
 1 

Assessment of the ParFlow-CLM CONUS 1.0 integrated hydrologic 

model: Evaluation of hyper-resolution water balance components 

across the contiguous United States 
Mary M. F. O’Neill1,2,3, Danielle T. Tijerina4, Laura E. Condon5, Reed M. Maxwell4 

1Colorado School of Mines, Department of Geology and Geological Engineering, Golden, CO, USA 5 
2Now at NASA Goddard Space Flight Center, Hydrological Sciences Laboratory, Greenbelt, MD, USA 
3Now at University of Maryland, College Park, Earth System Science Interdisciplinary Center, Greenbelt, MD, USA 
4Princeton University, Department of Civil and Environmental Engineering and High Meadows Environmental 

Institute, Princeton, NJ, USA 
5The University of Arizona, Department of Hydrology and Atmospheric Sciences, Tuscon, AZ, USA 10 
 

Abstract 

Recent advancements in computational efficiency and earth system modeling have awarded hydrologists with 

increasingly high-resolution models of terrestrial hydrology, which are paramount to understanding and predicting 

complex fluxes of moisture and energy. Continental-scale hydrologic simulations are, in particular, of interest to the 15 
hydrologic community for numerous societal, scientific and operational benefits. The coupled hydrology-land 

surface model ParFlow-CLM configured over the continental United States (PFCONUS) has been employed in 

previous literature to study scale-dependent connections between water table depth, topography, recharge, and 

evapotranspiration, as well as to explore impacts of anthropogenic aquifer depletion to the water and energy balance. 

These studies have allowed for an unprecedented, process-based understanding of the continental water cycle at high 20 
resolution. Here, we provide the most comprehensive evaluation of PFCONUS version 1.0 (PFCONUSv1) 

performance to date, comparing numerous modeled water balance components with thousands of in situ 

observations and several remote sensing products, and using a range of statistical performance metrics for 

evaluation. PFCONUSv1 comparisons with these datasets are a promising indicator of model fidelity and ability to 

reproduce the continental-scale water balance at high resolution. Areas for improvement are identified, such as a 25 
positive streamflow bias at gauges in the eastern Great Plains, a shallow water table bias over many areas of the 

model domain, and low bias in seasonal total water storage amplitude especially for the Ohio, Missouri and 

Arkansas river basins. We discuss several potential sources for model bias and suggest that minimizing error in 

topographic processing and meteorological forcing would considerably improve model performance. Results here 

provide a benchmark and guidance for further PFCONUS model development, and they highlight the importance of 30 
concurrently evaluating all hydrologic components and fluxes to provide a multivariate, holistic validation of the 

complete modeled water balance. 

 

 

 35 



 2 

1 Introduction 

Explicitly modeling the terrestrial water cycle at the global scale and at high resolution has recently been 

referred to as a “grand challenge in hydrology” (Bierkens et al., 2015; Wood et al., 2011), an undertaking that has 

excited the hydrologic community and encouraged the development of large-scale modeling efforts, workshops and 

working groups. These “everywhere and locally relevant” hydrologic models (Bierkens et al., 2015) differ from land 40 
surface models (LSMs) and general circulation models (GCMs), by providing spatially ubiquitous and hyper-

resolution, physically-based hydrologic simulations. While LSMs and GCMs may provide water balance estimates 

at regional, continental or global scales, their hydrologic schemes can be coarse resolution, simplified or highly 

parameterized (Wood et al., 2011). A process-based and mechanistic (rather than empirical) representation of both 

the large-scale and local water cycle is necessary to address hydrologic problems surrounding society, agriculture, 45 
resource management, biodiversity, and climate (Clark et al., 2015). 

Therefore, high-resolution, large-scale and physically based hydrologic modeling offers profound and 

multi-faceted benefits. From a societal perspective, these models enable operational forecasting and planning in 

regions where water balance estimates are unavailable or poorly constrained by scarce or nonexistent observations, 

such as developing countries (Group on Earth Observations, 2009). As Beven and Cloke (2012) point out, hyper-50 
resolution hydrologic model outputs (as opposed to course-resolution global hydrologic model (GHM) results) can 

be more accessible and logical to local water managers by providing locally relevant and detailed information. High-

resolution hydrologic modeling could also be used to inform, initialize, or downscale LSMs and GCMs. Clark et al. 

(2015) identify spatial heterogeneity, organization and integration of soil moisture and groundwater to be a major 

missing link in LSMs, meteorological models and climate models. Further, large-scale hydrologic models could be 55 
used to better understand or constrain results from remote sensing. For instance, LSMs may be used in forward 

modeling approaches to estimate signal attenuation in remote sensing of total water storage change (Landerer & 

Swenson, 2012). 

These motivating factors have catalyzed the development of several hyper-resolution, continental- or 

global-scale modeling efforts over the last decade. Some fine examples include physically based platforms, such as 60 
the Terrestrial Systems Modeling Platform (TerrSysMP), a fully integrated soil-vegetation-atmosphere model, 

employed over the European CORDEX domain (Keune et al., 2016); and integrated groundwater-surface water 

modeling over the continental United States with ParFlow v3 (Maxwell et al., 2015). Others have used a global 

water balance approach, like WaterGAP (Döll et al., 2003), as well as PCR-GLOBWB (Sutanudjaja et al., 2018), 

which was recently coupled to MODFLOW at globally 1-km resolution (de Graaf et al., 2017). High-resolution land 65 
surface modeling has begun to include topographically informed routing of surface or subsurface water storage; for 

example, the Land Information System software group (Zaitchik et al., 2010) or Noah-MP (Niu et al., 2011); and 

operational flood forecasting from the National Water Model (NWM) v2.0 (Office of Water Prediction, 

water.noaa.gov/about/nwm). Many of these platforms were made possible given the notable progress made in 

globally available and openly accessible input parameters, such as hydrography datasets (e.g. Lehner et al., 2008) 70 
and hydraulic parameters (e.g., Survey, 2003; BGR & Unesco, Groundwater Resources of the World, n.d.; Gleeson 
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et al., 2014; SSURGO), as well as advancements in computational efficiency and massively parallel computing 

resources (e.g., Kollet et al., 2010). 

While global and continental hydrologic representation continues to improve, the extreme-scale hydrologic 

modeling community still faces many challenges and models can struggle to close the water balance with certainty. 75 
Given the lack of spatially and temporally continuous hydrologic measurements across the globe, as well as their 

associated computational demand, parameter calibration at these scales is often problematic or infeasible (R. M. 

Maxwell et al., 2015). Distributed macroscale hydrology models must often rely on a priori information and datasets 

informed by field measurements or hydrologic theory (which may be unavailable, especially in under developed 

regions); or, less commonly, they can employ regionalization approaches to transfer calibrated parameters from 80 
gauged to ungauged catchments (Beck et al., 2016). Validation can also be problematic, in that large gaps exist in 

space or time for in situ measurements, and remote sensing products often depend on hydrologic algorithms and 

parameterization (Archfield et al., 2015).  

Studies assessing model performance suggest that while continental and global hydrologic modeling is 

promising, there is considerable room for improvement when it comes to model skill, and most of these performance 85 
assessments only evaluate one or two output variables at one time. For instance, Sutanudjaja et al. (2018) evaluated 

streamflow and total water storage performance of 5 arcmin resolution simulation of PCR-GLOBWB relative to the 

Global Runoff Data Center (GRDC) and remote sensing from the Gravity Recovery and Climate Experiment 

(GRACE). Although TWS performance was generally acceptable for major global river basins, they found that only 

40% of discharge locations exhibited a Kling-Gupta efficiency coefficient (KGE, a measure of performance in 90 
which 0.5 or lower is unsatisfactory; Bai et al., 2016; Moriasi et al., 1983) of >0.3, suggesting that the large majority 

of GRDC stations show unsatisfactory performance. Recent streamflow results from WaterGAP2.2d are 

encouraging (Schmied et al., 2020), with a median KGE of 0.79 and a near-optimum bias measure; however, the 

model underestimated TWS amplitude and trend in the majority of basins. Salas et al. (2018) evaluated the National 

Flood Interoperability Experiment (NFIE-Hydro), which leverages the WRF-Hydro framework and the Noah-MP 95 
LSM. They identify several regions for model improvement, including a positive bias of flow in the Southern U.S 

and Central Plains and a negative bias in the Rocky Mountains, suggesting several potential sources for bias 

depending on the area, including snowpack formulation, precipitation bias, soil column draining dynamics, or failure 

of lateral redistribution to attenuate flow. These results reiterate that acceptable performance of one model output 

does not necessarily translate to appropriate simulations of the full water balance, and evaluating multiple output 100 
parameters simultaneously (such as snow water equivalent, soil moisture, evapotranspiration, and many others) 

could help confidently attribute sources of bias. 

We argue that validation and performance assessment should continue to be highly prioritized for 

uncalibrated, high-resolution, and large-scale hydrologic models, and validation studies that evaluate several output 

variables are paramount to guiding and improving model development. It has been well established that calibration 105 
methods utilizing multiple types of observational datasets result in overall better model skill (e.g., Finger et al., 

2015); additionally, understanding the relationships between multiple output variables (e.g., evaporative fraction and 

soil saturation, Rakovec et al., 2019) is imperative to diagnosing performance deficiencies. Multivariate model 
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validation can help attribute sources of bias and increase certainty in water balance components; this is especially 

true for the physically based hydrologic community and at continental scales and above. 110 
In this study, we present a rigorous, multivariable evaluation of a hyper-resolution continental-scale 

hydrologic simulation, comparing model results to state-of-the-art monitoring networks and remote sensing 

products. We focus on performance of the CONUS version 1.0 model, a ParFlow-CLM integrated groundwater-

surface water simulations configured across the continental United States (hereby referred to as PFCONUSv1) 

(Maxwell et al., 2015). Since its construction, the PFCONUSv1 model has been updated to a ParFlow-CLM 115 
simulation, in which ParFlow is coupled to the Common Land Model to capture surface energy partitioning and land 

surface fluxes (Maxwell & Miller, 2005). Recent publications have used the PFCONUSv1 model to 1) diagnose 

mechanistic relationships between water table depth, topography, recharge and evapotranspiration at a range of 

scales (Condon et al., 2015; Condon & Maxwell, 2015, 2017); 2) characterize groundwater controls on 

evapotranspiration partitioning (Maxwell & Condon, 2016); 3) explore anthropogenic impacts to the water and 120 
energy balances, such as impacts to evapotranspiration, streamflow and groundwater from aquifer depletion 

(Condon et al., 2020; Condon & Maxwell, 2019); and 4) estimate water residence times and their sensitivity to 

climate and geology (Maxwell et al., 2016).  

To our knowledge, this is the most rigorous evaluation of an integrated, physically based hydrology-land 

surface model at this resolution and scale. We present comparisons of model results and observations or remote 125 
sensing products over four simulation years (water years 2003 through 2006) for several water balance components, 

including streamflow, water table depth, soil moisture, snow water equivalent, evapotranspiration, and total water 

storage, as well as atmospheric forcing (precipitation and temperature). We discuss sources of error in the model and 

prioritize areas for improvement, with careful attention to error propagation from atmospheric forcing datasets and 

terrain processing algorithms. These results provide a benchmark for forthcoming PFCONUS iterations and should 130 
be used to guide future model development. Most importantly, this study implicates the improvement of atmospheric 

forcing datasets and topographic processing algorithms to advance the field of continental-scale hydrology, and it 

highlights the importance of evaluating the continental-scale water balance as a whole for a process-based 

understanding of model performance and bias. 

 135 
2 Methods 

 The PFCONUSv1 model was simulated using the coupled hydrology – land surface platform, ParFlow-

CLM. In this section, we describe the governing equations for ParFlow-CLM formulated water balance, 

PFCONUSv1 configuration and inputs, datasets for model validation, and performance metrics.  

 140 
2.1 Modeling the integrated water and energy balance with ParFlow-CLM 

The full water balance for a given hydrologic unit can be generally expressed as 𝐼!" − 𝐼#$% = ∆𝑆, where Iin 

and Iout represent the hydrologic inflows and outflows to some control volume, and ∆𝑆 is the change in water storage 

within the control volume. More specifically, the full water budget for a watershed under natural (nonanthropogenic) 

conditions can be written as 145 
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𝑃&'!" + 𝑃("#) + 𝑅!" − 𝑅#$% + 𝑄!" − 𝑄#$% − 𝐸𝑇*+, − 𝐸-!& =   (1) 

∆𝑆(#!. + ∆𝑆($&/ + ∆𝑆,) + ∆𝑆("#). 

