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Abstract. Regional reanalyses provide a dynamically consistent recreation of past weather observations at scales useful for

local-scale environmental applications. The development of convection-permitting models (CPMs) in numerical weather

prediction has facilitated the creation of kilometre-scale (1-4 km) regional reanalysis and climate projections. The Bureau of
Meteorology Atmospheric high-resolution Regional Reanalysis for Australia (BARRA) also aims to realise the benefits of
these high-resolution models over Australian sub-regions for applications such as fire danger research; by nesting them in
BARRA’s 12 km regional reanalysis (BARRA-R). Four mid-latitude sub-regions are centred on Perth in Western Australia,
Adelaide in South Australia, Sydney in New South Wales (NSW), and Tasmania. The resulting 29-year 1.5 km downscaled
reanalyses (BARRA-C) are assessed for their added skill over BARRA-R and global reanalyses for near-surface parameters
(temperature, wind and precipitation) at observation locations and against independent 5 km gridded analyses. BARRA-C
demonstrates better agreement with point observations for temperature and wind, particularly in topographically complex
regions and coastal regions. BARRA-C also improves upon BARRA-R in terms of intensity and timing of precipitation
during the thunderstorm seasons in NSW, and spatial patterns of sub-daily rain fields during storm events. BARRA-C
reflects known issues of CPMs: overestimation of heavy rain rates and rain cells, and underestimation of light rain
occurrence. Hewever—aAs a hindcast-only system, BARRA-C largely inherits the domain-averaged biases and-temporal
variations-ef-biasespattern from BARRA-R but simulatesdoes produce different climatological extremes for temperature and
precipitation. An_Aadded value analysis of temperature and precipitation extremes shows that BARRA-C provides
additionalded skill over BARRA-R when compared to gridded observations. The -fer-the-spatial patterns of BARRA-C -the
warm_temperature extremes and wet precipitation extremes are more highly correlated with observations. —and-bias—in

BARRA-C adds value in representation of the spatial pattern of ceold extremes over coastal regions- but -remains biased in

terms of magnitude.
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1 Introduction

At horizontal kilometre-scales (1-4 km), convection-permitting models (CPMs) have provided a step-change in weather
forecasting capabilities, particularly for forecasting rainfall and cloud cover (e.g., Lopez et al., 2009; Mailhot et al., 2010;
Brousseau et al., 2016; Clark et al., 2016) and over local regions with complex terrain or land-sea boundaries (Calmet et al.,
2018). Similarly, CPMs have provided new insights in regional climate projections (e.g., Argieso et al., 2014; Prein et al.,
2015; Kendon et al., 2017; 2019) beyond current global models. For instance, regional CPMs have suggested that future
increases in short-duration precipitation extremes are larger than what can be expected from increases in atmospheric
moisture alone (Kendon et al., 2021 and references therein). Major efforts are underway toward refining the horizontal
resolution of global climate models to kilometre-scale (Schar et al., 2020). Extreme weather events such as thunderstorms,
damaging winds, and hailstorms, are better represented in higher resolution models (Walsh et al., 2016). Current gGeneral
practice is that grid spacings less than about four kilometres are required to explicitly model small convective cloud
processes, replacing parameterizations of moist convection. This avoids several issues seen in parameterized convection
schemes used in models with a grid spacing greater than 10 km (Lean et al., 2008) and the “grey zone” issues in mesoscale
(4-10 km) scale models (Gerard et al., 2009). A common assumption of traditional convective parameterizations is that cloud
fields adjust so much more rapidly than the processes forcing it that this adjustment can be modelled as instantaneous. Such
schemes thus have no “memory” of the meteorological flow, leading to unrealistic model behaviours. Models with

parameterized convection exhibit-ineluding premature convective initiation, misrepresented diurnal cycle of precipitation,

over-estimation of drizzle occurrence, under-estimation of extreme rainfall (Lean et al., 2008; Clark et al., 2016), fewer
identifiable mesoscale convective systems with less structure (Done et al., 2004), and rainfall coastal locking where
precipitation generated over the sea does not penetrate inland (Bureau of Meteorology, 2018). When the parameterization
scheme is used at a finer resolution than 10 km, it also tends to produce intermittent on-off behaviour of deep convection
(Gerard et al., 2009).

By contrast, CPMs can represent deep convection and mesoscale convective organization explicitly on the model
grid. Explicit representation-modelling of convection impreves-the-physical-nature-ofbetter captures precipitation persisting
across orographic or land-sea boundaries by the advection of clouds/precipitation. Better representation of topography _in
CPM s also leads to improved wind circulation patterns and resulting vertical velocities (e.g., Fosser et al., 2015). Improved
modelling of the interactions between storm cells and their organisations should improve the estimation of damaging winds.
Many studies have found a better diurnal cycle of tropical convection over land, cloud vertical structure, and coupling
between moisture convection and convergence in CPMs (Stein et al., 2015; Leutwyler et al., 2017). A finer grid resolution
can improve the flow and wind simulation over the recirculation zone behind the escarpment of a hill and higher vertical grid
resolution improves simulation on the lee side of hills (Ma and Liu, 2017).

These benefits from using CPMs are hewever-yet to be fully realized in_many atmospheric reanalyses. Atmospheric
reanalyses combine prior knowledge of physical processes captured in the models with observations from a diverse range of
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instruments to form spatially complete representations of the historical atmospheric conditions. They are therefore invaluable
for revisiting-applications concerned withthe local weather processes, climate signals or events that were not fully observed;

for—applications—such as climate monitoring and change assessments (Kendon et al., 2017; 2019), renewable energy
assessment (e.g., Frank et al., 2020), and hazard management (e.g., Vitolo et al., 2019). Global-scale reanalyses have
advanced in quality and quantity during the past three decades with improvements to models, data assimilation methods, the
number of observations and ensemble methods (Kalnay et al., 1996; Ebita et al., 2011; Gelaro et al., 2017; Dee et al., 2011),
and also with increasing spatial resolutions. The latest addition, ERA5 (Hersbach et al., 2020), has a horizontal spacing of 31
km. Users of reanalyses have called for development towards finer spatial and temporal scales, i.e.,; -below 10 km horizontal
spacing and sub-daily time intervals (Gregow et al., 2016). Such scales are needed in localized climate monitoring where
local-scale mechanisms influenced by complex topography, coastlines and convective processes are responsible for local
climate features and feedbacks.

Departing markedly from the global reanalyses are the regional reanalyses that use limited area models at higher
horizontal resolutions over sub-regions, e.qg., sueh—as—North America (Mesinger et al., 2006), the Arctic polar region
(Bromwich et al., 2016), Europe (Borsche et al., 2015 and references therein), India (Mahmood et al., 2018) and Australia
(Su et al., 2019). These reanalyses use grid lengths in the order of 10 km to improve the representation of sub-daily
variability and near-surface weather. These are generally produced with global atmosphere model configurations that include
convection parameterizations (e.g., Su et al., 2019). Recently, Wahl et al. (2017) overcame this with a 7-year 2 km reanalysis
over Germany; with the assimilation of conventional observations and radar-derived rain rates_and; showeddemenstrating
improved spatiotemporal variability and intensity frequency of precipitation. Such a direction in the development of the
reanalyses, combined with the higher resolution regional projections, can offer a more accurate picture of changes in
regional meteorology and extreme weather in the changing climate.

