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Abstract. Regional reanalyses provide a dynamically consistent recreation of past weather observations at scales useful for 

local-scale environmental applications. The development of convection-permitting models (CPMs) in numerical weather 

prediction has facilitated the creation of kilometre-scale (1-4 km) regional reanalysis and climate projections. The Bureau of 

Meteorology Atmospheric high-resolution Regional Reanalysis for Australia (BARRA) also aims to realise the benefits of 15 

these high-resolution models over Australian sub-regions for applications such as fire danger research, by nesting them in 

BARRA’s 12 km regional reanalysis (BARRA-R). Four mid-latitude sub-regions are centred on Perth in Western Australia, 

Adelaide in South Australia, Sydney in New South Wales (NSW), and Tasmania. The resulting 29-year 1.5 km downscaled 

reanalyses (BARRA-C) are assessed for their added skill over BARRA-R and global reanalyses for near-surface parameters 

(temperature, wind and precipitation) at observation locations and against independent 5 km gridded analyses. BARRA-C 20 

demonstrates better agreement with point observations for temperature and wind, particularly in topographically complex 

regions and coastal regions. BARRA-C also improves upon BARRA-R in terms of intensity and timing of precipitation 

during the thunderstorm seasons in NSW, and spatial patterns of sub-daily rain fields during storm events. BARRA-C 

reflects known issues of CPMs: overestimation of heavy rain rates and rain cells, and underestimation of light rain 

occurrence. However, aAs a hindcast-only system, BARRA-C largely inherits the domain-averaged biases and temporal 25 

variations of biasespattern from BARRA-R but simulatesdoes produce different climatological extremes for temperature and 

precipitation. An Aadded value analysis of temperature and precipitation extremes shows that BARRA-C provides 

additionalded skill over BARRA-R when compared to gridded observations. The  for the spatial patterns of BARRA-C  the 

warm temperature extremes and wet precipitation extremes are more highly correlated with observations.  and bias in 

BARRA-C adds value in representation of the spatial pattern of ccold extremes over coastal regions  but  remains biased in 30 

terms of magnitude. , but simulates different climatological extremes for temperature and precipitation. FurtherIn particular, 

BARRA-C reflects known issues of CPMs: overestimation of heavy rain rates and rain cells, and underestimation of light 

rain occurrence. 
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1 Introduction 

At horizontal kilometre-scales (1-4 km), convection-permitting models (CPMs) have provided a step-change in weather 35 

forecasting capabilities, particularly for forecasting rainfall and cloud cover (e.g., Lopez et al., 2009; Mailhot et al., 2010; 

Brousseau et al., 2016; Clark et al., 2016) and over local regions with complex terrain or land-sea boundaries (Calmet et al., 

2018). Similarly, CPMs have provided new insights in regional climate projections (e.g., Argüeso et al., 2014; Prein et al., 

2015; Kendon et al., 2017; 2019) beyond current global models. For instance, regional CPMs have suggested that future 

increases in short-duration precipitation extremes are larger than what can be expected from increases in atmospheric 40 

moisture alone (Kendon et al., 2021 and references therein). Major efforts are underway toward refining the horizontal 

resolution of global climate models to kilometre-scale (Schär et al., 2020). Extreme weather events such as thunderstorms, 

damaging winds, and hailstorms, are better represented in higher resolution models (Walsh et al., 2016). Current gGeneral 

practice is that grid spacings less than about four kilometres are required to explicitly model small convective cloud 

processes, replacing parameterizations of moist convection. This avoids several issues seen in parameterized convection 45 

schemes used in models with a grid spacing greater than 10 km (Lean et al., 2008) and the “grey zone” issues in mesoscale 

(4-10 km) scale models (Gerard et al., 2009). A common assumption of traditional convective parameterizations is that cloud 

fields adjust so much more rapidly than the processes forcing it that this adjustment can be modelled as instantaneous. Such 

schemes thus have no “memory” of the meteorological flow, leading to unrealistic model behaviours. Models with 

parameterized convection exhibit including premature convective initiation, misrepresented diurnal cycle of precipitation, 50 

over-estimation of drizzle occurrence, under-estimation of extreme rainfall (Lean et al., 2008; Clark et al., 2016), fewer 

identifiable mesoscale convective systems with less structure (Done et al., 2004), and rainfall coastal locking where 

precipitation generated over the sea does not penetrate inland (Bureau of Meteorology, 2018). When the parameterization 

scheme is used at a finer resolution than 10 km, it also tends to produce intermittent on-off behaviour of deep convection 

(Gerard et al., 2009). 55 

By contrast, CPMs can represent deep convection and mesoscale convective organization explicitly on the model 

grid. Explicit representation modelling of convection improves the physical nature ofbetter captures precipitation persisting 

across orographic or land-sea boundaries by the advection of clouds/precipitation. Better representation of topography in 

CPMs also leads to improved wind circulation patterns and resulting vertical velocities (e.g., Fosser et al., 2015). Improved 

modelling of the interactions between storm cells and their organisations should improve the estimation of damaging winds. 60 

Many studies have found a better diurnal cycle of tropical convection over land, cloud vertical structure, and coupling 

between moisture convection and convergence in CPMs (Stein et al., 2015; Leutwyler et al., 2017). A finer grid resolution 

can improve the flow and wind simulation over the recirculation zone behind the escarpment of a hill and higher vertical grid 

resolution improves simulation on the lee side of hills (Ma and Liu, 2017). 

These benefits from using CPMs are however yet to be fully realized in many atmospheric reanalyses. Atmospheric 65 

reanalyses combine prior knowledge of physical processes captured in the models with observations from a diverse range of 
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instruments to form spatially complete representations of the historical atmospheric conditions. They are therefore invaluable 

for revisiting applications concerned withthe local weather processes, climate signals or events that were not fully observed, 

for applications such as climate monitoring and change assessments (Kendon et al., 2017; 2019), renewable energy 

assessment (e.g., Frank et al., 2020), and hazard management (e.g., Vitolo et al., 2019). Global-scale reanalyses have 70 

advanced in quality and quantity during the past three decades with improvements to models, data assimilation methods,  the 

number of observations and ensemble methods (Kalnay et al., 1996; Ebita et al., 2011; Gelaro et al., 2017; Dee et al., 2011), 

and also with increasing spatial resolutions. The latest addition, ERA5 (Hersbach et al., 2020), has a horizontal spacing of 31 

km. Users of reanalyses have called for development towards finer spatial and temporal scales, i.e.,,  below 10 km horizontal 

spacing and sub-daily time intervals (Gregow et al., 2016). Such scales are needed in localized climate monitoring where 75 

local-scale mechanisms influenced by complex topography, coastlines and convective processes are responsible for local 

climate features and feedbacks.  

Departing markedly from the global reanalyses are the regional reanalyses that use limited area models at higher 

horizontal resolutions over sub-regions, e.g., such as North America (Mesinger et al., 2006), the Arctic polar region 

(Bromwich et al., 2016), Europe (Borsche et al., 2015 and references therein), India (Mahmood et al., 2018) and Australia 80 

(Su et al., 2019). These reanalyses use grid lengths in the order of 10 km to improve the representation of sub-daily 

variability and near-surface weather. These are generally produced with global atmosphere model configurations that include 

convection parameterizations (e.g., Su et al., 2019). Recently, Wahl et al. (2017) overcame this with a 7-year 2 km reanalysis 

over Germany, with the assimilation of conventional observations and radar-derived rain rates and, showeddemonstrating 

improved spatiotemporal variability and intensity frequency of precipitation. Such a direction in the development of the 85 

reanalyses, combined with the higher resolution regional projections, can offer a more accurate picture of changes in 

regional meteorology and extreme weather in the changing climate. 

