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Abstract. Regional reanalyses provide a dynamically consistent recreation of past weather observations at scales useful for 

local-scale environmental applications. The development of convection-permitting models (CPMs) in numerical weather 

prediction has facilitated the creation of kilometre-scale (1-4 km) regional reanalysis and climate projections. The Bureau of 

Meteorology Atmospheric high-resolution Regional Reanalysis for Australia (BARRA) also aims to realise the benefits of 15 

these high-resolution models over Australian sub-regions for applications such as fire danger research by nesting them in 

BARRA’s 12 km regional reanalysis (BARRA-R). Four mid-latitude sub-regions are centred on Perth in Western Australia, 

Adelaide in South Australia, Sydney in New South Wales (NSW), and Tasmania. The resulting 29-year 1.5 km downscaled 

reanalyses (BARRA-C) are assessed for their added skill over BARRA-R and global reanalyses for near-surface parameters 

(temperature, wind and precipitation) at observation locations and against independent 5 km gridded analyses. BARRA-C 20 

demonstrates better agreement with point observations for temperature and wind, particularly in topographically complex 

regions and coastal regions. BARRA-C also improves upon BARRA-R in terms of intensity and timing of precipitation 

during the thunderstorm seasons in NSW, and spatial patterns of sub-daily rain fields during storm events. BARRA-C 

reflects known issues of CPMs: overestimation of heavy rain rates and rain cells, and underestimation of light rain 

occurrence. As a hindcast-only system, BARRA-C largely inherits the domain-averaged bias pattern from BARRA-R but 25 

does produce different climatological extremes for temperature and precipitation. An added value analysis of temperature 

and precipitation extremes shows that BARRA-C provides additional skill over BARRA-R when compared to gridded 

observations. The spatial patterns of BARRA-C warm temperature extremes and wet precipitation extremes are more highly 

correlated with observations. BARRA-C adds value in representation of the spatial pattern of cold extremes over coastal 

regions but remains biased in terms of magnitude.  30 
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1 Introduction 

At horizontal kilometre-scales (1-4 km), convection-permitting models (CPMs) have provided a step-change in weather 

forecasting capabilities, particularly for forecasting rainfall and cloud cover (e.g., Lopez et al., 2009; Mailhot et al., 2010; 

Brousseau et al., 2016; Clark et al., 2016) and over local regions with complex terrain or land-sea boundaries (Calmet et al., 

2018). Similarly, CPMs have provided new insights in regional climate projections (e.g., Argüeso et al., 2014; Prein et al., 35 

2015; Kendon et al., 2017; 2019) beyond current global models. For instance, regional CPMs have suggested that future 

increases in short-duration precipitation extremes are larger than what can be expected from increases in atmospheric 

moisture alone (Kendon et al., 2021 and references therein). Major efforts are underway toward refining the horizontal 

resolution of global climate models to kilometre-scale (Schär et al., 2020). Extreme weather events such as thunderstorms, 

damaging winds, and hailstorms, are better represented in higher resolution models (Walsh et al., 2016). Current general 40 

practice is that grid spacings less than about four kilometres are required to explicitly model small convective cloud 

processes, replacing parameterizations of moist convection. This avoids several issues seen in parameterized convection 

schemes used in models with a grid spacing greater than 10 km (Lean et al., 2008) and the “grey zone” issues in mesoscale 

(4-10 km) scale models (Gerard et al., 2009). A common assumption of traditional convective parameterizations is that cloud 

fields adjust so much more rapidly than the processes forcing it that this adjustment can be modelled as instantaneous. Such 45 

schemes thus have no “memory” of the meteorological flow, leading to unrealistic model behaviours. Models with 

parameterized convection exhibit premature convective initiation, misrepresented diurnal cycle of precipitation, over-

estimation of drizzle occurrence, under-estimation of extreme rainfall (Lean et al., 2008; Clark et al., 2016), fewer 

identifiable mesoscale convective systems with less structure (Done et al., 2004), and rainfall coastal locking where 

precipitation generated over the sea does not penetrate inland (Bureau of Meteorology, 2018). When the parameterization 50 

scheme is used at a finer resolution than 10 km, it also tends to produce intermittent on-off behaviour of deep convection 

(Gerard et al., 2009). 

By contrast, CPMs can represent deep convection and mesoscale convective organization explicitly on the model 

grid. Explicit modelling of convection better captures precipitation persisting across orographic or land-sea boundaries by 

the advection of clouds/precipitation. Better representation of topography in CPMs also leads to improved wind circulation 55 

patterns and resulting vertical velocities (e.g., Fosser et al., 2015). Improved modelling of the interactions between storm 

cells and their organisations should improve the estimation of damaging winds. Many studies have found a better diurnal 

cycle of tropical convection over land, cloud vertical structure, and coupling between moisture convection and convergence 

in CPMs (Stein et al., 2015; Leutwyler et al., 2017). A finer grid resolution can improve the flow and wind simulation over 

the recirculation zone behind the escarpment of a hill and higher vertical grid resolution improves simulation on the lee side 60 

of hills (Ma and Liu, 2017). 

These benefits from using CPMs are yet to be fully realized in many atmospheric reanalyses. Atmospheric 

reanalyses combine prior knowledge of physical processes captured in the models with observations from a diverse range of 
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instruments to form spatially complete representations of the historical atmospheric conditions. They are therefore invaluable 

for applications concerned with local weather processes, climate signals or events that were not fully observed such as 65 

climate monitoring and change assessments (Kendon et al., 2017; 2019), renewable energy assessment (e.g., Frank et al., 

2020), and hazard management (e.g., Vitolo et al., 2019). Global-scale reanalyses have advanced in quality and quantity 

during the past three decades with improvements to models, data assimilation methods, the number of observations and 

ensemble methods (Kalnay et al., 1996; Ebita et al., 2011; Gelaro et al., 2017; Dee et al., 2011), and also with increasing 

spatial resolution. The latest addition, ERA5 (Hersbach et al., 2020), has a horizontal spacing of 31 km. Users of reanalyses 70 

have called for development towards finer spatial and temporal scales, i.e., below 10 km horizontal spacing and sub-daily 

time intervals (Gregow et al., 2016). Such scales are needed in localized climate monitoring where local-scale mechanisms 

influenced by complex topography, coastlines and convective processes are responsible for local climate features and 

feedbacks.  

Departing markedly from the global reanalyses are the regional reanalyses that use limited area models at higher 75 

horizontal resolutions over sub-regions, e.g., North America (Mesinger et al., 2006), the Arctic polar region (Bromwich et 

al., 2016), Europe (Borsche et al., 2015 and references therein), India (Mahmood et al., 2018) and Australia (Su et al., 2019). 

These reanalyses use grid lengths in the order of 10 km to improve the representation of sub-daily variability and near-

surface weather. These are generally produced with global atmosphere model configurations that include convection 

parameterizations (e.g., Su et al., 2019). Recently, Wahl et al. (2017) overcame this with a 7-year 2 km reanalysis over 80 

Germany with the assimilation of conventional observations and radar-derived rain rates and showed improved 

spatiotemporal variability and intensity frequency of precipitation. Such a direction in the development of the reanalyses, 

combined with the higher resolution regional projections, can offer a more accurate picture of changes in regional 

meteorology and extreme weather in the changing climate. 

