the water consumed by humans (water consumption), evaporative and percorative loss, and water returned to the groundwater or surface water, being the part of the water not consumed.
$A_{\rm pot}$	L ³ L ⁻² T ⁻¹	potential water abstraction: potential water withdrawal	amount of water extracted by humans considering unlimited water supply.
$A_{\rm act}$	L ³ L ⁻² T ⁻¹	actual water abstraction: actual water withdrawal	amount of water extracted by humans considering water availability.
A _{cons}	$L^{3}L^{-2}T^{-1}$	water consumption: water use	part of water extracted that evapotranspirates during use of purpose.
A _{dom}	$L^{3}L^{-2}T^{-1}$	domestic water abstraction: domestic water withdrawal	amount of water extracted by humans for households and small businesses.
A _{ele}	$L^{3}L^{-2}T^{-1}$	electricity water abstraction: electricity water withdrawal	amount of water extracted by humans to cool thermal and nuclear power plants, which are using the heat, obtain by burning of fossil fuels, gas, biomass or through nuclear energy, to produce electricity.
$A_{\rm irr}$	$L^{3}L^{-2}T^{-1}$	irrigation water abstraction: irrigation water withdrawal	amount of water extracted by humans for use in agricultural irrigation.
$A_{\rm ind}$	$L^{3}L^{-2}T^{-1}$	industrial water abstraction: industrial water withdrawal	amount of water extracted by humans for use in industrial sector, in some models this sector includes manufacturing and electricity sectors.
$A_{ m liv}$	$L^{3}L^{-2}T^{-1}$	livestock water abstraction: livestock water withdrawal	amount of water extracted by humans for livestock production.
A _{man}	$L^{3}L^{-2}T^{-1}$	manufacturing water abstraction: manufacturing water withdrawal	amount of water extracted by humans in factories, for producing goods.
$A_{\rm rf}$	$L^{3}L^{-2}T^{-1}$	return flow from water abstraction: return flow from water withdrawal	part of water extracted by humans that returns into the soil, groundwater, lake, reservoir, river and ocean.
A ^{oc}	$L^{3}L^{-2}T^{-1}$	seawater withdrawal	seawater or saline and brackish water extracted by humans to be used for various economic sectors, for example, for domestic and manufacturing sectors or for electricity production.
E _{so}	$L^{3}L^{-2}T^{-1}$	evaporation from soil: evaporation from bare soil	amount of water that changes from liquid to vapor from the bare soil (not through vegetation).
E _{ca}	$L^{3}L^{-2}T^{-1}$	canopy evaporation: evaporation of the water intercepted by canopy, interception loss	amount of water accumulated on the vegetation that changes from liquid to vapor.
E_{la}	$L^{3}L^{-2}T^{-1}$	evaporation from lake	water that changes from liquid to vapor from a lake.
E _{re}	$L^{3}L^{-2}T^{-1}$	evaporation from reservoir	water that changes from liquid to vapor from a reservoir.
E _{ri}	$L^{3}L^{-2}T^{-1}$	evaporation from river	water that changes from liquid to vapor from a river.
E _{sn}	$L^{3}L^{-2}T^{-1}$	sublimation: evaporation from snow	water that changes from solid (snow and ice) to vapor.
AET	$L^{3}L^{-2}T^{-1}$	actual evapotranspiration: total evapotranspiration	total amount of water from transpiration, evaporation, interception losses, and sublimation, considering water availability.

Table S84. Glossary with variables used in the study

PET	$L^{3}L^{-2}T^{-1}$	potential evapotranspiration	total amount of water from transpiration, evaporation, interception losses, and sublimation, considering unlimited water source.
Euro	$L^{3}L^{-2}T^{-1}$	evaporation from wetland	water which changes from liquid to vapor above a wetland.
M	$L^{3}L^{-2}T^{-1}$	snowmelt	water that changes from solid to liquid.
Pdo	$L^{3}L^{-2}T^{-1}$	dew	atmospheric water condensing directly on the land surface
$P_{\rm dr}$	$L^{3}L^{-2}T^{-1}$	drip	water spill from canopy to the ground when the water exceeds the canopy interception canacity (through dripping).
P _{ra}	$L^{3}L^{-2}T^{-1}$	rainfall	liquid precipitation that falls in a given area and in a given time, provided as climate input data in ISIMIP2.
P _{sn}	$L^{3}L^{-2}T^{-1}$	snowfall	solid precipitation, combined in small ice crystals, that falls in a given area and in a given time, provided as climate input data in ISIMIP2.
$P_{\rm sf}$	$L^{3}L^{-2}T^{-1}$	stemflow	water spill to the ground through canopy, which flows along twigs, branches and stems.
$P_{\rm th}$	$L^{3} L^{-2} T^{-1}$	throughfall	water spill to the ground through canopy spaces.
P _{tot}	$L^{3}L^{-2}T^{-1}$	total precipitation: precipitation	liquid or solid water resulting from the condensation or freezing of water vapor and falling to the ground under gravity.
$Q_{\rm iu}$	$L^{3}T^{-1}$	inflow from upstream surface water bodies	water from upstream, which can be a river, a lake, a wetland, a reservoir.
Q _{ib}	$L^{3}T^{-1}$	inter-basin water transfer: trans-basin diversion	anthropogenic transport of water from one river basin, where it is available, to another basin where water is less available or could be utilized for other purposes. This could be an output at a location and input to another.
Q_{1a}	$L^{3}T^{-1}$	outflow from lake	water that flows out of a lake to a river, wetland or reservoir.
$Q_{\rm re}$	$L^{3}T^{-1}$	outflow from reservoir	water that flows out of a reservoir, a lake which is made by humans, to a river.
$Q_{\rm ri}$	$L^{3}T^{-1}$	streamflow: outflow, flow, river discharge	volumetric flow rate of water through a river cross-section. The streamflow is transfer through a channel to the ocean or to an inland sink.
0	$L^{3}T^{-1}$	outflow from wetland	water that flows out of a wetland to a river.
R _{cr}	$L^{3}L^{-2}T^{-1}$	capillary rise	water rising from roundwater to soil under the influence of capillary forces.
$R_{\rm ct}$	$L^{3}L^{-2}T^{-1}$	channel transmission losses	water from river storage which recharges the groundwater storage.
R _{gw}	$L^{3}L^{-2}T^{-1}$	groundwater runoff	water that leaves the groundwater storage to a river, lake or wetland.
R _{gwr}	$L^{3}L^{-2}T^{-1}$	groundwater recharge	water leaving the last soil layer(s) and reaching the groundwater storage. In some models, this variable describes <i>seepage</i> .
R _{ho}	$L^{3}L^{-2}T^{-1}$	Hortonian overland flow: infiltration excess overland flow, flooding excess overland flow, unsaturated overland flow	water that runs off over the soil surface because the rainfall intensity exceeds the infiltration capacity.
<i>R</i> _{in}	$L^{3}L^{-2}T^{-1}$	infiltration	water from rainfall or throughfall or snowmelt or irrigation which flows through the soil surface into the root zone, under the effect of gravity.
$R_{ m if}$	$L^{3} L^{-2} T^{-1}$	interflow: subsurface storm flow, subsurface runoff	water that runs-off laterally from the soil.
R _{pe}	$L^{3}L^{-2}T^{-1}$	percolation	amount of water that penetrates in the soil layers, beyond the root zone of plants

