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Abstract

Recent advancements in computational efficiency and earth system modeling have awarded hydrologists with
increasingly high-resolution models of terrestrial hydrology, which are paramount to understanding and predicting
complex fluxes of moisture and energy. Continental-scale hydrologic simulations are, in particular, of interest to the
hydrologic community for numerous societal, scientific and operational benefits. The coupled hydrology-land
surface model ParFlow-CLM configured over the continental United States (PFCONUS) has been employed in
previous literature to study scale-dependent connections between water table depth, topography, recharge, and
evapotranspiration, as well as to explore impacts of anthropogenic aquifer depletion to the water and energy balance.
These studies have allowed for an unprecedented, process-based understanding of the continental water cycle at high
resolution. Here, we provide the most comprehensive evaluation of PFCONUS version 1.0 (PFCONUSvI)
performance to date, comparing numerous modeled water balance components with thousands of in situ
observations and several remote sensing products, and using a range of statistical performance metrics for
evaluation. PFCONUSv1 comparisons with these datasets are a promising indicator of model fidelity and ability to
reproduce the continental-scale water balance at high resolution. Areas for improvement are identified, such as a
positive streamflow bias at gauges in the eastern Great Plains, a shallow water table bias over many areas of the
model domain, and low bias in seasonal total water storage amplitude especially for the Ohio, Missouri and
Arkansas river basins. We discuss several potential sources for model bias and suggest that minimizing error in
topographic processing and meteorological forcing would considerably improve model performance. Results here
provide a benchmark and guidance for further PFECONUS model development, and they highlight the importance of
concurrently evaluating all hydrologic components and fluxes to provide a multivariate, holistic validation of the

complete modeled water balance.
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1 Introduction

Explicitly modeling the terrestrial water cycle at the global scale and at high resolution has recently been
referred to as a “grand challenge in hydrology” (Bierkens et al., 2015; Wood et al., 2011), an undertaking that has
excited the hydrologic community and encouraged the development of large-scale modeling efforts, workshops and
working groups. These “everywhere and locally relevant” hydrologic models (Bierkens et al., 2015) differ from land
surface models (LSMs) and general circulation models (GCMs), by providing spatially ubiquitous and hyper-
resolution, physically-based hydrologic simulations. While LSMs and GCMs may provide water balance estimates
at regional, continental or global scales, their hydrologic schemes can be coarse resolution, simplified or highly
parameterized (Wood et al., 2011). A process-based and mechanistic (rather than empirical) representation of both
the large-scale and local water cycle is necessary to address hydrologic problems surrounding society, agriculture,
resource management, biodiversity, and climate (Clark et al., 2015).

Therefore, high-resolution, large-scale and physically based hydrologic modeling offers profound and
multi-faceted benefits. From a societal perspective, these models enable operational forecasting and planning in
regions where water balance estimates are unavailable or poorly constrained by scarce or nonexistent observations,
such as developing countries (Group on Earth Observations, 2009). As Beven and Cloke (2012) point out, hyper-
resolution hydrologic model outputs (as opposed to course-resolution global hydrologic model (GHM) results) can
be more accessible and logical to local water managers by providing locally relevant and detailed information. High-
resolution hydrologic modeling could also be used to inform, initialize, or downscale LSMs and GCMs. Clark et al.
(2015) identify spatial heterogeneity, organization and integration of soil moisture and groundwater to be a major
missing link in LSMs, meteorological models and climate models. Further, large-scale hydrologic models could be
used to better understand or constrain results from remote sensing. For instance, LSMs may be used in forward
modeling approaches to estimate signal attenuation in remote sensing of total water storage change (Landerer &
Swenson, 2012).

These motivating factors have catalyzed the development of several hyper-resolution, continental- or
global-scale modeling efforts over the last decade. Some fine examples include physically based platforms, such as
the Terrestrial Systems Modeling Platform (TerrSysMP), a fully integrated soil-vegetation-atmosphere model,
employed over the European CORDEX domain (Keune et al., 2016); and integrated groundwater-surface water
modeling over the continental United States with ParFlow v3 (Maxwell et al., 2015). Others have used a global
water balance approach, like WaterGAP (Doll et al., 2003), as well as PCR-GLOBWB (Sutanudjaja et al., 2018),
which was recently coupled to MODFLOW at globally 1-km resolution (de Graaf et al., 2017). High-resolution land
surface modeling has begun to include topographically informed routing of surface or subsurface water storage; for
example, the Land Information System software group (Zaitchik et al., 2010) or Noah-MP (Niu et al., 2011); and
operational flood forecasting from the National Water Model (NWM) v2.0 (Office of Water Prediction,
water.noaa.gov/about/nwm). Many of these platforms were made possible given the notable progress made in
globally available and openly accessible input parameters, such as hydrography datasets (e.g. Lehner et al., 2008)
and hydraulic parameters (e.g., Survey, 2003; BGR & Unesco, Groundwater Resources of the World, n.d.; Gleeson
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et al., 2014; SSURGO), as well as advancements in computational efficiency and massively parallel computing
resources (e.g., Kollet et al., 2010).

While global and continental hydrologic representation continues to improve, the extreme-scale hydrologic
modeling community still faces many challenges and models can struggle to close the water balance with certainty.
Given the lack of spatially and temporally continuous hydrologic measurements across the globe, as well as their
associated computational demand, parameter calibration at these scales is often problematic or infeasible (R. M.
Maxwell et al., 2015). Distributed macroscale hydrology models must often rely on a priori information and datasets
informed by field measurements or hydrologic theory (which may be unavailable, especially in under developed
regions); or, less commonly, they can employ regionalization approaches to transfer calibrated parameters from
gauged to ungauged catchments (Beck et al., 2016). Validation can also be problematic, in that large gaps exist in
space or time for in situ measurements, and remote sensing products often depend on hydrologic algorithms and
parameterization (Archfield et al., 2015).

Studies assessing model performance suggest that while continental and global hydrologic modeling is
promising, there is considerable room for improvement when it comes to model skill, and most of these performance
assessments only evaluate one or two output variables at one time. For instance, Sutanudjaja et al. (2018) evaluated
streamflow and total water storage performance of 5 arcmin resolution simulation of PCR-GLOBWRB relative to the
Global Runoff Data Center (GRDC) and remote sensing from the Gravity Recovery and Climate Experiment
(GRACE). Although TWS performance was generally acceptable for major global river basins, they found that only
40% of discharge locations exhibited a Kling-Gupta efficiency coefficient (KGE, a measure of performance in
which 0.5 or lower is unsatisfactory; Bai et al., 2016; Moriasi et al., 1983) of >0.3, suggesting that the large majority
of GRDC stations show unsatisfactory performance. Recent streamflow results from WaterGAP2.2d are
encouraging (Schmied et al., 2020), with a median KGE of 0.79 and a near-optimum bias measure; however, the
model underestimated TWS amplitude and trend in the majority of basins. Salas et al. (2018) evaluated the National
Flood Interoperability Experiment (NFIE-Hydro), which leverages the WRF-Hydro framework and the Noah-MP
LSM. They identify several regions for model improvement, including a positive bias of flow in the Southern U.S
and Central Plains and a negative bias in the Rocky Mountains, suggesting several potential sources for bias
depending on the area, including snowpack formulation, precipitation bias, soil column draining dynamics, or failure
of lateral redistribution to attenuate flow. These results reiterate that acceptable performance of one model output
does not necessarily translate to appropriate simulations of the full water balance, and evaluating multiple output
parameters simultaneously (such as snow water equivalent, soil moisture, evapotranspiration, and many others)
could help confidently attribute sources of bias.