Dynamical downscaling is frequently used to estimate the dynamic variables at scales finer than those of coarser-

resolution climate or weather models. This approach is undertaken at the Bureau of Meteorology (Bureau) in Australia to 

produce kilometre-scale weather forecasts and/or ensemble forecasts over major cities and a 1.5 km forecast-only model has 90 

been used since 2017 for added value over the Bureau’s lower resolution global system. This goal is also pursued in the 

Bureau of Meteorology Atmospheric high-resolution Regional Reanalysis for Australia (BARRA; Jakob et al., 2017) project. 

Within this context, this paper is a companion paper to Su et al. (2019) where an Australian regional 12 km reanalysis 

system (BARRA-R) was presented. Here we describe dynamical downscaling of BARRA-R using the UK Met Office 

(UKMO) Unified Model (UM) at a 1.5 km horizontal grid length over four mid-latitude sub-regions of Australia (Figure 1) 95 

over 29 years from January 1990 to February 2019. These regions are chosen in partnership with state fire and emergency 

management agencies, because of the important advantages that dynamically downscaled reanalyses can provide for local-

scale planning and management to reduce future risks due to extreme weather events such as bushfires. The four 

downscaling models, collectively referred to as BARRA-C, yield gridded products that include a variety of 10 minute to 



4 

 

hourly surface parameters describing both weather and land-surface conditions as well as and hourly upper-air parameters 100 

covering the troposphere and stratosphere with a 40 km model top on 70 model levels and 37 pressure levels. 

This paper describes the model and the experimental design in Sect. 2, and Sect. 3 provides the first assessment of 

the downscaled reanalysis with focus on screen-level temperature, 10 m wind and precipitation. Comparisons with the 

BARRA-R and global reanalyses are also made to illustrate the added value of BARRA-C. Our findings are further 

discussed in Sect. 4, with an overall summary in Sect. 5. 105 

2 BARRA-C 

The development of BARRA is based on the Bureau’s operational deterministic NWP forecasting over the Australian region 

using the Australian Community Climate and Earth-System Simulator systems ACCESS-R and ACCESS-C (Puri et al., 

2013). The operational version at the time (Australian Parallel Suite 2) of ACCESS-R is the national 12 km 6-hourly 

analysis/assimilation and 3-day forecasting system (Bureau of Meteorology, 2016). It ACCESS-R has provided the initial 110 

and boundary conditions to initialize and constrain ACCESS-C over 6 smaller domains centred at the Australian cities up 

untill 2020 (Bureau of Meteorology, 2018). The APS2 ACCESS-C dynamically downscales ACCESS-R to provide 6 hourly, 

1.5-day forecasts at 1.5 km horizontal resolution. The relation between BARRA-R and BARRA-C mirrors this system but is 

implemented with shorter forecast (or hindcast) range, and a newer version of the meteorological forecast model and science 

configuration (Section 2.1). In particular, BARRA-R is nested in ERA-Interim reanalysis (Dee et al., 2011) and includes four 115 

assimilation and hindcast cycles per day (Su et al., 2019)., and BARRA-C  is a hindcast-only system whichthat inherits the 

analysis from BARRA-R as initial conditions. While BARRA-C refers to the collection of the four sub-domain models, we 

use BARRA-AD, BARRA-PH, BARRA-SY and BARRA-TA to denote individual domains centred at Adelaide (South 

Australia, AD), Perth (Western Australia, PH), Sydney (New South Wales, SY), and Tasmania (TA) (Figure 1). 

 The PH and AD domains are similar in terms of climate, with having arid deserts north of their domains, and 120 

temperate dry hot or warm summers near coasts, and arid steppe climate in-between (Peel et al., 2007). SY has a temperate 

climate with warm to hot summers and lacks a dry season, while TA differs with a cooler summer. Cool-season (C3) 

perennial grass (C3) is the dominant vegetation over the southwestern region of PH and near-coast region of AD, and 

broadleaf trees are widespread in the SY and TA domains (Figure S1 in the Supplement). There are several large ephemeral 

salt lakes (e.g., Lake Torrens, Lake Gairdner) in the AD domain, and these are modelled as land points with bare soil. Of the 125 

four domains, It is only SY that has a distinct thunderstorm season which occurs during November-March. Thunderstorms 

are far less frequent in the other three domains due to lower incidence of warm, humid air masses, favourable for storm 

development and also prevalent stable conditions during the potentially favourable warmer months owing to subtropical 

high-pressure belt over or near these areas (Kuleshov et al., 2002). In contrast to PH and AD, tThe SY and TA domains are 

topographically complex., with tThe Great Dividing Range extendsing north to south through the SY domain and the TA 130 

domain features low mountains and a landscape of plateaus. and low mountain ranges in the TA domain.  
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2.1 Forecast model 

The UM (Davies et al., 2005; version 10.6) is the grid-point, atmospheric model used in BARRA and ACCESS. It uses a 

non-hydrostatic, fully compressible, deep atmosphere formulation and its dynamical core (Even Newer Dynamics for 

General atmospheric modelling of the environment, ENDGame) solves the equations of motion using mass-conserving, 135 

semi-implicit, semi-Lagrangian (SL), time integration methods (Wood et al., 2014). The prognostic variables are three-

dimensional wind components, virtual dry potential temperature and Exner pressure, dry density, and mixing ratios of moist 

quantities. These variables are discretized horizontally onto a regular longitude-latitude grid with Arakawa-C staggering 

(Arakawa and Lamb, 1977), and vertically with the Charney–Phillips staggered grid (Charney and Phillips, 1953). THere the 

BARRA-C model has a horizontal spacing of 0.0135° × 0.0135° (about 1.5 km at the equator) and its vertical levels follow 140 

the modelled orography at the surface and relax to surfaces of uniform radial height after 62 model levels (~17 km above 

ground) in the upper atmosphere with the model top height of 40 km. At this resolution, the model is run with an integration 

time step of 60 seconds. 

The science configuration of the model in BARRA-C is based on the UK Met Office operational suite OS36, while 

BARRA-R is based on Global Atmosphere (GA6) configuration of Walters et al. (2017). While the OS36 model 145 

configurations preceded the release of the first UM Regional Atmosphere and Land (RAL1) configuration of Bush et al. 

(2020), BARRA-C implements some of the improvements fromin RAL1. Table 1 summarizes the differences between 

BARRA-C, BARRA-R, and RAL1. The physical parameterization schemes common to BARRA-C and BARRA-R include a 

variant of Wilson and Ballard (1999) for mixed-phase cloud microphysics, the large-scale cloud scheme of Smith (1990), 

and the radiation scheme of Edwards and Slingo (1996), all of which have been improved since publication. The UM 150 

BARRA-R uses a convection parameterization scheme based on Gregory and Rowntree (1990), which is not used in 

BARRA-CC. At With the a grid length of 1.5 km, the horizontal grid length approaches the depth of the boundary layer 

(Hanley et al., 2015) and as such it is no longer appropriate to use the 1D boundary layer parameterization that restricts 

mixing to the vertical. BARRA-C therefore uses a blended boundary layer parameterization (Boutle et al. 2014) where the 

scheme transitions from the 1D vertical turbulence scheme of Lock et al. (2000) to a 3D subgrid turbulence scheme based on 155 

Smagorinsky (1963) as a function of the grid length to the turbulent length scale.  The mixing length  of 300 m, which can be 

tuned to control the smoothness of the fields and the number of small cells, is taken as 300 m from which is used in the 

operational systems. 

The cloud scheme uses a profile of critical relative humidity values (RHcrit), above which a grid box contains some 

cloud if the relative humidity is exceeded. Based on the assumption that there should be less subgrid variability in humidity 160 

in for smaller grid boxes, BARRA-C uses higher RHcrit values that BARRA-R in the lowest few layers, decreasing 

smoothly above to 0.8. 