R _{sat}	$L^{3}L^{-2}T^{-1}$	saturation excess overland flow: saturation overland flow, saturation excess	water that runs off over the soil surface because the soil is saturated.
R _{su}	$L^{3}L^{-2}T^{-1}$	runoff, Dunne runoff surface runoff: overland flow, fast runoff, flood runoff, surface flow, surface or direct runoff	water that runs-off over the soil surface as Hortonian overland flow and / or saturation excess overland flow.
R _{tot}	$L^{3}L^{-2}T^{-1}$	total runoff	total amount of water that runs-off the grid-cell, either over the soil surface, or from the subsurface (lateral flow). In some studies, the streamflow is converted to runoff by dividing the streamflow values with the area upstream of the gauging station (for example, the area upstream of station according to the DDM30 ^c river network Döll and Lehner, 2002).
S _{ca}	$L^{3}L^{-2}$	canopy storage	compartment that retains water from precipitation and loses water through throughfall, stemflow and interception loss (evaporation).
$S_{\rm gl}$	$L^{3}L^{-2}$	glacier storage	compartment which retains water from rainfall, snowfall, and loses water through sublimation, glacier melt, runoff from liquid precipitation.
S _{gw}	L ³ L ⁻²	groundwater storage	compartment, beneath the soil water compartment, that receives water from seepage, groundwater recharge, and loses water through capillary rise, groundwater runoff, and abstraction for human water use. Hydrologically, it includes saturated zone or phreatic zone.
S _{la}	$L^{3}L^{-2}$	lake storage	compartment that fills with water through fluxes above and beyond the ground and stores water for a residence time. It loses water through discharge to other storages, evaporation, groundwater recharge, and water abstraction for human water use.
S _{so}	$L^{3}L^{-2}$	soil storage	compartment that keeps and loses water from flows above and beyond the ground's surface. Hydrologically, it includes uncaturated zone
S _{re}	L ³ L ⁻²	reservoir storage	compartment that fills with water behind dams through fluxes above and beyond the ground and stores water for a residence time. It loses water through discharge to other storages, evaporation, groundwater recharge, and water abstraction for human water use
S _{ri}	$L^{3}L^{-2}$	river storage	compartment filled with water through fluxes above and beyond the ground. It loses water through river discharge, evaporation, channel transmission losses and water abstraction for human water use
S _{sn}	$L^{3}L^{-2}$	snow storage	compartment that accumulates snow below freezing temperature and loses
S _{soc}	$L^{3}L^{-2}$	snow held on the canopy	snow of include and submittation.
S _{suc}	$L^{3}L^{-2}$	snow under the canopy	amount of snow accumulated under the canopy or on the soil
S _{sw}	$L^{3}L^{-2}$	surface water bodies: surface water	surface water bodies can include river, lake, wetland, and reservoir.
$S_{\rm we}$	$L^{3}L^{-2}$	wetland storage	compartment, as a transition area between the terrestrial and aquatic systems, filled by precipitation or inflow and emptied by evaluation outflow and groundwater recharge
Т	$L^{3}L^{-2}T^{-1}$	transpiration	water evaporated by plants through their stomata.

Table S85. Downscaled and bias-adjusted output from CMIP5 Global Climate Models (GCMs) used by the ISIMIP2b Impact Models¹ with a spatial resolution of $0.5^{\circ}x 0.5^{\circ}$ and a daily temporal resolution

GCM output used ²	Models
IPSL-CM5A-LR	CLM4.5, CLM5.0, CWatM, DBH, H08, JULES-W1, LPJmL, MATSIRO, mHM, MPI-HM, ORCHIDEE, PCR-
	GLOBWB, WaterGAP2, WAYS
HadGEM2-ES	CLM4.5, CLM5.0, CWatM, H08, JULES-W1, LPJmL, MATSIRO, mHM, ORCHIDEE, PCR-GLOBWB, WaterGAP2,
	WAYS
GFDL-ESM2M	CLM4.5, CLM5.0, CWatM, H08, JULES-W1, LPJmL, MATSIRO, mHM, MPI-HM, ORCHIDEE, ORCHIDEE-
	DGVM, PCR-GLOBWB, WaterGAP2, WAYS
MIROC5	CLM4.5, CLM5.0, CWatM, H08, JULES-W1, LPJmL, MATSIRO, mHM, MPI-HM, ORCHIDEE, PCR-GLOBWB,
	WaterGAP2, WAYS

Notes:

1. Source data: https://www.isimip.org/gettingstarted/availability-input-data-isimip2b/, 2. EartH2Observe, WFDEI and ERA-Interim data Merged and Biascorrected for ISIMIP (EWEMBI), http://dataservices.gfz-potsdam.de/pik/showshort.php?id=escidoc:1809891. Data source of the bias-corrected atmospheric data is ISIMIP project.

2. Data source of the original data: CMIP5 (Coupled Model Intercomparison Project Phase 5)

Reference: Lange, S. (2016): EartH2Observe, WFDEI and ERA-Interim data Merged and Bias-corrected for ISIMIP (EWEMBI). GFZ Data Services. http://doi.org/10.5880/pik.2016.004

Variable name	Symbol (unit)	Temporal	Models
	Symoor (amo)	resolution	
snowfall	prsn (kg m ⁻² s ⁻¹)	3 hourly	MATSIRO
		daily	H08
total precipitation	pr (kg m ⁻² s ⁻¹)	daily	CLM4.5, CLM5.0, DBH, JULES-W1, H08, LPJmL, Mac- PDM.20, mHM, MPI-HM, ORCHIDEE, PCR-GLOBWB,
near surface wind speed	sfcWind (m s ⁻¹)	daily	WaterGAP2 CLM4.5, CWatM,DBH, H08, JULES-W1, Mac-PDM.20, ORCHIDEE
eastward wind	ua (m s ⁻¹)	daily	CLM5.0, ORCHIDEE
westward wind	va (m s ⁻¹)	daily	CLM5.0, ORCHIDEE
surface air pressure	ps (Pa)	daily	CLM5.0, CWatM, DBH, H08, JULES-W1, ORCHIDEE
		3 hourly	MATSIRO, ORCHIDEE
near surface specific humidity	huss (kg kg ⁻¹)	daily	CLM4.5, CWatM, H08, JULES-W1, H08
relative humidity	rhs (%)	daily	CLM5.0, CWatM, DBH, JULES-W1, Mac-PDM.20
		3 hourly	MATSIRU
mean temperature	tas (K)	daily	DBH, CWaIM, JULES-WI, H08, LPJML, Mac-PDM.20,
			MHM, MPI-HM, PCK-GLOBWB, WaterGAP2, CLM4.3, CLM5.0, HUES W1, DCD, CLOPWD
		3 hourly	MATSIDO
maximum temperature	tasmax (K)	daily	DBH_CWatM_IULES_W1_mHM_OPCHIDEE_PCP_
maximum temperature	tasinax (IX)	dally	GLOBWB
minimum temperature	tasmin (K)	dailv	DBH, CWatM, JULES-W1, mHM, ORCHIDEE, PCR-
I I I I I I I I I I I I I I I I I I I		j.	GLOBWB
shortwave downwelling	rsds (W m ⁻²)	daily	CLM4.5, CLM5.0, CWatM, DBH, JULES-W1, H08,
radiation			LPJmL ² , Mac-PDM.20, ORCHIDEE, WaterGAP2
		3 hourly	MATSIRO
longwave downwelling radiation	rlds (W m ⁻²)	daily	CLM4.5, CLM5.0, CWatM, DBH, JULES-W1, H08, Mac-
			PDM.20, ORCHIDEE, WaterGAP2
		3 hourly	MATSIRO

Table S86. Climate variables used as input for the ISIMIP2b Impact Models¹ with a spatial resolution of $0.5^{\circ}x \ 0.5^{\circ}$ and a time span between 1661 - 2299

Note:

1: Data source of the bias-corrected atmospheric data: ISIMIP project and Lange, 2016; Data source of the original data: CMIP5 (Coupled Model Intercomparison Project Phase 5)

2: LPJmL: Long wave net radiation derived from longwave downwelling radiation and mean temperature.