We argue that validation and performance assessment should continue to be highly prioritized for
uncalibrated, high-resolution, and large-scale hydrologic models, and validation studies that evaluate several output
variables are paramount to guiding and improving model development. It has been well established that calibration
methods utilizing multiple types of observational datasets result in overall better model skill (e.g., Finger et al.,
2015); additionally, understanding the relationships between multiple output variables (e.g., evaporative fraction and

soil saturation, Rakovec et al., 2019) is imperative to diagnosing performance deficiencies. Multivariate model
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validation can help attribute sources of bias and increase certainty in water balance components; this is especially
true for the physically based hydrologic community and at continental scales and above.

In this study, we present a rigorous, multivariable evaluation of a hyper-resolution continental-scale
hydrologic simulation, comparing model results to state-of-the-art monitoring networks and remote sensing
products. We focus on performance of the CONUS version 1.0 model, a ParFlow-CLM integrated groundwater-
surface water simulations configured across the continental United States (hereby referred to as PFECONUSv1)
(Maxwell et al., 2015). Since its construction, the PFECONUSv1 model has been updated to a ParFlow-CLM
simulation, in which ParFlow is coupled to the Common Land Model to capture surface energy partitioning and land
surface fluxes (Maxwell & Miller, 2005). Recent publications have used the PFCONUSv1 model to 1) diagnose
mechanistic relationships between water table depth, topography, recharge and evapotranspiration at a range of
scales (Condon et al., 2015; Condon & Maxwell, 2015, 2017); 2) characterize groundwater controls on
evapotranspiration partitioning (Maxwell & Condon, 2016); 3) explore anthropogenic impacts to the water and
energy balances, such as impacts to evapotranspiration, streamflow and groundwater from aquifer depletion
(Condon et al., 2020; Condon & Maxwell, 2019); and 4) estimate water residence times and their sensitivity to
climate and geology (Maxwell et al., 2016).

To our knowledge, this is the most rigorous evaluation of an integrated, physically based hydrology-land
surface model at this resolution and scale. We present comparisons of model results and observations or remote
sensing products over four simulation years (water years 2003 through 2006) for several water balance components,
including streamflow, water table depth, soil moisture, snow water equivalent, evapotranspiration, and total water
storage, as well as atmospheric forcing (precipitation and temperature). We discuss sources of error in the model and
prioritize areas for improvement, with careful attention to error propagation from atmospheric forcing datasets and
terrain processing algorithms. These results provide a benchmark for forthcoming PFCONUS iterations and should
be used to guide future model development. Most importantly, this study implicates the improvement of atmospheric
forcing datasets and topographic processing algorithms to advance the field of continental-scale hydrology, and it
highlights the importance of evaluating the continental-scale water balance as a whole for a process-based

understanding of model performance and bias.

2 Methods
The PFCONUSv1 model was simulated using the coupled hydrology — land surface platform, ParFlow-
CLM. In this section, we describe the governing equations for ParFlow-CLM formulated water balance,

PFCONUSV1 configuration and inputs, datasets for model validation, and performance metrics.

21 Modeling the integrated water and energy balance with ParFlow-CLM

The full water balance for a given hydrologic unit can be generally expressed as I;;, — I,,,; = AS, where i
and Lo represent the hydrologic inflows and outflows to some control volume, and AS is the change in water storage
within the control volume. More specifically, the full water budget for a watershed under natural (nonanthropogenic)

conditions can be written as
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Prain + Psnow + Rin - Rout + Qin - Qout - ETveg - Edir = (1)
ASgoi + ASgyrp + ASgy, + ASgpon-

In (1), inflows to the watershed are precipitation in the form of rain or snow (Prain, Psnow), surface runoff
entering the basin from upstream areas (Ri), or subsurface influx (Qmn). Water may leave the watershed in the form
of surface runoff (Rou), evapotranspiration from transpiration (£7eg) or evaporation from bare surfaces (Euir), or as
groundwater flux to downstream basins (Qour) or deeper reservoirs (Qrecharge). These fluxes have a net impact to yield
increases or decreases to sources of basin water storage, such as soil and groundwater reservoirs (AS,,; and ASg,,),
surface water ponding (AS,,,r), or storage as snow water equivalent (AS,,,). Components in (1) are typically
expressed as units of equivalent water height or volume per unit of time. This description of the water budget
equation (1) is illustrated in Fig. 1a, and it may be amended to incorporate other components particular to a
watershed; these could include anthropogenic fluxes and storage like irrigation, dam storage or pumping, or they
could be unique traits of the basin such as fractured flow, lacustrine groundwater discharge, or seawater intrusion.
Equation (1) may also be simplified by lumping precipitation, evapotranspiration and storage components, and also
by ignoring surface and subsurface inputs external to watershed divides which, for large enough control volumes,

will be negligible (Fig. 1b). The water balance may then be simply expressed as,
P—ET—R=AS )

for precipitation P, evapotranspiration E7, surface runoff R, and total change in all storage sources, AS.
In this study, the complete water balance (equation (1), Fig. 1a) is modeled using ParFlow-CLM (Kollet &
Maxwell, 2006; Maxwell & Miller, 2005), an integrated groundwater-surface water model which uses the mixed

form of Richards’ equation to simulate three-dimensional variably saturated flow. The Richards equation is given as

Sss(lpp) fS;lf_tp +¢ 55;1/:11) =4 [_Ks(x)kr(l»bp) ) V(lpp - Z)] + g5 3)

for specific storage S [L!], relative permeability S [-], pressure head Yy, [L], saturated hydraulic conductivity tensor
K [LT], relative permeability k,. [-], porosity of the medium ¢[-], at depth z [L] and time ¢ [T]. In (3), relative
permeability varies with pressure head through time based on relationships established by van Genuchten (1980),
and g, is a source-sink term [T™!]. A free surface overland-flow boundary condition for continuity of pressure and
flux applies to the groundwater flux term across the land surface and subsurface interface. The kinematic wave
approximation of the momentum equation is used to solve overland flow, which is a function of ponded depth given

by Manning’s equation,

p =023 @)

n P
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where 7 is Manning roughness coefficient [LT-?]. Note that the friction slope So [-] in (4) is used to approximate the
bed slope [-] in the kinematic wave approximation.

ParFlow is coupled with the Common Land Model (CLM) (Dai et al., 2003), a land surface model which
balances energy and calculates evapotranspiration at the land surface, in order to simulate the coupled water and
energy budgets. CLM requires atmospheric conditions (precipitation, temperature, specific humidity, wind speed,
and longwave and shortwave radiation) in order to provide hourly partitioning of net radiation into sensible, latent,
and ground heat. Shown in equation (5), the CLM calculates direct evaporation (E7ground in equation (1)) using the
gradient between specific humidity at the ground surface g; [MM™] and at a reference height g, [MM], which is

scaled by air density p, [ML], atmospheric resistance r; [T L!], and a soil resistance term 8 [-].

ETyy = —fpg 22 (5)

Ta

To calculate transpiration, CLM adjusts potential evapotranspiration E7,.r, by stomatal and aerodynamic resistance

terms as follows:

(Lar+Sap
ETpot = Pq Alrb = (qf - qc) (6)
_ Larp ( Lar
ETve'g - ETPOt X Lay (Tb+‘r5) (7)

Potential transpiration (6) is a function of leaf and stem area index L,; and S,; [-], boundary layer resistance 13, [T L°
1, air density p, and the gradient of specific humidity between foliage and canopy, ¢ ¢ — qc [-], while actual
transpiration (7) further depends on the fraction of dry canopy L, [-] and the stomatal resistance 7; [T L™!]. Note that
leaf and stem area index and stomatal resistance terms are parameterized by plant functional types, defined per cell
without multilayer capability or fractional vegetation. For further explanation of ET calculations in ParFlow-CLM,

see Jefferson et al. (2017).

2.2 PFCONUSVI configuration, parameters and inputs

The PFCONUSv1 model represents the first integrated groundwater-surface water model employed at the
continental scale at hyper (1-km) resolution. A full description of the model configuration and inputs can be found in
Maxwell et al. (2015) and Maxwell and Condon (2016), but a brief summary is given below.