Without the convection parameterization scheme, BARRA-C relies on the model dynamics to represent convective 

motions. While convection remains unresolved in 1.5 km models, removal of the cumulus parameterization has shown to 
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result in more realistic behaviour (Clark et al., 2016). In particular, the model can explicitly capture processes with 165 

convective-like characteristics, which can subsequently drive scales that the model can properly resolve. BARRA-C also 

reduces the appearance of unrealistically strong vertical velocities and “grid-point storms” seen in BARRA-R due to the 

inability of convective parameterization to stabilize the air column (Su et al., 2019). Nevertheless, convection can remain 

under-resolved, leading to cases of too-early small, shallow showers or no rainne at all. The mid-latitude version of RAL1 

therefore includes stochastic perturbations of temperature and moisture and relative weak turbulent mixing, to encourage the 170 

model fields to be less uniform and help convection to initiate. It is of note that the stochastic perturbations of moisture are 

absent in BARRA-C does not use stochastic perturbations for moisture, and thus may still suffer from convection the 

initiation issues. 

Another distinguishing feature of BARRA-C is the handling of mass conservation during the advection of moisture 

prognostic variables. This is one of the key science developments in RAL1. BARRA-C and RAL1 use the zero-lateral flux 175 

scheme of Zerroukat and Shipway (2017) for moisture conservation at the model’s lateral boundaries, avoiding spurious 

extreme precipitation caused by the SL treatment of moisture variables near partially-resolved convection.  

BARRA-C is missing some of the configuration improvements introduced in RAL1 because production runs had 

already commenced. BARRA-C however does not include a set of changes to the representation of the land surface and the 

canopy radiation model in RAL1, which have shown to improve the issue ofthe damped diurnal cycle issue  in near-surface 180 

temperatures. BARRA-C also does not benefit from the improved treatment of gaseous absorption in both long- and short-

wave regimes in GA7 and RAL1, which improves interaction with band-by-band aerosol and cloud forcing.  

 BARRA uses the land surface scheme of Best et al. (2011), implemented in the Joint UK Land Environment and 

Simulator (JULES). It describes a 3 m four-layer soil column, with sub-surface temperature updated using a heat diffusion 

equation and, with the vertical moisture flux is estimated using the Richard's equation and Darcy's law. The soil hydraulics is 185 

are  computed using the van Genuchten equation. It uses a nine-tile approach to represent subgrid-scale heterogeneity in land 

cover, with the surface of each land point subdivided into five vegetation types (broadleaf trees, needle-leaved trees, 

temperate cool-season (C3) grass, tropical warm-season (C4) grass, and shrubs) and four non-vegetated surface types (urban, 

inland water, bare soil, and land ice). In particular, Uthe urban surfaces are represented only by a single urban tile, where and 

such that street canyons and roofs are not distinguished.  190 

The characteristics of the lower boundary, climatological fields, and natural and anthropogenic emissions are 

specified using static ancillary fields. These are created as per Bush et al. (2020; Table A1), with the exceptions of ancillaries 

for the land–sea mask, canopy tree heights, and land usage. The land–sea mask is created from the 1 km resolution 

International Geosphere–Biosphere Programme (IGBP) land cover data (Loveland et al., 2000) for SY and TA, and from 

Shuttle Radar Topography Mission (SRTM) orography data for AD and PH. Land cover data based on Climate Change 195 

Initiative (CCI, Hartley et al., 2017) is not adopted here as its mapping to the nine land surface tiles over the Australian 

region remains untested. The canopy tree heights are derived from satellite light detection and ranging (lidar; Simard et al., 

2011; Dharssi et al., 2015). The land usage ancillary, created from IGBP, is modified for AD and PH to match the water 
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fractions in the Water Observations from Space (WOfS, Mueller et al., 2016). Aerosol absorption and scattering in the 

radiation scheme assume climatological aerosol properties. A climatological ozone field is also prescribed. 200 

2.2 Initial and boundary conditions 

The BARRA-C model hindcast is re-initialized with 6-hourly initial conditions at the synoptic hours t0 = 00:00, 06:00, 12:00, 

and 18:00 UTC created by downscaling from BARRA-R analyses (Figure S2 in the Supplement). These fields are taken 

from the centre of BARRA-R’s 6-hour analysis windows. A two-component reconfiguration approach is usedtaken, in which 

BARRA-R winds, moisture and temperature are downscaled separately with different resolution topography sets, to remove 205 

model instability over due to high topographylarge horizontal topography gradients. BARRA-C is further constrained by 

BARRA-R at the lateral boundaries without nudging, based on the prescription described in Bush et al. (2020) and a 

boundary rim width of 0.34°. The boundary conditions force the development of the larger-scale features within the 

BARRA-C domains. These setups follow the Bureau’s NWP system, and ensure that the benefits of the BARRA-R analysis 

is are inherited by BARRA-C, where BARRA-Cthe nested model is treated as a physically consistent interpolator of 210 

BARRA-Rthe driving model. 

The JULES soil moisture and temperature are prescribed by BARRA-R. Consistent with BARRA-R, daily sea 

surface temperature and sea ice 0.05 x 0.05° analysis from reprocessed (1985–2007; Roberts-Jones et al., 2012) and near-

real-time Operational Sea Surface Temperature and Ice Analysis (OSTIA; Donlon et al., 2012) are used as lower boundaries 

over the water after being interpolated to the BARRA-C UM grid. The NRT near-real-time data are used from January 2007. 215 

Each hindcast in BARRA-C is a 9-hour simulation but only 6-hours are used., where Tthe model data during the 

first 3-hours period is discarded as the fine detail is only partially established from the coarse-resolution initial conditions 

due to model spin-up from the coarse-resolution initial conditions. Therefore, the hindcast fields between t0+4h and t0+9h 

form the BARRA-C data sets. Such a hindcast length is considered short, but is chosen to meet computational constraints 

with when regular reinitialization is needed for running the model for such an extended period. One clear limitation of our 220 

setup is that model spin up artefacts are expected to be still present, particularly for convective clouds and rain.  

3 Assessment 

Our assessment focuses on near-surface variables and precipitation as the aim of BARRA-C is to capture small-scale local 

weather phenomena that which are is most apparent near the surface. BARRA-C hindcasts are evaluated against point-scale 

station observations for screen-level temperature, 10 m wind speed (Sec. 3.1) and precipitation (3.3). They are also compared 225 

with gridded daily analyses of these observations for temperature (Sec. 3.2 and 3.6) and precipitation (Sec. 3.4 and 3.6). 

Added skills in BARRA-C are is illustrated by comparing these variables against BARRA-R,  and ERA-Interim hindcasts, 

and against ERA5 hindcasts for precipitation, and ERA5 hourly analyseis (ERA5 hindcasts only for precipitation) for the 

other variables. To increase the diversity of models used in our inter-comparison, we also include the Modern-Era 
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Retrospective analysis for Research and Applications-2 (MERRA2, Gelaro et al., 2017) hindcasts. A scale-selective 230 

evaluation of extreme storms is conducted in Sec. 3.5 using radar observations available over the SY domain. Finally, an 

added value (AV) method is used to quantify improvements between BARRA-C and BARRA-R in the representation of 

extreme daily maximum and minimum temperature and daily rainfall from gridded observations. Readers are referred to Sec. 

A of the Supplement for details of the various reference data sets considered in our assessment. 

3.1 Point evaluation of screen temperature, 10 m wind speed, surface pressure 235 

The t0+6h model hindcasts of screen-level temperature, 10 m wind speed, and surface pressure are evaluated against land 

station observations during the 2010-2012 period, following the approach of Su et al. (2019). These observations have no 

direct relation to BARRA-C, since there is no analysis in BARRA-C and they are not used in the associated BARRA-R cycle 

t0. These fields are interpolated from the model levels using surface similarity theory (Walters et al., 2017). Our benchmarks 

include BARRA-R and ERA-Interim t0+6h hindcasts, the MERRA2 hourly time-averaged hindcast fields, and the ERA5 240 

hourly analysis. The models are interpolated  to be coincident with the observed locations and times. As the observations are 

irregularly distributed in time, all observations within a t0+5h to t0+7h time window for t0 = 00 and 12 UTC are considered. 