Reference: Lange, S. (2016): EartH2Observe, WFDEI and ERA-Interim data Merged and Bias-corrected for ISIMIP (EWEMBI). GFZ Data Services. http://doi.org/10.5880/pik.2016.004

Dataset	Variable name / short description	Symbol	Data source	Time Span	Spatial Resolutio n	Temporal Resolution	Models
Atmospheric CO ₂ concentrations	CO ₂ concentrations / Values are constant for 1661 – 1860, following observations from 1861 –2005, and	CO ₂		1661 – 2299	0.5°x0.5°	annual constant	CLM4.5, CLM5.0, DBH, JULES-W1. LPJmL, ORCHIDEE, PCR-GLOBWB H08
	2.6 and 6.0 from 2006 – 2299						
MIRCA2000	irrigated and rainfed crop areas / around the year 2000	LU	Portmann et al., 2000	1998 – 2002	0.5°x0.5° / 5'x5'	monthly	H08, ORCHIDEE, MPI-HM
Historical, gridded land use	Land use / 5 Rainfed crop land, irrigated crop land, pastures and total crop land (the sum of rainfed and irrigated)	LUH	HYDE 3.2, Klein Goldewijk, 2017	10 000 BCE – 2015 CE	0.5°x0.5°	2000 - 2015 CE: annual 1700 - 2000 CE: 10 years	CLM4.5, CLM5.0, CWatM, H08LPJmL, mHM, MPI-HM, ORCHIDEE, PCR-GLOBWB
Future land- use patterns	Land use and land cover / 6 land-use types: rain-fed crop land, irrigated crop- land, rain-fed bioenergy, irrigated bio-energy, pastures, natural vegetation and urban areas	LULC	MAgPIE land-use model according to the SSP2 shared-socio- economic pathway and RCP 2.6 / RCP 6.0.	2006 – 2100	0.5°x0.5°	annual	JULES-W1, MPI- HM

Table S87. CO₂ concentrations and Land use datasets

Note: 1. https://www.isimip.org/gettingstarted/details/30/

Reference:

1. Klein Goldewijk, Dr. ir. C.G.M. (Utrecht University) (2017): Anthropogenic land-use estimates for the Holocene; HYDE 3.2. DANS. https://doi.org/10.17026/dans-25g-gez3

 Portmann, F. T., Siebert, S. & Döll, P. (2010): MIRCA2000 – Global monthly irrigated and rainfed crop areas around the year 2000: A new high-resolution data set for agricultural and hydrological modeling, Global Biogeochemical Cycles, 24, GB 1011, doi:10.1029/2008GB003435.

Dataset	Data source	Spatial Resolution	Temporal resolution	Models
			/ details /	
			Time span	
soil type ¹	ISIMIP2b	0.5°x05°	static	CLM4.5, CLM5.0, DBH, JULES-W1, LPJmL, MPI-HM, ORCHIDEE, PCR-GLOBWB,
				WaterGAP2 ⁴
plant functional types (PFT) parameters	Samanta et. al., 2014	0.5°x05°	static	JULES-W1
topographical information (subgrid slope distribution)	Hagemann and Gates, 2003	1kmx1km	static	MPI-HM
River-routing network	DDM30 ² (Döll and Lehner, 2002) TRIP model Simulated Topological Network (STN-	30°x30° (0.5°x05°)	static	CLM4.5, CLM5.0, CWatM, H08, LPJmL, MPI- HM, PCR-GLOBWB ⁵ , WaterGAP2 MATSIRO ORCHIDEE
	30p) (Vorosmarty et al., 2000) HydroSHEDS ^{Lehner} et al., 2006			mHM
crop parameters		$0.5^{\circ}x05^{\circ}$	static	H08
Albedo	2012	$0.5^{\circ} x 05^{\circ}$	static	H08, CWatM ⁶ ,
Land-sea mask	ISIMIP2b	0.5°x05°	static	CLM5.0, DBH, CWatM, Mac-PDM.20, mHM, MPI-HM, ORCHIDEE, PCR-GLOBWB, WaterGAP2
GRanD	Lehner et al., 2011	6862 dams and their associated reservoirs, total storage capacity of 6197 km ³	static	CWatM ⁷ , H08, LPJmL, MATSIRO, PCR- GLOBWB, WaterGAP2 ⁸
Water abstraction for domestic	ISIMIP2b3, multi-	0.5°x05°	available	LPJmL
and industrial uses consistent with SSP2 and RCP 6.0	model averages of		until 2050 the	
	PCR, WaterGAP,		values are	
	H08		from 2050 onwards	
Global Lakes and Wetlands Database (GLWD)	Lehner and Döll, 2004; Lehner et al., 2011	1:1 to 1:3 million resolution	static	MPI-HM, PCR-GLOBWB, WaterGAP2
Regarding soil data — we use the SoilGrids250 from ISRIC:	Hengl et al., 2017	0.002°x0.002°	static	mHM

Table S88. Other input date sets used by the ISIMIP2b Impact models

Note: 1. H08 does not require soil type. In addition to estimate subgrid slope distribution, information about permafrost, slope, geology etc. are required (see Hanasaki et al., 2018). 2. DDM30 = the 30' global drainage direction map (Döll and Lehner, 2002). 3. For modelling groups that do not have their own representation, ISIMIP2b provides files containing the multi-model mean from WaterGAP2, PCR-GLOBWB and H08 scenarios for domestic and industrial uses under SSP2 from the Water Futures and Solutions Project (WFaS; Wada et al., 2016). 4. Soil data from WISE Available Water Capacity (Batjes, 2012). 5. PCR-GLOBWB combines DDM30 with GLWD. 6. Muller et al., 2012. 7. CWatm: HydroLakes database (Messager et al., 2016; Lehner et al., 2011) 8. WaterGAP2 uses a pre-published and adjusted version of GRanD, see https://www.arcgis.com/home/item.html?id=d966db9c7b2949ac8380458d7020adf9.

References:

Batjes, N. H. (2012): ISRIC-WISE derived soil properties on 5 by 5 arc-minutes global grid (ver. 1.2). ISRIC World Soil Information, ISRIC Report 2012 / 01. <u>https://www.isric.org/sites/default/files/isric_report_2012_01.pdf</u>

Döll, P., Lehner, B. (2002): Validation of a new global 30-minute drainage direction map. Journal of Hydrology, 258(1-4), 214-231.

Flörke, M., Kynast, E., Bärlund, I., Eisner, S., Wimmer, F., Alcamo, J. (2013): Domestic and industrial water uses of the past 60 years as a mirror of socioeconomic development: A global simulation study. Global Environ. Change, 23, 144-156. doi:10.1016/j.gloenvcha.2012.10.018.

Hagemann, S., Gates, L. D. (2003): Improving a subgrid runoff parameterization scheme for climate models by the use of high resolution data derived from satellite observations. Climate Dynamics, Volume 21, Issue 3–4, 349–359.

Hanasaki, N., Yoshikawa, S., Pokhrel, Y., Kanae, S. (2018): A global hydrological simulation to specify the sources of water used by humans. Hydrol. Earth Syst. Sci., 22, 789-817, https://doi.org/10.5194/hess-22-789-2018.