Spanning roughly 6.3 million km? at 1 km lateral grid spacing, the PFCONUSv1 model encompasses the
majority of eight major river basins in the United States at high resolution, including the Ohio, Missouri, Arkansas,
Mississippi, and Colorado River Basins. The model is composed of 3442 cells in the x (east-west) direction and
1888 cells in the y direction (north-south). Its five vertical layers of variable thickness provide a cumulative vertical
depth of 102 m. From the top, soil layers are 0.1, 0.3, 0.6, and 1 m, respectively. Topographic slopes were calculated

using the Barnes et al. (2016) algorithm, applied to the shuttle elevation derivatives at multiple scales
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(HydroSHEDS) digital elevation model, to guarantee a connected drainage network. Vegetation classes for
characterization of plant functional parameters were provided by the IGBP land-cover classifications and USGS
land-cover dataset. Distributed, heterogeneous soil parameters, including saturated hydraulic conductivity, porosity,
and van Genuchten parameters, were assigned to spatial soil units described by the soil survey geographic database
(SSURGO). Geologic units for the bottom, 100-m thick layer of the PFECONUSv1 model were developed from the
Gleeson et al. (2011) national permeability map. Estimates from Gleeson et al. (2011) were adjusted using the e-
folding relationship described in Fan et al. (2013), which accounts for topographic complexity, and variance in
permeability was also reduced. No-flow boundary conditions were imposed at the bottom of the model domain
(assuming impermeable bedrock) and on the sides. Note that with a model depth of just over 100 m, the model may
more appropriately be considered a shallow aquifer storage model. Deeper AS contributions are not resolved, which
may not represent deeper hydrologic flow paths of thick and expansive aquifers such as the Ogallala, the saturated
thickness of which can exceed 300 m (McGuire et al., 1980); however, as Maxwell et al. (2015) explain, the current
model thickness and vertical discretization is limited not by computational expense but by data availability, with a
lack of detailed depth-to-bedrock and aquifer thickness estimates at meaningful resolution.

Initial conditions were provided by an intensive spinup process. First, a steady-state ParFlow groundwater
configuration was run continuously without CLM; this model was forced by an average surface recharge flux
derived from Maurer et al. (2002) and run continuously until the difference between outflow and recharge rates was
less than 3 % of total water storage change. A full description of this steady-state model and its performance can be
found in Maxwell et al. (2015). Second, and using the initial condition provided by the steady-state model, a
transient system was simulated with the fully coupled ParFlow-CLM for water year 1985, the most climatologically
average water year within the past 30 years. As described in Maxwell and Condon (2016), atmospheric forcing was
bilinearly interpolated from the North American Land Data Assimilation System Phase 2 (NLDAS 2) (Cosgrove,
2003; Xia, Mitchell, Ek, Sheffield, et al., 2012). For spinup purposes, the transient simulation was run continuously
for four years of repeated 1985 atmospheric forcing to provide an initial condition for the simulation in this study.
Thus, the initial condition provided here represents pressure head, soil moisture and surface energy balance
conditions that would be present during the most climatologically average water year in recent history. Since the
model does not incorporate anthropogenic abstractions in the form of pumping, injections, irrigation or surface water
diversions and dam storage, the initial conditions provided also represent a pre-development scenario.

For this study, PFCONUSv1 was run for modern-day water years using initial conditions provided by the
transient spinup process described above. The simulation here was run at hourly temporal resolution for water years
2003 through 2006 Atmospheric forcing originated from the 12 km NLDAS-2 product (Xia et al., 2012); however,
finer resolution products were blended in where available and elevation effects were incorporated to produce higher
resolution, more physically realistic meteorological variables. Such products included the 4 km Stage IV and Stage
II radar and gauge products and Level 2 shortwave radiation from the GOES Surface and Insolation Products
(GSIP). These adjustments to the 12 km NLDAS data and the finer resolution products are described, for example,
in Pan et al. (2016) and include the following: gap-filling and daily rescaling procedure to ensure the Stage IV
hourly data match daily totals from NLDAS-2; adjustments to timing for the GSIP Level 2 data based on solar
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angles; and elevation-dependent downscaling of 12 km NLDAS-2 products, such as hydrostatic effects for
atmospheric pressure and lapse rates for specific humidity, air temperature and longwave radiation. The final
atmospheric variables were interpolated using bilinear interpolation to the 1-km PFCONUSv1 grid.

An important consideration when attempting high resolution integrated models of this kind is of course the
computational demand. ParFlow-CLM solves the globally implicit solutions to nonlinear and coupled equations in
(3) through (7) with a Newton-Krylov parallel solver (Jones & Woodward, 2001); the associated significant
computational challenge is tackled with a multigrid preconditioner and highly scaled parallel efficiency (Kollet et
al., 2010; Reed M. Maxwell, 2013; Osei-Kuffuor et al., 2014). The simulations presented here were run on 3456
processors, distributed to 72 and 48 units in the x and y directions, respectively, on the Cheyenne high performance
computing system managed by the National Center for Atmospheric Research (NCAR) Computational &
Information Systems Lab. Required core hours for a single water year averaged over 300 thousand core-hours for
this processor topology; however, the scaled parallel efficiency even at this decomposition is over 60 percent. The
hourly outputs generated over 11 terabytes of information per water year, while the required storage for the

interpolated atmospheric forcing alone was over 3 terabytes per water year.

23 Datasets for comparison

Simulated runoff, evapotranspiration and sources of storage change from the PFCONUSv1 model were
compared against available point-scale measurements and coarse resolution remote sensing products in order to
identify locations of relatively better or worse performance, major sources of model bias, and regions most in need
of improvement. Table 1 provides a summary of all data products compared to PFCONUSv1 outputs. It is important
to note here that while we use absolute error metrics common to calibrated models developed specifically for
prediction, calibration of the PFCONUSv1 model is not a goal of this study, nor is it feasible given the
computational demands posed by such a highly parallelized platform. Rather, the intent is to evaluate the model’s
ability to demonstrate realistic behavior, to identify regions, times, and sources of uncertainty, and to prioritize areas

of improvement for future model development.

2.3.1  Surface water runoff, R

Modeled surface water runoff (R in equation (2)) was compared to daily observations at 2,392 U.S.
Geological Survey (USGS) stream gauges containing observations over the simulation period (October 1, 2002,
through September 30, 2006) within the PFCONUSvI domain (Table 1) (obtained from
https://waterdata.usgs.gov/nwis/sw, last accessed February 2, 2020). As discussed in the supplemental information
for Maxwell and Condon (2016), the algorithm used for topographic processing resulted in spatial inconsistencies
between the real and modeled stream network. USGS gauges were therefore mapped to the PFECONUSv1 grid using
a combination of nearest neighbor mapping and manual adjustments to ensure that all gauges lay on an appropriate
ParFlow stream cell; for instance, a gauge comparison point that was incorrectly mapped upstream of a confluence
may be moved to an appropriate location downstream. The large majority of mapped gauges were within 3 km of

their ‘actual’ location. As Maxwell and Condon (2016) explain, approximately 10 percent of USGS gauges required
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more significant manual adjustments because of considerable discrepancies between the true stream network and

that constructed for the model.