Root mean square difference (RMSD), Pearson’s linear correlation, additive bias, and variance bias are calculated at each 

station between observed (do) and model (dm) data. Additive bias is defined as, with  𝐵𝑖𝑎𝑠 = 𝐸(𝑑𝑚) − 𝐸(𝑑𝑜), where 𝐸(∘) is 

the expectation operator, and the variance bias as 𝑀𝑏𝑖𝑎𝑠 =
𝑣𝑎𝑟(𝑑𝑚)

𝑣𝑎𝑟(𝑑𝑜)
− 1, to capture differences in the dispersion, where 𝐸(∘) 245 

is the expectation operator andso as to capture differences in the dispersion, where 𝑣𝑎𝑟(∘) computes the variance in time. 

This assessment does not serve to inform the true quality of the various reanalyses at their native resolutions, rather; it 

indicates whether the models contain finer-scale information captured by point measurements. Based on Di Luca et al., 

(2016), we distinguish three distinct regions with characteristics of complex topography (stations with an elevation higher 

than 500 m – topo), land-sea contrasts (stations that are within 1.5⁰ of the coast – coast), or a relatively smooth terrain 250 

(stations far from the coast – flat) (Figure S3 in the Supplement). 

The comparisons of scores across all BARRA-C domains are shown in Figure 2. For temperature, the BARRA (i.e., 

BARRA-R and BARRA-C) and ERA5 show better agreement with the station data than the other coarser reanalyses for most 

metrics. For instance, BARRA-C shows lower RMSD than ERA-Interim at 80% of stations. BARRA shows greater contrast 

from the global reanalyses than between them. ERA5 shows warm (additive) bias, while the BARRA appears cooler. ERA-255 

Interim and ERA5 generally show less variability in temperature than observations (Mbias < 0) while the other models tend s 

to have more similar temperature variability with observations. This is related to the cold bias in ERA during high 

temperature (shown in the next section). On average, BARRA scores lower RMSD than ERA5 at elevated stations (e.g., 

Snowy Mountains in SY) and smaller Mbias at near-coast stations. SimilarlyIn general, BARRA-C shows more visible 

improvements to BARRA-R at stations near coasts or over complex topography in terms of RMSD, correlation and Mbias 260 

(Figure S3 in the Supplement). Consequently, BARRA-TA scores higher than BARRA-R on average. However, BARRA-C 
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shows higher RMSD in the flat regions than in the other regions, unlike the other reanalyses. The degradation is small, 

within 0.6 K in terms of RMSD, and for AD, this is related to over-dispersion (MBias > 1). 

 For 10 m wind speed, BARRA-C, BARRA-R and ERA5 similarly exhibit lower RMSD and higher correlation with 

the station data than the other global reanalyses, and the differences between these three models are not pronounced. 265 

BARRA’s largest enhancement to ERA-Interim is found at elevated stations and near coasts, benefitting Tasmania 

specificallyparticularly. Contrasting BARRA-R, BARRA-C tends to show lower RMSD at these stations (Figure S3, 

Supplement), and where we observe higher RMSD in BARRA-C, the difference is within 1 m/s. The wind estimated by all 

the models tends to be under-dispersed (MBias < 1), relating to positive (negative) bias during light (strong) wind conditions. 

Such a model under-dispersion is more striking in the TA and SY domains than in the other domains, and also over coastal 270 

regions. 

For theFor surface pressure, the higher resolution models, including ERA5, show markedly lower RMSD near 

coasts. There is very good agreement between ERA5 and the observations. Some improvements to BARRA-R from 

BARRA-C shows some improvements over BARRA-R in  are mainly in correlation and Mbias, and over coastal regions and 

mountains. 275 

3.2 Comparison with gridded analysis of daily maximum and minimum screen temperature 

The reanalyses are compared against a gridded daily 0.05° × 0.05° analysis of observed maximum and minimum screen 

temperature from the Australian Water Availability Project (AWAP; Jones et al., 2009) in Figure 3. BARRA outperforms the 

driving model ERA-Interim in reducing the cold (warm) bias during summer DJF (winter JJA), particularly over the SY and 

TA domains. BARRA avoids the bias in ERA over the salt lakes in SA, by modelling them with land characteristics based 280 

on IGBP. BARRA-C shows smaller extent of summer cold bias in daily maximum temperature over the Great Dividing 

Range than both BARRA-R and ERA5, but shares similar bias with BARRA-R elsewhere. BARRA and the global 

reanalyses also exhibit a considerable warm bias in the northwest of the AD domain, – the Nullarbor Plain, but this is likely 

an artefact of the AWAP station density and discussed later. In this region, AWAP analysis is generally poorer (Sec. A of the 

Supplement) due to very few observing stations (less than 2 per deg2). The differences between BARRA and ERA 285 

reanalyses can also be related to the differences in their land cover classification based on IGBP and CCI. 

The warm bias in daily minimum temperature in winter is also similar between BARRA-C and BARRA-R. 

BARRA-C has largely inherited the biases from BARRA-R, but with small local-scale differences. Despite such similarities 

in summer bias, when comparing the number of hot days exceeding 35 oC (308.15 K) in Figure 3(c), there are more hot days 

(i.e., days exceeding 35 oC (308.15 K)) in Figure 3(c) in BARRA-C than in BARRA-R over inland Australia. By contrast, 290 

the summer cold temperature bias in both ERA reanalyses is also reflected by fewer hot days, and vice versa for MERRA2. 

Further analysis of the temperature extremes is considered in Sec. 3.6. 

Figure 4 and Figure 5 examine the inter-seasonal and inter-annual variations in temperature bias with respect to 

AWAP for daily maximum and minimum temperature respectively. They are similar between BARRA-C and BARRA-R, 

Commented [CHS1]: Moved to discussion section. 
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with BARRA-C showing slightly wider inter-seasonal variability. The inter-seasonal range of bias in BARRA is around 2 K, 295 

which is similar to ERA-Interim and MERRA2 in most domains but is larger than ERA5 with the exception for TA. For AD 

and PH, the daily maximum temperature is positively biased during summer months (DJF) and is negatively biased during 

winter (JJA). The negative bias in daily maximum temperature is smallest during summer for SY and TA, and is largest 

during winter for SY. For daily minimum temperature, these are reversed;, e.g.,, the associated positive bias peaks during 

winter for AD, PH and SY, and the negative bias is maximum during summer for AD and PH.  300 

There is both iThe inter-annual variability and a trend of the temperature biases do exist in BARRA. For daily 

maximum temperature bias,, there is a cooling trend in AD and PH, and a warming trend in TA. These trends can also be 

seen in ERA5 and MERRA2. For daily minimum temperature bias, trends in BARRA are less apparent than in ERA5 and 

MERRA2. Here Wwe also observe in the TA domain that BARRA shows a small warming trend with respect to AWAP.  

This analysis of variability of bias is also repeated for the standard deviation of the modelled temperature and 305 

AWAP in Figure S4 and S5 of the Supplement. BARRA-C shows a slightly wider dispersion of daily maximum 

temperatures than AWAP (by 0.4 K) and BARRA-R (by 0.1 K), with the exception for the TA domain. For BARRA-TA, the 

standard deviation of BARRA is similar to AWAP and is higher than the global reanalyses. For daily minimum temperature, 

both BARRA are similar and they are generally under-dispersed by 0.3 K compared to AWAP.   