Hengl, T., de Jesus, J.M., Heuvelink, G.B., Gonzalez, M.R., Kilibarda, M., Blagotić, A., Shangguan, W., Wright, M.N., Geng, X., Bauer-Marschallinger, B. and Guevara, M.A., 2017. SoilGrids250m: Global gridded soil information based on machine learning. PLoS one, 12(2).

Lehner, B. and Döll, P. (2004): Development and validation of a global database of lakes, reservoirs and wetlands. Journal of Hydrology 296, 1-4: 1-22 Lehner, B., Verdin, K., and Jarvis, A.: HydroSHEDS Technical Documentation, World Wildlife Fund US, Washington, DC., 26, <u>http://hydrosheds.cr.usgs.gov.</u>, 2006.

Lehner, B., Reidy Liermann, C. Revenga, C., Vörösmarty, C., Fekete, B., Crouzet, P., Döll, P., Endejan, M., Frenken, K., Magome, J., Nilsson, C., Robertson, J.C., Rodel, R., Sindorf, N., Wisser, D. (2011): High-Resolution Mapping of the World's Reservoirs and Dams for Sustainable River-Flow Management. Frontiers in Ecology and the Environment 9 (9), 494-502. <u>http://dx.doi.org/10.1890/100125</u>.

Samanta, A., Ganguly, S., Schull, M. A., Shabanov, N. V., Knyazikhin, Y., and Myneni, R. B.: Collection 5 MODIS LAI/FPAR Products, Presented at AGU Fall Meeting, San Francisco, USA, 15–19 December, 2008, 2012.

Vörösmarty, C. J., Fekete, B. M., Meybeck, M., and Lammers, R. B.: Global system of rivers: Its role in organizing continental land mass and defining land-To-Ocean linkages, Global Biogeochem. Cy., 14, 599–621, https://doi.org/10.1029/1999GB900092, 2000.

Messager, M. L., Lehner, B., Grill, G., Nedeva, I., and Schmitt, O.: Estimating the volume and age of water stored in global lakes using a geo-statistical approach, 7, 13603, 10.1038/ncomms13603, 2016

Muller, P. J., Lewis, P., Fischer, J., North, P., and Framer, U.: The ESA GlobAlbedo Project for mapping the Earth's land 1105 surface albedo for 15 Years from European Sensors., paper presented at IEEE Geoscience and Remote Sensing Symposium (IGARSS) IEEE Geoscience and Remote Sensing Symposium (IGARSS) 2012, Munich, Germany, 22-27.7.12., 2012

Wada, Y., Flörke, M., Hanasaki, N., Eisner, S., Fischer, G., Tramberend, S., Satoh, Y., van Vliet, M. T. H., Yillia, P., Ringler, C., Burek, P., and Wiberg, D. (2016): Modeling global water use for the 21st century: the Water Futures and Solutions (WFaS) initiative and its approaches. Geosci. Model Dev., 9, 175-222, https://doi.org/10.5194/gmd-9-175-2016.

Table S89. Natural Vegetation datasets used by the ISIMIP2b impact models

Dataset	Data source	Time Span	Spatial Resolution	Models
Land Surface Parameter set 2	Hagemann, 2002	2001	0.5°x0.5°	LPJmL, MPI-HM
(LSP2)				
MODIS	NASA		0.5°x0.5°	CLM5.0, WaterGAP2 ¹
Global Land Cover for Simple	FAO	April 1992 – March	1kmx1km	DBH
Biosphere 2 Model		1993		
Global Land Cover Map	European Space	2009	0.5°x0.5°	Mac-PDM.20, mHM,
(GlobCover)	Agency GlobCover			PCR-GLOBWB
	Portal (ESA) ⁴			

Note: 1. WaterGAP2 uses The International Geosphere–Biosphere Programme (IGBP) classification based on MODIS data for the year 2004. References:

Hagemann, S (2002). An Improved Land Surface Parameter Dataset for Global and Regional Climate Models. Max-Planck-Institut für Meteorologie. MPI Report 336, ISSN 0937-1060.

https://modis.gsfc.nasa.gov/data/

http://www.fao.org/land-water/land/land-governance/land-resources-planning-toolbox/category/details/en/c/1036354/ http://due.esrin.esa.int/page_globcover.php

Dataset name	Variable name / details	Symbol (unit)	Data source	Time Span	Models
Historical, country-level population	population	pop (number people)	Hyde 3.2 (Klein Goldewijk et al., 2010; Klein Goldewijk, 2011)	1861 – 2009	PCR-GLOBWB WaterGAP2
Historical, gridded population	population	pop (number people)	Hyde 3.2 (Klein Goldewijk et al., 2010; Klein Goldewijk, 2011)	1861 – 2005	PCR-GLOBWB WaterGAP2
Future, country-level population	country-level population, urban population and age structure (in five-year age bands) / based on SSP2	pop (number people)	IIASA (population & age structure) and NCAR (urbanshare)	2006 - 2099	PCR-GLOBWB WaterGAP2
Future, gridded population	population / based on SSP2 population / based on all SSPs	pop (number people)	Samir and Lutz, 2014 ³ Jones and O'Neill ,2016	2006 - 2099 2006 - 2100	PCR-GLOBWB WaterGAP2
Historical, country-level Gross Domestic Product (GDP) ¹	Gross Domestic Product	GDP (per capita and PPP \$)	Geiger and Frieler, 2018	1861 – 2005	PCR-GLOBWB WaterGAP2
Future, gridded Gross Domestic Product (GDP) ²	Gross Domestic Product	GDP (per capita and PPP \$)	Murakamiaan and Yamagata, 2016	2006-2099	PCR-GLOBWB WaterGAP2
Future, country-level Gross Domestic Product (GDP)	Gross Domestic Product	GDP (per capita and PPP \$)	Geiger and Frieler, 2017; Geiger and Frieler, 2018	2006-2100	PCR-GLOBWB WaterGAP2

Table S90. Socio-economic datasets with a spatial resolution of 0.5°x0.5° and 5'x5' and an annual temporal resolution

Note: 1. National income (GDP / capita) and GDP time series (2005 PPP \$, purchasing power parities (PPP) conversion factor, local currency unit to international dollar) from 1850-2009 from Penn World Tables 8.1 extrapolated with per capita growth rates from the Maddison project, and extended by Penn World Tables 9.0 and World Development Indicators. Interpolated between 2006-2009 to match with OECD SSP2 projections starting in 2010. 2. All dataset: 1980 – 2100, by 10 years. The data in 1980–2010 are estimated by downscaling actual populations and GDPs by country, while those in 2020–2100 are estimated by downscaling projected populations and GDPs under three shared socioeconomic pathways (SSP): SSP1; SSP2; and SSP3, by country. 3. https://www.isimip.org/gettingstarted/details/32/

References:

 Geiger, T., Frieler, K. (2017): Continuous national Gross Domestic Product (GDP) time series for 195 countries: past observations (1850-2005) harmonized with future projections according the Shared Socio-economic Pathways (2006-2100). GFZ Data Services. <u>http://doi.org/10.5880/pik.2017.003</u>
 Geiger, T., Frieler, K. (2018): Continuous national Gross Domestic Product (GDP) time series for 195 countries: past observations (1850-2005) harmonized with future projections according the Shared Socio-economic Pathways (2006-2100) (Version 2.0) [Data set]. GFZ Data Services. https://doi.org/10.5880/pik.2018.010

3. Jones, B., O'Neill, B. C. (2016): Spatially explicit global population scenarios consistent with the Shared Socioeconomic Pathways. Environmental Research Letters, 11(8), 084003. <u>http://doi.org/10.1088/1748-9326/11/8/084003</u>

4. Klein Goldewijk, K., Beusen, A., Janssen, P. (2010): Long-term dynamic modeling of global population and built-up area in a spatially explicit way: HYDE 3.1. Holocene, 20(4), pp. 565-573, doi: <u>http://dx.doi.org/10.1177/0959683609356587</u>.