Dynamical downscaling is frequently used to estimate the dynamic variables at scales finer than those of coarser-85 

resolution climate or weather models. This approach is undertaken at the Bureau of Meteorology (Bureau) in Australia to 

produce kilometre-scale weather forecasts and/or ensemble forecasts over major cities and a 1.5 km forecast-only model has 

been used since 2017 for added value over the Bureau’s lower resolution global system. This goal is also pursued in the 

Bureau of Meteorology Atmospheric high-resolution Regional Reanalysis for Australia (BARRA; Jakob et al., 2017) project. 

Within this context, this paper is a companion paper to Su et al. (2019) where an Australian regional 12 km reanalysis 90 

system (BARRA-R) was presented. Here we describe dynamical downscaling of BARRA-R using the UK Met Office 

(UKMO) Unified Model (UM) at a 1.5 km horizontal grid length over four mid-latitude sub-regions of Australia (Figure 1) 

over 29 years from January 1990 to February 2019. These regions are chosen in partnership with state fire and emergency 

management agencies because of the important advantages that dynamically downscaled reanalyses can provide for local-

scale planning and management to reduce future risks due to extreme weather events such as bushfires. The four 95 

downscaling models, collectively referred to as BARRA-C, yield gridded products that include a variety of 10 minute to 
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hourly surface parameters describing both weather and land-surface conditions as well as hourly upper-air parameters 

covering the troposphere and stratosphere with a 40 km model top on 70 model levels and 37 pressure levels. 

This paper describes the model and the experimental design in Sect. 2, and Sect. 3 provides the first assessment of 

the downscaled reanalysis with focus on screen-level temperature, 10 m wind and precipitation. Comparisons with BARRA-100 

R and global reanalyses are also made to illustrate the added value of BARRA-C. Our findings are further discussed in Sect. 

4, with an overall summary in Sect. 5. 

2 BARRA-C 

The development of BARRA is based on the Bureau’s operational deterministic NWP forecasting over the Australian region 

using the Australian Community Climate and Earth-System Simulator systems ACCESS-R and ACCESS-C (Puri et al., 105 

2013). The operational version at the time (Australian Parallel Suite 2) of ACCESS-R is the national 12 km 6-hourly 

analysis/assimilation and 3-day forecasting system (Bureau of Meteorology, 2016). ACCESS-R has provided the initial and 

boundary conditions to initialize and constrain ACCESS-C over 6 smaller domains centred at the Australian cities until 2020 

(Bureau of Meteorology, 2018). The APS2 ACCESS-C dynamically downscales ACCESS-R to provide 6 hourly, 1.5-day 

forecasts at 1.5 km horizontal resolution. The relation between BARRA-R and BARRA-C mirrors this system but is 110 

implemented with shorter forecast (or hindcast) range and a newer version of the meteorological forecast model and science 

configuration (Section 2.1). In particular, BARRA-R is nested in ERA-Interim reanalysis (Dee et al., 2011) and includes four 

assimilation and hindcast cycles per day (Su et al., 2019). BARRA-C is a hindcast-only system that inherits the analysis from 

BARRA-R as initial conditions. While BARRA-C refers to the collection of the four sub-domain models, we use BARRA-

AD, BARRA-PH, BARRA-SY and BARRA-TA to denote individual domains centred at Adelaide (South Australia, AD), 115 

Perth (Western Australia, PH), Sydney (New South Wales, SY), and Tasmania (TA) (Figure 1). 

 The PH and AD domains are similar in terms of climate having arid deserts north of their domains, temperate dry 

hot or warm summers near coasts, and arid steppe climate in-between (Peel et al., 2007). SY has a temperate climate with 

warm to hot summers and lacks a dry season, while TA differs with a cooler summer. Cool-season perennial grass (C3) is 

the dominant vegetation over the southwestern region of PH and near-coast region of AD, and broadleaf trees are widespread 120 

in the SY and TA domains (Figure S1 in the Supplement). There are several large ephemeral salt lakes (e.g., Lake Torrens, 

Lake Gairdner) in the AD domain and these are modelled as land points with bare soil. Of the four domains, only SY has a 

distinct thunderstorm season which occurs during November-March. Thunderstorms are far less frequent in the other three 

domains due to lower incidence of warm, humid air masses, and also prevalent stable conditions during the potentially 

favourable warmer months owing to subtropical high-pressure belt over or near these areas (Kuleshov et al., 2002). In 125 

contrast to PH and AD, the SY and TA domains are topographically complex. The Great Dividing Range extends north to 

south through the SY domain and the TA domain features low mountains and a landscape of plateaus.  
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2.1 Forecast model 

The UM (Davies et al., 2005; version 10.6) is the grid-point, atmospheric model used in BARRA and ACCESS. It uses a 

non-hydrostatic, fully compressible, deep atmosphere formulation and its dynamical core (Even Newer Dynamics for 130 

General atmospheric modelling of the environment, ENDGame) solves the equations of motion using mass-conserving, 

semi-implicit, semi-Lagrangian (SL), time integration methods (Wood et al., 2014). The prognostic variables are three-

dimensional wind components, virtual dry potential temperature and Exner pressure, dry density, and mixing ratios of moist 

quantities. These variables are discretized horizontally onto a regular longitude-latitude grid with Arakawa-C staggering 

(Arakawa and Lamb, 1977) and vertically with the Charney–Phillips staggered grid (Charney and Phillips, 1953). The 135 

BARRA-C model has a horizontal spacing of 0.0135° × 0.0135° (about 1.5 km at the equator) and its vertical levels follow 

the modelled orography at the surface and relax to surfaces of uniform radial height after 62 model levels (~17 km above 

ground) in the upper atmosphere with the model top height of 40 km. At this resolution, the model is run with an integration 

time step of 60 seconds. 

The science configuration of the model in BARRA-C is based on the UK Met Office operational suite OS36, while 140 

BARRA-R is based on Global Atmosphere (GA6) configuration of Walters et al. (2017). While the OS36 model 

configurations preceded the release of the first UM Regional Atmosphere and Land (RAL1) configuration of Bush et al. 

(2020), BARRA-C implements some of the improvements from RAL1. Table 1 summarizes the differences between 

BARRA-C, BARRA-R, and RAL1. The physical parameterization schemes common to BARRA-C and BARRA-R include a 

variant of Wilson and Ballard (1999) for mixed-phase cloud microphysics, the large-scale cloud scheme of Smith (1990), 145 

and the radiation scheme of Edwards and Slingo (1996), all of which have been improved since publication. BARRA-R uses 

a convection parameterization scheme based on Gregory and Rowntree (1990) which is not used in BARRA-C. With a grid 

length of 1.5 km, the horizontal grid length approaches the depth of the boundary layer (Hanley et al., 2015) and as such it is 

no longer appropriate to use the 1D boundary layer parameterization that restricts mixing to the vertical. BARRA-C 

therefore uses a blended boundary layer parameterization (Boutle et al. 2014) where the scheme transitions from the 1D 150 

vertical turbulence scheme of Lock et al. (2000) to a 3D subgrid turbulence scheme based on Smagorinsky (1963) as a 

function of the grid length to the turbulent length scale.  The mixing length, which can be tuned to control the smoothness of 

the fields and the number of small cells, is taken as 300 m which is used in operational systems. 

The cloud scheme uses a profile of critical relative humidity values (RHcrit), above which a grid box contains some 

cloud if the relative humidity is exceeded. Based on the assumption that there should be less subgrid variability in humidity 155 

for smaller grid boxes, BARRA-C uses higher RHcrit values that BARRA-R in the lowest few layers, decreasing smoothly 

above to 0.8. 