3.3 Comparison with raingauges over Sydney 310 

Hourly modelled precipitation from BARRA and ERA5 are compared against observations from 27 raingauges within 1⁰ 

radius around Sydney during the warmer months (NDJF) in 2008-2013 in Figure 6. During these months, convection 

processes dominate and can produce a distinct diurnal distribution in thunderstorm activity., wit The h the greatest frequency 

of severe thunderstorms occurring occurs in November and December (Griffiths, et al., 1993). BARRA-R and ERA5 and for 

a lesser extent BARRA-R, both underestimate the frequency of heavy rain rate > 8 mm/h, with a lesser extent for BARRA-315 

R. By contrast, BARRA-C underestimates the frequency of light rain rate and overestimates heavy rates. BARRA and ERA5 

also distribute rainfall differently over a day. BARRA-C shows a bimodal distribution similar to the observations, albeit 

showing too much rain leading up to the 06 UTC peak and too little rain during the daily minimum around 18 UTC. The 

more pronounced diurnal cycle in precipitation is consistent with the over and under-estimation of different rain rates. 

BARRA-R shows less diurnal variation in rainfall with too much rain distributed during 00-06 UTC,, whereas ERA5 shows 320 

a pronounced early timing bias. 

3.4 Comparison with daily rainfall analysis 

Figure 7(a) compares the modelled precipitation against daily raingauge analysis from AWAP, including MERRA2’s hourly 

time-averaged precipitation (PRECTOTCORR) product. BARRA-C shows a wet bias over the Great Dividing Range and the 

southeast area of the AD domain, but improves the dry bias in BARRA-R and ERA reanalyses over the eastern and western 325 

seaboards and, and the Fleurieu and Yorke Peninsulas of South Australia. BARRA-C also shows dry biases on the western 
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borders of the AD and SY domains possibly due to inconsistencies with the zero-lateral moisture mass flux on the boundary 

conditions (Sect. 2.1). A striking difference between BARRA and the global reanalyses is over western Tasmania where the 

latter displays a dry bias.  

Next iIn Figure 7(b), BARRA-R, ERA5 and ERA-Interim show too few heavy rain days (> 10 mm/day) over the 330 

coastlines, SA peninsula, and western Tasmania. BARRA-C improves on this, but generally simulates more heavy rain days 

than other reanalyses, and too few moderate-light rain days (<10 mm/day, not shown) in all domains. BARRA-R and 

MERRA2 generally show too many light rain days, and the ERA reanalyses show too many light rain days in SY and eastern 

Tasmania, and too few in AD, PH, and western Tasmania. 

The inter-seasonal and inter-annual variations in precipitation bias with respect to AWAP are plotted in Figure 8. 335 

As with temperature (Figure 4), they are similar between the BARRA-R and BARRA-C, although the latter shows a larger  

range in all the BARRA-C domains but except TA. In particular, the a wet bias is generally observed during the wet season 

(JJA for AD, DJF for PH), wetter months (JJA for TA) or thunderstorm season (DJF for SY)., and Athe dry bias generally 

occurs during the dry season or drier months, (i.e.,e.g., SON for AD, PH and TA). This is consistent with the tendency of 

BARRA-C to overestimate heavy rain rates and underestimate light rain occurrence. Some of the inter-annual variations in 340 

the bias are clearly common amongst BARRA and the global reanalyses,; examples e.g., are in AD and PH domains during 

the Millennium drought (1996-2009)  where the various models are driershare a dry bias during the Millennium drought 

(1996-2009). BARRA can also shows different trends to the global reanalyses.. For instance, Tthere is a wetting trend post-

2009 for BARRA in AD, but this is opposite for the other models. In SY, BARRA also displays a wetting trend, while ERA 

trends drier. 345 

It should however be noted that, as is often found for gridded interpolated data, AWAP tends to underestimate the 

intensity of extreme rainfall events, and overestimate the frequency and intensity of low rainfall events (King et al., 2012). 

The errors are larger at high elevations (SY and TA) where gauges are fewer, and when there is frozen precipitation, and/or 

topography is exposed to prevailing winds (Chubb et al., 2016). 

3.5 Storms over Sydney 350 

The point gauge-based assessment in Sect. 3.3 is harsher to higher resolution models than coarser models, due to the 

compound error of space and time near-misses which increasessing as the grid cells shrink. Therefore, we compare the 

simulated rain fieldsfall from BARRA-SY with the Bureau’s radar nowcasting rainfall product (Rainfields2; Seed et al., 

2007) using and use the fractions skill scores (FSS) to allow assessment at different spatial scales, following the approach 

described in Roberts and Lean (2007), Jermey and Renshaw (2016) and Acharya et al. (2020). The FSS provides an 355 

evaluation of the rainfall skill as a function of spatial resolution. The radar product, blended with gauge observations using 

conditional merging (Sinclair and Pegram, 2005), is available from 2014-onwards on a mosaic grid consisting of the 

domains of multiple radars. Following Acharya et al. (2020), the largest 36 storm events during 2014-2016 are selected 

based on domain-averaged daily precipitation.  
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FSS is categorised as a ‘neighbourhood verification’ metric (Ebert, 2009) in which fractional coverages of grid cells 360 

close to observation are valued equally. The FSS tallies the relative number of ‘hits’ between the model and the observation 

at different spatial scales and different rain thresholds. An FSS of 1 represents a perfect forecast where the number of cells 

with precipitation above a threshold within a neighbourhood is identical between the model and observation grids for all 

possible neighbourhoods. Here, BARRA hourly rain rates are regridded to the radar grid of 1.5 km , and the accumulated 

rain amounts over moving 6-hour windows are analysed. From the 36 multi-day storm event set, 1323 different 6-hour 365 

events are produced using a moving window. FSS is computed for each 6-hour event for each model and then the scores are 

aggregated to give an average for all events. Given that inherent bias between the observation and the models exists due to 

differences in their representativity,  differences and also to focus on the spatial accuracy of the models, we use percentile-

based thresholds computed across all the storm events. This ensures that the model and observed rain fields have an identical  

fraction of rain events for each threshold value (see explained further in Sec. E of the Supplement). Figure 9 illustrates the 370 

striking differences between the BARRA-R and BARRA-SY for five events in 2014. BARRA-SY can show more realistic 

organisation in the 1.5 km model owing to the explicit modelling of convection and can produce higher rainfall intensity. 

The event on 7 December 2014 in Figure 9(v) illustrates a summer storm case where BARRA-R shows rainfall 

accumulations which lack the spatial pattern common with to convective organisation which and are evident in BARRA-SY 

and in observations. BARRA-R also shows excessive grid-point precipitation over the mountains, which are absent in both 375 

observations and BARRA-SY. At the same time, BARRA-SY can show too many cells (Figure 9(ii)), which can produce 

streaks of light rainfall (Figure 9(iv)).  

 The FSS results in Figure 10 shows that BARRA-SY is more skilful over all scales than BARRA-R for all threshold 

levels. FSSuniform is the FSS of a forecast field with a uniform fractional coverage equal to the fraction of points observed 

with any rain (>0.2mm/hr). Scores greater than FSSuniform is considered skilful. For the lowest threshold (56%, i.e. 4 mm in 380 

the observed radar values), the uniform score (FSSuniform) is reached at scales of 0.3⁰ (BARRA-SY), and 0.65⁰ (BARRA-R). 

At the highest threshold (99.9%, 64 mm), the uniform score is reached at scales of 2.4⁰ and 3.35⁰, respectively. The contrast 

between the two BARRA FSSs is therefore greater at the higher precipitation thresholds. FSSs for higher rainfall thresholds 

is are also generally lower as the area of rain being sampled becomes more localized and is more challenging to be 

reproduced correctly in the models.  385 

3.6 Added value analysis for temperature and rainfall extremes 

We apply an approach similar to Di Luca et al. (2015) to quantify the added value (AV) in the representation of 

climatological extremes from BARRA-C by comparing the its skill between the BARRA-C andto the skill in BARRA-R. 