 

In (1), inflows to the watershed are precipitation in the form of rain or snow (Prain, Psnow), surface runoff 150 
entering the basin from upstream areas (Rin), or subsurface influx (Qin). Water may leave the watershed in the form 

of surface runoff (Rout), evapotranspiration from transpiration (ETveg) or evaporation from bare surfaces (Edir), or as 

groundwater flux to downstream basins (Qout) or deeper reservoirs (Qrecharge). These fluxes have a net impact to yield 

increases or decreases to sources of basin water storage, such as soil and groundwater reservoirs (∆𝑆(#!. and ∆𝑆,)), 

surface water ponding (∆𝑆($&/), or storage as snow water equivalent (∆𝑆("#)). Components in (1) are typically 155 
expressed as units of equivalent water height or volume per unit of time. This description of the water budget 

equation (1) is illustrated in Fig. 1a, and it may be amended to incorporate other components particular to a 

watershed; these could include anthropogenic fluxes and storage like irrigation, dam storage or pumping, or they 

could be unique traits of the basin such as fractured flow, lacustrine groundwater discharge, or seawater intrusion. 

Equation (1) may also be simplified by lumping precipitation, evapotranspiration and storage components, and also 160 
by ignoring surface and subsurface inputs external to watershed divides which, for large enough control volumes, 

will be negligible (Fig. 1b). The water balance may then be simply expressed as, 

 

𝑃 − 𝐸𝑇 − 𝑅 = ∆𝑆    (2) 

 165 
for precipitation P, evapotranspiration ET, surface runoff R, and total change in all storage sources, ∆𝑆. 

In this study, the complete water balance (equation (1), Fig. 1a) is modeled using ParFlow-CLM (Kollet & 

Maxwell, 2006; Maxwell & Miller, 2005), an integrated groundwater-surface water model which uses the mixed 

form of Richards’ equation to simulate three-dimensional variably saturated flow. The Richards equation is given as 

 170 

𝑆(𝑆,𝜓0.
12!
1%
+ 𝜙 13(2!)

1%
= Δ ∙ 2−𝐾((𝑥)𝑘&,𝜓0. ∙ ∇,𝜓0 − 𝑧.: + 𝑞( (3) 

 

for specific storage 𝑆( [L-1], relative permeability S [-], pressure head 𝜓0 [L], saturated hydraulic conductivity tensor 

𝐾([LT-1], relative permeability 𝑘& [-], porosity of the medium 𝜙[-], at depth z [L] and time t [T]. In (3), relative 

permeability varies with pressure head through time based on relationships established by van Genuchten (1980), 175 
and 𝑞( is a source-sink term [T-1]. A free surface overland-flow boundary condition for continuity of pressure and 

flux applies to the groundwater flux term across the land surface and subsurface interface. The kinematic wave 

approximation of the momentum equation is used to solve overland flow, which is a function of ponded depth given 

by Manning’s equation, 

 180 

𝑣 = 63"
"
𝜓0
7/9    (4) 
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where n is Manning roughness coefficient [LT-1/3]. Note that the friction slope S0 [-] in (4) is used to approximate the 

bed slope [-] in the kinematic wave approximation. 

ParFlow is coupled with the Common Land Model (CLM) (Dai et al., 2003), a land surface model which 185 
balances energy and calculates evapotranspiration at the land surface, in order to simulate the coupled water and 

energy budgets. CLM requires atmospheric conditions (precipitation, temperature, specific humidity, wind speed, 

and longwave and shortwave radiation) in order to provide hourly partitioning of net radiation into sensible, latent, 

and ground heat. Shown in equation (5), the CLM calculates direct evaporation (ETground  in equation (1)) using the 

gradient between specific humidity at the ground surface qg [MM-1] and at a reference height qa [MM-1], which is 190 
scaled by air density 𝜌' [ML-3], atmospheric resistance 𝑟- [T L-1], and a soil resistance term 𝛽 [-]. 

 

𝐸𝑇-!& = −𝛽𝜌'
:#;:$
&%

    (5) 

 

To calculate transpiration, CLM adjusts potential evapotranspiration ETpot, by stomatal and aerodynamic resistance 195 
terms as follows: 

𝐸𝑇0#% = 𝜌'
(<&'=3&')

&(
(𝑞/ − 𝑞>)   (6) 

 

𝐸𝑇*+, = 𝐸𝑇0#% ×
<%&(
<&'

A <&'
&(=&)

B   (7) 

 200 
Potential transpiration (6) is a function of leaf and stem area index 𝐿?@ and 𝑆?@ [-], boundary layer resistance 𝑟A [T L-

1], air density 𝜌' and the gradient of specific humidity between foliage and canopy, 𝑞/ − 𝑞> [-], while actual 

transpiration (7) further depends on the fraction of dry canopy 𝐿- [-] and the stomatal resistance 𝑟( [T L-1]. Note that 

leaf and stem area index and stomatal resistance terms are parameterized by plant functional types, defined per cell 

without multilayer capability or fractional vegetation. For further explanation of ET calculations in ParFlow-CLM, 205 
see Jefferson et al. (2017). 

 

2.2 PFCONUSv1 configuration, parameters and inputs 

The PFCONUSv1 model represents the first integrated groundwater-surface water model employed at the 

continental scale at hyper (1-km) resolution. A full description of the model configuration and inputs can be found in 210 
Maxwell et al. (2015) and Maxwell and Condon (2016), but a brief summary is given below. 

Spanning roughly 6.3 million km2 at 1 km lateral grid spacing, the PFCONUSv1 model encompasses the 

majority of eight major river basins in the United States at high resolution, including the Ohio, Missouri, Arkansas, 

Mississippi, and Colorado River Basins. The model is composed of 3442 cells in the x (east-west) direction and 

1888 cells in the y direction (north-south). Its five vertical layers of variable thickness provide a cumulative vertical 215 
depth of 102 m. From the top, soil layers are 0.1, 0.3, 0.6, and 1 m, respectively. Topographic slopes were calculated 

using the Barnes et al. (2016) algorithm, applied to the shuttle elevation derivatives at multiple scales 
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(HydroSHEDS) digital elevation model, to guarantee a connected drainage network. Vegetation classes for 

characterization of plant functional parameters were provided by the IGBP land-cover classifications and USGS 

land-cover dataset. Distributed, heterogeneous soil parameters, including saturated hydraulic conductivity, porosity, 220 
and van Genuchten parameters, were assigned to spatial soil units described by the soil survey geographic database 

(SSURGO). Geologic units for the bottom, 100-m thick layer of the PFCONUSv1 model were developed from the 

Gleeson et al. (2011) national permeability map. Estimates from Gleeson et al. (2011) were adjusted using the e-

folding relationship described in Fan et al. (2013), which accounts for topographic complexity, and variance in 

permeability was also reduced. No-flow boundary conditions were imposed at the bottom of the model domain 225 
(assuming impermeable bedrock) and on the sides. Note that with a model depth of just over 100 m, the model may 

more appropriately be considered a shallow aquifer storage model. Deeper ∆𝑆 contributions are not resolved, which 

may not represent deeper hydrologic flow paths of thick and expansive aquifers such as the Ogallala, the saturated 

thickness of which can exceed 300 m (McGuire et al., 1980); however, as Maxwell et al. (2015) explain, the current 

model thickness and vertical discretization is limited not by computational expense but by data availability, with a 230 
lack of detailed depth-to-bedrock and aquifer thickness estimates at meaningful resolution.  

Initial conditions were provided by an intensive spinup process. First, a steady-state ParFlow groundwater 

configuration was run continuously without CLM; this model was forced by an average surface recharge flux 

derived from Maurer et al. (2002) and run continuously until the difference between outflow and recharge rates was 

less than 3 % of total water storage change. A full description of this steady-state model and its performance can be 235 
found in Maxwell et al. (2015). Second, and using the initial condition provided by the steady-state model, a 

transient system was simulated with the fully coupled ParFlow-CLM for water year 1985, the most climatologically 

average water year within the past 30 years. As described in Maxwell and Condon (2016), atmospheric forcing was 

bilinearly interpolated from the North American Land Data Assimilation System Phase 2 (NLDAS 2) (Cosgrove, 

2003; Xia, Mitchell, Ek, Sheffield, et al., 2012). For spinup purposes, the transient simulation was run continuously 240 
for four years of repeated 1985 atmospheric forcing to provide an initial condition for the simulation in this study. 

Thus, the initial condition provided here represents pressure head, soil moisture and surface energy balance 

conditions that would be present during the most climatologically average water year in recent history. Since the 

model does not incorporate anthropogenic abstractions in the form of pumping, injections, irrigation or surface water 

diversions and dam storage, the initial conditions provided also represent a pre-development scenario. 245 
For this study, PFCONUSv1 was run for modern-day water years using initial conditions provided by the 

transient spinup process described above. The simulation here was run at hourly temporal resolution for water years 

2003 through 2006 Atmospheric forcing originated from the 12 km NLDAS-2 product (Xia et al., 2012); however, 

finer resolution products were blended in where available and elevation effects were incorporated to produce higher 

resolution, more physically realistic meteorological variables. Such products included the 4 km Stage IV and Stage 250 
II radar and gauge products and Level 2 shortwave radiation from the GOES Surface and Insolation Products 

(GSIP). These adjustments to the 12 km NLDAS data and the finer resolution products are described, for example, 

in Pan et al. (2016) and include the following: gap-filling and daily rescaling procedure to ensure the Stage IV 

hourly data match daily totals from NLDAS-2; adjustments to timing for the GSIP Level 2 data based on solar 
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angles; and elevation-dependent downscaling of 12 km NLDAS-2 products, such as hydrostatic effects for 255 
atmospheric pressure and lapse rates for specific humidity, air temperature and longwave radiation. The final 

atmospheric variables were interpolated using bilinear interpolation to the 1-km PFCONUSv1 grid. 

An important consideration when attempting high resolution integrated models of this kind is of course the 

computational demand. ParFlow-CLM solves the globally implicit solutions to nonlinear and coupled equations in 

(3) through (7) with a Newton-Krylov parallel solver (Jones & Woodward, 2001); the associated significant 260 
computational challenge is tackled with a multigrid preconditioner and highly scaled parallel efficiency (Kollet et 

al., 2010; Reed M. Maxwell, 2013; Osei-Kuffuor et al., 2014). The simulations presented here were run on 3456 

processors, distributed to 72 and 48 units in the x and y directions, respectively, on the Cheyenne high performance 

computing system managed by the National Center for Atmospheric Research (NCAR) Computational & 

Information Systems Lab. Required core hours for a single water year averaged over 300 thousand core-hours for 265 
this processor topology; however, the scaled parallel efficiency even at this decomposition is over 60 percent. The 

hourly outputs generated over 11 terabytes of information per water year, while the required storage for the 

interpolated atmospheric forcing alone was over 3 terabytes per water year.  

 

2.3 Datasets for comparison 270 
Simulated runoff, evapotranspiration and sources of storage change from the PFCONUSv1 model were 

compared against available point-scale measurements and coarse resolution remote sensing products in order to 

identify locations of relatively better or worse performance, major sources of model bias, and regions most in need 

of improvement. Table 1 provides a summary of all data products compared to PFCONUSv1 outputs. It is important 

to note here that while we use absolute error metrics common to calibrated models developed specifically for 275 
prediction, calibration of the PFCONUSv1 model is not a goal of this study, nor is it feasible given the 

computational demands posed by such a highly parallelized platform. Rather, the intent is to evaluate the model’s 

ability to demonstrate realistic behavior, to identify regions, times, and sources of uncertainty, and to prioritize areas 

of improvement for future model development.  

 280 
2.3.1 Surface water runoff, R 

Modeled surface water runoff (R in equation (2)) was compared to daily observations at 2,392 U.S. 

Geological Survey (USGS) stream gauges containing observations over the simulation period (October 1, 2002, 

through September 30, 2006) within the PFCONUSv1 domain (Table 1) (obtained from 

https://waterdata.usgs.gov/nwis/sw, last accessed February 2, 2020). As discussed in the supplemental information 285 
for Maxwell and Condon (2016), the algorithm used for topographic processing resulted in spatial inconsistencies 

between the real and modeled stream network. USGS gauges were therefore mapped to the PFCONUSv1 grid using 

a combination of nearest neighbor mapping and manual adjustments to ensure that all gauges lay on an appropriate 

ParFlow stream cell; for instance, a gauge comparison point that was incorrectly mapped upstream of a confluence 

may be moved to an appropriate location downstream. The large majority of mapped gauges were within 3 km of 290 
their ‘actual’ location. As Maxwell and Condon (2016) explain, approximately 10 percent of USGS gauges required 



 9 

more significant manual adjustments because of considerable discrepancies between the true stream network and 

that constructed for the model.  