Without the convection parameterization scheme, BARRA-C relies on the model dynamics to represent convective 

motions. While convection remains unresolved in 1.5 km models, removal of the cumulus parameterization has shown to 

result in more realistic behaviour (Clark et al., 2016). In particular, the model can explicitly capture processes with 160 
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convective-like characteristics, which can subsequently drive scales that the model can properly resolve. BARRA-C also 

reduces the appearance of unrealistically strong vertical velocities and “grid-point storms” seen in BARRA-R due to the 

inability of convective parameterization to stabilize the air column (Su et al., 2019). Nevertheless, convection can remain 

under-resolved, leading to cases of too-early small, shallow showers or no rain at all. The mid-latitude version of RAL1 

therefore includes stochastic perturbations of temperature and moisture and relative weak turbulent mixing to encourage the 165 

model fields to be less uniform and help convection to initiate. BARRA-C does not use stochastic perturbations for moisture 

and thus may still suffer from convection initiation issues. 

Another distinguishing feature of BARRA-C is the handling of mass conservation during the advection of moisture 

prognostic variables. This is one of the key science developments in RAL1. BARRA-C and RAL1 use the zero-lateral flux 

scheme of Zerroukat and Shipway (2017) for moisture conservation at the model’s lateral boundaries, avoiding spurious 170 

extreme precipitation caused by the SL treatment of moisture variables near partially-resolved convection.  

BARRA-C is missing some of the configuration improvements introduced in RAL1 because production runs had 

already commenced. BARRA-C does not include a set of changes to the representation of the land surface and the canopy 

radiation model which improve the damped diurnal cycle issue in near-surface temperatures. BARRA-C also does not 

benefit from the improved treatment of gaseous absorption in both long- and short-wave regimes in GA7 and RAL1, which 175 

improves interaction with band-by-band aerosol and cloud forcing.  

 BARRA uses the land surface scheme of Best et al. (2011), implemented in the Joint UK Land Environment and 

Simulator (JULES). It describes a 3 m four-layer soil column with sub-surface temperature updated using a heat diffusion 

equation and with vertical moisture flux estimated using the Richard's equation and Darcy's law. The soil hydraulics are  

computed using the van Genuchten equation. It uses a nine-tile approach to represent subgrid-scale heterogeneity in land 180 

cover, with the surface of each land point subdivided into five vegetation types (broadleaf trees, needle-leaved trees, 

temperate cool-season (C3) grass, tropical warm-season (C4) grass, and shrubs) and four non-vegetated surface types (urban, 

inland water, bare soil, and land ice). Urban surfaces are represented only by a single urban tile such that street canyons and 

roofs are not distinguished.  

The characteristics of the lower boundary, climatological fields, and natural and anthropogenic emissions are 185 

specified using static ancillary fields. These are created as per Bush et al. (2020; Table A1), with the exceptions of ancillaries 

for the land–sea mask, canopy tree heights, and land usage. The land–sea mask is created from the 1 km resolution 

International Geosphere–Biosphere Programme (IGBP) land cover data (Loveland et al., 2000) for SY and TA, and from 

Shuttle Radar Topography Mission (SRTM) orography data for AD and PH. Land cover data based on Climate Change 

Initiative (CCI, Hartley et al., 2017) is not adopted here as its mapping to the nine land surface tiles over the Australian 190 

region remains untested. The canopy tree heights are derived from satellite light detection and ranging (lidar; Simard et al., 

2011; Dharssi et al., 2015). The land usage ancillary, created from IGBP, is modified for AD and PH to match the water 

fractions in the Water Observations from Space (WOfS, Mueller et al., 2016). Aerosol absorption and scattering in the 

radiation scheme assume climatological aerosol properties. A climatological ozone field is also prescribed. 
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2.2 Initial and boundary conditions 195 

The BARRA-C model hindcast is re-initialized with 6-hourly initial conditions at the synoptic hours t0 = 00:00, 06:00, 12:00, 

and 18:00 UTC created by downscaling from BARRA-R analyses (Figure S2 in the Supplement). These fields are taken 

from the centre of BARRA-R’s 6-hour analysis windows. A two-component reconfiguration approach is used in which 

BARRA-R winds, moisture and temperature are downscaled separately with different resolution topography sets, to remove 

model instability due to large horizontal topography gradients. BARRA-C is further constrained by BARRA-R at the lateral 200 

boundaries without nudging, based on the prescription described in Bush et al. (2020) and a boundary rim width of 0.34°. 

The boundary conditions force the development of the larger-scale features within the BARRA-C domains. These setups 

follow the Bureau’s NWP system and ensure that the benefits of the BARRA-R analysis are inherited by BARRA-C, where 

the nested model is treated as a physically consistent interpolator of the driving model. 

The JULES soil moisture and temperature are prescribed by BARRA-R. Consistent with BARRA-R, daily sea 205 

surface temperature and sea ice 0.05 x 0.05° analysis from reprocessed (1985–2007; Roberts-Jones et al., 2012) and near-

real-time Operational Sea Surface Temperature and Ice Analysis (OSTIA; Donlon et al., 2012) are used as lower boundaries 

over the water after being interpolated to the BARRA-C grid. The near-real-time data are used from January 2007. 

Each hindcast in BARRA-C is a 9-hour simulation but only 6-hours are used. The model data during the first 3-

hours is discarded as the fine detail is only partially established from the coarse-resolution initial conditions due to model 210 

spin-up. Therefore, the hindcast fields between t0+4h and t0+9h form the BARRA-C data sets. Such a hindcast length is 

considered short but is chosen to meet computational constraints when regular reinitialization is needed for running the 

model for such an extended period. One clear limitation of our setup is that model spin up artefacts are expected to be still 

present, particularly for convective clouds and rain.  

3 Assessment 215 

Our assessment focuses on near-surface variables and precipitation as the aim of BARRA-C is to capture small-scale local 

weather phenomena which are most apparent near the surface. BARRA-C hindcasts are evaluated against point-scale station 

observations for screen-level temperature, 10 m wind speed (Sec. 3.1) and precipitation (3.3). They are also compared with 

gridded daily analyses of these observations for temperature (Sec. 3.2 and 3.6) and precipitation (Sec. 3.4 and 3.6). Added 

skill in BARRA-C is illustrated by comparing these variables against BARRA-R, ERA-Interim hindcasts and ERA5 hourly 220 

analyses (ERA5 hindcasts only for precipitation). To increase the diversity of models used in our inter-comparison, we also 

include the Modern-Era Retrospective analysis for Research and Applications-2 (MERRA2, Gelaro et al., 2017) hindcasts. A 

scale-selective evaluation of extreme storms is conducted in Sec. 3.5 using radar observations available over the SY domain. 

Finally, an added value (AV) method is used to quantify improvements between BARRA-C and BARRA-R in the 

representation of extreme daily maximum and minimum temperature and daily rainfall from gridded observations. Readers 225 

are referred to Sec. A of the Supplement for details of the various reference data sets considered in our assessment. 