Dynamical downscaling is frequently used to estimate the dynamic variables at scales finer than those of coarser-
resolution climate or weather models. This approach is undertaken at the Bureau of Meteorology (Bureau) in Australia to
produce kilometre-scale weather forecasts and/or ensemble forecasts over major cities and a 1.5 km forecast-only model has
been used since 2017 for added value over the Bureau’s lower resolution global system. This goal is also pursued in the
Bureau of Meteorology Atmospheric high-resolution Regional Reanalysis for Australia (BARRA; Jakob et al., 2017) project.
Within this context, this paper is a companion paper to Su et al. (2019) where an Australian regional 12 km reanalysis
system (BARRA-R) was presented. Here we describe dynamical downscaling of BARRA-R using the UK Met Office
(UKMO) Unified Model (UM) at a 1.5 km horizontal grid length over four mid-latitude sub-regions of Australia (Figure 1)
over 29 years from January 1990 to February 2019. These regions are chosen in partnership with state fire and emergency
management agencies; because of the important advantages that dynamically downscaled reanalyses can provide for local-
scale planning and management to reduce future risks due to extreme weather events such as bushfires. The four

downscaling models, collectively referred to as BARRA-C, yield gridded products that include a variety of 10 minute to
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hourly surface parameters describing both weather and land-surface conditions_as well as-ard hourly upper-air parameters
covering the troposphere and stratosphere with a 40 km model top on 70 model levels and 37 pressure levels.

This paper describes the model and the experimental design in Sect. 2, and Sect. 3 provides the first assessment of
the downscaled reanalysis with focus on screen-level temperature, 10 m wind and precipitation. Comparisons with-the
BARRA-R and global reanalyses are also made to illustrate the added value of BARRA-C. Our findings are further
discussed in Sect. 4, with an overall summary in Sect. 5.

2 BARRA-C

The development of BARRA is based on the Bureau’s operational deterministic NWP forecasting over the Australian region
using the Australian Community Climate and Earth-System Simulator systems ACCESS-R and ACCESS-C (Puri et al.,
2013). The operational version at the time (Australian Parallel Suite 2) of ACCESS-R is the national 12 km 6-hourly
analysis/assimilation and 3-day forecasting system (Bureau of Meteorology, 2016). #-ACCESS-R has provided the initial
and boundary conditions to initialize and constrain ACCESS-C over 6 smaller domains centred at the Australian cities up
untilt 2020 (Bureau of Meteorology, 2018). The APS2 ACCESS-C dynamically downscales ACCESS-R to provide 6 hourly,
1.5-day forecasts at 1.5 km horizontal resolution. The relation between BARRA-R and BARRA-C mirrors this system but is
implemented with shorter forecast (or hindcast) range; and a newer version of the meteorological forecast model and science
configuration (Section 2.1). In particular, BARRA-R is nested in ERA-Interim reanalysis (Dee et al., 2011) and includes four
assimilation_and hindcast cycles per day (Su et al., 2019)..-anrd BARRA-C -is a hindcast-only system whichthat inherits the
analysis from BARRA-R as initial conditions. While BARRA-C refers to the collection of the four sub-domain models, we
use BARRA-AD, BARRA-PH, BARRA-SY and BARRA-TA to denote individual domains centred at Adelaide (South
Australia, AD), Perth (Western Australia, PH), Sydney (New South Wales, SY), and Tasmania (TA) (Figure 1).

The PH and AD domains are similar in terms of climate; with-having arid deserts north of their domains, and

temperate dry hot or warm summers near coasts, and arid steppe climate in-between (Peel et al., 2007). SY has a temperate
climate with warm to hot summers and lacks a dry season, while TA differs with a cooler summer. Cool-season {C3)
perennial grass (C3) is the dominant vegetation over the southwestern region of PH and near-coast region of AD, and
broadleaf trees are widespread in the SY and TA domains (Figure S1 in the Supplement). There are several large ephemeral
salt lakes (e.g., Lake Torrens, Lake Gairdner) in the AD domain; and these are modelled as land points with bare soil._Of the
four domains,H-is only SY that-has a distinct thunderstorm season_which occurs during November-March. Thunderstorms
are far less frequent in the other three domains due to lower incidence of warm, humid air masses, faveurable-for-storm
development-and_also prevalent stable conditions during the potentially favourable warmer months owing to subtropical
high-pressure belt over or near these areas (Kuleshov et al., 2002). In contrast to PH and AD, tFhe SY and TA domains are

topographically complex.; with-tThe Great Dividing Range extendsing north to south through the SY domain and_the TA
domain features low mountains and a landscape of plateaus.-and-lew-meuntainranges-in-the TA-domain-
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2.1 Forecast model

The UM (Davies et al., 2005; version 10.6) is the grid-point, atmospheric model used in BARRA and ACCESS. It uses a
non-hydrostatic, fully compressible, deep atmosphere formulation and its dynamical core (Even Newer Dynamics for
General atmospheric modelling of the environment, ENDGame) solves the equations of motion using mass-conserving,
semi-implicit, semi-Lagrangian (SL), time integration methods (Wood et al., 2014). The prognostic variables are three-
dimensional wind components, virtual dry potential temperature and Exner pressure, dry density, and mixing ratios of moist
quantities. These variables are discretized horizontally onto a regular longitude-latitude grid with Arakawa-C staggering
(Arakawa and Lamb, 1977); and vertically with the Charney—Phillips staggered grid (Charney and Phillips, 1953). THere-the
BARRA-C model has a horizontal spacing of 0.0135° x 0.0135° (about 1.5 km at the equator) and its vertical levels follow
the modelled orography at the surface and relax to surfaces of uniform radial height after 62 model levels (~17 km above
ground) in the upper atmosphere with the model top height of 40 km. At this resolution, the model is run with an integration
time step of 60 seconds.

The science configuration of the model in BARRA-C is based on the UK Met Office operational suite OS36, while
BARRA-R is based on Global Atmosphere (GAB) configuration of Walters et al. (2017). While the OS36 model
configurations preceded the release of the first UM Regional Atmosphere and Land (RAL1) configuration of Bush et al.
(2020), BARRA-C implements some_of the improvements fromin RAL1. Table 1 summarizes the differences between
BARRA-C, BARRA-R, and RAL1. The physical parameterization schemes common to BARRA-C and BARRA-R include a
variant of Wilson and Ballard (1999) for mixed-phase cloud microphysics, the large-scale cloud scheme of Smith (1990),
and the radiation scheme of Edwards and Slingo (1996), all of which have been improved since publication. Fhe-UM
BARRA-R uses a convection parameterization scheme based on Gregory and Rowntree (1990); which is not used in
BARRA-CE. At-With the-a grid length of 1.5 km, the horizontal grid length approaches the depth of the boundary layer
(Hanley et al., 2015) and as such it is no longer appropriate to use the 1D boundary layer parameterization that restricts
mixing to the vertical. BARRA-C therefore uses a blended boundary layer parameterization (Boutle et al. 2014) where the
scheme transitions from the 1D vertical turbulence scheme of Lock et al. (2000) to a 3D subgrid turbulence scheme based on
Smagorinsky (1963) as a function of the grid length to the turbulent length scale. The mixing length-6f-366-m, which can be
tuned to control the smoothness of the fields and the number of small cells, is taken_as 300 m frem-which is used in the

operational systems.