 

2.3.2 Evapotranspiration, ET 295 
For evapotranspiration (ET in equation (2)), three datasets are used to evaluate PFCONUSv1 results (Table 

1). Observations from FLUXNET, an international network of meteorological towers that rely on the eddy 

covariance method to estimate evapotranspiration, were used to evaluate the temporal performance in ET. 

FLUXNET data were obtained from the FLUXNET 2015 online data portal (https://fluxnet.fluxdata.org/, accessed 

February 6, 2020), and the 30 sites used in this study are those that contain at least one water year of observations 300 
during the simulation period. PFCONUSv1 ET estimates were also compared to MODIS evapotranspiration 

MOD16A2 monthly product provided by the University of Montana Numerical Terradynamic Simulation Group 

(NTSG) lab (http://files.ntsg.umt.edu/data/NTSG_Products/MOD16/, last accessed March 20, 2020). The MODIS 

product, a NASA and EOS initiative to estimate global terrestrial evapotranspiration using satellite remote sensing 

data, uses a Penman-Monteith based approach, stomatal resistance and vegetation information to estimate 305 
evapotranspiration at an 8-day interval at 1-km resolution (Mu et al., 2007, 2011). MOD16A2 improves upon the 

original MOD16 ET algorithm by considering surface energy partitioning and atmospheric demand as well as land 

cover, leaf area index, and meteorological reanalysis products provided by NASA’s Global Modeling and 

Assimilation Office (GMAO). Given the 8-day interval limitation and point-based uncertainties in ET of up to 40-

60% (Velpuri et al., 2013; Westerhoff, 2015), the monthly MOD16A2 product was spatially aggregated to HUC8 310 
watersheds across the PFCONUSv1 domain with equal area weighting. We also compare HUC8-aggregated 

monthly PFCONUSv1 evapotranspiration with estimates from the Operational Simplified Surface Energy Balance 

(SSEBop) algorithm (Senay et al., 2013). The SSEBop model is a relatively simple model, using 1km 8-day MODIS 

remotely sensed thermal imagery (land surface temperature and emissivity), combined with thermal index reference 

ET Senay et al., 2013). Velpuri et al. (2013) evaluated MOD16A2 and SSEBop performance across the contiguous 315 
United States at point and basin scales, finding that SSEBop outperformed MOD16A2 in western, arid basins. Note 

that for FLUXNET observations, ET (mm day-1) was derived from latent heat (W m-2) by scaling by the latent heat 

of vaporization 𝜆 (2.45 MJ kg-1) with the proportional relationship  𝐸𝑇 = <B
C

. 

 

2.3.3 Storage, S 320 
To evaluate PFCONUSv1 storage change (∆𝑆 in equation (2)), four products are used to compare to 

individual storage components, including total water storage, snow water storage, and soil water storage. Modeled 

snow water equivalent was compared to Snow Telemetry (SNOTEL) station data, a network maintained by the 

Natural Resources Conservation Service (NRCS). SNOTEL data were accessed from the NRCS online report 

generator 2.0 (http://wcc.sc.egov.usda.gov/reportGenerator/, last accessed February 28, 2020). Of the available 325 
SNOTEL stations, 556 are within the PFCONUSv1 domain and have observations during the simulation period. 

These SNOTEL locations were compared to simulated snow water equivalent at their nearest neighbor 

PFCONUSv1 grid cells. For soil water storage, soil moisture anomalies were derived from the active passive 
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satellite products from the ESA Programme on Global Monitoring of Essential Climate Variables (ECV) Soil 

Moisture Climate Change Initiative (CCI) project v04.5 (Gruber et al., 2019; https://www.esa-soilmoisture-330 
cci.org/node/237, last accessed February 20, 2020). This remote sensing product uses a combined estimate of soil 

moisture from 4 active and 7 passive microwave sensors, providing soil storage at 0.25° resolution. ESACCI soil 

moisture estimates were compared to soil moisture in the top layer of PFCONUSv1, representing up to 0.1 m depth. 

PFCONUSv1 total water storage anomalies (an aggregate of all subsurface, snow water and surface water 

storage components) was also compared to terrestrial water storage anomalies provided from remote sensing 335 
products from the Gravity Recovery and Climate Experiment (GRACE). The GRACE products are derived from 

slight fluctuations in Earth’s gravity caused by changes in mass and measured by twin satellites launched in 2002; 

these gravity field changes over land may be attributable to terrestrial water storage change. GRACE solutions are 

provided by three processing centers: the NASA Jet Propulsion Laboratory (JPL), the GeoforschungsZentrum 

Potsdam (GFZ), and the Center for Space Research at University of Texas, Austin (CSR). In this study, 340 
PFCONUSv1 total water storage changes were compared to the Release-06 gravity field solutions (RL06) at 1°, 

calculated using the spherical harmonic approach (Landerer & Swenson, 2012) with varying degrees and orders, 

spherical harmonic coefficients and filtering processes. We also compare PFCONUSv1 to the mass concentration 

block (mascon) solutions provided by JPL at 0.5° and CSR at 0.25° (Save et al., 2016; Wiese et al., 2016), which 

eliminate much of the need for empirical post-processing and filtering required in the spherical harmonic solutions. 345 
The GRACE products listed above are hereafter referred to as JPL, GFZ, and CSR for the RL06 spherical harmonic 

solutions, and JPLm and CSRm for the mascon solutions. For both the ESACCI soil moisture product and the 

GRACE total water storage anomalies, PFCONUSv1 estimates are aggregated to the coarse resolution product by 

area weighted mean prior to comparisons.  

Finally, PFCONUSv1 calculated depth to water table are compared with water levels from 41,269 USGS 350 
groundwater wells across the continental United States; like streamflow, these data are freely available for download 

from the USGS National Water Information System (https://waterdata.usgs.gov/nwis/gw, last accessed March 23, 

2020). Of these wells, locations with more than 10 observations during the simulation timeframe and that met 

requirements for appropriate aquifer comparison (such as well depth, aquifer type, and anthropogenic influence) 

were used to calculate correlations with PFCONUSv1 timeseries; 2,486 wells fit these criteria (see Table 1) and will 355 
be discussed further in Sect. 3. Note that in this study, we focus on the change in water storage over a given period 

of time, rather than the total amount of water currently stored. Storage anomalies are presented as deviations through 

time from mean storage states; we also discuss the water storage amplitude, or peak-to-peak intra-annual storage 

change, for a given region, as a proxy for seasonality. In the majority of the PFCONUSv1 domain, over this 

relatively brief simulation period, the variance in the intra-annual (seasonal) signal explains the majority of the 360 
variance in storage anomaly timeseries. 

 

2.3.4 Atmospheric forcing 

One important source of bias is that of atmospheric forcing; to evaluate the impact of meteorological 

performance on simulated water balance variables, we compare the interpolated NLDAS product to observed daily 365 
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precipitation (N=9,193) and observed averaged daily temperature (N=1,678) at meteorological stations maintained 

by the Global Historical Climatology Network (GHCND) (Table 3.1) (data accessed via Climate Data Online portal, 

https://www.ncdc.noaa.gov/cdo-web/search, last accessed February 11, 2020). Atmospheric forcing variables were 

also compared to observed data at SNOTEL and FLUXNET sites. 

 370 
2.4 Performance metrics 

Performance metrics for evaluating PFCONUSv1 include percent annual bias or total annual bias, 

Spearman rank correlation coefficient, and the ratio of Root Mean Squared Error to the standard deviation of 

observations (RSR). While these were not calculated for all validation datasets, and the temporal resolution at which 

they were evaluated differed between datasets (e.g., daily, weekly, or monthly), they are each used at some point in 375 
our analysis, so we define them here.  

As a measure of average magnitude accuracy with an optimal value of 0, percent bias is given by  

 

𝑃𝐵𝐼𝐴𝑆 = ∑ 3*;E*	
+
*,-
∑ E*+
*,-

∗ 100  (8) 

 380 
where Si and Oi are simulated and observed values. Percent bias in PFCONUSv1 outputs was calculated using daily 

observations in equation (8), such that days during which observations were unavailable were excluded for both 

simulated and observed annual totals. Percent bias is an effective metric for evaluating long-term mean values, but it 

cannot be used to evaluate timing or shorter temporal events; further, if the model under- and over-predicts with 

similar magnitudes, PBIAS can be deceivingly low.  385 
For these reasons, we also calculate for each stream gauge Spearman’s rank correlation coefficient, or 

Spearman’s 𝜌, given by (9): 

 

𝜌 = 1 − G∑ -*
.+

*,-
"(".;H)

	   (9) 

 390 
Unlike the coefficient of determination R2, which describes the degree of collinearity between the data, Spearman’s 

𝜌 independently ranks the simulated and observed values, with di in (9) being the difference in ranks for a given 

value i, and n is the number of values in the series. Unlike other metrics describing temporal correlation, such as R2 

or Nash-Sutcliffe Efficiency, 𝜌 is less restrictive; it does not assume linearity and instead and tests for monotonic 

correlation. The optimal value for 𝜌 is 1, and the cutoff for good performance is likely analogous to that of R2, which 395 
varies in the literature but is generally around 0.6. 

 A final performance metric, the RMSE-observations standard deviation ratio (RSR) is also provided. RSR 

is given by equation (10), RSR describes root mean squared error (RMSE) relative to the standard deviation of the 

observations. 

𝑅𝑆𝑅 = IJ3B
3%.L+*.EA(.

=
M∑ (E*;3*).	+

*,- 		

M∑ (E*;3̅).	+
*,- 	

	  (10) 400 
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In (10), 𝑆̅ is the mean of observations. While RSR is less widely used than PBIAS and 𝜌, its benefit lies in its 

normalization of common error index statistic RMSE; the ratio describes error relative to natural variability in the 

true system, such that an RSR of 1 suggests that the mean daily error is equal to one standard deviation of observed 

values and thus comparable to what we may expect from noise or intra-annual variability. An RSR value of 0 is 405 
optimal, while values under 0.5 (RMSE is less than half of the standard deviation of observations) are considered to 

be excellent (Moriasi et al., 1983). 

 Together, performance metrics (8) through (10) are quantitative indicators of model realism, representing a 

model’s ability to capture long term states (PBIAS) and timing (𝜌), and its error relative to expected system 

variability (RSR). However, many other statistical criteria are popular (Waseem et al., 2017), and the target values 410 
used to indicate unacceptable, acceptable, or excellent performance can vary because criteria for evaluation 

necessarily depend upon model purpose (i.e., a regional surface water model that has been well calibrated for 

operational forecasting will represent spatiotemporal patterns of streamflow with higher accuracy than a continental-

scale land surface model can plausibly achieve). Further, performance is expected to decrease with increasingly 

higher temporal resolution: For instance, criteria may be more lenient across all error metrics when moving from 415 
monthly to daily timescales at the watershed scale (Moriasi et al., 2015) as well as from seasonal to monthly 

timescales at the global scale (Krysanova et al,. 2020). As a physically-based, high-resolution (spatially and 

temporally) and uncalibrated continental-scale model, a primary purpose of the PFCONUS, and others like it 

(Gleeson et al., 2021), is to understand process interactions between groundwater, surface-water, and 

ecohydrological fluxes. In this study, a PFCONUS simulated water balance component in (2) is generally judged to 420 
be excellent for this purpose with the following measures: RSR<0.6, 𝜌>0.7, or |PBIAS|<20%. Locations that 

indicate unacceptable or poor performance are those with RSR<1.2, |PBIAS|<75%, and 𝜌>0.5. However, error 

metrics are reported with the primary goal of inter-comparison across locations (interpretation of metrics should be 

paired with visual inspection of spatial patterns and timeseries provided), or, where discussed, relative to the 

performance of other continental-scale hydrologic or land surface models. Gleeson et al. (2021) caution against the 425 
use of model evaluation to indicate a “finished” product, and instead recommend open-ended evaluation and model 

improvement. Metrics (8) through (10) are therefore used to identify where future development of PFCONUS can be 

focused to improve upon timing, volume, and variability of fluxes. Performance metrics reported in this study are 

also supplemented by plots of probability of exceedance or non-exceedance where appropriate (see the 

Supplemental Information, Figures S1 through S8), which should help regional scale modelers identify relative 430 
performance of major basins at various thresholds. Since there exist many other commonly used performance 

metrics particular to streamflow, we also report Nash-Sutcliff Efficiency and Kling-Gupta Efficiency for simulated 

flows at USGS gauges (Figure S9 in the supplemental text) (Gupta et al., 2009).  