8 

 

3.1 Point evaluation of screen temperature, 10 m wind speed, surface pressure 

The t0+6h model hindcasts of screen-level temperature, 10 m wind speed, and surface pressure are evaluated against land 

station observations during the 2010-2012 period, following the approach of Su et al. (2019). These observations have no 

direct relation to BARRA-C, since there is no analysis in BARRA-C and they are not used in the associated BARRA-R cycle 230 

t0. These fields are interpolated from the model levels using surface similarity theory (Walters et al., 2017). Our benchmarks 

include BARRA-R and ERA-Interim t0+6h hindcasts, the MERRA2 hourly time-averaged hindcast fields, and the ERA5 

hourly analysis. The models are interpolated to be coincident with the observed locations and times. As the observations are 

irregularly distributed in time, all observations within a t0+5h to t0+7h time window for t0 = 00 and 12 UTC are considered. 

Root mean square difference (RMSD), Pearson’s linear correlation, additive bias, and variance bias are calculated at each 235 

station between observed (do) and model (dm) data. Additive bias is defined as  𝐵𝑖𝑎𝑠 = 𝐸(𝑑𝑚) − 𝐸(𝑑𝑜), where 𝐸(∘) is the 

expectation operator, and the variance bias as 𝑀𝑏𝑖𝑎𝑠 =
𝑣𝑎𝑟(𝑑𝑚)

𝑣𝑎𝑟(𝑑𝑜)
− 1, so as to capture differences in the dispersion, where 

𝑣𝑎𝑟(∘) computes the variance in time. This assessment does not serve to inform the true quality of the various reanalyses at 

their native resolutions, rather it indicates whether the models contain finer-scale information captured by point 

measurements. Based on Di Luca et al., (2016), we distinguish three distinct regions with characteristics of complex 240 

topography (stations with an elevation higher than 500 m – topo), land-sea contrasts (stations that are within 1.5⁰ of the coast 

– coast), or a relatively smooth terrain (stations far from the coast – flat) (Figure S3 in the Supplement). 

The comparisons of scores across all BARRA-C domains are shown in Figure 2. For temperature, BARRA (i.e., 

BARRA-R and BARRA-C) and ERA5 show better agreement with the station data than the other coarser reanalyses for most 

metrics. For instance, BARRA-C shows lower RMSD than ERA-Interim at 80% of stations. BARRA shows greater contrast 245 

from the global reanalyses than between them. ERA5 shows warm (additive) bias while BARRA appears cooler. ERA-

Interim and ERA5 generally show less variability in temperature than observations (Mbias < 0) while the other models tend 

to have more similar temperature variability with observations. This is related to the cold bias in ERA during high 

temperature (shown in the next section). On average, BARRA scores lower RMSD than ERA5 at elevated stations (e.g., 

Snowy Mountains in SY) and smaller Mbias at near-coast stations. In general, BARRA-C shows more visible improvements 250 

to BARRA-R at stations near coasts or over complex topography in terms of RMSD, correlation and Mbias (Figure S3 in the 

Supplement). Consequently, BARRA-TA scores higher than BARRA-R on average. However, BARRA-C shows higher 

RMSD in the flat regions than in the other regions, unlike the other reanalyses. The degradation is small, within 0.6 K in 

terms of RMSD, and for AD, this is related to over-dispersion (MBias > 1). 

 For 10 m wind speed, BARRA-C, BARRA-R and ERA5 similarly exhibit lower RMSD and higher correlation with 255 

the station data than the other global reanalyses, and the differences between these three models are not pronounced. 

BARRA’s largest enhancement to ERA-Interim is found at elevated stations and near coasts, benefitting Tasmania 

particularly. Contrasting BARRA-R, BARRA-C tends to show lower RMSD at these stations (Figure S3, Supplement), and 

where we observe higher RMSD in BARRA-C, the difference is within 1 m/s. The wind estimated by all the models tends to 
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be under-dispersed (MBias < 1), relating to positive (negative) bias during light (strong) wind conditions. Such a model 260 

under-dispersion is more striking in the TA and SY domains than in the other domains, and also over coastal regions. 

For surface pressure, the higher resolution models, including ERA5, show markedly lower RMSD near coasts. 

There is very good agreement between ERA5 and the observations. BARRA-C shows some improvements over BARRA-R 

in correlation and Mbias, and over coastal regions and mountains. 

3.2 Comparison with gridded analysis of daily maximum and minimum screen temperature 265 

The reanalyses are compared against a gridded daily 0.05° × 0.05° analysis of observed maximum and minimum screen 

temperature from the Australian Water Availability Project (AWAP; Jones et al., 2009) in Figure 3. BARRA outperforms the 

driving model ERA-Interim in reducing the cold (warm) bias during summer DJF (winter JJA), particularly over the SY and 

TA domains. BARRA-C shows smaller extent of summer cold bias in daily maximum temperature over the Great Dividing 

Range than both BARRA-R and ERA5, but shares similar bias with BARRA-R elsewhere. BARRA and the global 270 

reanalyses also exhibit a considerable warm bias in the northwest of the AD domain, the Nullarbor Plain, but this is likely an 

artefact of the AWAP station density and discussed later. 

The warm bias in daily minimum temperature in winter is also similar between BARRA-C and BARRA-R. 

BARRA-C has largely inherited the biases from BARRA-R but with small local-scale differences. Despite such similarities 

in summer bias, there are more hot days (i.e., days exceeding 35 oC (308.15 K)) in Figure 3(c) in BARRA-C than in 275 

BARRA-R over inland Australia. By contrast, the summer cold temperature bias in both ERA reanalyses is also reflected by 

fewer hot days and vice versa for MERRA2. Further analysis of the temperature extremes is considered in Sec. 3.6. 

Figure 4 and Figure 5 examine the inter-seasonal and inter-annual variations in temperature bias with respect to 

AWAP for daily maximum and minimum temperature respectively. They are similar between BARRA-C and BARRA-R, 

with BARRA-C showing slightly wider inter-seasonal variability. The inter-seasonal range of bias in BARRA is around 2 K, 280 

which is similar to ERA-Interim and MERRA2 in most domains but is larger than ERA5 with the exception for TA. For AD 

and PH, the daily maximum temperature is positively biased during summer months (DJF) and is negatively biased during 

winter (JJA). The negative bias in daily maximum temperature is smallest during summer for SY and TA, and is largest 

during winter for SY. For daily minimum temperature these are reversed; e.g., the associated positive bias peaks during 

winter for AD, PH and SY, and the negative bias is maximum during summer for AD and PH.  285 

There is both inter-annual variability and a trend of the temperature biases in BARRA. For daily maximum 

temperature bias, there is a cooling trend in AD and PH, and a warming trend in TA. These trends can also be seen in ERA5 

and MERRA2. For daily minimum temperature bias, trends in BARRA are less apparent than in ERA5 and MERRA2. We 

also observe in the TA domain that BARRA shows a small warming trend with respect to AWAP.  

This analysis of variability of bias is repeated for the standard deviation of the modelled temperature and AWAP in 290 

Figure S4 and S5 of the Supplement. BARRA-C shows a slightly wider dispersion of daily maximum temperatures than 

AWAP (by 0.4 K) and BARRA-R (by 0.1 K), with the exception for the TA domain. For BARRA-TA, the standard 
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deviation of BARRA is similar to AWAP and is higher than the global reanalyses. For daily minimum temperature, both 

BARRA are similar and generally under-dispersed by 0.3 K compared to AWAP.   