The cloud scheme uses a profile of critical relative humidity values (RHcrit), above which a grid box contains some
cloud if the relative humidity is exceeded. Based on the assumption that there should be less subgrid variability in humidity
#—for_smaller grid boxes, BARRA-C uses higher RHcrit values that BARRA-R in the lowest few layers, decreasing
smoothly above to 0.8.

Without the convection parameterization scheme, BARRA-C relies on the model dynamics to represent convective

motions. While convection remains unresolved in 1.5 km models, removal of the cumulus parameterization has shown to
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result in more realistic behaviour (Clark et al., 2016). In particular, the model can explicitly capture processes with
convective-like characteristics, which can subsequently drive scales that the model can properly resolve. BARRA-C also
reduces the appearance of unrealistically strong vertical velocities and “grid-point storms” seen in BARRA-R due to the
inability of convective parameterization to stabilize the air column (Su et al., 2019). Nevertheless, convection can remain
under-resolved, leading to cases of too-early small, shallow showers or no_rainre at all. The mid-latitude version of RAL1
therefore includes stochastic perturbations of temperature and moisture and relative weak turbulent mixing; to encourage the

model fields to be less uniform and help convection to initiate. +is-of-rote-thatthestochastic-perturbations-of-meisture-are

absent-in-BARRA-C_does not use stochastic perturbations for moisture; and thus may still suffer from_convection the

initiation issues.

Another distinguishing feature of BARRA-C is the handling of mass conservation during the advection of moisture
prognostic variables. This is one of the key science developments in RAL1. BARRA-C and RALL1 use the zero-lateral flux
scheme of Zerroukat and Shipway (2017) for moisture conservation at the model’s lateral boundaries, avoiding spurious
extreme precipitation caused by the SL treatment of moisture variables near partially-resolved convection.

BARRA-C is missing some of the configuration improvements introduced in RAL1 because production runs had

already commenced. BARRA-C however-does not include a set of changes to the representation of the land surface and the
canopy radiation model in-RALL-which have-shewn-te-improve the-issue-ofthe damped diurnal cycle_issue -in near-surface
temperatures. BARRA-C also does not benefit from the improved treatment of gaseous absorption in both long- and short-
wave regimes in GA7 and RAL1, which improves interaction with band-by-band aerosol and cloud forcing.

BARRA uses the land surface scheme of Best et al. (2011), implemented in the Joint UK Land Environment and
Simulator (JULES). It describes a 3 m four-layer soil column; with sub-surface temperature updated using a heat diffusion
equation and; with the-vertical moisture flux is-estimated using the Richard's equation and Darcy's law. The soil hydraulics is
are_computed using_the van Genuchten equation. It uses a nine-tile approach to represent subgrid-scale heterogeneity in land
cover, with the surface of each land point subdivided into five vegetation types (broadleaf trees, needle-leaved trees,
temperate cool-season (C3) grass, tropical warm-season (C4) grass, and shrubs) and four non-vegetated surface types (urban,
inland water, bare soil, and land ice). tn-particutar-Uthe-urban surfaces are represented only by a single urban tilewhere-and
such that street canyons and roofs are not distinguished.

The characteristics of the lower boundary, climatological fields, and natural and anthropogenic emissions are
specified using static ancillary fields. These are created as per Bush et al. (2020; Table A1), with the exceptions of ancillaries
for the land—sea mask, canopy tree heights, and land usage. The land—sea mask is created from the 1 km resolution
International Geosphere—Biosphere Programme (IGBP) land cover data (Loveland et al., 2000) for SY and TA, and from
Shuttle Radar Topography Mission (SRTM) orography data for AD and PH. Land cover data based on Climate Change
Initiative (CClI, Hartley et al., 2017) is not adopted here as its mapping to the nine land surface tiles over the Australian
region remains untested. The canopy tree heights are derived from satellite light detection and ranging (lidar; Simard et al.,
2011; Dharssi et al., 2015). The land usage ancillary, created from IGBP, is modified for AD and PH to match the water

6
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fractions in the Water Observations from Space (WOfS, Mueller et al., 2016). Aerosol absorption and scattering in the
radiation scheme assume climatological aerosol properties. A climatological ozone field is also prescribed.

2.2 Initial and boundary conditions

The BARRA-C model hindcast is re-initialized with 6-hourly initial conditions at the synoptic hours to = 00:00, 06:00, 12:00,
and 18:00 UTC created by downscaling from BARRA-R analyses (Figure S2 in the Supplement). These fields are taken
from the centre of BARRA-R’s 6-hour analysis windows. A two-component reconfiguration approach is usedtaken; in which
BARRA-R winds, moisture and temperature are downscaled separately with different resolution topography sets, to remove
model instability ever-due to high-topegraphylarge horizontal topography gradients. BARRA-C is further constrained by
BARRA-R at the lateral boundaries without nudging, based on the prescription described in Bush et al. (2020) and a

boundary rim width of 0.34°. The boundary conditions force the development of the larger-scale features within the
BARRA-C domains. These setups follow the Bureau’s NWP system; and ensure that the benefits of the BARRA-R analysis
is-are inherited by BARRA-C, where BARRA-Cthe nested model is treated as a physically consistent interpolator of
BARRA-Rthe driving model.

The JULES soil moisture and temperature are prescribed by BARRA-R. Consistent with BARRA-R, daily sea
surface temperature and sea ice 0.05 x 0.05° analysis from reprocessed (1985-2007; Roberts-Jones et al., 2012) and near-
real-time Operational Sea Surface Temperature and Ice Analysis (OSTIA; Donlon et al., 2012) are used as lower boundaries
over the water after being interpolated to the BARRA-C UM-grid. The NRF-near-real-time data are used from January 2007.

Each hindcast in BARRA-C is a 9-hour simulation_but only 6-hours are used.; where-Tthe model data during the
first 3-hours peried-is discarded as the fine detail is only partially established_from the coarse-resolution initial conditions
due to model spin-up-from-the-coarse-reselution-initial-conditions. Therefore, the hindcast fields between to+4h and to+9h
form the BARRA-C data sets. Such a hindcast length is considered short; but is chosen to meet computational constraints

with-when regular reinitialization is needed for running the model for such an extended period. One clear limitation of our

setup is that model spin up artefacts are expected to be still present, particularly for convective clouds and rain.

3 Assessment

Our assessment focuses on near-surface variables and precipitation as the aim of BARRA-C is to capture small-scale local
weather phenomena that-which are is-most apparent near the surface. BARRA-C hindcasts are evaluated against point-scale
station observations for screen-level temperature, 10 m wind speed (Sec. 3.1) and precipitation (3.3). They are also compared
with gridded daily analyses of these observations for temperature (Sec. 3.2 and 3.6) and precipitation (Sec. 3.4 and 3.6).
Added skills in BARRA-C are-is illustrated by comparing_these variables against BARRA-R, -and-ERA-Interim hindcasts;
and-agatnst-ERAS-hindeastsfor-precipitation,—and ERAS hourly analyseis (ERAS hindcasts only for precipitation)-ferthe

other—variables. To increase the diversity of models used in our inter-comparison, we also include the Modern-Era

7
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Retrospective analysis for Research and Applications-2 (MERRA2, Gelaro et al., 2017) hindcasts. A scale-selective
evaluation of extreme storms is conducted in Sec. 3.5 using radar observations available over the SY domain. Finally, an
added value (AV) method is used to quantify improvements between BARRA-C and BARRA-R in the representation of

extreme daily maximum and minimum temperature and daily rainfall from gridded observations. Readers are referred to Sec.