2.3.2  Evapotranspiration, ET

For evapotranspiration (E7 in equation (2)), three datasets are used to evaluate PFCONUSvI results (Table
1). Observations from FLUXNET, an international network of meteorological towers that rely on the eddy
covariance method to estimate evapotranspiration, were used to evaluate the temporal performance in ET.
FLUXNET data were obtained from the FLUXNET 2015 online data portal (https:/fluxnet.fluxdata.org/, accessed
February 6, 2020), and the 30 sites used in this study are those that contain at least one water year of observations
during the simulation period. PFCONUSv1 ET estimates were also compared to MODIS evapotranspiration
MOD16A2 monthly product provided by the University of Montana Numerical Terradynamic Simulation Group
(NTSG) lab (http://files.ntsg.umt.edu/data/NTSG_Products/MOD16/, last accessed March 20, 2020). The MODIS
product, a NASA and EOS initiative to estimate global terrestrial evapotranspiration using satellite remote sensing
data, uses a Penman-Monteith based approach, stomatal resistance and vegetation information to estimate
evapotranspiration at an 8-day interval at 1-km resolution (Mu et al., 2007, 2011). MOD16A2 improves upon the
original MOD16 ET algorithm by considering surface energy partitioning and atmospheric demand as well as land
cover, leaf area index, and meteorological reanalysis products provided by NASA’s Global Modeling and
Assimilation Office (GMAO). Given the 8-day interval limitation and point-based uncertainties in ET of up to 40-
60% (Velpuri et al., 2013; Westerhoff, 2015), the monthly MOD16A2 product was spatially aggregated to HUC8
watersheds across the PFECONUSv1 domain with equal area weighting. We also compare HUC8-aggregated
monthly PFCONUSv1 evapotranspiration with estimates from the Operational Simplified Surface Energy Balance
(SSEBop) algorithm (Senay et al., 2013). The SSEBop model is a relatively simple model, using 1km 8-day MODIS
remotely sensed thermal imagery (land surface temperature and emissivity), combined with thermal index reference
ET Senay et al., 2013). Velpuri et al. (2013) evaluated MOD16A2 and SSEBop performance across the contiguous
United States at point and basin scales, finding that SSEBop outperformed MOD16A2 in western, arid basins. Note
that for FLUXNET observations, ET (mm day™') was derived from latent heat (W m) by scaling by the latent heat
LE

of vaporization A (2.45 MJ kg'!) with the proportional relationship ET = =

2.3.3  Storage, S

To evaluate PFCONUSV1 storage change (AS in equation (2)), four products are used to compare to
individual storage components, including total water storage, snow water storage, and soil water storage. Modeled
snow water equivalent was compared to Snow Telemetry (SNOTEL) station data, a network maintained by the
Natural Resources Conservation Service (NRCS). SNOTEL data were accessed from the NRCS online report
generator 2.0 (http://wcc.sc.egov.usda.gov/reportGenerator/, last accessed February 28, 2020). Of the available
SNOTEL stations, 556 are within the PFECONUSv1 domain and have observations during the simulation period.
These SNOTEL locations were compared to simulated snow water equivalent at their nearest neighbor

PFCONUSV1 grid cells. For soil water storage, soil moisture anomalies were derived from the active passive
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satellite products from the ESA Programme on Global Monitoring of Essential Climate Variables (ECV) Soil
Moisture Climate Change Initiative (CCI) project v04.5 (Gruber et al., 2019; https://www.esa-soilmoisture-
cci.org/node/237, last accessed February 20, 2020). This remote sensing product uses a combined estimate of soil
moisture from 4 active and 7 passive microwave sensors, providing soil storage at 0.25° resolution. ESACCI soil
moisture estimates were compared to soil moisture in the top layer of PFECONUSV1, representing up to 0.1 m depth.

PFCONUSV1 total water storage anomalies (an aggregate of all subsurface, snow water and surface water
storage components) was also compared to terrestrial water storage anomalies provided from remote sensing
products from the Gravity Recovery and Climate Experiment (GRACE). The GRACE products are derived from
slight fluctuations in Earth’s gravity caused by changes in mass and measured by twin satellites launched in 2002;
these gravity field changes over land may be attributable to terrestrial water storage change. GRACE solutions are
provided by three processing centers: the NASA Jet Propulsion Laboratory (JPL), the GeoforschungsZentrum
Potsdam (GFZ), and the Center for Space Research at University of Texas, Austin (CSR). In this study,
PFCONUSV1 total water storage changes were compared to the Release-06 gravity field solutions (RL06) at 1°,
calculated using the spherical harmonic approach (Landerer & Swenson, 2012) with varying degrees and orders,
spherical harmonic coefficients and filtering processes. We also compare PFCONUSv1 to the mass concentration
block (mascon) solutions provided by JPL at 0.5° and CSR at 0.25° (Save et al., 2016; Wiese et al., 2016), which
eliminate much of the need for empirical post-processing and filtering required in the spherical harmonic solutions.
The GRACE products listed above are hereafter referred to as JPL, GFZ, and CSR for the RL06 spherical harmonic
solutions, and JPLm and CSRm for the mascon solutions. For both the ESACCI soil moisture product and the
GRACE total water storage anomalies, PFECONUSv1 estimates are aggregated to the coarse resolution product by
area weighted mean prior to comparisons.

Finally, PFCONUSvI calculated depth to water table are compared with water levels from 41,269 USGS
groundwater wells across the continental United States; like streamflow, these data are freely available for download
from the USGS National Water Information System (https://waterdata.usgs.gov/nwis/gw, last accessed March 23,
2020). Of these wells, locations with more than 10 observations during the simulation timeframe and that met
requirements for appropriate aquifer comparison (such as well depth, aquifer type, and anthropogenic influence)
were used to calculate correlations with PFECONUSvI timeseries; 2,486 wells fit these criteria (see Table 1) and will
be discussed further in Sect. 3. Note that in this study, we focus on the change in water storage over a given period
of time, rather than the total amount of water currently stored. Storage anomalies are presented as deviations through
time from mean storage states; we also discuss the water storage amplitude, or peak-to-peak intra-annual storage
change, for a given region, as a proxy for seasonality. In the majority of the PFCONUSv1 domain, over this
relatively brief simulation period, the variance in the intra-annual (seasonal) signal explains the majority of the

variance in storage anomaly timeseries.
2.3.4  Atmospheric forcing

One important source of bias is that of atmospheric forcing; to evaluate the impact of meteorological

performance on simulated water balance variables, we compare the interpolated NLDAS product to observed daily

10
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precipitation (N=9,193) and observed averaged daily temperature (N=1,678) at meteorological stations maintained
by the Global Historical Climatology Network (GHCND) (Table 3.1) (data accessed via Climate Data Online portal,
https://www.ncdc.noaa.gov/cdo-web/search, last accessed February 11, 2020). Atmospheric forcing variables were

also compared to observed data at SNOTEL and FLUXNET sites.

24 Performance metrics

Performance metrics for evaluating PFCONUSv1 include percent annual bias or total annual bias,
Spearman rank correlation coefficient, and the ratio of Root Mean Squared Error to the standard deviation of
observations (RSR). While these were not calculated for all validation datasets, and the temporal resolution at which
they were evaluated differed between datasets (e.g., daily, weekly, or monthly), they are each used at some point in
our analysis, so we define them here.

As a measure of average magnitude accuracy with an optimal value of 0, percent bias is given by

Tie1Si—0;

1720 4100 (8)

i=1Yi

PBIAS =

where S; and O: are simulated and observed values. Percent bias in PFCONUSvI outputs was calculated using daily
observations in equation (8), such that days during which observations were unavailable were excluded for both
simulated and observed annual totals. Percent bias is an effective metric for evaluating long-term mean values, but it
cannot be used to evaluate timing or shorter temporal events; further, if the model under- and over-predicts with
similar magnitudes, PBIAS can be deceivingly low.

For these reasons, we also calculate for each stream gauge Spearman’s rank correlation coefficient, or

Spearman’s p, given by (9):

6y d?

p=1-22t ©)

nn2-1)

Unlike the coefficient of determination R, which describes the degree of collinearity between the data, Spearman’s
p independently ranks the simulated and observed values, with d; in (9) being the difference in ranks for a given
value i, and 7 is the number of values in the series. Unlike other metrics describing temporal correlation, such as R’
or Nash-Sutcliffe Efficiency, p is less restrictive; it does not assume linearity and instead and tests for monotonic
correlation. The optimal value for p is 1, and the cutoff for good performance is likely analogous to that of R?, which
varies in the literature but is generally around 0.6.