3.3 Comparison with raingauges over Sydney 295 

Hourly modelled precipitation from BARRA and ERA5 are compared against observations from 27 raingauges within 1⁰ 

radius around Sydney during the warmer months (NDJF) in 2008-2013 in Figure 6. During these months convection 

processes dominate and can produce a distinct diurnal distribution in thunderstorm activity. The greatest frequency of severe 

thunderstorms occurs in November and December (Griffiths, et al., 1993). ERA5 and for a lesser extent BARRA-R, both 

underestimate the frequency of heavy rain rate > 8 mm/h. By contrast, BARRA-C underestimates the frequency of light rain 300 

rate and overestimates heavy rates. BARRA and ERA5 also distribute rainfall differently over a day. BARRA-C shows a 

bimodal distribution similar to the observations albeit showing too much rain leading up to the 06 UTC peak and too little 

rain during the daily minimum around 18 UTC. BARRA-R shows less diurnal variation in rainfall with too much rain 

distributed during 00-06 UTC, whereas ERA5 shows a pronounced early timing bias. 

3.4 Comparison with daily rainfall analysis 305 

Figure 7(a) compares the modelled precipitation against daily raingauge analysis from AWAP including MERRA2’s hourly 

time-averaged precipitation (PRECTOTCORR) product. BARRA-C shows a wet bias over the Great Dividing Range and the 

southeast area of the AD domain but improves the dry bias in BARRA-R and ERA reanalyses over the eastern and western 

seaboards and the Fleurieu and Yorke Peninsulas of South Australia. BARRA-C also shows dry biases on the western 

borders of the AD and SY domains possibly due to inconsistencies with the zero-lateral moisture mass flux on the boundary 310 

conditions (Sect. 2.1). A striking difference between BARRA and the global reanalyses is over western Tasmania where the 

latter displays a dry bias.  

In Figure 7(b), BARRA-R, ERA5 and ERA-Interim show too few heavy rain days (> 10 mm/day) over the 

coastlines, SA peninsula, and western Tasmania. BARRA-C improves on this but generally simulates more heavy rain days 

than other reanalyses and too few moderate-light rain days (<10 mm/day, not shown) in all domains. BARRA-R and 315 

MERRA2 generally show too many light rain days and the ERA reanalyses show too many light rain days in SY and eastern 

Tasmania, and too few in AD, PH, and western Tasmania. 

The inter-seasonal and inter-annual variations in precipitation bias with respect to AWAP are plotted in Figure 8. 

As with temperature (Figure 4), they are similar between BARRA-R and BARRA-C although the latter shows a larger range 

in all BARRA-C domains except TA. In particular, a wet bias is generally observed during the wet season (JJA for AD, DJF 320 

for PH), wetter months (JJA for TA) or thunderstorm season (DJF for SY). A dry bias generally occurs during the dry season 

or drier months, i.e., SON for AD, PH and TA. This is consistent with the tendency of BARRA-C to overestimate heavy rain 

rates and underestimate light rain occurrence. Some of the inter-annual variations in bias are clearly common amongst 

BARRA and the global reanalyses, e.g., in AD and PH domains during the Millennium drought (1996-2009) where the 
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various models share a dry bias. BARRA also shows different trends to the global reanalyses. There is a wetting trend post-325 

2009 for BARRA in AD but this is opposite for the other models. In SY, BARRA also displays a wetting trend while ERA 

trends drier. 

It should however be noted that, as is often found for gridded interpolated data, AWAP tends to underestimate the 

intensity of extreme rainfall events and overestimate the frequency and intensity of low rainfall events (King et al., 2012). 

The errors are larger at high elevations (SY and TA) where gauges are fewer, when there is frozen precipitation, and/or 330 

topography is exposed to prevailing winds (Chubb et al., 2016). 

3.5 Storms over Sydney 

The point gauge-based assessment in Sect. 3.3 is harsher to higher resolution models than coarser models due to the 

compound error of space and time near-misses which increases as the grid cells shrink. Therefore, we compare the simulated 

rainfall from BARRA-SY with the Bureau’s radar nowcasting rainfall product (Rainfields2; Seed et al., 2007) and use the 335 

fractions skill score (FSS) to allow assessment at different spatial scales following the approach described in Roberts and 

Lean (2007), Jermey and Renshaw (2016) and Acharya et al. (2020). The FSS provides an evaluation of the rainfall skill as a 

function of spatial resolution. The radar product, blended with gauge observations using conditional merging (Sinclair and 

Pegram, 2005), is available from 2014-onwards on a mosaic grid consisting of the domains of multiple radars. Following 

Acharya et al. (2020), the largest 36 storm events during 2014-2016 are selected based on domain-averaged daily 340 

precipitation.  

FSS is categorised as a ‘neighbourhood verification’ metric (Ebert, 2009) in which fractional coverages of grid cells 

close to observation are valued equally. The FSS tallies the relative number of ‘hits’ between the model and the observation 

at different spatial scales and different rain thresholds. An FSS of 1 represents a perfect forecast where the number of cells 

with precipitation above a threshold within a neighbourhood is identical between the model and observation grids for all 345 

possible neighbourhoods. Here, BARRA hourly rain rates are regridded to the radar grid of 1.5 km and the accumulated rain 

amounts over moving 6-hour windows are analysed. From the 36 multi-day storm event set, 1323 different 6-hour events are 

produced using a moving window. FSS is computed for each 6-hour event for each model and then the scores are aggregated 

to give an average for all events. Given that inherent bias between the observation and the models exists due to differences in 

their representativity, and also to focus on the spatial accuracy of the models, we use percentile-based thresholds computed 350 

across all the storm events. This ensures that the model and observed rain fields have an identical fraction of rain events for 

each threshold value (explained further in Sec. E of the Supplement). Figure 9 illustrates the striking differences between 

BARRA-R and BARRA-SY for five events in 2014. BARRA-SY can show more realistic organisation in the 1.5 km model 

owing to the explicit modelling of convection and can produce higher rainfall intensity. The event on 7 December 2014 in 

Figure 9(v) illustrates a summer storm case where BARRA-R shows rainfall accumulations which lack the spatial pattern 355 

common to convective organisation and evident in BARRA-SY and in observations. BARRA-R also shows excessive grid-
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point precipitation over the mountains which are absent in both observations and BARRA-SY. At the same time, BARRA-

SY can show too many cells (Figure 9(ii)) which can produce streaks of light rainfall (Figure 9(iv)).  

 The FSS results in Figure 10 show that BARRA-SY is more skilful over all scales than BARRA-R for all threshold 

levels. FSSuniform is the FSS of a forecast field with a uniform fractional coverage equal to the fraction of points observed 360 

with any rain (>0.2mm/hr). Scores greater than FSSuniform is considered skilful. For the lowest threshold (56%, i.e. 4 mm in 

the observed radar values), the uniform score (FSSuniform) is reached at scales of 0.3⁰ (BARRA-SY) and 0.65⁰ (BARRA-R). 

At the highest threshold (99.9%, 64 mm), the uniform score is reached at scales of 2.4⁰ and 3.35⁰, respectively. The contrast 

between the two BARRA FSSs is therefore greater at the higher precipitation thresholds. FSSs for higher rainfall thresholds 

are also generally lower as the area of rain being sampled becomes more localized and is more challenging to be reproduced 365 

correctly in the models.  