A of the Supplement for details of the various reference data sets considered in our assessment.

3.1 Point evaluation of screen temperature, 10 m wind speed, surface pressure

The to+6h model hindcasts of screen-level temperature, 10 m wind speed, and surface pressure are evaluated against land
station observations during the 2010-2012 period, following the approach of Su et al. (2019). These observations have no
direct relation to BARRA-C, since there is no analysis in BARRA-C and they are not used in the associated BARRA-R cycle
to. These fields are interpolated from the model levels using surface similarity theory (Walters et al., 2017). Our benchmarks
include BARRA-R and ERA-Interim to+6h hindcasts, the MERRA2 hourly time-averaged hindcast fields, and the ERA5
hourly analysis. The models are interpolated -to be coincident with the observed locations and times. As the observations are
irregularly distributed in time, all observations within a to+5h to to+7h time window for to= 00 and 12 UTC are considered.
Root mean square difference (RMSD), Pearson’s linear correlation, additive bias, and variance bias are calculated at each

station between observed (do) and model (dm) data. Additive bias is defined as-with Bias = E(d,,) — E(d,), where E (o) is
var(@m) 1’ iff P A . i o
var(do)

is-the-expectation-operatorandso as to capture differences in the dispersion, where var (o) computes the variance in time.
This assessment does not serve to inform the true quality of the various reanalyses at their native resolutions, rather; it

the expectation operator, and the variance bias as Mbias =

indicates whether the models contain finer-scale information captured by point measurements. Based on Di Luca et al.,
(2016), we distinguish three distinct regions with characteristics of complex topography (stations with an elevation higher
than 500 m — topo), land-sea contrasts (stations that are within 1.5° of the coast — coast), or a relatively smooth terrain
(stations far from the coast — flat) (Figure S3 in the Supplement).

The comparisons of scores across all BARRA-C domains are shown in Figure 2. For temperature, the-BARRA (i.e.,
BARRA-R and BARRA-C) and ERA5 show better agreement with the station data than the other coarser reanalyses for most
metrics. For instance, BARRA-C shows lower RMSD than ERA-Interim at 80% of stations. BARRA shows greater contrast
from the global reanalyses than between them. ERA5 shows warm (additive) bias; while the-BARRA appears cooler. ERA-
Interim and ERAS generally show less variability in temperature than observations (Mbias < 0) while the other models tends
to have more similar temperature variability with observations. This is related to the cold bias in ERA during high
temperature (shown in the next section). On average, BARRA scores lower RMSD than ERAS at elevated stations (e.g.,
Snowy Mountains in SY) and smaller Mbias at near-coast stations. Simiarlyin general, BARRA-C shows more visible
improvements to BARRA-R at stations near coasts or over complex topography in terms of RMSD, correlation and Mbias
(Figure S3 in the Supplement). Consequently, BARRA-TA scores higher than BARRA-R on average. However, BARRA-C
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shows higher RMSD in the flat regions than in the other regions, unlike the other reanalyses. The degradation is small,
within 0.6 K in terms of RMSD, and for AD, this is related to over-dispersion (MBias > 1).

For 10 m wind speed, BARRA-C, BARRA-R and ERAS5 similarly exhibit lower RMSD and higher correlation with
the station data than the other global reanalyses, and the differences between these three models are not pronounced.
BARRA’s largest enhancement to ERA-Interim is found at elevated stations and near coasts, benefitting Tasmania
speeificallyparticularly. Contrasting BARRA-R, BARRA-C tends to show lower RMSD at these stations (Figure S3,
Supplement), and where we observe higher RMSD in BARRA-C, the difference is within 1 m/s. The wind estimated by all
the models tends to be under-dispersed (MBias < 1), relating to positive (negative) bias during light (strong) wind conditions.
Such a model under-dispersion is more striking in the TA and SY domains than in the other domains, and also over coastal
regions.

FortheFor surface pressure, the higher resolution models, including ERAS5, show markedly lower RMSD near
coasts. There is very good agreement between ERA5 and the observations. Seme—improvements—to-BARRA-R—from
BARRA-C shows some improvements over BARRA-R in -are-mainby-in-correlation and Mbias, and over coastal regions and

mountains.

3.2 Comparison with gridded analysis of daily maximum and minimum screen temperature

The reanalyses are compared against a gridded daily 0.05° x 0.05° analysis of observed maximum and minimum screen
temperature from the Australian Water Availability Project (AWAP; Jones et al., 2009) in Figure 3. BARRA outperforms the
driving model ERA-Interim in reducing the cold (warm) bias during summer DJF (winter JJA), particularly over the SY and
TA domains. avoi i i i i
eFHGBP—.LBARRA-C shows smaller extent of summer cold bias in daily maximum temperature over the Great Dividing
Range than both BARRA-R and ERA5, but shares similar bias with BARRA-R elsewhere. BARRA and the global

reanalyses also exhibit a considerable warm bias in the northwest of the AD domain,— the Nullarbor Plain, but this is likely

an artefact of the AWAP station density and discussed later.+n-this-region AWAP-analysis-is-generally-poorer{(Sec—A of the

The warm bias in daily minimum temperature in winter is also similar between BARRA-C and BARRA-R.«
BARRA-C has largely inherited the biases from BARRA-R; but with small local-scale differences. Despite such similarities
in summer bias,-when-comparing-the-rumber-of-hot-days-exeeeding-35-°C(308-15-K)-in-Figure-3{e); there are more hot days
(i.e., days exceeding 35 °C (308.15 K)) in Figure 3(c) in BARRA-C than in BARRA-R over inland Australia. By contrast,
the summer cold temperature bias in both ERA reanalyses is also reflected by fewer hot days; and vice versa for MERRA2.

Further analysis of the temperature extremes is considered in Sec. 3.6.
Figure 4 and Figure 5 examine the inter-seasonal and inter-annual variations in temperature bias with respect to
AWAP for daily maximum and minimum temperature respectively. They are similar between BARRA-C and BARRA-R,
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with BARRA-C showing slightly wider inter-seasonal variability. The inter-seasonal range of bias in BARRA is around 2 K,
which is similar to ERA-Interim and MERRAZ2 in most domains but is larger than ERA5 with the exception for TA. For AD
and PH, the daily maximum temperature is positively biased during summer months (DJF) and is negatively biased during
winter (JJA). The negative bias in daily maximum temperature is smallest during summer for SY and TA, and is largest
during winter for SY. For daily minimum temperature; these are reversed;; e.g.,; the associated positive bias peaks during
winter for AD, PH and SY, and the negative bias is maximum during summer for AD and PH.

There is both iFhe-inter-annual variability and_a trend of the temperature biases de-exist-in BARRA. For daily
maximum temperature bias,; there is a cooling trend in AD and PH, and a warming trend in TA. These trends can also be
seen in ERA5 and MERRAZ2. For daily minimum temperature bias, trends in BARRA are less apparent than in ERA5 and
MERRA2. Here-Wwe also observe in the TA domain that BARRA shows a small warming trend with respect to AWAP.

This analysis of variability of bias is alse-repeated for the standard deviation of the modelled temperature and«
AWAP in Figure S4 and S5 of the Supplement. BARRA-C shows a slightly wider dispersion of daily maximum
temperatures than AWAP (by 0.4 K) and BARRA-R (by 0.1 K), with the exception for the TA domain. For BARRA-TA, the
standard deviation of BARRA is similar to AWAP and is higher than the global reanalyses. For daily minimum temperature,
both BARRA are similar and-they-are generally under-dispersed by 0.3 K compared to AWAP.