A final performance metric, the RMSE-observations standard deviation ratio (RSR) is also provided. RSR
is given by equation (10), RSR describes root mean squared error (RMSE) relative to the standard deviation of the

observations.

RSR — __RMSE T 0502

~ St.Dev.Obs. -
ev.0bs \/2?:1([%_5)2

(10)

11



405

410

415

420

425

430

435

In (10), S is the mean of observations. While RSR is less widely used than PBIAS and p, its benefit lies in its
normalization of common error index statistic RMSE; the ratio describes error relative to natural variability in the
true system, such that an RSR of 1 suggests that the mean daily error is equal to one standard deviation of observed
values and thus comparable to what we may expect from noise or intra-annual variability. An RSR value of 0 is
optimal, while values under 0.5 (RMSE is less than half of the standard deviation of observations) are considered to
be excellent (Moriasi et al., 1983).

Together, performance metrics (8) through (10) are quantitative indicators of model realism, representing a
model’s ability to capture long term states (PBIAS) and timing (p), and its error relative to expected system
variability (RSR). However, many other statistical criteria are popular (Waseem et al., 2017), and the target values
used to indicate unacceptable, acceptable, or excellent performance can vary because criteria for evaluation
necessarily depend upon model purpose (i.e., a regional surface water model that has been well calibrated for
operational forecasting will represent spatiotemporal patterns of streamflow with higher accuracy than a continental-
scale land surface model can plausibly achieve). Further, performance is expected to decrease with increasingly
higher temporal resolution: For instance, criteria may be more lenient across all error metrics when moving from
monthly to daily timescales at the watershed scale (Moriasi et al., 2015) as well as from seasonal to monthly
timescales at the global scale (Krysanova et al,. 2020). As a physically-based, high-resolution (spatially and
temporally) and uncalibrated continental-scale model, a primary purpose of the PFCONUS, and others like it
(Gleeson et al., 2021), is to understand process interactions between groundwater, surface-water, and
ecohydrological fluxes. In this study, a PFCONUS simulated water balance component in (2) is generally judged to
be excellent for this purpose with the following measures: RSR<0.6, p>0.7, or |PBIAS|<20%. Locations that
indicate unacceptable or poor performance are those with RSR<1.2, [PBIAS|<75%, and p>0.5. However, error
metrics are reported with the primary goal of inter-comparison across locations (interpretation of metrics should be
paired with visual inspection of spatial patterns and timeseries provided), or, where discussed, relative to the
performance of other continental-scale hydrologic or land surface models. Gleeson et al. (2021) caution against the
use of model evaluation to indicate a “finished” product, and instead recommend open-ended evaluation and model
improvement. Metrics (8) through (10) are therefore used to identify where future development of PFCONUS can be
focused to improve upon timing, volume, and variability of fluxes. Performance metrics reported in this study are
also supplemented by plots of probability of exceedance or non-exceedance where appropriate (see the
Supplemental Information, Figures S1 through S8), which should help regional scale modelers identify relative
performance of major basins at various thresholds. Since there exist many other commonly used performance
metrics particular to streamflow, we also report Nash-Sutcliff Efficiency and Kling-Gupta Efficiency for simulated

flows at USGS gauges (Figure S9 in the supplemental text) (Gupta et al., 2009).
3 Results

By providing detailed partitioning of the water and energy budgets at high spatial and temporal resolution
and at continental spatial extent, the PFECONUSv1 ParFlow-CLM model offers an unprecedented opportunity to
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study large-scale nonlinear relationships and to provide hydrologic process estimates at locations remote from
observation networks. The 2003-2006 water year simulations in this study estimate hourly pressure head and
saturation at each of the approximately 31.5 million 1-km three-dimensional model cells; the simulations also
provide evapotranspiration, and energy balance estimates at each of the 6.3 million land surface grids cells. Figure 2
shows the PFCONUSvI model extent, mean annual precipitation from interpolated atmospheric forcing, and mean
annual simulated components of equation (2). Below, these water balance components, their performance, and their
relative bias sources are discussed in detail. Note that different performance metrics were discussed for model
components based on their temporal and spatial coverage, continuity, resolution, and uncertainty. For instance, the
sheer amount of temporal and spatial coverage provided by the USGS stream gauge network allowed for several
different error metrics to evaluate long-term behavior, hydrograph shape, and flashiness. Comparisons of model
results with remote sensing products and well observations were more limited by higher uncertainty and lower
temporal and spatial resolution and continuity, but they were still valuable in identifying regions for model

improvement and analyzing error propagation between water balance components.

3.1 Runoff, R

The ability to accurately simulate overland flow at the major basin or continental scale and above has for
several years been a topic of much interest in the hydrologic community. Continental or global streamflow estimates
could be coupled to general circulation models to provide predictions of surface water resource vulnerability to
climate change (e.g., Koirala et al., 2014); large-scale runoff models could additionally provide flood forecasts to
regions lacking in developed surface water monitoring networks (Kauffeldt et al., 2016). While the integrated
groundwater-surface water modeling is computationally demanding, results from PFCONUSVI represent a rare
opportunity to evaluate streamflow performance, 1) because the integrated system platform resolves shallow aquifer,
vadose zone and surface water transfer, and 2) streams form naturally as surface water is routed by topography,
without requiring pre-defined stream reaches.

PFCONUSV1 streamflow R was evaluated against 2,392 USGS stream gauges which are well-distributed
across the United States. We analyze model performance using percent bias, Spearman rank correlation, and RSR.
However, Gleeson et al. (2021) suggest that while the use of error metrics and direct comparison of observations
with simulated values are valuable for evaluation, they should be supplemented with hydrologically meaningful
diagnostic signatures to better understand system dynamics. Further, PBIAS can be sensitive to precipitation

provided by the interpolated NLDAS atmospheric forcing product. Since P is an input to the PFCONUSv1 rather
than a model result, runoff ratio (RR = g) was also calculated to extract model performance independent of

precipitation bias, and to better represent a diagnostic measurement of watershed response to rainfall. RR measures
the amount of precipitation partitioned to runoff, with lower RR values generally indicating a greater portion of
precipitation lost to infiltration or evapotranspiration. “True” runoff ratios were estimated by first identifying all
GHCND precipitation gauges upstream of a USGS stream gauge. The mean annual precipitation was then calculated
and applied over the drainage area defined by Geospatial Attributes of Gages for Evaluating Streamflow (GAGES-
II) dataset (Falcone, 2002). RR is equal to the ratio of total USGS gauge flow to GHCND precipitation. A similar
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process was done for simulated RR, using NLDAS-interpolated precipitation, simulated flow at the gauge cell, and
model drainage area from the input digital elevation model derived from HydroSHEDS. Note that while the
interpolated NLDAS precipitation, unlike the GHCND gauge network, is continuous in space, only modeled cells
which matched nearest-neighbor GHCND gauge network were used to estimate upstream precipitation, in order to
create as controlled a comparison as possible. Runoff ratios were not calculated for USGS stream gauges with fewer
than three upstream GHCND precipitation gauges.

Observed total annual flow during the simulation period is shown in Fig. 3a; annual streamflow varies by
several orders of magnitude across U.S. major basins, with higher flows in the east and the Pacific Northwest, and
lowest flows in the Great Plains. Runoff ratios are generally highest in the East; the majority of the arid West exhibit
RR of less than 0.1, with the exception of topographically complex regions and headwater watersheds of the Rocky
Mountains (Fig. 3c).