3.6 Added value analysis for temperature and rainfall extremes 

We apply an approach similar to Di Luca et al. (2015) to quantify the added value (AV) in the representation of 

climatological extremes from BARRA-C by comparing its skill to the skill in BARRA-R. The warm extremes of daily 

maximum temperature, the cold extremes of daily minimum temperature and the wet extremes of daily precipitation are 370 

assessed against AWAP. The statistics for extremes (X) are given by the percentiles of the daily temperature and 

precipitation values over the 29-year time period. We use 𝐴𝑉𝑑 =

[𝑑(𝑋𝐵𝐴𝑅𝑅𝐴−𝑅 , 𝑋𝐴𝑊𝐴𝑃) − 𝑑(𝑋𝐵𝐴𝑅𝑅𝐴−𝐶 , 𝑋𝐴𝑊𝐴𝑃)] [𝑑(𝑋𝐵𝐴𝑅𝑅𝐴−𝑅, 𝑋𝐴𝑊𝐴𝑃) + 𝑑(𝑋𝐵𝐴𝑅𝑅𝐴−𝐶 , 𝑋𝐴𝑊𝐴𝑃)]⁄  of Di Luca et al. (2016) 

where d defines a distance metric between the model-derived and AWAP-derived statistics computed across the grid cells. 

To capture both the total errors and spatial patterns of the statistics, we let 𝑑 ≡ 𝑀𝑆𝐸(𝐴, 𝐵) = 𝐸[(𝐴 − 𝐵)2]  to define the 375 

mean squared error and also use 𝑑 ≡ 𝐶𝑜𝑟𝑟(𝐴, 𝐵) = 1 − 𝑅(𝐴, 𝐵) with R as Pearson’s correlation. Larger positive AV values 

suggest smaller errors in BARRA-C than in BARRA-R and thus substantial added value by the downscaling of BARRA-R. 

 Figure 11 plots AV scores for different BARRA-C domains showing that AV is not gained consistently across the 

percentiles, variables and domains. For warm extremes of daily maximum temperature, BARRA-C shows positive AVMSE 

over BARRA-R in the TA and AD domains. Low or negative AVMSE for AD, PH and SY (inland region) is mainly due to the 380 

warm and wet bias in BARRA-C seen in Figure 3(c) and 6(a,b). The positive AVCorr indicates that BARRA-C captures the 

spatial patterns of the warm extremes across the domains, particularly over the coastal and high topography regions (see also 

Figure S6 of the Supplement).  

For cold extremes in Figure 11(b), BARRA-C still shows positive AVMSE over all domains except SY. This AV is 

mostly contributed by coastal regions as seen in Figure S6. Negative AVMSE in SY is related to warmer cold extremes 385 

particularly over the Great Dividing Range. Positive AVCorr is seen in TA but not in the other domains. However, it should 

be noted that the BARRAs are generally strongly correlated with AWAP with R mostly between 0.7 to 0.9.  

AV from BARRA-C for wet extremes of precipitation relates more to the spatial patterns of the extremes (Figure 

11(c)). There is negative AVMSE for all domains except TA which remains near zero, highlighting the BARRA-C rainfall 
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bias. On the other hand the AVCorr is positive for all domains except AD for the highest three rainfall percentiles, which 390 

indicates better spatial correlation of rainfall than BARRA-R. 

4 Discussion  

The BARRA-C 1.5 km models are strongly forced by BARRA-R with both initial conditions every 6 hours, and hourly 

boundary conditions. BARRA-C has therefore inherited much of the same quality of the BARRA-R, however, it does 

provide additional information about local near-surface meteorological conditions. BARRA-C provides better representative 395 

point-scale estimates of screen temperature, 10 m wind speed and surface pressure at some areas with complex topography 

or near coastlines, and mainly inherits the skills of BARRA-R over other areas. The degradation from BARRA-R is slight, 

within (RMSD) 0.6 K for temperature and 1 m/s for wind speed. 

BARRA-C also shows a 10 m wind speed bias that is positive (negative) during light (strong) wind conditions, similar 

to the bias in BARRA-R. Many factors such as boundary layer mixing, form drag for subgrid orography and surface 400 

properties can influence wind estimation over land. The representation of the stable boundary layer remains challenging due 

to the multiplicity of physical processes and their complex interactions, i.e., turbulence, radiation, land surface coupling and 

heterogeneity and turbulent orographic form drag. Models typically suffer biases in 2 m temperature and wind speed under 

such conditions (Steeneveld, 2014 and references therein). 

BARRA-C also inherits the domain-averaged biases in daily maximum and minimum temperature from BARRA-R. It 405 

reduces some bias over the Great Dividing Range but simulates more hot days than seen in observations particularly over 

inland Australia. However, in some inland regions the AWAP analyses are poorer quality due to low observing station 

density. For example, in the northwest of the AD domain - the Nullarbor Plain - both BARRA and the global models show a 

large warm bias in daily maximum temperature, however, the station density used in AWAP is less than 2 per deg2 (Sec. A 

of the Supplement). 410 

The daily temperature bias varies differently in time between the four domains, with AD and PH showing a change of 

sign in bias between summer and winter months, while SY and TA show persisting negative (positive) bias for daily 

maximum (minimum) temperatures. Such similarities between the domains may be related to their similarities in terms of 

climate and land cover. Bush et al. (2020) discussed that changes in RAL1 for land surface representations (Table 1, Sec. 

2.1) are important to improve the diurnal biases in pre-RAL1 configurations. These could benefit the biases seen over 415 

vegetated areas, particularly for daily minimum temperature in SY and TA.  

Differences in land classification between BARRA and ERA reanalyses can explain some of the differences seen in the 

comparison of gridded daily maximum and minimum temperatures seen in Figure 3. BARRA avoids the bias in ERA over 

the salt lakes in SA by modelling them with land characteristics based on IGBP, whereas ERA uses CCI. 

The dry bias of higher rain rates seen in the coarser scale models during the thunderstorm seasons in the SY domain is 420 

alleviated by BARRA-C. The underestimation of the peak rain rates in BARRA-R and ERA5 was expected from the lack of 
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convection organisation due to the use of a cumulus parameterization, whereas BARRA-C evidently shows more realistic 

organization and does not underestimate peak rain rates. However, the latter also exhibits too much heavy rain and not 

enough light rain which is likely due to the still under-resolved convection and the model’s inability to resolve detrainment 

from convective updrafts. This is consistent with the findings reported in other studies. For example, Lean et al. (2008) and 425 

Hanley et al. (2016) found that 1 km grid length UM simulations tend to produce cells that were too intense, too far apart and 

with not enough light rain. The latter also noted insufficient small storms in both shower cases and large storm cases, and too 

many large cells in shower cases.  

The short hindcast length in BARRA-C (Sect. 2.2) poses a further limitation. The rainfall excess could result from 

model spin-up. Extra energy (i.e. CAPE) builds up during the early timesteps when there is insufficient convection which is 430 

finally released in the form of convective precipitation in later timesteps (Lean et al., 2008). Champion and Hodges (2014) 

have also noted that modelled precipitation intensities are most accurate when the model is initialised 12 hours before the 

rain maxima. The moisture conserving zero-lateral mass flux boundary conditions in BARRA-C exacerbate this issue. 

Moisture variables are not advected across boundaries and instead allowed to develop via physical processes in the model. 