3.3 Comparison with raingauges over Sydney

Hourly modelled precipitation from BARRA and ERA5 are compared against observations from 27 raingauges within 1°
radius around Sydney during the warmer months (NDJF) in 2008-2013 in Figure 6. During these months; convection
processes dominate and can produce a distinct diurnal distribution in thunderstorm activity ;wit The h-the-greatest frequency
of severe thunderstorms eceurring-occurs in November and December (Griffiths, et al., 1993). BARRA-R-and-ERAS5 and for
a lesser extent BARRA-R, both underestimate the frequency of heavy rain rate > 8 mm/h-with-alesserextentfor BARRA-

R. By contrast, BARRA-C underestimates the frequency of light rain rate and overestimates heavy rates. BARRA and ERA5
also distribute rainfall differently over a day. BARRA-C shows a bimodal distribution similar to the observations; albeit
showing too much rain leading up to the 06 UTC peak and too little rain during the daily minimum around 18 UTC. FFhe

BLARRA-R shows less diurnal variation in rainfall with too much rain distributed during 00-06 UTC,; whereas ERA5 shows

a pronounced early timing bias.

3.4 Comparison with daily rainfall analysis

Figure 7(a) compares the modelled precipitation against daily raingauge analysis from AWAP; including MERRA2’s hourly
time-averaged precipitation (PRECTOTCORR) product. BARRA-C shows a wet bias over the Great Dividing Range and the
southeast area of the AD domain; but improves the dry bias in BARRA-R and ERA reanalyses over the eastern and western
seaboards_and; ard-the Fleurieu and Yorke Peninsulas of South Australia. BARRA-C also shows dry biases on the western
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borders of the AD and SY domains possibly due to inconsistencies with the zero-lateral moisture mass flux_on the boundary

conditions (Sect. 2.1). A striking difference between BARRA and the global reanalyses is over western Tasmania where the
latter displays a dry bias.

NextiIn Figure 7(b), BARRA-R, ERA5 and ERA-Interim show too few heavy rain days (> 10 mm/day) over the
coastlines, SA peninsula, and western Tasmania. BARRA-C improves on this; but generally simulates more heavy rain days
than other reanalyses; and too few moderate-light rain days (<10 mm/day, not shown) in all domains. BARRA-R and
MERRA2 generally show too many light rain days and the ERA reanalyses show too many light rain days in SY and eastern
Tasmania, and too few in AD, PH, and western Tasmania.

The inter-seasonal and inter-annual variations in precipitation bias with respect to AWAP are plotted in Figure 8.
As with temperature (Figure 4), they are similar between-the BARRA-R and BARRA-C; although the latter shows a larger
range in all-the BARRA-C domains but-except TA. In particular, the-a wet bias is generally observed during the wet season
(JJA for AD, DJF for PH), wetter months (JJA for TA) or thunderstorm season (DJF for SY).anrd Athe dry bias generally
occurs during the dry season or drier months, {i.e..e-g- SON for AD, PH and TA). This is consistent with the tendency of
BARRA-C to overestimate heavy rain rates and underestimate light rain occurrence. Some of the inter-annual variations in
the bias are clearly common amongst BARRA and the global reanalyses ; examples-e.qg., are-in AD and PH_domains during
the Millennium drought (1996-2009) -where the various models are-driershare a dry bias-during-the-Millennium-drought
{1996-2009). BARRA can-also shows different trends to the global reanalyses.- Fer-instance-Tthere is a wetting trend post-
2009 for BARRA in AD; but this is opposite for the other models. In SY, BARRA also displays a wetting trend; while ERA

trends drier.

It should however be noted that, as is often found for gridded interpolated data, AWAP tends to underestimate the
intensity of extreme rainfall events; and overestimate the frequency and intensity of low rainfall events (King et al., 2012).
The errors are larger at high elevations (SY and TA) where gauges are fewer, ard-when there is frozen precipitation, and/or
topography is exposed to prevailing winds (Chubb et al., 2016).

3.5 Storms over Sydney

The point gauge-based assessment in Sect. 3.3 is harsher to higher resolution models than coarser models; due to the
compound error of space and time near-misses_which increasessing as the grid cells shrink. Therefore, we compare the
simulated rain-fieldsfall from BARRA-SY with the Bureau’s radar nowcasting rainfall product (Rainfields2; Seed et al.,
2007) using-and use the fractions skill scores (FSS) to allow assessment at different spatial scales; following the approach
described in Roberts and Lean (2007), Jermey and Renshaw (2016) and Acharya et al. (2020). The FSS provides an
evaluation of the rainfall skill as a function of spatial resolution. The radar product, blended with gauge observations using
conditional merging (Sinclair and Pegram, 2005), is available from 2014-onwards on a mosaic grid consisting of the
domains of multiple radars. Following Acharya et al. (2020), the largest 36 storm events during 2014-2016 are selected

based on domain-averaged daily precipitation.
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FSS is categorised as a ‘neighbourhood verification” metric (Ebert, 2009) in which fractional coverages of grid cells
close to observation are valued equally. The FSS tallies the relative number of ‘hits’ between the model and the observation
at different spatial scales and different rain thresholds. An FSS of 1 represents a perfect forecast where the number of cells
with precipitation above a threshold within a neighbourhood is identical between the model and observation grids for all
possible neighbourhoods. Here, BARRA hourly rain rates are regridded to the radar grid of 1.5 km_-and the accumulated
rain amounts over moving 6-hour windows are analysed. From the 36 multi-day storm event set, 1323 different 6-hour
events are produced using a moving window. FSS is computed for each 6-hour event for each model and then the scores are
aggregated to give an average for all events. Given that inherent bias between the observation and the models exists due to
differences in their representativity, -éifferences-and also to focus on the spatial accuracy of the models, we use percentile-
based thresholds computed across all the storm events. This ensures that the model and observed rain fields have an identical
fraction of rain events for each threshold value (see-explained further in Sec. E of the Supplement). Figure 9 illustrates the
striking differences between the-BARRA-R and BARRA-SY for five events in 2014. BARRA-SY can show more realistic
organisation in the 1.5 km model owing to the explicit modelling of convection and can produce higher rainfall intensity.
The event on 7 December 2014 in Figure 9(v) illustrates a summer storm case where BARRA-R shows rainfall
accumulations which lack the spatial pattern common with-to convective organisation which-and are-evident in BARRA-SY
and in observations. BARRA-R also shows excessive grid-point precipitation over the mountains; which are absent in_both
observations and BARRA-SY. At the same time, BARRA-SY can show too many cells (Figure 9(ii)); which can produce
streaks of light rainfall (Figure 9(iv)).

The FSS results in Figure 10 shows that BARRA-SY is more skilful over all scales than BARRA-R for all threshold
levels. FSSuniform is the FSS of a forecast field with a uniform fractional coverage equal to the fraction of points observed
with any rain (>0.2mm/hr). Scores greater than FSSuniform is considered skilful. For the lowest threshold (56%, i.e. 4 mm in
the observed radar values), the uniform score (FSSuniform) is reached at scales of 0.3° (BARRA-SY); and 0.65° (BARRA-R).
At the highest threshold (99.9%, 64 mm), the uniform score is reached at scales of 2.4° and 3.35°, respectively. The contrast
between the two BARRA FSSs is therefore greater at the higher precipitation thresholds. FSSs for higher rainfall thresholds

is-are also generally lower as the area of rain being sampled becomes more localized and is more challenging to be

reproduced correctly in the models.