PFCONUSV1 reproduces point-scale annual flows across the United States with a median annual PBIAS of
7.7 %, and with 25" and 75" percentiles of -26.2% and 77.4%, respectively (Fig. 3b). Shown in Fig. 3e and f, the
25% 50 and 75% percentiles for daily Spearman’s p are 0.42, 0.65, and 0.76, while the same for RSR are 0.86, 1.2,
and 2.5. The median PFCONUSv1 minus USGS difference in RR is 0.016 (Fig. 3d), which corresponds to a mean
percent bias in runoff ratio of 8.3%. The PFCONUSv1 model simulates observed streamflow with RSR<0.6, p>0.7,
and |PBIAS|<20% at 54 gauges (approximately 2% of available sites). An additional 97 locations (4% of gauges)
exhibit RSR<0.7, p>0.65, and [PBIAS|<30%. An additional 382 locations (15.7% of gauges) showRSR<1, p>0.6,
and |PBIAS|<50%. And, finally, and an additional 268 gauges (11% of gauges) show RSR<1.2, p>0.5, and
|PBIAS|<75%. As has been shown in previous literature (Waseem et al., 2017), different performance metrics do not
always indicate the same closeness of fit: While 2099 gauges (86% of the dataset) show either RSR<1.2,
|[PBIAS|<75%, or p>0.5, only 801 gauges (34% of all gauges) fit all those criteria.

Streamflow performance varies widely across major basins. For instance, median PBIAS, p, and RSR for
the Ohio River Basin are -7.8%, 0.79, and 0.84, respectively, and the median of simulated RR values are within 6%
the median estimate of RR=0.42 from observations. Simulated flows in the Tennessee River Basin also
appropriately simulate observed flows: mean PBIAS, p and RSR are -11.9%, 0.69, and 0.89, respectively; 60% of
the gauges in the basin perform withRSR<1.2, p>0.5, and |PBIAS|<75%; and observed and simulated mean RR are
0.49 and 0.53 respectively, for a percent bias in RR of 9%. Conversely, the majority of the upper Missouri River
Basin shows weak timing performance (median p of 0.49) and higher overall bias: the median PBIAS for Missouri
is 65% and median RSR is 2.2, indicating that the majority of Missouri gauges exhibit daily RMSE that is twice the
volume of expected daily variability. The Great Plains region is certainly the region with worst streamflow
performance: PFCONUSvVI percent bias in the majority of these gauges is greater than 300%, and in some cases,
simulated flow is greater than 10 times the volume of observed. While the mean difference in runoff ratio in this
region is only 0.04, this is on average 4 times larger than RR estimated from observations. Results in Fig. 3 therefore
suggest that in the arid Great Plains region, a very small change in runoff ratio can result in dramatic error in
streamflow bias, and the PFCONUSv1 struggles to capture low flows in this region. There is evidence that

continental-scale hydrologic models commonly share this struggle to capture streamflow dynamics in the Great
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Plains region. The first phase of the Continental Hydrologic Intercomparison Project has shown that a NOAA US
National Water Model configuration of WRF-Hydro shares the same streamflow performance category (poor
hydrograph shape/timing and high bias) as PFCONUSv1, run for the single water year 1985, at many gauges in the
Great Plains region (Tijerina et al., 2021). While the intercomparison project is in its infancy and this comparison
was primarily proof-of-concept, such results may stress the importance of representing groundwater abstractions and
irrigation over the Ogallala in continental-scale hydrologic models.
Note that in Fig. 3, no filtering was done for these metrics in order to eliminate gauges with incorrect drainage area
from topographic processing discrepancies, nor have we removed sites proximate to dams, influenced by nearby
pumping or irrigation or affected by bias in atmospheric forcing. As an example of PFCONUSvI performance in
ideal conditions, we show in Fig. 4 selected examples of individual gauge comparisons for each major basin in the
PFCONUSV1 domain. Gauges chosen for Fig. 4 were those that tended to be minimally impacted by bias from
anthropogenic effects or by errors in basin delineation by topographic processing. Such gauge attributes were
determined based on geospatial stream properties obtained from the Geospatial Attributes of Gages for Evaluating
Streamflow (Gages-II) dataset (Falcone, 2002), as well as the National Hydrography Dataset (see the supplemental
information in Maxwell & Condon (2016) for detailed description of geospatial stream gauge attributes).
Streamflow timeseries examples in Fig. 4 include gauges with the following properties: 1) represented greater than
300 km? upstream drainage area, 2) PFCONUSv1 drainage area differed from actual drainage area by less than 20
%, 3) total dam storage was less than 3% of total annual flow for the closest upstream dam, 4) total withdrawals for
previous five years were less than 3% of total annual flow, 5) total irrigated area in 2002 constituted no more than
15% of the total drainage area, and 6) upstream area Spearman’s p for precipitation performance must be greater
than 0.5. The examples in Fig. 4 therefore represent naturalized gauges, those with minimal bias in a priori inputs,
low anthropogenic impact, and good performance potential. We also compared domain-wide PFCONUSv1
performance at reference gauges identified by Maxwell et al. (2015) (locations with the least human influence and
best representing ‘natural’ ecohydrologic conditions) with non-reference gauges. As a whole, PFCONUSv1
performed better at reference locations, regardless of the error metric used (Fig. S1). However, the difference in
performance between reference and non-reference locations varies considerably between basins (Fig. S4 and S5).
The Pacific Northwest, Missouri, Lower Colorado, and Arkansas-Red-White basins exhibit much greater
performance at reference gauges across all error metrics, while other basins show mixed signals or poorer
performance at reference gauges (Fig. S1, S2), indicating other sources of bias outside of anthropogenic effects.
3.2 Evapotranspiration, ET

Evapotranspiration is a major component of the water balance, accounting for roughly 60 percent
partitioning of land precipitation into the atmosphere annually (Oki & Kanae, 2006); however, it is also widely
considered to be an incredibly difficult value to constrain (Gabriel B. Senay et al., 2013; Velpuri et al., 2013; Xu &
Singh, 2005) and is often estimated simply as the residual of other components of the water balance. Unlike
streamflow and precipitation, direct point measurement methodologies are limited, costly, and difficult to maintain.
Direct estimates can be inferred from sap flux measurements; lysimeters, which weigh plant and soil mass to track

temporal fluctuations in water storage; or chemical tracers, such as deuterium (Wilson et al., 2001). Currently, the
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method which likely provides the most defensible direct measurements of ET is the eddy flux or eddy correlation
method. Eddy flux towers relate observed turbulent heat fluxes at the surface (latent and sensible heat) to the
covariance between instantaneous fluctuations of vertical wind speed, humidity and temperature (Baldocchi, 2003;
Reynolds, 1895; Swinbank & Swinbank, 1951). The PFCONUSv1 simulated daily ET was compared to
observations from 30 eddy covariance towers managed by the FLUXNET mission. Locations of these sites and their
relative performance are shown in Fig. 5, along with timeseries examples from three FLUXNET with complete
observations during the entire observation period.

Results in Fig. 5 demonstrate the ability of the PFCONUSvI model to simulate daily and seasonal ET
across difference climatic zones. The mean 25%, 50, and 75™ percentiles for PFCONUSv1-simulated daily ET
PBIAS are 3%, 26%, and 55%, respectively. Given that remote sensing estimates regularly exhibit uncertainty of
50-60% for point-scale ET estimates, or >20% uncertainty in ET at the basin-scale (Velpuri et al., 2013),
PFCONUSvI ET results are promising, especially for an uncalibrated model. For daily timeseries, 25®, 50, and
75% percentiles are 0.6, 0.72, and 0.81 for p, and 0.69, 0.92, and 1.33 for RSR, respectively. Because the metric is an
indicator of monotonic agreement, the high overall Spearman’s p values are particularly telling, because p is
sensitive not only to seasonal trends which dominate the timeseries variance but also the influential day-to-day (sub-
seasonal) noise. Out of 30 FLUXNET sites with observations during the simulation time period, the PFCONUSv1
model performs with RSR<1.2, [PBIAS|<75%, or p>0.5 at 19 locations (63% of locations); at 29 out of 30 sites, the
PFCONUSv1 simulated ET fits one of these criteria.