The warm extremes of daily maximum temperature, the cold extremes of daily minimum temperature and the wet extremes 

of daily precipitation are assessed against AWAP., noting that the true AV from BARRA-C at its native resolution is not 390 

fully determined here. The statistics for extremes (X) are given by the percentiles of the daily temperature and precipitation 

values over the 29-year time period. We use 𝐴𝑉𝑑 =
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[𝑑(𝑋𝐵𝐴𝑅𝑅𝐴−𝑅 , 𝑋𝐴𝑊𝐴𝑃) − 𝑑(𝑋𝐵𝐴𝑅𝑅𝐴−𝐶 , 𝑋𝐴𝑊𝐴𝑃)] [𝑑(𝑋𝐵𝐴𝑅𝑅𝐴−𝑅, 𝑋𝐴𝑊𝐴𝑃) + 𝑑(𝑋𝐵𝐴𝑅𝑅𝐴−𝐶 , 𝑋𝐴𝑊𝐴𝑃)]⁄  of Di Luca et al. (2016) 

where d defines a distance metric between the model-derived and AWAP-derived statistics computed across the grid cells. 

To capture both the total errors and spatial patterns of the statistics, we let 𝑑 ≡ 𝑀𝑆𝐸(𝐴, 𝐵) = 𝐸[(𝐴 − 𝐵)2]  to define the 395 

mean squared error and also use 𝑑 ≡ 𝐶𝑜𝑟𝑟(𝐴, 𝐵) = 1 − 𝑅(𝐴, 𝐵) with R as Pearson’s correlation. Larger positive AV values 

suggest smaller errors in BARRA-C than in BARRA-R and thus substantial added value by the downscaling of BARRA-R. 

 Figure 11 plots AV scores for different BARRA-C domains, showing that AV is not gained consistently across the 

percentiles, variables and domains. For warm extremes of daily maximum temperature, BARRA-C shows positive AVMSE 

over BARRA-R in the TA and AD domains. Low or negative AVMSE for AD, PH and SY (inland region) is mainly due to its 400 

the warm and wet bias in BARRA-C seen, also seen in Figure 3(c) and 6(a,b). With The positive AVCorr indicates that, 

BARRA-C captures the spatial patterns of the warm extremes across the domains, particularly over the coastal and high 

topography regions (see also Figure S6 of the Supplement).  

For cold extremes in Figure 11(b), BARRA-C still shows positive AVMSE over all domains except but the SY 

domain, due to AV over the coastal regions. This AV is mostly contributed by coastal regions as seen in Figure S6. Negative 405 

AVMSE in SY is related to warmer cold extremes, particularly over the Great Dividing Range. The pPositive AVCorr is seen in 

TA but not in the other domains,. However,  although it should be noted that the BARRAs are generally strongly correlated 

with AWAP with R mostly between 0.7 to 0.9.  

AV from BARRA-C for wet extremes of precipitation relates more to the spatial patterns of the extremes (Figure 

11(c)). Given the tendency of BARRA-C to overestimate heavy rainfall, the wet bias relative to AWAP, particularly over the 410 

PH domains (Figure 7(b)), is responsible for the low AVMSE.There is negative AVMSE for all domains except TA which 

remains near zero, highlighting the BARRA-C rainfall bias. On the other hand the AVCorr is positive for all domains except 

AD for the highest three rainfall percentiles, which indicates better spatial correlation of rainfall than BARRA-R. For the SY 

domain, positive AVcorr for precipitation agrees with the above FSS analysis, which somewhat avoids the issue of bias 

through percentile-based thresholding. Assessing AV for wet extremes may also be problematic with AWAP. As an 415 

interpolated dataset, AWAP tends to underestimate the intensity of extreme heavy rainfall observed at stations and the issue 

is more pronounced at locations with sparse observational sampling or high topography, particularly in SY and TA (Chubb 

et al. 2016; King et al., 2012). 

4 Discussion  

The BARRA-C 1.5 km models are strongly forced by BARRA-R with both initial conditions every 6 hours, and hourly 420 

boundary conditions. BARRA-C has therefore inherited much of the same quality of the BARRA-R, however, it The 

dynamical downscaling of BARRA’s 12 km reanalysis, BARRA-R, with the BARRA-C 1.5 km models has been shown 

todoes provide additional information about local near-surface meteorological conditions. BARRA-C provides better 

representative point-scale estimates of screen temperature, 10 m wind speed and surface pressure at some areas with 
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complex topography or near coastlines, and mainly inherits the skills of BARRA-R over other areas. The degradation from 425 

BARRA-R is slight, within (RMSD) 0.6 K for temperature and 1 m/s for wind speed. 

BARRA-C also shows a 2 10 m wind speed bias that is positive (negative) bias during light (strong) wind conditions,, 

similar to the bias in BARRA-R. Many factors such as boundary layer mixing, form drag for subgrid orography and surface 

properties can influence wind estimation over land. The representation of the stable boundary layer remains challenging due 

to the multiplicity of physical processes and their complex interactions, i.e.,  (including turbulence, radiation, land surface 430 

coupling and heterogeneity and, turbulent orographic form drag.) involved and their complex interactions, such that 

mModels typically suffer biases in 2 m temperature and wind speed under such conditions  (Steeneveld, 2014 and references 

therein). 

BARRA-C also inherits the domain-averaged biases in daily maximum and minimum temperature from BARRA-R. It 

reduces some bias over the Great Dividing Range but simulates more hot days than seen in observations  particularly over 435 

inland Australia. However, in some inland regions the AWAP analyses are poorer quality due to low observing station 

density. For example, in the northwest of the AD domain - the Nullarbor Plain - both BARRA and the global models show a 

large warm bias in daily maximum temperature, however, the station density used in AWAP is less than 2 per deg2 (Sec. A 

of the Supplement). 

 The daily temperature bias varies differently in time  between the four domains, with AD and PH showing a change of 440 

sign in bias between summer and winter months, while SY and TA show persisting negative (positive) bias for daily 

maximum (minimum) temperatures. Such similarities between the domains may be related to their similarities in terms of 

climate and land cover. Bush et al. (2020) discussed that changes in RAL1 for land surface representations (Table 1, Sec. 

2.1) are important to improve the diurnal biases in pre-RAL1 configurations. These could benefit the biases seen over 

vegetated areas, particularly for daily minimum temperature in SY and TA.  445 

Differences in land classification between BARRA and ERA reanalyses can explain some of the differences seen in the 

comparison of gridded daily maximum and minimum temperatures seen in Figure 3. BARRA avoids the bias in ERA over 

the salt lakes in SA by modelling them with land characteristics based on IGBP, whereas ERA uses CCI. 

The reduced dry bias of higher rain rates seen in the coarser scale models during the thunderstorm seasons in the SY 

domain is alleviated by BARRA-C. The underestimation of the peak rain rates in BARRA-R and ERA5 was expected from 450 

the lack of convection organisation due to the use of a cumulus parameterization, whereas BARRA-C evidently shows more 

realistic organization and does not underestimate peak rain rates. However, the latter also exhibits too much heavy rain and 

not enough light rain which is, likely due to the still under- resolved convection and the model’s inability to resolve 

detrainment from convective updrafts. This is consistent with the findings reported in other studies. For example, Lean et al . 

(2008) and Hanley et al. (2016) found that 1 km grid length UM simulations tend to produce cells that were too intense, too 455 

far apart and with not enough light rain. The latter also noted insufficient small storms in both shower cases and large storm 

cases, and too many large cells in shower cases.  
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The short hindcast length in BARRA-C (Sect. 2.2) poses a further limitation. The rainfall excess could result from 

model spin-up., as Eextra energy (i.e. CAPE) builds up during the early timesteps when there is insufficient convection, 

which is then finally released in the form of convective precipitation in later timesteps (Lean et al., 2008). Champion and 460 

Hodges (2014) have also noted that modelled precipitation intensities are most accurate when the model is initialised 12 

hours before the rain maxima. The moisture conserving zero-lateral mass flux boundary conditions in BARRA-C exacerbate 

this issue. Moisture variables are not advected across boundaries and instead allowed to develop via physical processes in the 

model. These processes take some time to spin-up in each hindcast leading to near-boundary downstream moisture bias, e.g., 

, for example, the western boundary of the annual rainfall maps of AD and SY domains (Figure 7(a)). These issues of 465 

precipitation with short hindcasts can be improved with an assimilation system that will allow high resolution features to 

propagate from one hindcast cycle to the next (Dixon et al., 2008). In spite of these limitations, we find that BARRA-C 

provides a more representative rainfall climatology for heavy rain days near the coastal or and mountainous regions, and as 

well betteras sub-daily rain spatial patterns. 