These processes take some time to spin-up in each hindcast leading to near-boundary downstream moisture bias, e.g., 435 

western boundary of the annual rainfall maps of AD and SY domains (Figure 7(a)). These issues of precipitation with short 

hindcasts can be improved with an assimilation system that will allow high resolution features to propagate from one 

hindcast cycle to the next (Dixon et al., 2008). In spite of these limitations, we find that BARRA-C provides a more 

representative rainfall climatology for heavy rain days near the coastal and mountainous regions, and better sub-daily rain 

spatial patterns. 440 

BARRA-C simulates peaks in the diurnal distribution of precipitation better than BARRA-R and ERA5. However, we 

also find that precipitation may be initiated too early and grow too rapidly. Consequently, BARRA-C under represents off-

peak rainrates resulting in an over-pronounced diurnal cycle, seen in Figure 4(b) for BARRA-SY in summer. This is contrary 

to the expectation for all models to initiate too late since subgrid-scale initial plumes cannot be represented. The early 

initiation bias in BARRA-R is due to the CAPE-based trigger mechanism of the convection scheme (Lean et al., 2008). In 445 

the case of the kilometre-scale UM, the reasons are likely several. Hanley et al. (2015) partly attributed timing bias in 

convection initiation, which is too early in shower cases and too late in the larger storm cases, to unresolved convection at 

the kilometre-scale grid length. Other reasons may be that stochastic perturbations (Sect. 2.1) or model responses to the pre-

convective profile are too strong, or that the profile has inadequate convective inhibition (CIN). The various aspects 

(intensity, size and timing) of simulated cells have shown to improve with adjustments to the mixing length used in the 450 

subgrid turbulence scheme, but not all aspects improve simultaneously (Hanley et al., 2015).  

There are trends and/or inter-annual variability of bias in BARRA against analyses of temperature and precipitation 

observations, and some of these trends are also apparent in the global reanalyses. BARRA-C has similar bias variability to 

BARRA-R, and its magnitude is similar or less than the global reanalyses. Spurious trends or artificial shifts in reanalyses 

could result from abrupt changes to the amount of data assimilated, e.g., at the start and end of satellite missions or the 455 
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various observational data archives. In BARRA-R, corrections were also made to the observation screening and thinning 

rules mid-production (Su et al., 2019). However, it is outside of the scope of this work to assess the impacts of various 

observational changes. 

BARRA-C shows better agreement with the pattern and the relative distribution of radar-derived rainfall during storms 

over Sydney. This improvement is due to the use of explicit convection (Sect 2.1) and a higher resolution model and is 460 

consistent with earlier studies with UM (e.g., Lean et al., 2008). Comparisons of FSS from the same events including ERA5 

show that its lower resolution leads to larger representation errors and lower FSS than BARRA-R despite both parametrising 

convection (Figure S6, the Supplement). While BARRA-C still shows considerable bias compared to both rain gauges and 

radar observations, it adds value to BARRA-R and ERA by providing more realistic and accurate spatial representations of 

rainfall during storms at various spatial scales and percentile thresholds. 465 

The AV analysis of temperature and precipitation extremes shows that BARRA-C provides some value over 

BARRA-R in various aspects including the spatial patterns of the warm temperature extremes and wet precipitation extremes 

and bias in cold extremes over coastal regions. Low AV can be related to temperature and precipitation biases, which differ 

between the regions. For example, the BARRA-C wet bias relative to AWAP, particularly over the PH domain (Figure 7(b)), 

is responsible for the low AVMSE for rainfall. The positive AVcorr for precipitation in BARRA-SY agrees with the above FSS 470 

analysis, which somewhat avoids the wet bias issue through percentile-based thresholding. 

Assessing AV for wet extremes may also be problematic with AWAP. As an interpolated dataset, AWAP tends to 

underestimate the intensity of extreme heavy rainfall observed at stations and the issue is more pronounced at locations with 

sparse observational sampling or high topography, particularly in SY and TA (Chubb et al. 2016; King et al., 2012). 

While this analysis suggests that limited value is added by the downscaling of BARRA-R for these extremes, the 475 

true AV of BARRA-C at its native resolution is not assessed here given the limited resolution of AWAP and can be explored 

further with scale-dependent AV analysis of Di Luca et al. (2016). Determining AV at the kilometre scale is also expected to 

be challenging as more accurate and representative observational data sets are needed.  

 

 480 

5 Conclusions 

The recent development of CPMs in NWP has facilitated the creation of kilometre-scale regional reanalysis and climate 

projections. BARRA is the first regional reanalysis that focuses on the Australasian region. It has been developed with 

significant co-investment from state-level emergency service agencies across Australia. BARRA-C is the critical component 

of the project that provides these agencies with the means for developing a deeper understanding of past extreme weather at 485 

local scales, especially in areas that were not adequately served by observation networks (e.g., Figure S3, the Supplement). 

The four mid-latitude domains of BARRA-C are designed to address these needs and BARRA-R is needed to establish a 
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driving model for BARRA-C and utilise more of the Australian local observations (Su et al., 2019). Completed in June 2019, 

the 29-year BARRA-R reanalysis (1990 to February 2019) and its downscaled counterparts BARRA-C, form a collection of 

high-resolution gridded meteorological datasets with 12 and 1.5 km horizontal grid lengths and 10 minutes to hourly time 490 

resolution, produced using systems closely related to the Bureau’s present (as of October 2020) regional NWP systems. The 

hybrid model-level and pressure-level gridded data from BARRA-C are also available to drive/force sub-kilometre weather 

or non-weather models. 

 This paper describes the experimental configuration of BARRA-C and provides a preliminary assessment to 

illustrate its skills over BARRA-R and the global reanalyses at their subgrid scales. As expected from a hindcast-only 495 

system, it inherits the domain-averaged biases from BARRA-R. On the other hand, our added value analysis shows that 

BARRA-C simulated different climatological extremes for temperature. Altogether, there exists added skill at the local-scale 

for temperature and wind, particularly in topographically complex regions in SY and TA, and coastal regions in all domains. 

As expected, the contrasts in skills and biases are most apparent between BARRA and the coarser-scale reanalyses (ERA-

Interim, MERRA2). BARRA-R and BARRA-C produce more distinctive precipitation estimates for intensity, sub-daily 500 

timing and hourly spatial patterns that are characteristics of their physical schemes. BARRA-C also provides different spatial 

distribution of precipitation over complex terrains and more skilful representations of sub-daily rainfall fields. The latter 

suggests that BARRA-C is more suited for studies of extreme rainfall events, albeit still has a high rainfall bias. The high 

rainfall bias also manifests in the climatological extremes of precipitation. These findings highlight that improvements are 

still needed in for future kilometre-scale downscaled reanalysis, e.g., adding kilometre-scale data assimilation and further 505 

model development. At this stage, BARRA-R and BARRA-C can be used conjunctively to improve individual estimates of 

temperature and precipitation. Some of their biases, including for 10 m wind, could also be addressed via post-processing 

using multi-variate regression models or quantile matching methods such as those of Glahn and Lowry (1972), and Cattoën 

et al. (2020). Users of BARRA are strongly encouraged to undertake a local evaluation to ascertain the skills of BARRA-C 

for their regions and parameters of interest.  510 

BARRA lays some of the important groundwork for future reanalysis-related activities and developing national 

climate risk services at the Bureau. Some of the issues identified in this work are being actively researched by collaborating 

national meteorological centres and academic institutions, within the “Regional Atmosphere” configuration development 

framework (Bush et al., 2020). Future reanalyses will also benefit from the recent advances in Bureau’s NWP, whereby an 

assimilation system (Rennie et al., 2020) and ensemble are introduced in its upcoming kilometre-scale models, to allow 515 

propagation of high-resolution information between hindcast cycles and estimation of uncertainties. 