 

3 Results 435 
By providing detailed partitioning of the water and energy budgets at high spatial and temporal resolution 

and at continental spatial extent, the PFCONUSv1 ParFlow-CLM model offers an unprecedented opportunity to 
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study large-scale nonlinear relationships and to provide hydrologic process estimates at locations remote from 

observation networks. The 2003-2006 water year simulations in this study estimate hourly pressure head and 

saturation at each of the approximately 31.5 million 1-km three-dimensional model cells; the simulations also 440 
provide evapotranspiration, and energy balance estimates at each of the 6.3 million land surface grids cells. Figure 2 

shows the PFCONUSv1 model extent, mean annual precipitation from interpolated atmospheric forcing, and mean 

annual simulated components of equation (2). Below, these water balance components, their performance, and their 

relative bias sources are discussed in detail. Note that different performance metrics were discussed for model 

components based on their temporal and spatial coverage, continuity, resolution, and uncertainty. For instance, the 445 
sheer amount of temporal and spatial coverage provided by the USGS stream gauge network allowed for several 

different error metrics to evaluate long-term behavior, hydrograph shape, and flashiness. Comparisons of model 

results with remote sensing products and well observations were more limited by higher uncertainty and lower 

temporal and spatial resolution and continuity, but they were still valuable in identifying regions for model 

improvement and analyzing error propagation between water balance components. 450 
 

3.1 Runoff, R 

The ability to accurately simulate overland flow at the major basin or continental scale and above has for 

several years been a topic of much interest in the hydrologic community. Continental or global streamflow estimates 

could be coupled to general circulation models to provide predictions of surface water resource vulnerability to 455 
climate change (e.g., Koirala et al., 2014); large-scale runoff models could additionally provide flood forecasts to 

regions lacking in developed surface water monitoring networks (Kauffeldt et al., 2016). While the integrated 

groundwater-surface water modeling is computationally demanding, results from PFCONUSv1 represent a rare 

opportunity to evaluate streamflow performance, 1) because the integrated system platform resolves shallow aquifer, 

vadose zone and surface water transfer, and 2) streams form naturally as surface water is routed by topography, 460 
without requiring pre-defined stream reaches.  

PFCONUSv1 streamflow R was evaluated against 2,392 USGS stream gauges which are well-distributed 

across the United States. We analyze model performance using percent bias, Spearman rank correlation, and RSR. 

However, Gleeson et al. (2021) suggest that while the use of error metrics and direct comparison of observations 

with simulated values are valuable for evaluation, they should be supplemented with hydrologically meaningful 465 
diagnostic signatures to better understand system dynamics. Further, PBIAS can be sensitive to precipitation 

provided by the interpolated NLDAS atmospheric forcing product. Since P is an input to the PFCONUSv1 rather 

than a model result, runoff ratio (𝑅𝑅 = I
O
) was also calculated to extract model performance independent of 

precipitation bias, and to better represent a diagnostic measurement of watershed response to rainfall. RR measures 

the amount of precipitation partitioned to runoff, with lower RR values generally indicating a greater portion of 470 
precipitation lost to infiltration or evapotranspiration. “True” runoff ratios were estimated by first identifying all 

GHCND precipitation gauges upstream of a USGS stream gauge. The mean annual precipitation was then calculated 

and applied over the drainage area defined by Geospatial Attributes of Gages for Evaluating Streamflow (GAGES-

II) dataset (Falcone, 2002). RR is equal to the ratio of total USGS gauge flow to GHCND precipitation. A similar 
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process was done for simulated RR, using NLDAS-interpolated precipitation, simulated flow at the gauge cell, and 475 
model drainage area from the input digital elevation model derived from HydroSHEDS. Note that while the 

interpolated NLDAS precipitation, unlike the GHCND gauge network, is continuous in space, only modeled cells 

which matched nearest-neighbor GHCND gauge network were used to estimate upstream precipitation, in order to 

create as controlled a comparison as possible. Runoff ratios were not calculated for USGS stream gauges with fewer 

than three upstream GHCND precipitation gauges.  480 
Observed total annual flow during the simulation period is shown in Fig. 3a; annual streamflow varies by 

several orders of magnitude across U.S. major basins, with higher flows in the east and the Pacific Northwest, and 

lowest flows in the Great Plains. Runoff ratios are generally highest in the East; the majority of the arid West exhibit 

RR of less than 0.1, with the exception of topographically complex regions and headwater watersheds of the Rocky 

Mountains (Fig. 3c).  485 
PFCONUSv1 reproduces point-scale annual flows across the United States with a median annual PBIAS of 

7.7 %, and with 25th and 75th percentiles of -26.2% and 77.4%, respectively (Fig. 3b). Shown in Fig. 3e and f, the 

25th, 50th, and 75th percentiles for daily Spearman’s 𝜌 are 0.42, 0.65, and 0.76, while the same for RSR are 0.86, 1.2, 

and 2.5. The median PFCONUSv1 minus USGS difference in RR is 0.016 (Fig. 3d), which corresponds to a mean 

percent bias in runoff ratio of 8.3%. The PFCONUSv1 model simulates observed streamflow  with RSR<0.6, 𝜌>0.7, 490 
and |PBIAS|<20% at 54 gauges (approximately 2% of available sites). An additional 97 locations (4% of gauges) 

exhibit RSR<0.7, 𝜌>0.65, and |PBIAS|<30%. An additional 382 locations (15.7% of gauges) showRSR<1, 𝜌>0.6, 

and |PBIAS|<50%. And, finally, and an additional 268 gauges (11% of gauges) show RSR<1.2, 𝜌>0.5, and 

|PBIAS|<75%. As has been shown in previous literature (Waseem et al., 2017), different performance metrics do not 

always indicate the same closeness of fit: While 2099 gauges (86% of the dataset) show either RSR<1.2, 495 
|PBIAS|<75%, or 𝜌>0.5, only 801 gauges (34% of all gauges) fit all those criteria. 

Streamflow performance varies widely across major basins. For instance, median PBIAS, 𝜌, and RSR for 

the Ohio River Basin are -7.8%, 0.79, and 0.84, respectively, and the median of simulated RR values are within 6% 

the median estimate of RR=0.42 from observations. Simulated flows in the Tennessee River Basin also 

appropriately simulate observed flows: mean PBIAS, 𝜌 and RSR are -11.9%, 0.69, and 0.89, respectively; 60% of 500 
the gauges in the basin perform withRSR<1.2, 𝜌>0.5, and |PBIAS|<75%; and observed and simulated mean RR are 

0.49 and 0.53 respectively, for a percent bias in RR of 9%. Conversely, the majority of the upper Missouri River 

Basin shows weak timing performance (median 𝜌 of 0.49) and higher overall bias: the median PBIAS for Missouri 

is 65% and median RSR is 2.2, indicating that the majority of Missouri gauges exhibit daily RMSE that is twice the 

volume of expected daily variability. The Great Plains region is certainly the region with worst streamflow 505 
performance: PFCONUSv1 percent bias in the majority of these gauges is greater than 300%, and in some cases, 

simulated flow is greater than 10 times the volume of observed. While the mean difference in runoff ratio in this 

region is only 0.04, this is on average 4 times larger than RR estimated from observations. Results in Fig. 3 therefore 

suggest that in the arid Great Plains region, a very small change in runoff ratio can result in dramatic error in 

streamflow bias, and the PFCONUSv1 struggles to capture low flows in this region. There is evidence that 510 
continental-scale hydrologic models commonly share this struggle to capture streamflow dynamics in the Great 
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Plains region. The first phase of the Continental Hydrologic Intercomparison Project has shown that a NOAA US 

National Water Model configuration of WRF-Hydro shares the same streamflow performance category (poor 

hydrograph shape/timing and high bias) as PFCONUSv1, run for the single water year 1985, at many gauges in the 

Great Plains region (Tijerina et al., 2021). While the intercomparison project is in its infancy and this comparison 515 
was primarily proof-of-concept, such results may stress the importance of representing groundwater abstractions and 

irrigation over the Ogallala in continental-scale hydrologic models. 

Note that in Fig. 3, no filtering was done for these metrics in order to eliminate gauges with incorrect drainage area 

from topographic processing discrepancies, nor have we removed sites proximate to dams, influenced by nearby 

pumping or irrigation or affected by bias in atmospheric forcing.  As an example of PFCONUSv1 performance in 520 
ideal conditions, we show in Fig. 4 selected examples of individual gauge comparisons for each major basin in the 

PFCONUSv1 domain. Gauges chosen for Fig. 4 were those that tended to be minimally impacted by bias from 

anthropogenic effects or by errors in basin delineation by topographic processing. Such gauge attributes were 

determined based on geospatial stream properties obtained from the Geospatial Attributes of Gages for Evaluating 

Streamflow (Gages-II) dataset (Falcone, 2002), as well as the National Hydrography Dataset (see the supplemental 525 
information in Maxwell & Condon (2016) for detailed description of geospatial stream gauge attributes). 

Streamflow timeseries examples in Fig. 4 include gauges with the following properties: 1) represented greater than 

300 km2 upstream drainage area, 2) PFCONUSv1 drainage area differed from actual drainage area by less than 20 

%, 3) total dam storage was less than 3% of total annual flow for the closest upstream dam, 4) total withdrawals for 

previous five years were less than 3% of total annual flow, 5) total irrigated area in 2002 constituted no more than 530 
15% of the total drainage area, and 6) upstream area Spearman’s r for precipitation performance must be greater 

than 0.5. The examples in Fig. 4 therefore represent naturalized gauges, those with minimal bias in a priori inputs, 

low anthropogenic impact, and good performance potential. We also compared domain-wide PFCONUSv1 

performance at reference gauges identified by Maxwell et al. (2015) (locations with the least human influence and 

best representing ‘natural’ ecohydrologic conditions) with non-reference gauges. As a whole, PFCONUSv1 535 
performed better at reference locations, regardless of the error metric used (Fig. S1). However, the difference in 

performance between reference and non-reference locations varies considerably between basins (Fig. S4 and S5). 

The Pacific Northwest, Missouri, Lower Colorado, and Arkansas-Red-White basins exhibit much greater 

performance at reference gauges across all error metrics, while other basins show mixed signals or poorer 

performance at reference gauges (Fig. S1, S2), indicating other sources of bias outside of anthropogenic effects. 540 
3.2  Evapotranspiration, ET 

 Evapotranspiration is a major component of the water balance, accounting for roughly 60 percent 

partitioning of land precipitation into the atmosphere annually (Oki & Kanae, 2006); however, it is also widely 

considered to be an incredibly difficult value to constrain (Gabriel B. Senay et al., 2013; Velpuri et al., 2013; Xu & 

Singh, 2005) and is often estimated simply as the residual of other components of the water balance. Unlike 545 
streamflow and precipitation, direct point measurement methodologies are limited, costly, and difficult to maintain. 

Direct estimates can be inferred from sap flux measurements; lysimeters, which weigh plant and soil mass to track 

temporal fluctuations in water storage; or chemical tracers, such as deuterium (Wilson et al., 2001). Currently, the 
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method which likely provides the most defensible direct measurements of ET is the eddy flux or eddy correlation 

method. Eddy flux towers relate observed turbulent heat fluxes at the surface (latent and sensible heat) to the 550 
covariance between instantaneous fluctuations of vertical wind speed, humidity and temperature (Baldocchi, 2003; 

Reynolds, 1895; Swinbank & Swinbank, 1951). The PFCONUSv1 simulated daily ET was compared to 

observations from 30 eddy covariance towers managed by the FLUXNET mission. Locations of these sites and their 

relative performance are shown in Fig. 5, along with timeseries examples from three FLUXNET with complete 

observations during the entire observation period. 555 
 Results in Fig. 5 demonstrate the ability of the PFCONUSv1 model to simulate daily and seasonal ET 

across difference climatic zones. The mean 25th, 50th, and 75th percentiles for PFCONUSv1-simulated daily ET 

PBIAS are 3%, 26%, and 55%, respectively. Given that remote sensing estimates regularly exhibit uncertainty of 

50-60% for point-scale ET estimates, or >20% uncertainty in ET at the basin-scale (Velpuri et al., 2013), 

PFCONUSv1 ET results are promising, especially for an uncalibrated model. For daily timeseries, 25th, 50th, and 560 
75th percentiles are 0.6, 0.72, and 0.81 for r, and 0.69, 0.92, and 1.33 for RSR, respectively. Because the metric is an 

indicator of monotonic agreement, the high overall Spearman’s r values are particularly telling, because r is 

sensitive not only to seasonal trends which dominate the timeseries variance but also the influential day-to-day (sub-

seasonal) noise. Out of 30 FLUXNET sites with observations during the simulation time period, the PFCONUSv1 

model performs  with RSR<1.2, |PBIAS|<75%, or 𝜌>0.5 at 19 locations (63% of locations); at 29 out of 30 sites, the 565 
PFCONUSv1  simulated ET fits one of these criteria. 