BARRA-C simulates peaks in the diurnal distribution of precipitation better than BARRA-R and ERA5. However, we 470 

also find that precipitation may be initiated too early and grow too rapidly. Consequently, BARRA-C under represents off-

peak rainrates resulting in an over-pronounced diurnal cycle, seen in Figure 4(b) for BARRA-SY in summer.  This is 

contrary to the expectation for all models to initiate too late since subgrid-scale initial plumes cannot be represented. The 

early initiation bias in BARRA-R is due to the CAPE-based trigger mechanism of the convection scheme (Lean et al., 2008). 

In the case of the kilometre-scale UM, the reasons are likely several. Hanley et al. (2015) partly attributed timing bias in 475 

convection initiation, which is too early in shower cases and too late in the larger storm cases, to unresolved convection at 

the kilometre-scale grid length. Other reasons may be that  stochastic perturbations (Sect. 2.1) or  model responses to the pre-

convective profile areis too strong, or that the profile has inadequate convective inhibition (CIN). The various aspects 

(intensity, size and timing) of simulated cells have shown to improve with adjustments to the mixing length used in the 

subgrid turbulence scheme, but not all aspects improve simultaneously (Hanley et al., 2015).  480 

There are trends and/or inter-annual variability of bias in BARRA against analyses of temperature and precipitation 

observations, and some of these trends are also apparent in the global reanalyses. BARRA-C largely mirrors the has similar 

bias variability in to BARRA-R, and its magnitude is of the orderis similar or less than the global reanalyses. Spurious trends 

or artificial shifts in reanalyses could result from abrupt changes to the amount of satellite data assimilated, e.g., at the start 

and end of satellite missions and or the various observational data archives. In BARRA-R, corrections were also made to the 485 

observation screening and thinning rules mid-production (Su et al., 2019). It is howeverHowever, it is outside of the scope of 

this work to assess the impacts of various observational changes. 

BARRA-C shows better agreement with the pattern and the relative distribution of radar-derived rainfall during storms 

over Sydney. This improvement is, owing due to the use of explicit convection (Sect 2.1) and a higher resolution model and 

this is consistent with earlier studies with UM (e.g., Lean et al., 2008). Comparisons of FSS from the same events including 490 

ERA5 show that its lower resolution leads to larger representation errors and lower FSS than BARRA-R despite both 
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parametrising convection (Figure S6, the Supplement). While BARRA-C still shows considerable bias compared to both rain 

gauges and radar observations, BARRA-Cit adds value to BARRA-R and ERA by providing more realistic and accurate 

spatial representations of rainfall during storms at various spatial scales and percentile thresholds. 

The AV analysis of temperature and precipitation extremes shows that BARRA-C provides only some value over 495 

BARRA-R in various aspects including the spatial patterns of the warm temperature extremes and wet precipitation extremes 

and bias in cold extremes over coastal regions.  Low AV can be related to temperature and precipitation biases, which differ 

between the regions. For example, the BARRA-C wet bias relative to AWAP, particularly over the PH domain (Figure 7(b)), 

is responsible for the low AVMSE for rainfall. The positive AVcorr for precipitation in BARRA-SY agrees with the above FSS 

analysis, which somewhat avoids the wet bias issue through percentile-based thresholding. 500 

Assessing AV for wet extremes may also be problematic with AWAP. As an interpolated dataset, AWAP tends to 

underestimate the intensity of extreme heavy rainfall observed at stations and the issue is more pronounced at locations with 

sparse observational sampling or high topography, particularly in SY and TA (Chubb et al. 2016; King et al., 2012). 

 While this analysis suggests that limited value is added by the downscaling of BARRA-R for these extremes, the 

true AV of BARRA-C at its native resolution is not assessed here given the limited resolution of AWAP and can be explored 505 

further with scale-dependent AV analysis of Di Luca et al. (2016).  Determining AV at the kilometre scale is also expected 

to be challenging as more accurate and representative observational data sets are needed.  

 

 

5 Conclusions 510 

The recent development of CPMs in NWP has facilitated the creation of kilometre-scale regional reanalysis and climate 

projections. BARRA is the first regional reanalysis that focuses on the Australasian region, which. It has been developed 

with significant co-investment from state-level emergency service agencies across Australia. BARRA-C is the critical 

component of the project that provides these agencies with the means for developing a deeper understanding of past extreme 

weather at local scales, especially in areas that were not adequately served by observation networks (e.g., Figure S3, the 515 

Supplement). The four mid-latitude domains of BARRA-C are designed to address these needs, and BARRA-R is needed to  

establish a driving model for BARRA-C that is of higher resolution than ERA-Interim, and to utilise more of the Australian 

local observations (Su et al., 2019). Completed in June 2019, the 29-year BARRA-R reanalysis (1990 to February 2019) and 

its downscaled counterparts BARRA-C, form a collection of high-resolution gridded meteorological datasets with 12 and 1.5 

km horizontal grid lengths and 10 minutes to hourly time resolution, produced using systems closely related to the Bureau’s 520 

present (as of October 2020) regional NWP systems. The hybrid model-level and pressure-level gridded data from BARRA-

C are also available to drive/force sub-kilometrekm weather or non-weather models. 
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 This paper describes the experimental configuration of BARRA-C and provides a preliminary assessment to 

illustrate its skills over BARRA-R and the global reanalyses at their subgrid scales. As expected from a hindcast-only 

system, it inherits the domain-averaged biases from BARRA-R. On the other hand, our added value analysis however shows 525 

that BARRA-C simulated different climatological extremes for temperature. Altogether, there exists added skill at the local-

scale for temperature and wind, particularly in topographically complex regions in SY and TA, and coastal regions in all 

domains. As expected, the contrasts in skills and biases are most apparent between BARRA and the coarser-scale reanalyses 

(ERA-Interim, MERRA2). The BARRA-R and BARRA-C produce more distinctive precipitation estimates for intensity, 

sub-daily timing and hourly spatial patterns that are characteristics of their physical schemes. BARRA-C also provides 530 

different spatial distribution of precipitation over complex terrains and more skilful representations of sub-daily rainfall 

fields. The latter suggests that BARRA-C is more suited for studies of extreme rainfall events, albeit with still has a high 

rainfall bias. The high rainfall bias therefore also manifests as biases in the climatological extremes of precipitation. These 

findings highlight that improvements are still needed in our for future kilometre-scale downscaled reanalysis, such ase.g., 

adding kilometre-scale through data assimilation and further model development. At this stage, BARRA-R and BARRA-C 535 

can be used conjunctively to improve individual estimates of temperature and precipitation. Some of their biases, including 

for 10 m wind, could also be addressed via post-processing using multi-variate regression models or quantile matching 

methods such as those of Glahn and Lowry (1972), and Cattoën et al. (2020). Users of BARRA are strongly encouraged to 

undertake a local evaluation to ascertain the skills of BARRA-C for their regions and parameters of interest.  