Code availability 

All code, including the UM (version 10.6) and JULES (version 4.7), used to produced BARRA-C is version-controlled under 

the Met Office Science Repository Service. The UM is available for use under license, 
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http://www.metoffice.gov.uk/research/modelling-systems/unified-model. JULES is available under licence free of charge, 520 

http://jules-lsm.github.io/access_req/JULES_access.html. The infrastructure for building and running UM-JULES 

simulations uses the Rose suite engine (https://metomi.github.io/rose/doc/html/index.html) and scheduling using the Cylc 

work flow engine (https://cylc.github.io/, Oliver et al., 2019). Both Rose and Cylc are available under Version 3 of the GNU 

General Public License. The BARRA-C Rose/Cylc suite, with an identifier u-ak499, is version-controlled under the Met 

Office Science Repository Service and contains the UM-JULES science namelist and simulation configurations. Output from 525 

the model simulations was converted from UM fieldsfile format to netCDF4 format using Iris (https://scitools-

iris.readthedocs.io/en/stable/).  

 

Data availability 
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to http://www.bom.gov.au/research/projects/reanalysis (last access: 31 August 2020; Bureau of Meteorology, 2020) for 
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the same licensing conditions. 
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Figure 1: Domains of BARRA-C, (left to right) BARRA-PH (over Perth), BARRA-AD (Adelaide), BARRA-TA (Tasmania), and 

BARRA-SY (Sydney), showing the modelled orography. Red circles indicate the locations of the state capital cities. 

 

  



28 

 

 810 

 

Figure 2: Box plots showing the distribution of evaluation scores of various models for (a) screen-level temperature, (b) 10 m wind 

speed, and (c) surface pressure across the four BARRA-C domains. Three regions are analysed separately: coastal (‘coast’), 

complex topography (‘topo’), and flat, and the models distinguished by colours. The scores are calculated on model hindcasts valid 

between 05-07 UTC, and 17-19 UTC against observations during 2010–2012. 815 
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Figure 3: Mean difference in (a) summer (DJF) daily maximum temperature, (b) winter (JJA) daily minimum temperature and (c) 820 
number of days with temperature exceeding 35 ⁰C, in various models during 1990-2018, with respect to AWAP. The models are 

regridded onto the AWAP grid using nearest-neighbour interpolation. 
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Figure 4: Timeseries of monthly mean difference in daily maximum temperature averaged over various BARRA-C domains with 825 
respect to AWAP. The timeseries are shaded around their individual 1990-2018 means.  
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Figure 5: As with Figure 4 but for daily minimum temperature. 

 

 830 



32 

 

 

Figure 6: Distribution of (a) hourly rain rate (mm/h) and (b) rain over 24 hours in UTC over Sydney during November to 

February of 2006-2018. 
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Figure 7: Mean difference in (a) annual precipitation and (b) annual count of wet days with depth ≥ 10 mm. The models are 835 
regridded onto the AWAP grid using nearest-neighbour interpolation. 
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Figure 8: Mean difference in seasonal precipitation totals over various BARRA-C domains with respect to AWAP. Black curves 840 
are shaded around the 1990-2018 means. Note that the y-axes in (a)-(d) are different. 
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Figure 9: Simulated 6-hour rainfall accumulation [mm] in BARRA-SY and BARRA-R, compared with rainfall derived from the 

composite radar network around the Sydney area for five events. 
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 845 

Figure 10: Aggregated FSS across 1323 6-hour storm events as a function of neighbourhood distance (degrees) for 6-hour rainfall 

above three percentile thresholds (distinguished by colours, percentile values, and observed amount in mm).  The solid curves 

indicate the score for BARRA-SY, dotted curves for BARRA-R, and the dashed horizontal lines the uniform score (FSSuniform) for 

each threshold as specified by Roberts and Lean (2007).  

 850 

Figure 11: Added value (AV) analysis of the (a) warm extreme of daily maximum temperature, (b) cold extreme of daily minimum 

temperature, and (c) wet extreme of daily precipitation, for all four BARRA-C domains. 
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Table 1: An overview of major differences between BARRA-C, BARRA-R and the mid-latitude version of RAL1 (RAL1-M) 

models. The configurations for BARRA-R are described in Su et al. (2019) and Walters et al. (2017), and those for RAL1-M in 

Bush et al. (2020). 860 

Aspects BARRA-R BARRA-C RAL1-M 

Nesting setup Nested in 6-hourly ERA-

Interim boundary conditions 

Nested in hourly BARRA-R 

boundary conditions 

NA 

Horizontal grid length in 

radial resolution 
0.11⁰ 0.0135⁰ 0.0135 to 0.04⁰ 

Vertical model level set 70 levels, with 50 levels 

below 18 km, and 20 levels 

above this, fixed model lid of 

80 km above the sea level. 

 

70 levels, with 61 levels below 18 km, 9 levels above this, 

fixed model lid of 40 km above sea level 

Model timestep 300 seconds 60 seconds 60-100 seconds, depending 

on the model resolution 

UM model version 10.2 10.6 ≥ 10.6 

JULES model version 3.0 4.7 ≥ 4.8 

Data assimilation 6-hourly 4D variational 

analysis  

None NA 

Moisture variable SL 

advection schemes 

Quasi-monotone (Bermejo and Staniforth, 1992) Posteriori monotonicity filter 

(PMF) 

Convective 

parameterization scheme 

Mass-flux convection 

scheme of Gregory and 

Rowntree (1990) 

None 

Gaseous absorption 

(radiation) scheme 

GA6 (Walters et al., 2017) GA7 (Walters et al., 2019) 

Include spectral land-

surface albedo  

No Yes 

Canopy radiation back-

scatter scheme 

Isotropic Anisotropic 

Cloud microphysics 

scheme 

Single moment scheme 

based on Wilson and Ballard 

(1999) 

Wilson and Ballard (1999), with prognostic graupel 

(Wilkinson and Bornemann, 2014) and improved warm rain 

scheme (Boutle et al., 2014a) 

Boundary layer scheme 1D vertical turbulent mixing 

scheme of Lock et al. (2000) 

Blended boundary layer parameterization (Boutle et al., 

2014b) 

Land surface and 

hydrology 

GA6 (Walters et al., 2017), PDM subgrid-scale heterogeneity, 

JULES urban parameters are optimized for Australia (Dharssi 

et al., 2015) 

GA7 (Walters et al., 2019) 

where TOPMODEL is used, 

and RAL1 changes, namely 

use of CCI-based land cover 

tiles, reduced bare soil 

fraction of short vegetation 

tiles, scalar roughness 

lengths for grass tiles, and 

revisions to the albedos of 

vegetation tiles. 

BL stochastic 

perturbations 

None Perturbation to temperature Perturbation to temperature 

and moisture 

BL stability functions For stable BL, the “sharp” 

function of Lock et al. (2016) 

is used over the sea, and over 

land is a blended 

combination of the Louis 

The “sharpest” function for stable BL everywhere. The 

convective BL stability functions are based on UKMO Large-

Eddy model simulations. 
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(1979) and the “sharpest” 

function, for heights below 

200 m. The convective BL 

stability functions are based 

on UKMO Large-Eddy 

model simulations. 

Critical relative humidity 

profile  

0.92 in the lowest layer, with 

a gradual decrease to 0.8 at 

model level 17 (~2100 km). 

0.96 in the lowest layer, and decrease to 0.8 at model level 15 

(~850 km). 

 