Klein Goldewijk, K., Beusen, A., Van Drecht, G., De Vos, M. (2011): The HYDE 3.1 spatially explicit database of human-induced global land-use change over the past 12,000 years. Global Ecology and Biogeography, 20(1), pp. 73-86, doi: http://dx.doi.org/10.1111/j.1466-8238.2010.00587.x.
 Murakami, D., Yamagata, Y. (2016): Estimation of gridded population and GDP scenarios with spatially explicit statistical downscaling. ArXiv, 1610.09041, URL: https://arxiv.org/abs/1610.09041.

Hydrological variable	ISIMIP2b protocol Symbol	Models
	(Units) / Temporal resolution	
Runoff	qtot (kg m ⁻² s ⁻¹) / daily	CLM4.5, CLM5.0, CWatM, DBH, H08, JULES-W1, LPJmL, Mac-PDM.20, MATSIRO, mHM, MPI-HM, ORCHIDEE, PCR-GLOBWB, WaterGAP2, WAYS
Surface runoff	qs (kg m ⁻² s ⁻¹) / monthly	CLM4.5, CLM5.0, CWatM, DBH, H08, JULES-W1, LPJmL, Mac-PDM.20, MATSIRO, MPI-HM, ORCHIDEE, PCR-GLOBWB, WaterGAP2. WAYS
Subsurface runoff	qsb (kg m $^{-2}$ s $^{-1}) / monthly$	CLM4.5, CLM5.0, CWatM, DBH, H08, JULES-W1, LPJmL, Mac-PDM.20, MATSIRO, mHM, MPI-HM, ORCHIDEE, ORCHIDEE-DGVM, PCR-GLOBWB, WaterGAP2, WAYS
Groundwater recharge	qr (kg m ⁻² s ⁻¹) / monthly	CLM4.5, CLM5.0, CWatM, DBH, H08, JULES-W1, LPJmL, MATSIRO, mHM, MPI- HM, ORCHIDEE, PCR-GLOBWB, WaterGAP2, WAYS
Groundwater runoff	qg (kg m ⁻² s ⁻¹) / monthly	CLM4.5, CLM5.0, CWatM, DBH, H08, JULES-W1, LPJmL, MATSIRO, mHM, MPI- HM, ORCHIDEE, PCR-GLOBWB, WaterGAP2, WAYS
Discharge (gridded)	dis (m ³ s- ¹)	CLM4.5, CLM5.0, CWatM, DBH, H08, LPJmL, MATSIRO, mHM, MPI-HM, ORCHIDEE, PCR-GLOBWB, WaterGAP2
Monthly maximum of daily discharge	maxdis $(m^3 s^{-1}) / monthly$	CLM4.5, CLM5.0, CWatM, DBH, H08, JULES-W1, LPJmL, MATSIRO, mHM, MPI- HM, ORCHIDEE, PCR-GLOBWB, WaterGAP2
Monthly minimum of daily discharge	mindis (m ³ s ⁻¹) / monthly	CLM4.5, CLM5.0, CWatM, DBH, H08, JULES-W1, LPJmL, MATSIRO, mHM, MPI- HM, ORCHIDEE, PCR-GLOBWB, WaterGAP2
Evapotranspiration	evap (kg m ⁻² s ⁻¹) / monthly	CLM4.5, CLM5.0, CWatM, DBH, H08, JULES-W1, LPJmL, Mac-PDM.20, MATSIRO, mHM, MPI-HM, ORCHIDEE, PCR-GLOBWB, WaterGAP2, WAYS
Potential Evapotranspiration	potevap (kg m $^{\text{-2}}$ s $^{\text{-1}}) / monthly$	CLM4.5, CLM5.0, CWatM, DBH, H08, JULES-W1, LPJmL, Mac-PDM.20, MATSIRO, mHM, MPI-HM, ORCHIDEE, PCR-GLOBWB, WaterGAP2, WAYS
Soil moisture	soilmoist (kg m ⁻²) / monthly	CLM4.5, CLM5.0, CWatM, DBH, H08, JULES-W1, LPJmL, Mac-PDM.20, MATSIRO, mHM, MPI-HM, ORCHIDEE, PCR-GLOBWB, WaterGAP2
Soil moisture, root zone	rootmoist (kg m ⁻²) / monthly	CLM4.5, CLM5.0, CWatM, DBH, H08, JULES-W1, LPJmL, Mac-PDM.20, MATSIRO, mHM. MPI-HM. ORCHIDEE. PCR-GLOBWB. WaterGAP2. WAYS
Frozen soil moisture for each laver	soilmoistfroz (kg m ⁻²) / monthly	CLM4.5, CLM5.0, CWatM, DBH, H08, JULES-W1, LPJmL, MATSIRO, ORCHIDEE, PCR-GLOBWB WaterGAP2
Temperature of Soil	tsl (K)	CLM4.5, CLM5.0, CWatM, DBH, H08, JULES-W1, LPJmL, MATSIRO, ORCHIDEE, PCR-GLOBWB, WaterGAP2
Snow depth	snd (m) / monthly	CLM4.5, CLM5.0, CWatM, DBH, H08, JULES-W1, LPJmL, MATSIRO, mHM, MPI- HM, ORCHIDEE, PCR-GLOBWB, WaterGAP2
Snow water equivalent	swe (kg m ⁻²) / monthly	CLM4.5, CLM5.0, CWatM, DBH, H08, JULES-W1, LPJmL, MATSIRO, mHM, MPI- HM, ORCHIDEE, PCR-GLOBWB, WaterGAP2
Total water storage	tws (kg m ⁻²) / monthly	CLM4.5, CLM5.0, CWatM, DBH, JULES-W1, LPJmL, MATSIRO, MPI-HM, ORCHIDEE, PCR-GLOBWB, WaterGAP2
Canopy water storage	canopystor / monthly	CLM4.5, CLM5.0, CWatM, DBH, JULES-W1, LPJmL, MATSIRO, ORCHIDEE, PCR-GLOBWB, WaterGAP2, WAYS
Glacier storage	glacierstor / monthly	CLM4.5, CLM5.0, CWatM
Groundwater storage	groundwstor / monthly	CLM4.5, CLM5.0, CWatM, DBH, H08, JULES-W1, LPJmL, MATSIRO, mHM, ORCHIDEE, PCR-GLOBWB, WaterGAP2
Lake storage	lakestor / monthly	CLM4.5, CLM5.0, CWatM, MATSIRO, WaterGAP2
Wetland storage	wetlandstor / monthly	CLM4.5, CLM5.0, CWatM, MPI-HM, ORCHIDEE, PCR-GLOBWB, WaterGAP2
Reservoir storage	reservoirstor / monthly	CWatM, DBH, H08, LPJmL, MATSIRO, PCR-GLOBWB, WaterGAP2
Annual maximum daily thaw depth	thawdepth (m) / monthly	CLM4.5, CLM5.0, CWatM, DBH, LPJmL, MATSIRO, ORCHIDEE,
River storage	riverstor / monthly	CLM4.5, CLM5.0, CWatM, DBH, H08, LPJmL, MATSIRO, MPI-HM, ORCHIDEE, PCR-GLOBWB, WaterGAP2
Rainfall	rainf (kg m ⁻² s ⁻¹) / monthly	CLM4.5, CLM5.0, CWatM, DBH, H08, JULES-W1, LPJmL, MATSIRO, mHM, MPI- HM, ORCHIDEE, PCR-GLOBWB, WaterGAP2 WAYS
Snowfall	snowf (kg m ⁻² s ⁻¹) / monthly	CLM4.5, CLM5.0, CWatM, DBH, H08, JULES-W1, LPJmL, Mac-PDM.20, MATSIRO, mHM. MPI-HM. ORCHIDEE. PCR-GLOBWB. WaterGAP2. WAYS
Leaf Area Index	lai (-) / monthly	CLM45, ORCHIDEE, WAYS