The spatial discontinuity of FLUXNET certainly limits ET performance evaluation across the remaining
PFCONUSv1 model domain. Eddy covariance ET estimates are applicable within the fetch of the prevailing winds,
which is generally on the order of ~1 km radius surrounding towers (Wilson et al., 2001), and statistical
interpolation is generally not recommended without considerable parameterization of atmospheric and vegetative
conditions to inform upscaling (Jung et al., 2009).

To evaluate performance at larger spatial scales, the PFCONUSv1 model has also been compared to the
MOD16A2 and SSEBop algorithms for MODIS thermal imagery processing. These data, along with PFCONUSv1,
have been aggregated to HUCS spatial scale and monthly temporal resolution to help reduce uncertainty associated
with cloud cover in the 8-day product. Cumulative annual evapotranspiration for MOD16A2, SSEBop, and
PFCONUSV1 are shown in Fig. 6a-c. Both MOD16A2 and SSEBop algorithms should be considered
evapotranspiration modeling techniques produced from remote sensing observations, rather than observations
themselves. However, regions where PFCONUSv1 comparisons to the MOD16A2 and SSEBop agree establishes
greater confidence in the model’s bias or timing of ET estimates. We have therefore used PBIAS, p, and RSR error
metrics, with PFECONUSv1 monthly ET observations as simulated and MODIS datasets as observed values.
Multiple studies to date have compared MOD16A2 and SSEBop performance over a range of geophysical
characteristics, vegetative types and aridity indices by comparing to Penman-Monteith -based estimates (Knipper et
al., 2016), lysimetric observations (Senay et al., 2014), FLUXNET observations or upscaled information from
FLUXNET sites and vegetative indices (Senay et al., 2013; Velpuri et al., 2013), with results showing good general

agreement and within ~50% error for annual ET totals at point observations. Despite its considerably more
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simplistic approach for estimating ET from MODIS thermal land imaging, SSEBop performs nearly as well or, in
the case of the Western U.S., better than MOD16A2 (Velpuri et al., 2013). Therefore, we also show MOD16A2
performance relative to SSEBop for reference (Fig. 6 ¢, f, i, I, 0), where O: observations are MOD16A2 and S;
observations are MOD16A2 monthly ET (equations 8§, 10).

PFCONUSV1 shows similar overall agreement with MOD16A2 and SSEBop algorithms in annual ET, with
differences within £30mm across the domain. All products provide similar spatial signatures of ET, with overall
higher ET in the south west and lowest ET in the Great Basin and Colorado River Basins. PFECONUSv1 estimates
tend to agree more with SSEBop with regards to timing and residual variation, and they are more similar to
MOD16A2 with regards to PBIAS (particularly in the Western United States) (Fig. 6). The 50" percentile for
PFCONUSvI PBIAS against MOD16A2 and SSEBop are 7.5% and 8%, respectively; 25" and 75" percentiles of
PBIAS are -4.4% and 24% for MOD16A2, and -4.4% and 35% for SSEBop. In several regions, PFCONUSv1 shows
similar comparisons with both MODIS products. For instance, in the Upper Mississippi, both products suggest that
PFCONUSV1 overpredicts ET in the north and underpredicts in the South; and both products suggest PFECONUSv1
underpredicts ET in the Rocky Mountain headwaters and across most of the Ohio River Basin (Fig. 6 d, e). The
approximately 30% underestimation of ET in the CO headwaters further agrees with the PFCONUSv1 performance
relative to FLUXNET observations at the Niwot Ridge site in Colorado. However, most of the Missouri and the
Arkansas-Red-White basins show opposite behavior between PFCONUSv1-MOD16A2 and PFCONUSv1-SSEBop
comparisons; in these regions, we can be less certain of model bias as described by remote sensing of ET. Broadly,
across the Western U.S., PFCONUSvI1 shows better agreement with MOD16A2 with regards to ET magnitude
(PBIAS) because SSEBop estimates negligible ET in the Basin and Range region (Fig. 6 ¢); however, PFCONUSvI
shows dramatically better performance relative to SSEBop in terms of Spearman’s p and RSR (Fig. 6 g,h). The 25%,
50, and 75% percentiles of p are 0.38, 0.85, and 0.92 for monthly PFCONUSv1 compared to MOD16A2; the
quantiles for PECONUSV1 compared to SSEBop are 0.85, 0.91, and 0.93. Similarly, 25", 50", and 75" percentiles
of RSR are 0.41, 0.85, and 2.2 for performance relative to MOD16A2, and 0.38, 0.47, and 0.62 for performance
relative to SSEBop.

Despite differences between PFCONUSv1 comparisons to the two MODIS algorithms, results shown in
Fig. 6 suggest that PFCONUSvVI appropriately estimates the magnitude and temporal progression of ET, compared
to the performance of other LSMs. In a study comparing LSM-based recharge estimates in the western United
States, Niraula et al. (2017) showed that LSMs Mosaic, VIC, and Noah simulated spatially distributed ET with 0.87,
0.77, and 0.75 Pearson’s correlation relative to MODIS. Pearson’s correlations between PECONUSv1 and
MOD16A2, and between PFCONUSv1 and SSEBop, are 0.9 and 0.95, respectively, which motivates future
comparisons of PFCONUSv1 performance relative to other LSMs. However, it is important to again note that
MODIS ET estimates are themselves models, and as such they are susceptible to epistemic errors in input data (e.g.,
inaccuracies in LAI or other parameterizations), measurement and remote sensing errors (e.g., cloud cover), and

other uncertainties.

33 Storage, S
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Terrestrial water storage represents all components of the water balance stored on and below the Earth’s
surface. As such, total storage S is an aggregate of water stored on land in surface water bodies or in the canopy, as
well as snow water equivalent, soil moisture in the vadose zone, and shallow or deep saturated aquifer storage.
Estimates of overall S could simply involve measuring and combining individual components, but these calculations
1) require highly developed monitoring networks and an impressive amount of in situ observations, and 2) can have
large margins of error if not all of the assorted hydrological stores are accurately resolved (Troch et al., 2007). The
most common method for S estimation calculates storage as a remainder of other water balance terms, P, ET, and R
in equation (2), (e.g., Rodell et al., 2011; Tang et al., 2010).

Recent advances in remote sensing have granted hydrologists an estimate of changes to total .S, without
partitioning out storage sources, by measuring fluctuations of Earth’s gravity fields as a proxy for mass change.
Since water represents the greatest fluctuation of terrestrial mass, gravity anomalies can be translated to variability
in S. The newly available GRACE twin satellite mission provides approximately monthly values of total water
storage at the global scale and at coarse (>10° km?) resolution (e.g., Strassberg et al., 2009). Storage anomaly
estimates are based on K-band microwave measurements of the distance between the two low-flying satellites,
which varies as a function of gravity field fluctuations (as well as atmospheric, oceanic, and solid Earth tides, which
must be corrected to resolve the global water budget (Dahle et al., 2019)).

The PFCONUSV1 total water storage anomalies (calculated as a sum of all simulated surface and
subsurface hydrologic stores) was compared to five monthly gravity field solutions: the RL06 spherical harmonic
solutions provided by JPL, GFZ, and CSR, as well as mascon solutions JPLm and CSRm. Figure 7shows seasonal
storage amplitude in space as well as basin-aggregate storage change through time, comparing PFCONUSv1 and
GRACE solutions for six major river basins. Some basins have been left out due to incompleteness in the model
domain, or due to size: The basis function for GRACE solutions is generally on the order of 300,000 km?, such that
storage anomaly estimates for smaller basins (e.g., the Tennessee River Basin) are not well resolved.