BARRA lays some of the important groundwork for future reanalysis-related activities and developing national 540 

climate risk services at the Bureau. Some of the issues identified in this work are being actively researched by collaborating 

national meteorological centres and academic institutions, within the “Regional Atmosphere” configuration development 

framework (Bush et al., 2020). Future reanalyses will also benefit from the recent advances in Bureau’s NWP, whereby an 

assimilation system (Rennie et al., 2020) and ensemble are introduced in its upcoming kilometre-scale models, to allow 

propagation of high-resolution information between hindcast cycles and estimation of uncertainties. 545 

Code availability 

All code, including the UM (version 10.6) and JULES (version 4.7), used to produced BARRA-C is version-controlled under 

the Met Office Science Repository Service. The UM is available for use under license, 

http://www.metoffice.gov.uk/research/modelling-systems/unified-model. JULES is available under licence free of charge, 

http://jules-lsm.github.io/access_req/JULES_access.html. The infrastructure for building and running UM-JULES 550 

simulations uses the Rose suite engine (https://metomi.github.io/rose/doc/html/index.html) and scheduling using the Cylc  

work flow engine (https://cylc.github.io/, Oliver et al., 2019). Both Rose and Cylc are available under Version 3 of the GNU 

General Public License. The BARRA-C Rose/Cylc suite, with an identifier u-ak499, is version-controlled under the Met 

Office Science Repository Service and contains the UM-JULES science namelist and simulation configurations. Output from 
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the model simulations was converted from UM fieldsfile format to netCDF4 format using Iris (https://scitools-555 

iris.readthedocs.io/en/stable/https://scitools.org.uk/iris/docs/latest/).  

 

Data availability 

The BARRA datasets for the period of January 1990 to February 2019 are available for academic use. Readers are referred 

to http://www.bom.gov.au/research/projects/reanalysis (last access: 31 August 2020; Bureau of Meteorology, 2020) for 560 

information on available parameters, access and licensing. The BARRA-R datasets used to initialise and constrain BARRA-

C at the boundaries and the BARRA-C ancillary files can be requested by contacting the authors directly and are subject to 

the same licensing conditions. 
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Figure 1: Domains of BARRA-C, (left to right) BARRA-PH (over Perth), BARRA-AD (Adelaide), BARRA-TA (Tasmania), and 

BARRA-SY (Sydney), showing the modelled orography. Red circles indicate the locations of the state capital cities. 
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Figure 2: Box plots showing the distribution of evaluation scores of various models for (a) screen-level temperature, (b) 10 m wind 

speed, and (c) surface pressure across the four BARRA-C domains. Three regions are analysed separately: coastal (‘coast’), 840 
complex topography (‘topo’), and flat, and the models distinguished by colours. The scores are calculated on model hindcasts valid 

between 05-07 UTC, and 17-19 UTC against observations during 2010–2012. 
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Figure 3: Mean difference in (a) summer (DJF) daily maximum temperature, (b) winter (JJA) daily minimum temperature and (c) 

number of days with temperature exceeding 35 ⁰C, in various models during 1990-2018, with respect to AWAP. The models are 

regridded onto the AWAP grid using the nearest- neighbour interpolation. 
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Figure 4: Timeseries of monthly mean difference in daily maximum temperature averaged over various BARRA-C domains, with 

respect to AWAP. The timeseries are shaded around their individual 1990-2018 means.  
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Figure 5: As with Figure 4, but for daily minimum temperature. 855 
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Figure 6: Distribution of (a) hourly rain rate (mm/h) and (b) rain over 24 hours in UTC, over Sydney during November to 

February of 2006-2018. 860 
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Figure 7: Mean difference in (a) annual precipitation and (b) annual count of wet days with depth ≥ 10 mm. The models are 

regridded onto the AWAP grid using the nearest- neighbour interpolation. 
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Figure 8: Mean difference in seasonal precipitation totals over various BARRA-C domains, with respect to AWAP. Black curves 

are shaded around the 1990-2018 means. Note that the y-axes in (a)-(d) are different. 
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Figure 9: Simulated 6-hour rainfall accumulation [mm] in BARRA-SY and BARRA-R, compared with rainfall derived from the 870 
composite radar network in thearound the Sydney area for five events. 
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Figure 10: Aggregated FSS across 1323 6-hour storm events as a function of neighbourhood distance (degrees) for 6-hour rainfall 

above three percentile thresholds (distinguished by colours, percentile values, and observed amount in mm).  The solid curves 

indicate the score for BARRA-SY, dotted curves for BARRA-R, and the dashed horizontal lines the uniform score (FSSuniform) for 875 
each threshold as specified by Roberts and Lean (2007).  
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Figure 11: Added value (AV) analysis of the (a) warm extreme of daily maximum temperature, (b) cold extreme of daily minimum 

temperature, and (c) wet extreme of daily precipitation, performed for different all four BARRA-C domains. 
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Table 1: An overview of mMajor differences between BARRA-C, BARRA-R and the mid-latitude version of RAL1 (RAL1-M) 

models. The configurations for BARRA-R are described in Su et al. (2019) and Walters et al. (2017), and those for RAL1-M in 890 
Bush et al. (2020). 

Aspects BARRA-R BARRA-C RAL1-M 

Nesting setup Nested in 6-hourly ERA-

Interim boundary conditions 

Nested in hourly BARRA-R 

boundary conditions 

NA 

Horizontal grid length in 

radial resolution 

0.11⁰ 0.0135⁰ 0.0135 to 0.04⁰ 

Vertical model level set 70 levels, with 50 levels 

below 18 km, and 20 levels 

above this, fixed model lid of 

80 km above the sea level. 

 

70 levels, with 61 levels below 18 km, 9 levels above this, 

fixed model lid of 40 km above sea level 

Model timestep 300 seconds 60 seconds 60-100 seconds, depending 

on the model resolution 

UM model version 10.2 10.6 ≥ 10.6 Formatted Table
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JULES model version 3.0 4.7 ≥ 4.8 

Data assimilation 6-hourly 4D variational 

analysis  

None NA 

Moisture variable SL 

advection schemes 

Quasi-monotone (Bermejo and Staniforth, 1992) Posteriori monotonicity filter 

(PMF) 

Convective 

parameterization scheme 

Mass-flux convection 

scheme of Gregory and 

Rowntree (1990) 

None 

Gaseous absorption 

(radiation) scheme 

GA6 (Walters et al., 2017) GA7 (Walters et al., 2019) 

Include spectral land-

surface albedo  

No Yes 

Canopy radiation back-

scatter scheme 

Isotropic Anisotropic 

Cloud microphysics 

scheme 

Single moment scheme 

based on Wilson and Ballard 

(1999) 

Wilson and Ballard (1999), with prognostic graupel 

(Wilkinson and Bornemann, 2014) and improved warm rain 

scheme (Boutle et al., 2014a) 

Boundary layer scheme 1D vertical turbulent mixing 

scheme of Lock et al. (2000) 

Blended boundary layer parameterization (Boutle et al., 

2014b) 

Land surface and 

hydrology 

GA6 (Walters et al., 2017), PDM subgrid-scale heterogeneity, 

JULES urban parameters are optimized for Australia (Dharssi 

et al., 2015) 

GA7 (Walters et al., 2019) 

where TOPMODEL is used, 

and RAL1 changes, namely 

use of CCI-based land cover 

tiles, reduced bare soil 

fraction of short vegetation 

tiles, scalar roughness 

lengths for grass tiles, and 

revisions to the albedos of 

vegetation tiles. 

BL stochastic 

perturbations 

None Perturbation to temperature Perturbation to temperature 

and moisture 

BL stability functions For stable BL, the “sharp” 

function of Lock et al. (2016) 

is used over the sea, and over 

land is a blended 

combination of the Louis 

(1979) and the “sharpest” 

function, for heights below 

200 m. The convective BL 

stability functions are based 

on UKMO Large-Eddy 

model simulations. 

The “sharpest” function for stable BL everywhere. The 

convective BL stability functions are based on UKMO Large-

Eddy model simulations. 

Critical relative humidity 

profile  

0.92 in the lowest layer, with 

a gradual decrease to 0.8 at 

model level 17 (~2100 km). 

0.96 in the lowest layer, and decrease to 0.8 at model level 15 

(~850 km). 

 