Table S91. Hydrological output data of the ISMIP2b global water models1 with a spatial resolution of 0.5°x 0.5°

Table S92. Water management variables of the ISMIP2b global water models¹ with a spatial resolution of $0.5^{\circ}x0.5^{\circ}$ and a monthly temporal resolution

Output variable	ISIMIP2b protocol Symbol (Units) / Temporal resolution	Models
Irrigation water demand	pirrww (kg m ⁻² s ⁻¹)	CLM4.5, CLM5.0, CWatM, DBH, H08, LPJmL,
(=potential irrigation water		MATSIRO, MPI-HM, PCR-GLOBWB,
Withdrawal)		WaterGAP?
Actual irrigation water	airmun $(k \alpha m^{-2} \alpha^{-1})$	CI M4 5 CI M5 0 CWatM DBH H08 I PImI
	alliww (kg lli S)	CLIM4.5, CLIM5.0, C watter, DD11, 1108, LI JIIL,
withdrawai		MATSIKO, MPI-HM, PCR-GLOBWB
Potential irrigation water	pirruse (kg m ⁻² s ⁻¹)	CLM4.5, CLM5.0, CWatM, DBH, H08, LPJmL,
consumption		MATSIRO, MPI-HM, PCR-GLOBWB,
		WaterGAP2
Actual irrigation water	airruse (kg m ⁻² s ⁻¹)	CLM4.5, CLM5.0, CWatM, DBH, H08, LPJmL,
consumption		MATSIRO, MPI-HM, PCR-GLOBWB
Actual green water consumption	airrusegreen (kg m ⁻² s ⁻¹)	CLM4.5 CLM5.0 CWatM DBH H08 LPImL
on	unrusegreen (kg m 's')	MATSIRO PCR-GLOBWB
irrigated aronland		WATSIKO, TEK-GLODWD
		CIM45 CIM50 CW+4M DDII 1100 IDI-1
Potential green water	pirrusegreen (kg m ² s ²)	CLIM4.5, CLIM5.0, CWatty, DBH, H08, LPJML,
consumption on irrigated		MATSIRO, PCR-GLOBWB
cropland		
Actual green water consumption	arainfusegreen (kg m ⁻² s ⁻¹)	CLM4.5, CLM5.0, CWatM, DBH, H08, LPJmL,
on rainfed cropland		MATSIRO, PCR-GLOBWB
Actual domestic water	adomww (kg $m^{-2} s^{-1}$)	CWatM, H08, MATSIRO, PCR-GLOBWB
withdrawal		, , , ,
Actual domestic water	adomuse (kg m ⁻² s ⁻¹)	CWatM H08 MATSIRO PCR-GLOBWB
consumption	adomuse (kg m 's)	e watwi, 1100, Wirribinto, Ten-OLOD wh
		CW-4M HOR MATCINO DCD CLODWD
Actual manufacturing water	amanww (kg m ² s ²)	Cwatm, H08, MAISIKO, PCR-GLOBWB
withdrawal	- 0 l	
Actual Manufacturing water	amanuse (kg m ⁻² s ⁻¹)	CWatM, H08, MATSIRO, PCR-GLOBWB
consumption		
Actual electricity water	aelecww (kg m ⁻² s ⁻¹)	CWatM, H08, PCR-GLOBWB
withdrawal		
Actual electricity water	aelecuse (kg $m^{-2} s^{-1}$)	CWatM, H08, PCR-GLOBWB
consumption	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Actual livestock water	aliyoyyy $(ka m^{-2} s^{-1})$	CWatM H08 PCP-GLOBWB
withdrawal	anvew w (kg in 3)	e watty, 1100, 1 ek-olob wb
A stard line stards materia	-1:	CW-4M HOR DCD CLODWD
Actual livestock water	anveuse (kg m ² s ²)	Cwatm, H08, PCR-GLOB wB
consumption		
Total (all sectors) actual water	atotuse (kg m ⁻² s ⁻¹)	CWatM, H08, PCR-GLOBWB, WaterGAP2
consumption		
Total (all sectors) actual water	atotww (kg $m^{-2} s^{-1}$)	CWatM, H08, PCR-GLOBWB, WaterGAP2
withdrawal		
Total (all sectors) water demand	ptotww (kg m ⁻² s ⁻¹)	CWatM, H08, PCR-GLOBWB, WaterGAP2
(=potential water withdrawal)	r · · · · · · · · · · · · · · · · · · ·	
Total (all sectors) potential water	ptotuse (kg m ⁻² s ⁻¹)	CWatM H08 PCR-GLOBWB WaterGAP2
consumption	protuse (kg m 's')	e water, 1100, 1 ere oblob wb, water of the
A stual in dustrial water	aindusa (1 a m-2 a-1)	CWetM DCD CLODWD
Actual industrial water	anduse (kg m ⁻ s ⁻)	C walm, PCR-OLOD w D
consumption		
Potential domestic water	pdomuse (kg m ⁻² s ⁻¹)	H08
consumption		
Potential manufacturing water	pmanuse (kg m ⁻² s ⁻¹)	H08
consumption		
Actual industrial water	aindww (kg m ⁻² s ⁻¹)	PCR-GLOBWB
withdrawal		

https://www.isimip.org/protocol/

	CLM4.5	CLM5.0	CWatM	DBH	H08	JULES- W1	<u>LPJmL</u>	Mac- PDM.20	MATSIRO	mHM	MPI- HM	ORCHIDEE	PCR- GLOBWB	VIC	WaterGA P2	WAYS
Canopy	\checkmark	\checkmark	\checkmark	√		\checkmark	\checkmark		✓	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
storage (S _{ca})																
Inflow																
total							\checkmark							\checkmark	\checkmark	
precipitation																
$(P_{\rm tot})$																
rainfall (P _{ra})	\checkmark	\checkmark				\checkmark			\checkmark			\checkmark	\checkmark			
snowfall (P_{sn})	\checkmark	\checkmark				\checkmark			\checkmark			\checkmark	\checkmark			
dew (P_{de})	\checkmark	\checkmark				\checkmark			\checkmark			\checkmark	\checkmark			
precipitation intercepted by canopy	✓	\checkmark	\checkmark			~			✓	~		\checkmark		~		✓
storage (P_{int})																
Outflow	/	/	/	/		/	/		/			/	/	1	1	/
canopy	v	v	v	v		v	v		v	v		v	v	v	v	v
evaporation																
$(E_{\rm ca})$	/	/	/	/		/	/		/			/	/	1	1	/
throughtall	v	v	v	v		v	v		v	v		v	v	v	v	v
$(P_{\rm th})$./	./			./	./	./	./						./	./	
Snow storage	v	v	v	v	v	v	v	v	v	v	v	v	v	v	v	v
(\mathcal{S}_{sn})	./					./								./		
snow neid on	v	v		v		v			v					•		
the canopy																
(S _{soc})	./					./								./		
show under	v	v		v		v			v			v		•		
(S)																
(S _{suc})																
inflow					./											
$SHOWIAII (P_{sn})$					•			v	v		v	v	v			
Outflow	./	./	./	./	./	./	./			./				./		
sublimation	v	v	v	v	v	v	v	v	v	v	v	v	v	v	v	v
$(E_{\rm sn})$	1	1	1	1		1	1	1	1	1	1	1	1		1	1
SHOWINELL UVI 1	•	•	•	•	•	•	•	•	•			•	•		•	•