 The spatial discontinuity of FLUXNET certainly limits ET performance evaluation across the remaining 

PFCONUSv1 model domain. Eddy covariance ET estimates are applicable within the fetch of the prevailing winds, 

which is generally on the order of ~1 km radius surrounding towers (Wilson et al., 2001), and statistical 

interpolation is generally not recommended without considerable parameterization of atmospheric and vegetative 570 
conditions to inform upscaling (Jung et al., 2009).  

To evaluate performance at larger spatial scales, the PFCONUSv1 model has also been compared to the 

MOD16A2 and SSEBop algorithms for MODIS thermal imagery processing. These data, along with PFCONUSv1, 

have been aggregated to HUC8 spatial scale and monthly temporal resolution to help reduce uncertainty associated 

with cloud cover in the 8-day product. Cumulative annual evapotranspiration for MOD16A2, SSEBop, and 575 
PFCONUSv1 are shown in Fig. 6a-c. Both MOD16A2 and SSEBop algorithms should be considered 

evapotranspiration modeling techniques produced from remote sensing observations, rather than observations 

themselves. However, regions where PFCONUSv1 comparisons to the MOD16A2 and SSEBop agree establishes 

greater confidence in the model’s bias or timing of ET estimates. We have therefore used PBIAS, r, and RSR error 

metrics, with PFCONUSv1 monthly ET observations as simulated and MODIS datasets as observed values. 580 
Multiple studies to date have compared MOD16A2 and SSEBop performance over a range of geophysical 

characteristics, vegetative types and aridity indices by comparing to Penman-Monteith -based estimates (Knipper et 

al., 2016), lysimetric observations (Senay et al., 2014), FLUXNET observations or upscaled information from 

FLUXNET sites and vegetative indices (Senay et al., 2013; Velpuri et al., 2013), with results showing good general 

agreement and within ~50% error for annual ET totals at point observations. Despite its considerably more 585 
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simplistic approach for estimating ET from MODIS thermal land imaging, SSEBop performs nearly as well or, in 

the case of the Western U.S., better than MOD16A2 (Velpuri et al., 2013). Therefore, we also show MOD16A2 

performance relative to SSEBop for reference (Fig. 6 c, f, i, l, o), where Oi observations are MOD16A2 and Si 

observations are MOD16A2 monthly ET (equations 8, 10).  

 PFCONUSv1 shows similar overall agreement with MOD16A2 and SSEBop algorithms in annual ET, with 590 
differences within ±30mm across the domain. All products provide similar spatial signatures of ET, with overall 

higher ET in the south west and lowest ET in the Great Basin and Colorado River Basins. PFCONUSv1 estimates 

tend to agree more with SSEBop with regards to timing and residual variation, and they are more similar to 

MOD16A2 with regards to PBIAS (particularly in the Western United States) (Fig. 6). The 50th percentile for 

PFCONUSv1 PBIAS against MOD16A2 and SSEBop are 7.5% and 8%, respectively; 25th and 75th percentiles of 595 
PBIAS are -4.4% and 24% for MOD16A2, and -4.4% and 35% for SSEBop. In several regions, PFCONUSv1 shows 

similar comparisons with both MODIS products. For instance, in the Upper Mississippi, both products suggest that 

PFCONUSv1 overpredicts ET in the north and underpredicts in the South; and both products suggest PFCONUSv1 

underpredicts ET in the Rocky Mountain headwaters and across most of the Ohio River Basin (Fig. 6 d, e). The 

approximately 30% underestimation of ET in the CO headwaters further agrees with the PFCONUSv1 performance 600 
relative to FLUXNET observations at the Niwot Ridge site in Colorado. However, most of the Missouri and the 

Arkansas-Red-White basins show opposite behavior between PFCONUSv1-MOD16A2 and PFCONUSv1-SSEBop 

comparisons; in these regions, we can be less certain of model bias as described by remote sensing of ET. Broadly, 

across the Western U.S., PFCONUSv1 shows better agreement with MOD16A2 with regards to ET magnitude 

(PBIAS) because SSEBop estimates negligible ET in the Basin and Range region (Fig. 6 e); however, PFCONUSv1 605 
shows dramatically better performance relative to SSEBop in terms of Spearman’s r  and RSR (Fig. 6 g,h). The 25th, 

50th, and 75th percentiles of r are 0.38, 0.85, and 0.92 for monthly PFCONUSv1 compared to MOD16A2; the 

quantiles for PFCONUSv1 compared to SSEBop are 0.85, 0.91, and 0.93. Similarly, 25th, 50th, and 75th percentiles 

of RSR are 0.41, 0.85, and 2.2 for performance relative to MOD16A2, and 0.38, 0.47, and 0.62 for performance 

relative to SSEBop. 610 
 Despite differences between PFCONUSv1 comparisons to the two MODIS algorithms, results shown in 

Fig. 6 suggest that PFCONUSv1 appropriately estimates the magnitude and temporal progression of ET, compared 

to the performance of other LSMs. In a study comparing LSM-based recharge estimates in the western United 

States, Niraula et al. (2017) showed that LSMs Mosaic, VIC, and Noah simulated spatially distributed ET with 0.87, 

0.77, and 0.75 Pearson’s correlation relative to MODIS. Pearson’s correlations between PFCONUSv1 and 615 
MOD16A2, and between PFCONUSv1 and SSEBop, are 0.9 and 0.95, respectively, which motivates future 

comparisons of PFCONUSv1 performance relative to other LSMs. However, it is important to again note that 

MODIS ET estimates are themselves models, and as such they are susceptible to epistemic errors in input data (e.g., 

inaccuracies in LAI or other parameterizations), measurement and remote sensing errors (e.g., cloud cover), and 

other uncertainties.  620 
 

3.3 Storage, S 
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 Terrestrial water storage represents all components of the water balance stored on and below the Earth’s 

surface. As such, total storage S is an aggregate of water stored on land in surface water bodies or in the canopy, as 

well as snow water equivalent, soil moisture in the vadose zone, and shallow or deep saturated aquifer storage. 625 
Estimates of overall S could simply involve measuring and combining individual components, but these calculations 

1) require highly developed monitoring networks and an impressive amount of in situ observations, and 2) can have 

large margins of error if not all of the assorted hydrological stores are accurately resolved (Troch et al., 2007). The 

most common method for S estimation calculates storage as a remainder of other water balance terms, P, ET, and R 

in equation (2), (e.g., Rodell et al., 2011; Tang et al., 2010).  630 
Recent advances in remote sensing have granted hydrologists an estimate of changes to total S, without 

partitioning out storage sources, by measuring fluctuations of Earth’s gravity fields as a proxy for mass change. 

Since water represents the greatest fluctuation of terrestrial mass, gravity anomalies can be translated to variability 

in S. The newly available GRACE twin satellite mission provides approximately monthly values of total water 

storage at the global scale and at coarse (>105 km2) resolution (e.g., Strassberg et al., 2009). Storage anomaly 635 
estimates are based on K-band microwave measurements of the distance between the two low-flying satellites, 

which varies as a function of gravity field fluctuations (as well as atmospheric, oceanic, and solid Earth tides, which 

must be corrected to resolve the global water budget (Dahle et al., 2019)).  

The PFCONUSv1 total water storage anomalies (calculated as a sum of all simulated surface and 

subsurface hydrologic stores) was compared to five monthly gravity field solutions: the RL06 spherical harmonic 640 
solutions provided by JPL, GFZ, and CSR, as well as mascon solutions JPLm and CSRm. Figure 7shows seasonal 

storage amplitude in space as well as basin-aggregate storage change through time, comparing PFCONUSv1 and 

GRACE solutions for six major river basins. Some basins have been left out due to incompleteness in the model 

domain, or due to size: The basis function for GRACE solutions is generally on the order of 300,000 km2, such that 

storage anomaly estimates for smaller basins (e.g., the Tennessee River Basin) are not well resolved. 645 
 Seasonal storage amplitude represents the average peak-to-peak storage gain or loss over the course of a 

water year, and it is therefore a depiction of seasonality or intra-annual S signal. The GRACE solution shown in Fig. 

7 is the JPL mascon solution provided at 0.5° resolution, and amplitude for other GRACE products show similar 

spatial signals; however, note that mascon solutions are calculated given a 3° equal-area basis function and 

subsequently downscaled using forward modeling techniques to account for leakage errors (Wiese et al., 2016). 650 
GRACE mascons are not independent of each other, and uncertainty increases dramatically with decreasing basin 

size. However, qualitative comparisons between GRACE and PFCONUSv1 amplitude indicate several regions of 

agreement for high or low seasonality. Topographic highs in the Rocky Mountains, where the snow water equivalent 

signal likely dominates overall storage variance and is entirely seasonally dependent, show high amplitude for both 

PFCONUSv1 and GRACE (Fig. 7 a,b). The Upper and Lower Colorado River basins, in particular, show very 655 
similar spatial patterns for overall amplitude. Another area of agreement is the comparably high amplitude in the 

lower Mississippi River Basin. In both GRACE and PFCONUSv1, the Arkansas-Red-White region sees higher 

seasonality of total water storage in the east, and lower in the west; and the locations of highest amplitude, both for 

GRACE and our model, lie in the Pacific Northwest region. However, broadly speaking the PFCONUSv1 amplitude 
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is lower than GRACE for the majority of the domain and particularly in the East. Other continental- or global-scale 660 
land surface models have also underpredicted seasonal storage amplitude across global river basins relative to 

GRACE; for example, the WaterGAP (Water Global Assessment and Prognosis) hydrologic model consistently 

under-predicted amplitude for most of the global land area (Döll et al., 2014), and a validation of four LSMs and 

global hydrologic models found that the numerical models reproduced GRACE storage signals only to a very 

limited degree (Zhang et al., 2017). However, LSM tendency for GRACE mismatch is likely attributed to 665 
insufficient groundwater representation, which is not as likely to be the cause for PFCONUSv1 and GRACE 

disparities.  

Temporal progression of storage was calculated with area-weighted mean of the Colorado, Arkansas, Ohio, 

Missouri, and Upper Mississippi River Basins (Fig. 7, c-h). Uncertainty (shaded regions) shown indicates the 

leakage error associated with downscaling 3° basis functions to 0.5° solutions for the JPL mascon product. We show 670 
only the JPLm uncertainty, simply because uncertainty estimates for the RL06 products are not yet available. The 

CSR mascon product is suggested to have an error of approximately 2cm that is more or less constant through time 

and space.  

The PFCONUSv1 model shows good agreement in the timing storage anomalies for most basins, with 

Spearman’s r rank correlation ranging from 0.43 to 0.94 relative to the mean of all GRACE solutions: Individual r 675 
values for major basins are 0.43 (Missouri), 0.63 (Upper Colorado), 0.76 (Pacific Northwest), 0.79 (Great Basin), 

0.81 (Lower Colorado), 0.86 (Upper Mississippi), 0.88 (Ohio), and 0.93 (Arkansas-Red-White). However, 

correlation is not necessarily the best predictor of adequate model performance; for instance, the Upper Mississippi 

has the third highest r value out of six major basins, but more than 80% of the total anomaly timeseries lies within 

the uncertainty bars provided for the JPLm product. Further, several discrepancies exist between PFCONUSv1 and 680 
GRACE trends and amplitude. For example, despite its monotonic agreement with GRACE storage amplitude for 

the Ohio River Basin, the PFCONUSv1 model simulates a seasonal storage amplitude that is, on average, more than 

30% lower than what GRACE observes. The Upper Colorado River Basin captures seasonal timing, but the overall 

storage gain over the simulation period is roughly three times that of what GRACE observes.  

Differences between the PFCONUSv1 and GRACE storage water anomaly estimates can come from 685 
various sources: 1) model error and uncertainty in PFCONUSv1 model parameters and configuration, error and 

uncertainty associated with GRACE measurement error, or error associated with the intensive post-processing and 

filtering on the raw spherical harmonic GRACE solutions, 2) hydrologic stores unaccounted for in the PFCONUSv1 

model, such as deep (>100m) aquifer storage, or 3) anthropogenic impacts, particularly from groundwater 

withdrawals from municipal and agricultural aquifer depletions (Chen et al., 2016).  690 
 

3.4 Storage partitioning: Sgw, Ssoil, and Ssnow 

Total water storage anomalies were also validated based on their partitioned components: DSgw, DSsoil, and 

DSsnow. First, PFCONUSv1 water table depth (WTD) was compared to USGS well observations across the United 

States in Sect. 3.4.1. As discussed below, WTD does not necessarily translate to DSgw, but it is still a very 695 
informative hydrologic state. PFCONUSv1 soil moisture was compared to a combined active passive remote sensing 
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product in Sect. 3.4.2, and PFCONUSv1 snow water equivalent was compared to snow telemetry measurements in 

Sect. 3.4.3.  