3.6 Added value analysis for temperature and rainfall extremes

We apply an approach similar to Di Luca et al. (2015) to quantify the added value (AV) in the representation of
climatological extremes from BARRA-C by comparing the-its skill between-the- BARRA-C-andto the skill in BARRA-R.
The warm extremes of daily maximum temperature, the cold extremes of daily minimum temperature and the wet extremes
of daily precipitation are assessed against AWAP|; noting-that-the-true-AV-from-BARRA-C-at its-pative resolution-is-not
qu-y—éete%miﬂed—he;eJ—The statistics for extremes (X) are given by the percentiles of the daily temperature and precipitation
values over the 29-year time period. We use AVy =
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[d(Xparra-r Xawap) — A(Xparra-c» Xawar)1/[d(Xparra-r Xawap) + A(Xparra-c, Xawap)] Of Di Luca et al. (2016)
where d defines a distance metric between the model-derived and AWAP-derived statistics computed across the grid cells.
To capture both the total errors and spatial patterns of the statistics, we let d = MSE(4, B) = E[(A — B)?] to define the
mean squared error and also use d = Corr(A, B) = 1 — R(A, B) with R as Pearson’s correlation. Larger positive AV values
suggest smaller errors in BARRA-C than in BARRA-R and thus substantial added value by the downscaling of BARRA-R.
Figure 11 plots AV scores for different BARRA-C domains; showing that AV is not gained consistently across the
percentiles, variables and domains. For warm extremes of daily maximum temperature, BARRA-C shows positive AVuse
over BARRA-R in the TA and AD domains. Low or negative AV vse for AD, PH and SY (inland region)_is mainly due to its
the warm_and wet bias_in BARRA-C seen—alse seen-in Figure 3(c) and 6(a,b). With-The positive AVcor_indicates that;

BARRA-C captures the spatial patterns of the warm extremes across the domains, particularly over the coastal and high

topography regions (see also Figure S6 of the Supplement).

For cold extremes in Figure 11(b), BARRA-C still shows positive AVuse over all_domains except but-the-SY<

domain—due-to-AV-overthecoastalregions. This AV is mostly contributed by coastal regions as seen in Figure S6. Negative
AVyse in SY s related to warmer cold extremes; particularly over the Great Dividing Range. The-pPositive AVcor is seen in
TA but not in the other domains;. However, -although-it should be noted that the BARRAs are generally strongly correlated
with AWAP with R mostly between 0.7 to 0.9.

AV from BARRA-C for wet extremes of precipitation relates more to the spatial patterns of the extremes (Figure
11(c)). Giv i avy-rainfall; as+ela arly
PH—demains—éﬁgwe—Z(b»Hs—respensible#eHhe—lewMgE]rThere is negative AVwse for all domains except TA which

......... of BARRA o-overastimata haan in ha wwat hi elativeto- AWAPR parti overthe
0 0V a v D ve 1o Pa u oV
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remains near zero, highlighting the BARRA-C rainfall bias. On the other hand the AV corr is positive for all domains except

AD for the highest three rainfall percentiles, which indicates better spatial correlation of rainfall than BARRA-R.[For-the-S¥.

domain—pesitive- AV for-precipitation—agrees—with-the—above FSS-—ana —which-somewhat-aveids-the ue of bia

4 Discussion

The BARRA-C 1.5 km models are strongly forced by BARRA-R with both initial conditions every 6 hours, and hourly

boundary conditions. BARRA-C has therefore inherited much of the same quality of the BARRA-R, however, it Fhe

L

todoes provide additional information about local near-surface meteorological conditions. BARRA-C provides better
representative point-scale estimates of screen temperature, 10 m wind speed and surface pressure at some areas with
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complex topography or near coastlines, and mainly inherits the skills of BARRA-R over other areas. The degradation from
BARRA-R is slight, within (RMSD) 0.6 K for temperature and 1 m/s for wind speed.

BARRA-C also shows a 2-10 m wind speed bias that is positive (negative) bias-during light (strong) wind conditions,;
similar to_the bias in BARRA-R. Many factors such as boundary layer mixing, form drag for subgrid orography and surface
properties can influence wind estimation over land. The representation of the stable boundary layer remains challenging due
to the multiplicity of physical processes and their complex interactions, i.e., {including-turbulence, radiation, land surface

coupling and heterogeneity_and; turbulent orographic form drag.)—invelved—and—their—complex—interactions; such-—that

mModels typically suffer biases in 2 m temperature and wind speed under such conditions -(Steeneveld, 2014 and references

therein).

BARRA-C also inherits the domain-averaged biases in daily maximum and minimum temperature from BARRA-R. It
reduces some bias over the Great Dividing Range but simulates more hot days_than seen in observations -particularly over
inland Australia. However, in some inland regions the AWAP analyses are poorer quality due to low observing station

density. For example, in the northwest of the AD domain - the Nullarbor Plain - both BARRA and the global models show a

large warm bias in daily maximum temperature, however, the station density used in AWAP is less than 2 per deg?® (Sec. A

of the Supplement) |
-The_daily temperature bias varies_differently in time -between the four domains, with AD and PH showing a change of

sign in bias between summer and winter months, while SY and TA show persisting negative (positive) bias for daily
maximum (minimum) temperatures. Such similarities between the domains may be related to their similarities in terms of
climate and land cover. Bush et al. (2020) discussed that changes in RAL1 for land surface representations (Table 1, Sec.
2.1) are important to improve the diurnal biases in pre-RAL1 configurations. These could benefit the biases seen over
vegetated areas, particularly for daily minimum temperature in SY and TA.

Differences in land classification between BARRA and ERA reanalyses can explain some of the differences seen in the

comparison of gridded daily maximum and minimum temperatures seen in Figure 3. BARRA avoids the bias in ERA over

the salt lakes in SA by modelling them with land characteristics based on IGBP, whereas ERA uses CCI.|

The-reduced dry bias of higher rain rates seen in the coarser scale models during the thunderstorm seasons in_the SY
domain is alleviated by BARRA-C. The underestimation of the peak rain rates in BARRA-R and ERA5 was expected from
the lack of convection organisation due to the use of a cumulus parameterization, whereas BARRA-C evidently shows more
realistic organization_and does not underestimate peak rain rates. However, the latter also exhibits too much heavy rain and
not enough light rain_which is; likely due to the_still under--resolved convection and the model’s inability to resolve
detrainment from convective updrafts. This is consistent with the findings reported in other studies. For example, Lean et al.
(2008) and Hanley et al. (2016) found that 1 km grid length UM simulations tend to produce cells that were too intense, too
far apart and with not enough light rain. The latter also noted insufficient small storms in both shower cases and large storm

cases, and too many large cells in shower cases.
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The short hindcast length in BARRA-C (Sect. 2.2) poses a further limitation. The rainfall excess could result from
model spin-up.; as-Eextra_energy (i.e. CAPE) builds up during the early timesteps when there is insufficient convection;
which is then-finally released_in the form of convective precipitation in later timesteps (Lean et al., 2008). Champion and

Hodges (2014) have also noted that modelled precipitation intensities are most accurate when the model is initialised 12
hours before the rain maxima. The moisture conserving zero-lateral mass flux boundary conditions in BARRA-C exacerbate
this issue. Moisture variables are not advected across boundaries and instead allowed to develop via physical processes in the
model. These processes take some time to spin-up in each hindcast leading to near-boundary downstream moisture bias, e.g.,
—for-example—the-western boundary of the annual rainfall maps of AD and SY domains (Figure 7(a)). These issues of
precipitation with short hindcasts can be improved with an assimilation system that will allow high resolution features to
propagate from one hindcast cycle to the next (Dixon et al., 2008). In spite of these limitations, we find that BARRA-C
provides a more representative rainfall climatology for heavy rain days near the coastal erand mountainous regions, and as
well-betteras sub-daily rain spatial patterns.