Table S93. Representation of the canopy and snow water storage compartments in the ISIMIP2b GWMs included in the global water sector

Table S94. Representation of the soil storage in the ISIMIP2b GWMs included in the global water sector

	CLM4.5	CLM5.0	CWatM	DBH	H08	JULES	<u>LPJmL</u>	<i>Мас-</i> РDM 20	MATSIRO	mHM	MPI- HM	ORCHIDEE	PCR- GLOBWB	VIC	WaterGAP2	WAYS
Soil storage (S _{co})	✓	√	✓	✓	√	<u>-</u> ₩1	✓	✓	✓	✓	√ 	✓	√	√	✓	√
Inflow	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark							
infiltration (R_{in})	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark							
capillary rise (R_{cr})	\checkmark	\checkmark	\checkmark						\checkmark				\checkmark			
return flow from human water use $(A_{\rm rf})$ <i>Outflow</i>		✓			~										V	
actual evapotranspiration (AET)	✓	~	~	~	~	~	√	~	✓	~	✓	\checkmark	√	~	\checkmark	~
potential evapotranspiration (PET)			✓	✓	✓	~	✓	√	~	~	✓	✓	√	✓	✓	~
transpiration (T)	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark		\checkmark		\checkmark	\checkmark	\checkmark	\checkmark		
evaporation from soil (E_{so})	\checkmark	\checkmark	~	✓	~	✓	✓	\checkmark	\checkmark	✓	~	✓	\checkmark	~	\checkmark	~
surface runoff $(R_{\rm ru})$	\checkmark	\checkmark	\checkmark	✓	✓	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓	\checkmark	\checkmark
Hortonian overland flow $(R_{\rm br})$	✓	✓	~	~					\checkmark				~			
Saturation excess overland flow				~			~		\checkmark					~	\checkmark	
(Λ_{sat})			\checkmark			\checkmark	\checkmark			\checkmark			\checkmark			\checkmark
nercolation(R)			✓			•	•			•	✓		•			✓
groundwater recharge (R_{gwr})	\checkmark	\checkmark	✓	✓	√	✓	~		\checkmark		✓	\checkmark	\checkmark		✓	✓

Table S95. Representation of the groundwater storage in the ISIMIP2b GWMs included in the global water sector

	CLM4.5	CLM5.0	CWatM	DBH	H08	JULES-	LPJmL	Mac-	MATSIRO	mHM	MPI-	ORCHIDEE	PCR-	VIC	WaterGAP2	WAYS
						W1		PDM.20			HM		GLOBWB			
Groundwater storage (S _{gw})	\checkmark	\checkmark	\checkmark		√				\checkmark	\checkmark	\checkmark		\checkmark	✓	\checkmark	\checkmark
Inflow									\checkmark	\checkmark			\checkmark	\checkmark	\checkmark	\checkmark
groundwater recharge (seepage) $(R_{\rm exp})$	✓	~	✓	✓	√	√	\checkmark	~	✓	√	✓	~	✓	~	~	✓
return flow from human water use (A_{rf}) <i>Outflow</i>					~				✓	✓			✓	~	✓	~
capillary rise (R_{cr})	~	✓	✓						\checkmark				Х			
groundwater runoff (R_{ruv})	~	\checkmark	✓	~	√	\checkmark	\checkmark	√	\checkmark	\checkmark	\checkmark	\checkmark	√	~	\checkmark	~
groundwater withdrawal for human water use (A_{gw})					~				√				~		✓	

	CI M4 5	CI M5 0	CWatM	DBH	H08	IIII ES-	I PImI	Mac-	MATSIRO	mHM	MPI-	OPCHIDEE	PCR-	VIC	WaterGAP?	WAYS
	CLM4.5	CLM3.0	Ciraim	DDII	1100	W1	<u>Li jiil</u>	PDM.20	MAISIKO	111111	HM	ORCHIDEE	GLOBWB	vie	water of fi 2	W115
River storage (S _{ri}) Inflow	~	✓	V	~	√		V		✓	√	~	✓	~		✓	~
total precipitation (P_{tot}) rainfall (P_m)		√					✓						√			
snowfall		~											✓			
(P_{sn}) inflow from upstream surface water bodies (Q_{1})	√	✓	*	✓	~		1		✓	✓	✓	✓	✓		~	
surface runoff or overland flow or fast runoff (R_{su})	~	✓	~	*	✓		✓		✓	1	*	✓	✓		✓	
Hortonian overland flow (<i>R</i> _{ho})	~	✓	√	\checkmark					✓				✓			
Saturation excess overland flow (<i>R</i> _{sat})				~			~		✓					~	✓	
interflow (R _{if})			\checkmark				\checkmark			~			\checkmark			
groundwater runoff (R_{gw})	√	~	✓		✓		√		\checkmark	✓	~	✓	~		\checkmark	
return flow from human water use $(A_{\rm rf})$ <i>Outflow</i>					~		✓		✓				✓		~	
streamflow or outflow or discharge	✓	✓	✓	~	~		~		~	~	~	✓	√		✓	
(Qri) water withdrawal for human water use from river (Ari)	¥	~			~		~		✓		~				√	
evaporation from river			\checkmark				\checkmark						\checkmark			

Table S96. Representation of the river storage in the ISIMIP2b GWMs included in the global water sector

 $(E_{\rm ri})$

Table S97. Representation of	the lake storage in the ISIMIP2b	GWMs included in the global water sector
1	8	8

	CLM4.5	CLM5.0	CWatM	DBH	H08	JULES-	LPJmL	Mac-	MATSIRO	mHM	MPI-	ORCHIDEE	PCR-	VIC	WaterGAP2	WAYS
Laka		1				WI	1	PDM.20		1	HM		GLOBWB		<u>_</u>	
storage (S _{la})	v	v					v			v					·	
Inflow total precipitation (Ptot)							√								\checkmark	
rainfall (Pra)	✓	✓											\checkmark			
snowfall (P _{sn})	~	~											\checkmark			
inflow from upstream surface water bodies (<i>O</i> :)							✓								✓	
surface runoff or overland flow or fast runoff (<i>R</i> _{su}) Hortonian overland													✓		~	
flow (<i>R</i> _{ho}) Saturation excess overland flow (<i>R</i> _{sat})															✓	
interflow (<i>R</i> _{if})							✓						\checkmark			
groundwater runoff (R_{gw}) return flow							√ √						√ ✓		√ √	
from human water use $(A_{\rm rf})$ <i>Outflow</i>																
evaporation from lake (F_{12})	✓		~				√						√		✓	
outflow from lake			~				✓						✓		✓	
(Q _{la}) groundwater recharge	✓	\checkmark	~										✓		✓	
(R_{gwr}) water withdrawal for human water use from lake (A_{12})							✓						✓		✓	

	CLM4.5	CLM5.0	CWatM	DBH	H08	JULES- W1	<u>LPJmL</u>	Mac- PDM.20	MATSIRO	mHM	MPI -HM	ORCHIDEE	PCR- GLOBWB	VIC	WaterGAP2 WAYS	
oir			\checkmark		✓		✓		\checkmark				✓		\checkmark	
$e(S_{re})$																
							\checkmark								\checkmark	
on																
ra)													√			
P _{sn})			,										√		,	
ı			\checkmark										\checkmark		\checkmark	
ter																
1)													1		1	
									✓				V		✓	
Į.																
)									/							
									v							
									v						v	
							1						1			
							·						•			
r							\checkmark		✓				1		1	
							\checkmark		\checkmark				\checkmark		\checkmark	
•																
	\checkmark	\checkmark					\checkmark								\checkmark	
m					\checkmark		\checkmark		\checkmark				\checkmark		\checkmark	
er													\checkmark		\checkmark	
					\checkmark		\checkmark		\checkmark				\checkmark		\checkmark	