 

3.4.1 Water table depth 700 
Figure 8 shows observed WTD across the model domain, as well as difference in observed and modeled 

heads and correlation for available locations. As a caveat to the results shown in Fig. 8, while WTD is a visibly 

appealing metric for modeled groundwater performance, it alone is not translatable to total storage Sgw or for storage 

change DSgw, for several reasons. First, without information regarding aquifer storativity or in absence of pumping 

tests, change in water table depth does not equate to total water storage fluctuation in an aquifer of uncertain depth 705 
and hydraulic characteristics. Second, water flow is governed by hydraulic head rather than water table depth; 

therefore, a bias in WTD of tens of meters within a continental model that spans thousands of meters of hydraulic 

head does not necessarily speak to the model’s ability to laterally move water through the saturated subsurface. 

Finally, perched and confined aquifer systems can completely disconnect anomalies in total subsurface hydrologic 

stores and measurable WTD fluctuations. However, WTD does indicate vadose zone-saturated zone connectivity, 710 
and for unconfined aquifers it is a good indicator for loss or gain in aquifer storage, so we briefly compare observed 

and simulated WTDs here. 

Observed WTD from over 41,000 aquifers across the contiguous United States spans multiple orders of 

magnitude and is shown in Fig. 8. The PFCONUSv1 model demonstrates a fairly consistent shallow WTD bias 

across the domain, with “hot spots” of over 50m depth difference in the southern reaches of the Ogallala aquifer, in 715 
the southern Pacific Northwest region, and in the Lower Colorado River basin. However, many of these wells 

represent locations impacted by extractions (wells are preferentially drilled in regions prioritizing municipal or 

agricultural groundwater resources), wells tapping confined aquifers, or WT depths that simply cannot be captured 

by a shallow aquifer model of 102m depth. In a 1985 transient simulation of PFCONUSv1, Maxwell and Condon 

(2016, supplemental information) found that while no strong connection exists between water table depth bias and 720 
the model’s geologic properties, WTD bias was aquifer-dependent, with the greatest positive WTD biases occurring 

in the High Plains aquifer which has experienced depletions in the last several decades.   

Further, WTD is only informative as an indicator of positive or negative DSgw if multiple observations are 

provided through time. Therefore, the available USGS wells have been filtered by excluding 1) locations where the 

observed minimum WTD was greater than 60 m (PFCONUSv1 estimates pressure at cell centers, with the center of 725 
the deepest layer at 52 m), 2) locations providing less than 10 observations during the simulation timeframe, 3) 

locations flagged by the USGS as a confined or mixed aquifer system (aquifer type code aqfr_type_cd in the 

Groundwater levels for the Nation dataset provided by USGS NWIS, https://waterdata.usgs.gov/nwis/gwlevels/), 

and 4) locations flagged for pumping (water level site status code lev_status_cd) during the simulation period.  

WTD bias for the remaining 2,486 locations is shown in Fig. 8c. WTD agreement is considerably improved 730 
at these locations, but a shallow WTD bias is still present, with 25th, 50th, and 75th quantiles for simulated minus 

observed difference in total water level being 2.5 m, 5.8 m, and 13.5 m, respectively. However, r values suggest that 

despite PFCONUSv1 shallower water tables, the model is still able to capture temporal fluctuations in depth to 
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saturation (and by association, groundwater DSgw) at almost half of the filtered well sites (Fig. 8d). Quantiles for r at 

the filtered locations are 0.14 (25th), 0.46 (50th), and 0.7 (75th); 46% of wells show r greater than 0.5, 37% of wells 735 
show r greater than 0.6, and 25% of wells showr greater than 0.7. 

 

3.4.2 Soil moisture, Ssoil 

Soil moisture (SM) anomalies (analogous to Ssoil) at the top layer of PFCONUSv1 (up to 0.1 m depth) were 

compared to the ESA CCI soil moisture product at 0.25° resolution and aggregated to weekly totals. Results are 740 
shown in Fig. 9. As in GRACE comparisons, we compared seasonal amplitude spatial signals across the 

PFCONUSv1 domain, as well as basin-scale aggregates through time. The ESA CCI record is a state-of-the-art 

multi-decadal, global satellite-observation of SM, created from combining single-sensor active and passive 

microwave sensors; since its release, the literature has shown good agreement between the ESA CCI product and 

spatial and LSM-modeled temporal SM patterns of soil moisture, and the harmonized product has shown better 745 
performance than any of its individual single-sensor inputs (Dorigo et al., 2017; Gruber et al., 2019). Because we are 

interested in DSsoil over time rather than the total water stored in the soil at any one moment, comparisons were made 

to SM anomalies, or relative change in soil moisture with respect to the mean value.  

Broadly speaking, the PFCONUSv1 shows overall lower amplitude in the West and higher amplitude in the 

East, relative to the CCI product (Fig. 9a,b). While this could be a result of PFCONUSv1 bias in evapotranspiration 750 
or other fluxes in which seasonal signal is dominant, it is also possible that amplitude differences are simply a result 

of temporal coverage or blending algorithms in the ESA CCI product. For instance, for the combined SM product, 

blending weights are higher for active microwave sensors in the eastern U.S. and high elevation Rockies, while the 

rest of the Southwest and the northern Great Plains region favored passive microwave sensors (Dorigo et al., 2017). 

Further, ESA CCI SM is limited by temporal coverage; note that in the majority of the eastern PFCONUSv1 755 
domain, less than 365 observation days are available (most likely a product of high humidity and cloud cover) (Fig. 

9b), which makes us less confident in Ssoil amplitude estimates.  

At the aggregated basin scale, however, temporal progression of SM shows  temporal agreement between 

PFCONUSv1 and CCI SM for most major basins: Individual r values for major basins are 0.25 (Upper Colorado), 

0.79 (Lower Colorado), 0.75 (Arkansas-Red-White), 0.75 (Ohio), 0.43 (Missouri), 0.65 (Great Basin), 0.72 760 
(Tennessee) and 0.55 (Upper Mississippi). The very weak correlation in the Upper Colorado basin may be indicative 

of large uncertainties in the ESA CCI SM product that have been observed with particular surface conditions: For 

regions of dense vegetation, topographic complexity, snow cover or frozen soils, uncertainty in ESA CCI SM is very 

high (Dorigo et al., 2017), and we therefore have low confidence in ESACCI comparisons in Rocky Mountain 

headwaters regions.  765 
 
3.4.3 Snow water equivalent, Ssnow  

Finally, modeled PFCONUSv1 Ssnow storage component was validated against snow telemetry data in the 

mountainous West of the model domain (Fig. 10). An important caveat to note is that point-measured snow water 

equivalent (SWE) is likely to consistently overestimate gridded land surface model products, given that coarse-770 
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resolution model cells (in our case, 1km lateral discretization) represent an aggregate of highly heterogenous SWE 

and canopy interference across a wide spatial area. Telemetry stations are frequently situated in clearings or in 

breaks in canopy density in order to maximize throughfall. For instance, Molotch and Bales (2005) characterized the 

distribution of SWE depth in 16-, 4-, and 1-km2 grid elements surrounding SNOTEL stations in Rio Grande 

headwaters, using a combination of field observations, remote sensing products, and snowpack mass balance 775 
modeling. They found that in the majority of the sites, the SNOTEL station represented high percentiles of SWE 

relative to the surround land area, and that SNOTEL site conditions (such as vegetation density, solar radiation 

index, and terrain indices) were not representative of the vast majority of grid element space. In some regions, 

SNOTEL SWE was more than 200% greater than the mean grid element value.  

As would therefore be expected, the 1-km resolution PFCONUSv1 model underestimates annual peak 780 
SWE (snow water equivalent at maximum accumulation) and April 1 SWE (snow water equivalent during ablation). 

PBIAS for annual peak SWE was -50/6%, -33.5%, and -14.7% at 25th, 50th, and 75th percentiles, respectively. April 

1 SWE PBIAS was similar, with some individual SNOTEL stations showing more than double the SWE than 

PFCONUSv1 simulations (Fig. 10c). However, the PFCONUSv1 model clearly captures timing for snow 

accumulation and ablation, with the fraction of snow-covered sites tracking almost identically between SNOTEL 785 
and PFCONUSv1(Fig. 10d). Percentiles for Spearman’s r values for cool-season daily SWE (Fig. 10d) are 0.85 

(25th percentile), 0.92 (50th), and 0.96 (75th). 

 
 
4 Discussion: Known and unknown sources of model bias 790 
 In Sect. 3, outputs from an integrated surface water-groundwater hydrologic model, PFCONUSv1, were 

compared to available point-scale monitoring networks and remote sensing products in an effort to evaluate the 

model’s ability to reliably reproduce components of the water budget listed in equation (1).  

Broadly, results suggest that PFCONUSv1 shows promising ability to reproduce the timing, mean states, 

and inter- and intra-annual variability of continental-scale water balance components. However, the PFCONUSv1 795 
model should be considered a work in progress; with approximately 31 million cells in the domain, PFCONUSv1 

bias can originate from errors associated with model physics, inputs, process representation, or epistemic uncertainty 

(Table 2). The best publicly available datasets were used to populate and drive this simulation, but such inputs are 

certainly subject to their own errors and uncertainties and must be continuously revisited to improve their fidelity. In 

this section, we discuss identifiable errors in model inputs and implications to future model development.  800 
  

4.1 Meteorological forcing errors and topographic processing 

 Major biases exist in preprocessing of PFCONUSv1 meteorological forcing and topography, which are 

peripheral to but act simultaneously with all other sources of bias (Table 2). In this way, isolating the effects of a 

single bias source can be challenging. Streamflow itself is sensitive to errors in drainage area, topographic relief, and 805 
precipitation or temperature bias, and the errors in surface and subsurface moisture flux can propagate downstream 

to impact moisture availability and evapotranspiration in areas remote from the original bias source. 
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4.1.1 Terrain processing and drainage area 

 Topographic slopes were defined from a digital elevation model (DEM) generated by HydroSHEDS and 810 
subsequently subjected to a hydrologic processing algorithm, which adjusted drainage networks to remove true and 

artificial pits, depressions, and barriers and ensure complete river network connectivity (Barnes et al., 2016). 

However, both loss of resolution in DEMs and the topographic processing can result in loss of topographic relief and 

change in drainage area. Therefore, PFCONUSv1 streamflow percent bias should in theory reflect fidelity of 

upstream watershed area. We compared PFCONUSv1 drainage area with “true” drainage area determined based on 815 
geospatial stream properties obtained from the GAGES-II (Falcone, 2002).  

Figure 11 shows the relationship between percent difference in observed and simulated streamflow, versus 

percent difference in observed and processed drainage area, for all 2,392 USGS stream gauges. There are three 

primary conclusions to be drawn from this relationship (Fig. 11a): 1) A clear, linearly proportional correlation exists 

between percent difference in drainage and percent difference in streamflow. For streamflow percent difference 820 
from observed ranging from -200 to 200%, we find that 977 out of 2,392 stream gauges fall within ±30% of this 

flow-drainage relationship. Essentially, this means that for 41% of gauges in PFCONUSv1, the percent bias in 

annual flow can be primarily attributed to errors in topographic processing. 2) A considerable number of gauges 

exhibit positive percent difference between observed and simulated annual streamflow, and these gauges typically 

are those with very low runoff ratios. Such a finding is not surprising, in that streams with low RR will be 825 
particularly sensitive to external drivers. And 3) a certain amount of noise exists in these drainage-flow 

relationships, with many locations exhibited higher or lower error in annual flow than that expected by drainage 

errors, regardless of runoff ratio. 

 Figure 11b shows locations where the flow-drainage relationship was expected or unexpected. For the 

majority of the eastern United States, bias in streamflow is simply a function of drainage area bias from topographic 830 
processing. The mountainous West was considerably noisier, exhibiting in somewhat equal parts lower, higher, or 

expected annual flow behavior from drainage bias. We expect that much of the noise in annual flow bias is a 

function of precipitation and temperature bias and timing, and subsequently snowpack. However, in the Great Plains 

region, the considerable, positive annual flow bias shown in Fig. 3 cannot be attributed to the error in drainage area. 

In fact, for 600 gauges in the Great Plains area (~20% of all locations), the percent difference between PFCONUSv1 835 
and true drainage area is near 0, but percent difference in streamflow is between 30 and 200%. We believe that the 

greatest driver of this bias is the lack of groundwater extractions in the PFCONUSv1 model. Note that not only is 

the PFCONUSv1 model naturalized for the 2002-2006 simulation period, but its initial condition is informed by 

1985 naturalized spin-up, which does not include at least 50 years of groundwater depletion. However, some of the 

positive annual flow bias behavior in this region could be attributed to some biases in cumulative precipitation, 840 
which is detailed in Sect. 4.1.2. 