BARRA-C simulates peaks in the diurnal distribution of precipitation better than BARRA-R and ERA5. However, we

also find that precipitation may be initiated too early and grow too rapidly. Consequently, BARRA-C under represents off-

peak rainrates resulting in an over-pronounced diurnal cycle, seen in Figure 4(b) for BARRA-SY in summer. -This is

contrary to the expectation for all models to initiate too late since subgrid-scale initial plumes cannot be represented. The
early initiation bias in BARRA-R is due to the CAPE-based trigger mechanism of the convection scheme (Lean et al., 2008).
In the case of the kilometre-scale UM, the reasons are likely several. Hanley et al. (2015) partly attributed timing bias in
convection initiation, which is too early in shower cases and too late in the larger storm cases, to unresolved convection at
the kilometre-scale grid length. Other reasons may be that- stochastic perturbations (Sect. 2.1) or -model responses to the pre-
convective profile areis too strong, or_that the profile has inadequate convective inhibition (CIN). The various aspects
(intensity, size and timing) of simulated cells have shown to improve with adjustments to the mixing length used in the
subgrid turbulence scheme, but not all aspects improve simultaneously (Hanley et al., 2015).

There are trends and/or inter-annual variability of bias in BARRA against analyses of temperature and precipitation
observations, and some of these trends are also apparent in the global reanalyses. BARRA-C largely-mirrors-the-has similar
bias variability in-to BARRA-R, and its magnitude is-efthe-erderis similar or less than the global reanalyses. Spurious trends
or artificial shifts in reanalyses could result from abrupt changes to the amount of sateltite-data assimilated, e.qg., at the start
and end of satellite missions and-or the various observational data archives. In BARRA-R, corrections were also made to the

observation screening and thinning rules mid-production (Su et al., 2019). H-is-heweverHowever, it is outside of the scope of

this work to assess the impacts of various observational changes.

BARRA-C shows better agreement with the pattern and the relative distribution of radar-derived rainfall during storms
over Sydney. This improvement is; ewing-due to the use of explicit convection (Sect 2.1) and a higher resolution model and
this-is consistent with earlier studies with UM (e.g., Lean et al., 2008). Comparisons of FSS from the same events including

ERAS5 show that its lower resolution leads to larger representation errors and lower FSS than BARRA-R despite both
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parametrising convection (Figure S6, the Supplement). While BARRA-C still shows considerable bias compared to both rain
gauges and radar observations, BARRA-Cit adds value to BARRA-R and ERA by providing more realistic and accurate
spatial representations of rainfall during storms at various spatial scales and percentile thresholds.

The AV analysis of temperature and precipitation extremes shows that BARRA-C provides-enly some value over
BARRA-R in various aspects including the spatial patterns of the warm temperature extremes and wet precipitation extremes
and bias in cold extremes over coastal regions. -Low AV can be related to temperature and precipitation biases, which differ
between the regions. [For example, the BARRA-C wet bias relative to AWAP, particularly over the PH domain (Figure 7(b)),

is responsible for the low AVwse for rainfall. The positive AV for precipitation in BARRA-SY agrees with the above FSS

analysis, which somewhat avoids the wet bias issue through percentile-based thresholding.

Assessing AV for wet extremes may also be problematic with AWAP. As an interpolated dataset, AWAP tends to

underestimate the intensity of extreme heavy rainfall observed at stations and the issue is more pronounced at locations with

sparse observational sampling or high topography, particularly in SY and TA (Chubb et al. 2016; King et al., 2012)]

-While this analysis suggests that limited value is added by the downscaling of BARRA-R for these extremes, the
true AV of BARRA-C at its native resolution is not assessed here given the limited resolution of AWAP and can be explored
further with scale-dependent AV analysis of Di Luca et al. (2016). -Determining AV at the kilometre scale is also expected

to be challenging as more accurate and representative observational data sets are needed. ,

5 Conclusions

The recent development of CPMs in NWP has facilitated the creation of kilometre-scale regional reanalysis and climate
projections. BARRA is the first regional reanalysis that focuses on the Australasian region—which. It has been developed
with significant co-investment from state-level emergency service agencies across Australia. BARRA-C is the critical
component of the project that provides these agencies with the means for developing a deeper understanding of past extreme
weather at local scales, especially in areas that were not adequately served by observation networks (e.g., Figure S3, the
Supplement). The four mid-latitude domains of BARRA-C are designed to address these needs; and BARRA-R is needed to
establish a driving model for BARRA-C-that-is-of-higher+esolution-than-ERA-Interim; and-te utilise more of the Australian
local observations (Su et al., 2019). Completed in June 2019, the 29-year BARRA-R reanalysis (1990 to February 2019) and
its downscaled counterparts BARRA-C, form a collection of high-resolution gridded meteorological datasets with 12 and 1.5
km horizontal grid lengths and 10 minutes to hourly time resolution, produced using systems closely related to the Bureau’s
present (as of October 2020) regional NWP systems. The hybrid model-level and pressure-level gridded data from BARRA-
C are also available to drive/force sub-kilometrekm weather or non-weather models.
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This paper describes the experimental configuration of BARRA-C and provides a preliminary assessment to
illustrate its skills over BARRA-R and the global reanalyses at their subgrid scales. As expected from a hindcast-only
system, it inherits the domain-averaged biases from BARRA-R. On the other hand, our added value analysis hewever-shows
that BARRA-C simulated different climatological extremes for temperature. Altogether, there exists added skill at the local-
scale for temperature and wind, particularly in topographically complex regions in SY and TA, and coastal regions in all
domains. As expected, the contrasts in skills and biases are most apparent between BARRA and the coarser-scale reanalyses
(ERA-Interim, MERRA2). Fhe-BARRA-R and BARRA-C produce more distinctive precipitation estimates for intensity,
sub-daily timing and hourly spatial patterns that are characteristics of their physical schemes. BARRA-C also provides
different spatial distribution of precipitation over complex terrains and more skilful representations of sub-daily rainfall
fields. The latter suggests that BARRA-C is more suited for studies of extreme rainfall events, albeit with-still has a high
rainfall bias. The high rainfall bias therefore-also manifests as-biases-in the climatological extremes of precipitation. These
findings highlight_that improvements are still needed in eurfor future kilometre-scale downscaled reanalysis, such-ase.q.,
adding kilometre-scale threugh-data assimilation and_further model development. At this stage, BARRA-R and BARRA-C

can be used conjunctively to improve individual estimates of temperature and precipitation. Some of their biases, including
for 10 m wind, could also be addressed via post-processing using multi-variate regression models or quantile matching
methods such as those of Glahn and Lowry (1972), and Cattoén et al. (2020). Users of BARRA are strongly encouraged to
undertake a local evaluation to ascertain the skills of BARRA-C for their regions and parameters of interest.