Table S98. Representation of the reservoir storage in the ISIMIP2b GWMs included in the global water sector

reservoir (A_{re})

Table S99. Representation	of the wetland storage in the	e ISIMIP2b GWMs ind	cluded in the global water sector
The second se			

	CLM4.5	CLM5.0	CWatM	DBH	H08	JULES -W1	<u>LPJmL</u>	Mac- PDM.20	MATSIRO	mHM	MPI- HM	ORCHIDEE	PCR- GLOBWB	VIC	WaterGAP2	WAYS
Wetland											✓				✓	
storage (Swe)																
Inflow																
total											\checkmark				\checkmark	
precipitation																
(P_{tot})																
rainfall (P_{ra})																
inflow from											1				1	
unstream											•				•	
surface water																
bodies (Q_{iu})																
surface runoff											\checkmark				✓	
or overland																
flow or fast																
runoff (R_{su})																
Hortonian																
$(R_{h_{2}})$																
Seturation															1	
excess															•	
overland flow																
$(R_{\rm sat})$																
interflow (R_{if})																
groundwater															\checkmark	
runoff (R_{gw})																
Outflow																
groundwater															\checkmark	
recharge (R_{gwr})															,	
evapotranspira															\checkmark	
tion (PET)																
transpiration																
(1) evaporation											1				1	
from wetland															-	
(Ewe)																
outflow from											\checkmark				\checkmark	
wetland (O_{we})																

					Irri	gatic	n							I	Lives	tock										Dom	estic				
Model	Wa (sc	ater ource	withdı e)	awal		R (0	eturn lestin	flow ation)		V (;	Vater sourc	with with	hdrav	wal	F (Returi destii	n flov natio	w n)			W (s	Vater	wit wit	hdra	wal	F (Retur desti	n flo natio	w n)		
	G	L	R_{e}	\mathbf{R}_{i}	0	S	G	L R _e	R _i	0 G	L	R _e	R_i	0	S	G	L	R _e	\mathbf{R}_{i}	0	G	L	R _e	R_i	0	S	G	L	R_{e}	\mathbf{R}_{i}	0
CLM4.5				√		~	` √		~																						
CLM5.0				✓		~	∕ √		~																						
CWatM	√	√	✓	✓		~	∕ √		√	~	/ /	· •	<i>(</i> ,	/							~	•	· ·	/ .	/					~	
H08	\checkmark		✓	\checkmark		~	✓		✓												√	/	,	/ .	/ 、	/				~	
<u>LPJmL</u>		√		√		~			\checkmark																						
MATSIRO	✓		✓	√		~	✓														~	/	,	/ .	/					~	
MPI-HM ¹	✓	√		✓																											
PCR- GLOBWB	✓	~	✓	✓	~	~	<i>`</i> √	~ ,	/ /	v	/ /	< •	/ ·	/		v	/				~	` `	· .	<i>·</i> · ·	<i>,</i> ,	/		~	✓	~	
WaterGAP2	✓	✓	\checkmark	~			√	√ ,	/ /		~	< •	<i>/</i> ,	/							~	 • 	< · ·	/ ·	/			~	✓	✓	

Table S100. Human water use sectors included in the Global Water Models – Part I

Legend: G = groundwater; L = lake; O = ocean; $R_e = reservoir$; $R_i = river$; S = soil; **Bold** = LSMs; *Italic* = GHMs; Underline = DGVMs.

Note: 1: MPI-HM extracts water from the wetland storage, which includes the water stored in lakes.

					Man	ufact	turin	g								E	lectr	icity											Γ	Desal	inati	on			
Model	,	Wate	er wi (sou	thdra rce)	wal		F ((Retu desti	rn flo inatio	ow on)		,	Wate	r wit (sour	hdra ce)	wal		H ((Retur desti	rn fl inati	ow on)			wit (s	Wat hdr our	er awa ce)	l				Re (de	eturn : estina	flow tion)		
	G	L	R _e	\mathbf{R}_{i}	0	S	G	L	R _e	\mathbf{R}_{i}	0	G	L	R _e	\mathbf{R}_{i}	0	S	G	L	R _e	\mathbf{R}_{i}	0	G	L	R _e	\mathbf{R}_{i}	0	ISW	S	G	L	R _e	\mathbf{R}_{i}	O I	SW
CWatM	√	√	✓	✓						✓		√	√	✓	√						\checkmark														
H08	✓		✓	✓						✓																	1							\checkmark	
MATSIRO	✓		✓	✓						✓																									
PCR-GLOBWB	✓	✓	✓	✓	✓			✓	\checkmark	✓		✓	✓	✓	✓	✓			✓	✓	✓						1							\checkmark	
WaterGAP2	✓	✓	✓	\checkmark				✓	✓	✓			✓	✓	✓				✓	✓	✓														

Table S101. Human water use sectors included in the Global Water Models – Part II

Legend: G = groundwater; ISW = inland saline water; L = lake; O = ocean; R_e = reservoir; R_i = river; S = soil; **Bold** = LSMs; *Italic* = GHMs; Underline = DGVMs.

Model	Input	Output	Temporal	Spatial	Calibration	Canopy	Soil storage	Snow	Glacier	
	data	data	resolution	resolution		storage		storage	storage	
						-		-	-	
CLM4.5	\checkmark	\checkmark			\checkmark	\checkmark	\checkmark			
CLM5.0	\checkmark	\checkmark			\checkmark	\checkmark	\checkmark			
CWatM		\checkmark			\checkmark					
DBH	\checkmark	\checkmark			\checkmark					
H08	\checkmark			\checkmark	\checkmark					
JULES-W1		\checkmark			\checkmark					
<u>LPJmL</u>	\checkmark	\checkmark		\checkmark						
Mac-PDM.20										
MATSIRO	\checkmark	\checkmark								
mHM								\checkmark	\checkmark	
MPI-HM				\checkmark		\checkmark				
ORCHIDEE					\checkmark					
PCR-GLOBWB	\checkmark		\checkmark	\checkmark			\checkmark	\checkmark		
VIC										
WaterGAP2	\checkmark	\checkmark								
WAYS										

Table S102. Potential future research in global hydrological modeling - Part I

Legend: Bold = LSMs, *Italic* = GHMs, Underline = DGVMs.

Table S103. Potential future research in global hydrological modeling - Part II

Model	Groundwater storage	River storage	Runoff scheme	Lakes storage	Reservoir storage	Wetland storage	Water use model
CLM4.5	√	✓	✓	√	✓	√	\checkmark
CLM5.0	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
CWatM							
DBH				\checkmark		\checkmark	\checkmark
H08							
JULES-W1		\checkmark	\checkmark				
<u>LPJmL</u>							
Mac-PDM.20							\checkmark
MATSIRO	\checkmark						\checkmark
mHM	\checkmark			\checkmark	\checkmark	\checkmark	\checkmark
MPI-HM					\checkmark		
ORCHIDEE							
PCR-GLOBWB	\checkmark		\checkmark		\checkmark		
VIC	\checkmark				\checkmark		\checkmark
WaterGAP2	\checkmark						\checkmark
WAYS							\checkmark

Legend: Bold = LSMs, *Italic* = GHMs, Underline = DGVMs.