 

4.1.2 Atmospheric forcing bias 

The NLDAS meteorological forcing, which is described in Sect. 2.2, was bilinearly interpolated across the 

PFCONUSv1 domain; biases in precipitation, evaporation, wind speed, humidity, and radiation can therefore come 845 
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from either the NLDAS product or its statistical downscaling. We compared daily total precipitation and average 

daily air temperature from the interpolated NLDAS product at 9,139 (P) and 1,678 (temperature) GHCND 

meteorological stations across the PFCONUSv1 domain, calculating relative bias and Spearman’s r at each location. 

Figure 12 summarizes these comparisons. Broadly, we can identify several examples where NLDAS biases are 

potential drivers of the bias in timing and volume of hydrologic fluxes: 850 
• PFCONUSv1 Annual precipitation over the Kansas-Nebraska border in the Great Plains region is 10-25% 

greater than observed (Fig. 12b). This bias could be one source of positive flow bias at USGS stream 

gauges east of the High Plains aquifer. 

• Fidelity in streamflow timing will of course be a function of accurate precipitation timing and intensity. A 

hydrologic model cannot be expected to perform considerably better than its recharge forcing, or results 855 
could be considered spurious. Areas with weakest correlation between observed and NLDAS daily 

precipitation are in the Rocky Mountain headwaters region (Fig. 12c). In the Upper Colorado watershed as 

a whole, the 50th percentile r value for daily precipitation is 0.56, or the lowest of all other major basins. 

The Upper Colorado is also the basin with poorest overall daily streamflow timing, with r50th=0.33.  

• Our interpolated NLDAS product underestimates the diurnal temperature fluctuations, primarily by 860 
considerably overestimating minimum (nighttime) daily temperature (Fig. 12e), which is likely a 

considerable driver of underestimated SWE. Further, maximum daily temperature is underestimated over 

the Rockies (Fig. 12h). Given that ET is largely dependent upon available radiative forcing, this could 

explain some of PFCONUSv1 negative bias at FLUXNET stations over the Rockies. 

• Annual temperature errors could also explain several regions where PFCONUSv1 comparisons to the 865 
MOD16A2 and to SSEBop MODIS algorithms agree. For example, warm temperature biases and positive 

ET biases (relative to both MODIS algorithms, Fig. 6g,h) are seen in much of the lower elevations of the 

mountainous West and in the majority of the Pacific Northwest. Spatial patterns of ET biases (Fig. 7g,h) in 

the Upper Mississippi and Ohio River Basins seem to instead follow the spatial pattern of precipitation bias 

(Fig. 11b), with regions receiving higher precipitation also experiencing higher ET. 870 
• NLDAS-simulated daily temperature timing is excellent. However, temperature was not deseasonalized 

before correlation was calculated, and the seasonal signal will certainly account for the majority of 

temperature variance.  

 

More specifically, we can verify specific impacts of NLDAS bias to SWE and ET at individual SNOTEL 875 
and FLUXNET sites. Figure 13 shows observed and simulated (or interpolated) meteorological conditions and water 

balance components for snow and evapotranspiration.  

SWE bias at SNOTEL sites is preferentially low at higher elevations (Fig. 13d). While this difference, as 

discussed above, can to a certain extent be attributed to differences in heterogeneous land and vegetation between 

the point and grid scale (Molotch and Bales, 2005), we also find that biases in temperature and precipitation likely 880 
drive the PFCONUSv1 low bias snowpack. PFCONUSv1 SWE experiences a low bias in cumulative annual 
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precipitation at SNOTEL sites (Fig. 13c), and lower elevations exhibit a warm cool season and annual temperature 

bias (Fig. 13 a,b), both of which would contribute to low accumulation and high ablation rates.  

While NLDAS shows good agreement with observed FLUXNET temperature (Fig. 13g), comparisons 

between NLDAS and observed vapor pressure deficit and wind speed both exhibit a considerable amount of scatter 885 
(Fig. 13e,f). Overall, the poorest performing sites for vapor pressure (those in the Upper Colorado river basin) also 

exhibited the highest magnitude ET biases (Fig. 13h).  PFCONUSv1 under(over)-estimates relatively high (low) 

daily evapotranspiration rates (Figure 13h). For FLUXNET locations and days exhibiting ET rates over (under) 4 

mm day-1, mean daily bias is -1.2 mm (0.3 mm). Biases in NLDAS vapor pressure and wind speed could be a 

contributing factor.  Lower vapor pressure deficits (0 to 20 Pa) and lower wind speeds (0 to 6 m s-1) have an overall 890 
positive bias, could explain  PFCONUSv1 overpredicting low ET days. Similarly, we believe the bias on high-

evapotranspiration days (ET > 4 mm day-1), which PFCONUSv1 preferentially under-predicts, could be attributed to 

NLDAS under predicting wind speeds greater than ~10 m s-1.  

Errors in atmospheric forcing products often necessitate statistical bias correction before simulations are 

run (Piani et al., 2010). NDLAS specifically has been validated in its ability to reproduce meteorological conditions 895 
for streamflow (Xia, Mitchell, Ek, Cosgrove, et al., 2012), soil moisture (Xia, Ek, et al., 2015), and 

evapotranspiration (Xia, Hobbins, et al., 2015) prediction by LSMs. While long-term spatial patterns and seasonal 

signals were captured for soil moisture and evapotranspiration, NLDAS fidelity at daily or weekly timescales is less 

certain. In this study, it is difficult to directly attribute the portion of streamflow, SWE or ET errors that occur from 

atmospheric forcing bias, but these water balance components would certainly improve with continued progress in 900 
meteorological forcing datasets. The ParFlow-CLM water budget has been shown to be particularly sensitive to 

uncertainty in both precipitation and temperature forcings in mountainous regions, largely due to their additive 

influence on snow accumulation, melt, and subsequent mountain block recharge (Schreiner-McGraw and Ajami, 

2021).  Other studies have also highlighted the persistent biases in precipitation and temperature estimates from 

continental or global meteorological products, which can propagate into hydrologic model predictions (e.g., Ashfaq 905 
et al., 2010; Sperna Weiland et al., 2015). 

 

4.2 Anthropogenic process representation and other epistemic errors 

 Plenty of sources of uncertainty can contribute to biases not discussed in Sect. 4.1 (Table 2). We have 

chosen to address meteorological forcing and topographic processing errors above, simply because they are 910 
somewhat readily quantifiable, while parameter values and other epistemic uncertainties, such as simplification or 

scaling of model physics, are poorly constrained or simply unknown. Other biases include population of model 

parameter fields.  

While we do not discuss model parameter uncertainty, such as conductivity, porosity, van Genuchten 

parameters, Manning’s surface roughness, land and vegetation parameters, or model horizontal and vertical 915 
discretization, these are also areas for improvement. For example, Maxwell et al. (2015) show that national geologic 

and soil parameters datasets are prone to errors via political boundaries, such as state lines; and the PFCONUSv1 

model oversimplifies deeper geology, with a 100m vertically homogenous layer.  
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However, as mentioned above, these fields are poorly constrained at the continental scale, and simulations 

are necessarily limited by availability of appropriate distributed products. Model parameter population is often 920 
addressed through calibration, but population of parameter fields becomes increasingly difficult as resolution 

increases and calibration becomes more computationally demanding. Future model iterations may need to take 

advantage of methods that allow transfer of parameters (e.g. conductivity) from coarse-resolution, efficient models 

to high resolution ones (Foster & Maxwell, 2019). Model discretization is another concern. Coarsening of vertical 

and lateral resolution is a necessity at the continental scale but aggregating to ~1km resolution certainly comes with 925 
inherent uncertainties and loss of information. DEMs in particular will lose topographic drivers with scale (Wu et 

al., 2008), resulting in loss of relief; but on the other hand, coarse resolution cells could result in inappropriately 

steep pressure gradients as a function of Richards’ equation parameterization and pressure-dependent permeability 

(Maxwell and Condon, 2016), and suitable vertical length scales for Richards’ equations generally do not exceed 

several meters (Or et al., 2015). This calls to question the scalability of model physics; as Beven and Cloke (2012) 930 
rightly point out, whether or not governing partial differential equations will scale linearly is a concern. However, 

the current governing equations for PFCONUSv1 are simply the best currently known representation of hydrologic 

processes at this scale. 

Finally, process representation is certainly a concern. Transient anthropogenic modules, such as urban 

hydrology models, pumping and injections, or surface water diversions, are currently possible but add to 935 
computational demand and require detailed historical data on water use with temporal and spatial coverage simply 

not yet available. As a naturalized model, the PFCONUSv1 simulations presented here will necessarily overpredict 

water tables and baseflow in regions where extractions are apparent. For instance, Maxwell and Condon (2016, 

supplemental information), show streamflow examples at Lees Ferry USGS gauge, where timing and volume of 

streamflow are entirely governed by dam hydraulics. Condon and Maxwell (2019) show that incorporating a century 940 
of groundwater depletion across the PFCONUSv1 domain considerably decreases streamflow, with sensitivity to 

pumping concentrating downstream; more specifically, they found that long-term depletions over the High Plains 

aquifer resulted in a swap of discharging to recharging groundwater. However, naturalized continental models with 

high fidelity in non-anthropogenic settings could be used to estimate impact from human influence, simply by 

examining the difference between observed and simulated conditions.  945 
 

5 Conclusions and implications 

In this study, we present the detailed evaluation of a transient, coupled hydrologic-land surface simulation 

at the continental scale and at hyper-resolution using a diverse set of monitoring networks and state-of-the-art 

remote sensing products. We found that PFCONUSv1 reproduced temporal patterns for continental scale water 950 
budget components with an accuracy of at least r=0.5. The following are 50th percentile (in space, over the entire 

domain) Spearman’s rank correlation r for individual water balance components: r50th = 0.65 for R, with evaluation 

against daily USGS stream gauge observations; r50th = 0.72 for ET, with evaluation against daily FLUXNET eddy 

covariance observations (for monthly HUC8-aggregated remote sensing products, r50th = 0.85 for ET relative to 

MOD16A2 algorithm and r50th = 0.91 for ET relative to SSEBop algorithm); r50th = 0.80 for major basin-aggregate 955 
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S, with evaluation against monthly GRACE remote gravity field sensing; r50th = 0.46 for filtered USGS well 

observations, which are related but not equivalent to Sgw; r50th = 0.69 major basin-aggregate Ssoil, with evaluation 

against ESA CCI weekly SM from active/passive microwave sensors (Upper Colorado is not excluded, but note the 

uncertainties in ESA CCI over snow-covered, densely forested, and topographically complex land area); and r50th = 

0.92 for Ssnow, with evaluation against daily SNOTEL point observations. In terms of temporally aggregated annual 960 
fluxes, which represent long term water budget component states, PFCONUSv1 simulates 50th percentile |PBIAS| of 

41.3% for streamflow relative to USGS gauges: 14.2% for ET relative to MOD16A2 and 13.2% for ET relative to 

SSEBop at the aggregated monthly and HUC8 scales; 37.9% for ET relative to FLUXNET sites; and 35.3% for peak 

annual SWE relative to SNOTEL locations. We also found RSR for PFCONUSv1 performance at point locations, 

with RSR50th=0.92 at FLUXNET sites and RSR50th=1.2 at USGS streams, while RSR for PFCONUSv1 relative to 965 
MODIS products aggregated at the monthly and HUC8 scale are 0.85 and 0.47 for MOD16A2 and SSEBop, 

respectively. Performance varies widely across the model domain, with the eastern United States showing better 

overall performance at USGS stream gauges and relative to MODIS remote sensing products than the western U.S. 

In terms of S terms, PFCONUSv1 simulated SM is best for the Tennessee, Ohio, and Lower Colorado river basins, 

relative to the spatially aggregated ESACCI soil moisture product; and total water storage performance is best for 970 
the Upper Mississippi river basin relative to the GRACE TWS anomaly products. Further, we discussed three 

primary sources of model bias: terrain processing, errors in atmospheric forcing, and lack of anthropogenic 

influence. 

The results presented here provide benefits to the high-resolution, continental (and above) -scale hydrologic 

community. First, our level of agreement with observations and remote sensing products suggests great promise for 975 
extreme-scale and high-resolution modeling to become a reality. We argue that PFCONUSv1 and similar models are 

feasible and will certainly see improvements in the near future with increased availability of open-access and 

distributed datasets, remote sensing advancements, improved monitoring networks, and advancements in highly 

parallelized computing. 