BARRA lays some of the important groundwork for future reanalysis-related activities and developing national
climate risk services at the Bureau. Some of the issues identified in this work are being actively researched by collaborating
national meteorological centres and academic institutions, within the “Regional Atmosphere” configuration development
framework (Bush et al., 2020). Future reanalyses will also benefit from the recent advances in Bureau’s NWP, whereby an
assimilation system (Rennie et al., 2020) and ensemble are introduced in its upcoming kilometre-scale models, to allow
propagation of high-resolution information between hindcast cycles and estimation of uncertainties.

Code availability

All code, including the UM (version 10.6) and JULES (version 4.7), used to produced BARRA-C is version-controlled under
the Met Office Science Repository Service. The UM is available for use under license,
http://www.metoffice.gov.uk/research/modelling-systems/unified-model. JULES is available under licence free of charge,
http://jules-lsm.github.io/access_req/JULES_access.html. The infrastructure for building and running UM-JULES
simulations uses the Rose suite engine (https://metomi.github.io/rose/doc/html/index.html) and scheduling using the Cylc
work flow engine (https://cylc.github.io/, Oliver et al., 2019). Both Rose and Cylc are available under Version 3 of the GNU
General Public License. The BARRA-C Rose/Cylc suite, with an identifier u-ak499, is version-controlled under the Met

Office Science Repository Service and contains the UM-JULES science namelist and simulation configurations. Output from
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the model simulations was converted from UM fieldsfile format to netCDF4 format using Iris (https:/scitools-
iris.readthedocs.io/en/stable/https:Hseitools-org-uk/irisidocs/iatest/).

Data availability

The BARRA datasets for the period of January 1990 to February 2019 are available for academic use. Readers are referred
to http://www.bom.gov.au/research/projects/reanalysis (last access: 31 August 2020; Bureau of Meteorology, 2020) for
information on available parameters, access and licensing. The BARRA-R datasets used to initialise and constrain BARRA-
C at the boundaries and the BARRA-C ancillary files can be requested by contacting the authors directly and are subject to

the same licensing conditions.
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Figure 1: Domains of BARRA-C, (left to right) BARRA-PH (over Perth), BARRA-AD (Adelaide), BARRA-TA (Tasmania), and
BARRA-SY (Sydney), showing the modelled orography. Red circles indicate the locations of the state capital cities.
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Figure 2: Box plots showing the distribution of evaluation scores of various models for (a) screen-level temperature, (b) 10 m wind

speed, and (c) surface pressure across the four BARRA-C domains. Three regions are analysed separately: coastal (‘coast’),
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complex topography (‘topo’), and flat, and the models distinguished by colours. The scores are

between 05-07 UTC, and 17-19 UTC against observations during 2010-2012.
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(a) Daily max temp [degC], DJF
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regridded onto the AWAP grid using the-nearest--neighbour interpolation.
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Figure 4: Timeseries of monthly mean difference in daily maximum temperature averaged over various BARRA-C domains; with
respect to AWAP. The timeseries are shaded around their individual 1990-2018 means.
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Figure 5: As with Figure 4; but for daily minimum temperature.
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(a) Annual precipitation [mm/year]
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Figure 7: Mean difference in (a) annual precipitation and (b) annual count of wet days with depth > 10 mm. The models are
regridded onto the AWAP grid using the-nearest--neighbour interpolation.
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870 Figure 9: Simulated 6-hour rainfall accumulation [mm] in BARRA-SY and BARRA-R, compared with rainfall derived from the
composite radar network in-thearound the Sydney area for five events.
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indicate the score for BARRA-SY, dotted curves for BARRA-R, and the dashed horizontal lines the uniform score (FSSuniform) for
each threshold as specified by Roberts and Lean (2007).
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(a) Daily max temp.

(b) Daily min. temp.

(c) Daily precipitation
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Figure 11: Added value (AV) analysis of the (a) warm extreme of daily maximum temperature, (b) cold extreme of daily minimum
temperature, and (c) wet extreme of daily precipitation, performed-for different-all four BARRA-C domains.
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Table 1: An overview of mMajor differences between BARRA-C, BARRA-R and the mid-latitude version of RAL1 (RAL1-M)
890 models. The configurations for BARRA-R are described in Su et al. (2019) and Walters et al. (2017), and those for RAL1-M in

Bush et al. (2020).
Aspects BARRA-R BARRA-C RAL1-M
Nesting setup Nested in 6-hourly ERA- | Nested in hourly BARRA-R | NA
Interim boundary conditions | boundary conditions
Horizontal grid length in | 0.11° 0.0135° 0.0135 to 0.04°
radial resolution
Vertical model level set 70 levels, with 50 levels

below 18 km, and 20 levels
above this, fixed model lid of
80 km above the sea level.

70 levels, with 61 levels below 18 km, 9 levels above this,

fixed model lid of 40 km above

sea level

Model timestep 300 seconds 60 seconds 60-100 seconds, depending
on the model resolution
UM model version 10.2 10.6 >10.6
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JULES model version 3.0 4.7 >4.8
Data assimilation 6-hourly 4D  variational | None NA
analysis
Moisture variable SL | Quasi-monotone (Bermejo and Staniforth, 1992) Posteriori monotonicity filter
advection schemes (PMF)
Convective Mass-flux convection | None
parameterization scheme | scheme of Gregory and
Rowntree (1990)
Gaseous absorption | GA6 (Walters et al., 2017) GAT (Walters et al., 2019)
(radiation) scheme
Include spectral land- | No Yes
surface albedo
Canopy radiation back- | Isotropic Anisotropic
scatter scheme
Cloud microphysics | Single moment  scheme | Wilson and Ballard (1999), with prognostic graupel
scheme based on Wilson and Ballard | (Wilkinson and Bornemann, 2014) and improved warm rain
(1999) scheme (Boutle et al., 2014a)

Boundary layer scheme

1D vertical turbulent mixing
scheme of Lock et al. (2000)

Blended boundary layer parameterization (Boutle et al.,

2014b)

Land
hydrology

surface and

GAG6 (Walters et al., 2017), PDM subgrid-scale heterogeneity,
JULES urban parameters are optimized for Australia (Dharssi

etal., 2015)

GA7 (Walters et al., 2019)
where TOPMODEL is used,
and RAL1 changes, namely
use of CCl-based land cover
tiles, reduced bare soil
fraction of short vegetation
tiles, scalar roughness
lengths for grass tiles, and
revisions to the albedos of
vegetation tiles.

BL
perturbations

stochastic

None

Perturbation to temperature

Perturbation to temperature
and moisture

BL stability functions

For stable BL, the “sharp”
function of Lock et al. (2016)
is used over the sea, and over
land is a blended
combination of the Louis
(1979) and the “sharpest”
function, for heights below
200 m. The convective BL
stability functions are based
on UKMO Large-Eddy
model simulations.

The “sharpest” function for

stable BL everywhere. The

convective BL stability functions are based on UKMO Large-

Eddy model simulations.

Critical relative humidity
profile

0.92 in the lowest layer, with
a gradual decrease to 0.8 at
model level 17 (~2100 km).

0.96 in the lowest layer, and decrease to 0.8 at model level 15

(~850 km).
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