Second, these results provide a guide for PFCONUS development. Some areas for model improvement that 980 
were immediately identified in this study include the following: 1) The source of high positive bias in the Central 

Plains should be further addressed. While we propose that this bias is largely attributed to the lack of groundwater 

pumping in the model (we estimate that at least 25% of stream gauges are impacted by High Plains aquifer 

depletions), other potential sources of error could include inappropriate soil or geology hydraulic conductivity or 

van Genuchten parameters, the lack of spatially distributed Manning’s coefficient (Maxwell et al., 2015), or loss of 985 
topographic relief associated with 1-km lateral resolution. 2) We show that topographic processing has resulted in 

considerable error in drainage area for approximately 40% of stream gauges. Accessible improvements could be 

made to streamflow bias with improved topographic processing algorithms. And, 3) interpolated atmospheric 

forcing from NLDAS reanalysis has two primary biases that, if corrected with statistical bias correction or other 

methods, would immediately benefit streamflow, ET, and snow water equivalent. First, precipitation timing is 990 
lacking in many areas of the domain, particularly over the Rocky Mountain region. Second, mean nighttime air 
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temperature exhibits a high temperature bias, resulting in an underestimated diurnal temperature fluctuation for the 

majority of the domain. Average daytime maximum temperature is also underestimated over the Rocky Mountains. 

Finally, we argue that model fidelity can only be reliably understood at a process-based level if all water 

balance components available in the model outputs are evaluated. While single parameter validation may be 995 
effective for operational forecasts, we do risk the equifinality dilemma of arriving at the right answer for the wrong 

reasons (Kirchner, 2006). The value in the type of validation exercise presented here is clearly a mechanistic 

understanding of model performance and a higher level of confidence in overall water balance modeling skill. 

Further work should be done to continue to incorporate additional observational and remote sensing networks as 

they become available. Also, while explicit comparisons with observations and simulations, like those presented 1000 
here, are valuable, comparisons with other models are equally an asset, used to build confidence in the plausibility of 

parameterization, outputs, and their mechanistic relationships. Gleeson et al. (2021) stress the importance of model 

intercomparison projects, such as ISIMIP (Warszawski et al., 2014) and IH-MIP2 (Kollet et al., 2017) as tools for 

model evaluation for global groundwater simulations. Impressive model validation toolkits that exist in the land 

surface community, such as the Land surface Validation Toolkit (LVT) (Kumar et al., 2012) and the International 1005 
Land Model Benchmarking (ILAMB) System (Collier et al., 2018), as well as nascent model comparisons in the 

continental hydrology community, such as the Continental Hydrologic Intercomparison Project (CHIP) (Tijerina et 

al., 2021), are inspiring collaborative efforts to streamline and standardize model evaluation. We hope to take 

advantage of the LVT and ILAMB platforms in the future, to compare model performance to other similar 

continental- and global-scale simulations, to standardize our model evaluation, and to add to our existing 1010 
observation datasets. Further work is also needed to assess the scale gaps prevalent in observation and remote 

sensing data. Specifically, point-scale observations sensitive to small-scale heterogeneity, such as in-situ soil 

moisture observations, are unlikely to be applicable to the 1-km scale, resulting in commensurability errors (Gleeson 

et al., 2021); conversely, we cannot guarantee that PFCONUSv1 outputs scale linearly to coarser-resolution products 

and models. Improved understanding of how model bias scales with loss of spatial or temporal resolution is a vital 1015 
area of research. 
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Table 1: Products used to evaluate PFCONUSv1 simulated water balance component performance 1365 
Water balance component Data product Spatial scale Product type 

 
Comparisons to Modeled Water Budget Components 

 
Surface runoff, R USGS stream gauges Aggregate of upstream area, 2392 

locations 
Point observation 

Evapotranspiration, ET MODIS 1 km resolution, global scale Remote sensing 

 SSeBOP 1 km resolution, global scale Remote sensing 

 FLUXNET Local, 30 locations Point observation 

Storage, ΔS SNOTEL Local, 556 locations Point observation 

 GRACE (5 products) 0.25 to 1 degree resolution, 3 degree 
basis function, global scale 

Remote sensing 

 ESACCI Active/Passive 0.25 degree resolution, global scale Remote sensing 

 USGS wells Local 
41,269 locations static, 2486 locations 
temporal 

Point observation 

    

 
Comparisons to atmospheric forcing 

 
Precipitation, Temperature GHCND Local, 9139 locations Point observation 

Precipitation, Temperature SNOTEL Local, 556 locations Point observation 

Temperature, Vapor Pressure 
Deficit, Wind Speed 

FLUXNET Local, 30 locations Point observation 
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Table 2: Examples of potential sources of bias acting on PFCONUSv1 results 1370 

Bias category Bias source examples Components directly affected 
   
Topographic processing Watershed drainage area Surface flow volume 
 Topographic relief Surface flow volume and timing 
 Stream network mapping Surface flow volume and timing 
   
Atmospheric forcing Precipitation volume Surface flow volume and SWE 
 Precipitation timing and intensity Storm hydrographs 
 Temperature trends and diurnal, seasonal cycles Evapotranspiration, 

snowmelt amount and timing 
 Humidity Evapotranspiration 
 Wind speed Evapotranspirtion 
   
Anthropogenic Dams and reservoirs Surface flow volume and timing 
 Groundwater extractions Groundwater storage 
 Land disturbance Evapotranspiration, snow accumulation 
   
Model parameters Hydraulic conductivity Infiltration, recharge 
 Porosity Subsurface storage 
 Manning’s n Surface flow timing and hydrograph 
 Land and vegetation (albedo, LAI) Evapotranspiration,  

snow accumulation and melt 

 Aquifer model depth Groundwater storage 
 Initial conditions of pressure and saturation Groundwater depth 
   
Epistemic uncertainty Scalability of model physics All/unknown 
 Vertical and lateral parameter aggregation  
 Process interaction; groundwater-surface water 

and land-atmosphere exchange at various spatial 
and temporal scales 
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Figure 1: A conceptual model of the a) complete and b) simplified water budget for a hydrologic control volume, 
corresponding to equations (1) and (2). 1375 
 
  

6VRLO

4RXW4UHFKDUJH

4LQ
5RXW

5LQ

(7YHJ

(JURXQG
3UDLQ 3VQRZ

6JZ

6VXUI

6VQRZ

3 (7

5

6

$� %�



 41 

 
Figure 2: Mean annual water balance components from PFCONUSv1 at 1-km resolution: a) interpolated 
precipitation P from atmospheric forcing inputs, b) simulated mean annual evapotranspiration ET, c) simulated 1380 
mean annual runoff R, and d) simulated mean annual total water storage DS amplitude (combined seasonality of 
snow water equivalent, groundwater, soil water, and surface water). Total water storage amplitude is the peak-to-
peak seasonal storage anomaly, rather than annual storage trend; seasonality (rather than interannual variability) 
explained the majority of the variance in total DS. Dotted lines are states, while thicker solid lines are major U.S. 
river basin outlines, which are labeled in (a). 1385 
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Figure 3: (a) Observed annual streamflow R from USGS gauge network, (b) PBIAS for simulated PFCONUSv1 
streamflow, (c) runoff ratio calculated from USGS stream gauges and GHCND precipitation gauges, (d) simulated 1390 
minus observed runoff ratio, (e) 𝜌 of simulated daily flows, and (f) RSR of simulated daily flows. 
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Figure 4: Timeseries of PFCONUSv1 modeled and USGS observed streamflow timeseries at representative 1395 

gauge locations for each major basin. 
 
 
 
 1400 
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 1405 
Figure 5: a) Cumulative annual ET observed at 30 FLUXNET sites across the contiguous United States, b) percent 
bias of PFCONUSv1 daily simulated ET at FLUXNET locations, c) Spearman r of PFCONUSv1 daily simulated 
ET at FLUXNET locations, and d) RSR of PFCONUSv1 simulated daily ET, and e-g) examples of observed and 
simulated daily ET at three FLUXNET sites with complete observation periods during the simulation timeframe. 
  1410 
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Figure 6: PFCONUSv1 ET estimates compared to results from MODIS remote sensing and thermal imaging 
algorithms. a-c) Annual cumulative ET across HUC8 watersheds, d-f) differences in annual ET, g-i) PBIAS of 1415 
monthly ET, j-l) Spearman’s r of monthly ET, and m-o) RSR of monthly ET, for PFCONUSv1 and MODIS 
products (MOD16A2 and SSEBop algorithms).  
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 1420 
Figure 7: Summary of GRACE and PFCONUSv1 comparisons. Seasonal storage amplitude for a) the JPL mascon 
solution and b) PFCONUSv1 total water storage, with darker red areas indicating a high degree of seasonality and 
white areas indicating no sub-annual storage fluctuation. c-h) Timeseries of total water storage anomalies for five 
GRACE products and for PFCONUSv1 across complete major basins in the PFCONUSv1 domain. Shaded regions 
indicate uncertainty in the JPLm product based on leakage and measurement error. 1425 
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Figure 8: a) Observed water table depth (N=41,269), b) difference in observed and PFCONUSv1 simulated WTD, c) 
difference in observed and PFCONUSv1 simulated WTD at filtered locations (N=2486), and d) Spearman r values 1430 
at filtered locations using at least 10 instantaneous (daily) observations. 
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Figure 9: Summary of ESACCI and PFCONUSv1 soil moisture comparisons. Seasonal SM amplitude for a) the 1435 
ESACCI solution and b) PFCONUSv1 – ESACCI amplitude difference. Stippling in (b) indicates that the ESACCI 
product timeseries was less than 50% complete during the simulation period (less than 750 available observation 
days). Grey areas (excluded) indicate that the average ESACCI annual cycle had at least three months with zero 
available observations (and therefore the annual amplitude is uncertain). c-h) Timeseries of weekly SM anomalies 
across complete major basins in the CONUSv1 domain. Shaded regions indicate ±1 standard deviation taken 1440 
spatially across the basin. 
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Figure 10: Summary of PFCONUSv1 modeled snow water equivalent performance relative to SNOTEL sites. 1445 
Shown are observed peak SWE at SNOTEL sites (a), percent bias for peak SWE (b) and April 1 SWE (c), daily 
spatial fraction of stations with snow coverage (d) and mean daily SWE (e). In (e), shaded regions indicate ±1 
standard deviation in space. 
 

  1450 
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Figure 11: a) Percent difference between observed and simulated annual flow volume as a function of percent 
difference in true and PFCONUSv1 drainage area, colored by annual runoff ratio. b) Locations where error in 
simulated flow volume is greater than, less than, or expected from drainage area bias. Expected behavior was 
defined as locations that lie within the ±30% dashed error bars shown in (a). 1455 
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Figure 12: Observed precipitation and temperature at GHCND meteorological stations compared to interpolated 
NLDAS at their nearest neighbor PFCONUSv1 cell. a) Observed cumulative annual precipitation, b) percent bias in 1460 
annual precipitation, c) Spearman’s r between simulated and observed daily precipitation. Also shown are observed 
average daily minimum (d), average (g), and maximum (j) temperature, the total bias in minimum (e), average (h), 
and maximum daily temperature (k), and the Spearman correlation for minimum (f), average (i) and maximum (l) 
daily temperature.   
 1465 
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Figure 13: Meteorological forcing, SWE and ET bias at SNOTEL and FLUXNET stations. At SNOTEL locations, 
colored by elevation: a) mean NLDAS mean cool season temperature versus observed cool season temperature, b) 
mean NLDAS annual temperature versus observed cool season temperature, c) NLDAS annual cumulative 1470 
precipitation versus observed, and d) PFCONUSv1 annual peak SWE versus observed. At FLUXNET locations, 
colored by the major basin location of the FLUXNET site: e) Daily NLDAS vapor pressure deficit versus observed, 
f) daily NLDAS near-surface lateral wind speed versus observed, g) daily NLDAS mean air temperature versus 
observed, and h) PFCONUSv1 daily ET versus observed.  Lines show linear regression with p<0.05 in all cases.
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Code and data availability 1475 
ParFlow-CLM is an open-source, parallel, modular hydrologic model that is freely available on Github at 

https://github.com/parflow/parflow.git. The version of ParFlow-CLM used in this study, v3.6, is archived on Zenodo 

at https://doi.org/10.5281/zenodo.4639761 (Smith et al., 2019). All data generated from the ParFlow-CLM CONUS 

configuration version 1.0 is available upon request. Given the considerable storage demand (approximately 60 

terabytes for four water years of hourly data, including forcing and daily or monthly processed climatologies), the 1480 
model outputs are stored on a private server. The authors will coordinate with the HydroFrame project team, funded 

through the NSF Cyberinfrastructure for Sustained Scientific Innovation (CSSI) project, to ultimately provide a 

FAIR-aligned, publicly accessible data repository of all raw model results. A primary objective of the HydroFrame 

project is to provide a platform for users to freely access PFCONUS model results, as well as to subset or modify 

inputs and forcing to locally run their own ParFlow-CLM simulations. As HydroFrame capabilities develop and 1485 
future versions are completed, we plan to make PFCONUS results publicly available through this platform.  
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