Seasonal storage amplitude represents the average peak-to-peak storage gain or loss over the course of a
water year, and it is therefore a depiction of seasonality or intra-annual S signal. The GRACE solution shown in Fig.
7 is the JPL mascon solution provided at 0.5° resolution, and amplitude for other GRACE products show similar
spatial signals; however, note that mascon solutions are calculated given a 3° equal-area basis function and
subsequently downscaled using forward modeling techniques to account for leakage errors (Wiese et al., 2016).
GRACE mascons are not independent of each other, and uncertainty increases dramatically with decreasing basin
size. However, qualitative comparisons between GRACE and PFCONUSv1 amplitude indicate several regions of
agreement for high or low seasonality. Topographic highs in the Rocky Mountains, where the snow water equivalent
signal likely dominates overall storage variance and is entirely seasonally dependent, show high amplitude for both
PFCONUSv1 and GRACE (Fig. 7 a,b). The Upper and Lower Colorado River basins, in particular, show very
similar spatial patterns for overall amplitude. Another area of agreement is the comparably high amplitude in the
lower Mississippi River Basin. In both GRACE and PFCONUSvV1, the Arkansas-Red-White region sees higher
seasonality of total water storage in the east, and lower in the west; and the locations of highest amplitude, both for

GRACE and our model, lie in the Pacific Northwest region. However, broadly speaking the PFECONUSv1 amplitude

18



660

665

670

675

680

685

690

695

is lower than GRACE for the majority of the domain and particularly in the East. Other continental- or global-scale
land surface models have also underpredicted seasonal storage amplitude across global river basins relative to
GRACE; for example, the WaterGAP (Water Global Assessment and Prognosis) hydrologic model consistently
under-predicted amplitude for most of the global land area (D6l et al., 2014), and a validation of four LSMs and
global hydrologic models found that the numerical models reproduced GRACE storage signals only to a very
limited degree (Zhang et al., 2017). However, LSM tendency for GRACE mismatch is likely attributed to
insufficient groundwater representation, which is not as likely to be the cause for PFCONUSvI and GRACE
disparities.

Temporal progression of storage was calculated with area-weighted mean of the Colorado, Arkansas, Ohio,
Missouri, and Upper Mississippi River Basins (Fig. 7, c-h). Uncertainty (shaded regions) shown indicates the
leakage error associated with downscaling 3° basis functions to 0.5° solutions for the JPL mascon product. We show
only the JPLm uncertainty, simply because uncertainty estimates for the RL06 products are not yet available. The
CSR mascon product is suggested to have an error of approximately 2cm that is more or less constant through time
and space.

The PFCONUSv1 model shows good agreement in the timing storage anomalies for most basins, with
Spearman’s p rank correlation ranging from 0.43 to 0.94 relative to the mean of all GRACE solutions: Individual p
values for major basins are 0.43 (Missouri), 0.63 (Upper Colorado), 0.76 (Pacific Northwest), 0.79 (Great Basin),
0.81 (Lower Colorado), 0.86 (Upper Mississippi), 0.88 (Ohio), and 0.93 (Arkansas-Red-White). However,
correlation is not necessarily the best predictor of adequate model performance; for instance, the Upper Mississippi
has the third highest p value out of six major basins, but more than 80% of the total anomaly timeseries lies within
the uncertainty bars provided for the JPLm product. Further, several discrepancies exist between PFCONUSv1 and
GRACE trends and amplitude. For example, despite its monotonic agreement with GRACE storage amplitude for
the Ohio River Basin, the PFCONUSv1 model simulates a seasonal storage amplitude that is, on average, more than
30% lower than what GRACE observes. The Upper Colorado River Basin captures seasonal timing, but the overall
storage gain over the simulation period is roughly three times that of what GRACE observes.

Differences between the PFECONUSv1 and GRACE storage water anomaly estimates can come from
various sources: 1) model error and uncertainty in PFCONUSvI model parameters and configuration, error and
uncertainty associated with GRACE measurement error, or error associated with the intensive post-processing and
filtering on the raw spherical harmonic GRACE solutions, 2) hydrologic stores unaccounted for in the PECONUSv1
model, such as deep (>100m) aquifer storage, or 3) anthropogenic impacts, particularly from groundwater

withdrawals from municipal and agricultural aquifer depletions (Chen et al., 2016).

34 Storage partitioning: Sgw, Ssoir, and Ssnow

Total water storage anomalies were also validated based on their partitioned components: ASgw, ASsoir, and
ASsnow. First, PFECONUSv1 water table depth (WTD) was compared to USGS well observations across the United
States in Sect. 3.4.1. As discussed below, WTD does not necessarily translate to AS,w, but it is still a very

informative hydrologic state. PFECONUSv1 soil moisture was compared to a combined active passive remote sensing
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product in Sect. 3.4.2, and PFCONUSvI snow water equivalent was compared to snow telemetry measurements in

Sect. 3.4.3.

3.4.1  Water table depth

Figure 8 shows observed WTD across the model domain, as well as difference in observed and modeled
heads and correlation for available locations. As a caveat to the results shown in Fig. 8, while WTD is a visibly
appealing metric for modeled groundwater performance, it alone is not translatable to total storage Sgw or for storage
change AS,w, for several reasons. First, without information regarding aquifer storativity or in absence of pumping
tests, change in water table depth does not equate to total water storage fluctuation in an aquifer of uncertain depth
and hydraulic characteristics. Second, water flow is governed by hydraulic head rather than water table depth;
therefore, a bias in WTD of tens of meters within a continental model that spans thousands of meters of hydraulic
head does not necessarily speak to the model’s ability to laterally move water through the saturated subsurface.
Finally, perched and confined aquifer systems can completely disconnect anomalies in total subsurface hydrologic
stores and measurable WTD fluctuations. However, WTD does indicate vadose zone-saturated zone connectivity,
and for unconfined aquifers it is a good indicator for loss or gain in aquifer storage, so we briefly compare observed
and simulated WTDs here.

Observed WTD from over 41,000 aquifers across the contiguous United States spans multiple orders of
magnitude and is shown in Fig. 8. The PFCONUSv1 model demonstrates a fairly consistent shallow WTD bias
across the domain, with “hot spots” of over 50m depth difference in the southern reaches of the Ogallala aquifer, in
the southern Pacific Northwest region, and in the Lower Colorado River basin. However, many of these wells
represent locations impacted by extractions (wells are preferentially drilled in regions prioritizing municipal or
agricultural groundwater resources), wells tapping confined aquifers, or WT depths that simply cannot be captured
by a shallow aquifer model of 102m depth. In a 1985 transient simulation of PFCONUSv1, Maxwell and Condon
(2016, supplemental information) found that while no strong connection exists between water table depth bias and
the model’s geologic properties, WTD bias was aquifer-dependent, with the greatest positive WTD biases occurring
in the High Plains aquifer which has experienced depletions in the last several decades.

Further, WTD is only informative as an indicator of positive or negative ASgw if multiple observations are
provided through time. Therefore, the available USGS wells have been filtered by excluding 1) locations where the
observed minimum WTD was greater than 60 m (PFCONUSv1 estimates pressure at cell centers, with the center of
the deepest layer at 52 m), 2) locations providing less than 10 observations during the simulation timeframe, 3)
locations flagged by the USGS as a confined or mixed aquifer system (aquifer type code aqfr_type cd in the
Groundwater levels for the Nation dataset provided by USGS NWIS, https://waterdata.usgs.gov/nwis/gwlevels/),
and 4) locations flagged for pumping (water level site status code lev_status _cd) during the simulation period.

WTD bias for the remaining 2,486 locations is shown in Fig. 8c. WTD agreement is considerably improved
at these locations, but a shallow WTD bias is still present, with 25", 50, and 75" quantiles for simulated minus
observed difference in total water level being 2.5 m, 5.8 m, and 13.5 m, respectively. However, p values suggest that

despite PFCONUSV1 shallower water tables, the model is still able to capture temporal fluctuations in depth to
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saturation (and by association, groundwater ASgw) at almost half of the filtered well sites (Fig. 8d). Quantiles for p at
the filtered locations are 0.14 (25™), 0.46 (50™), and 0.7 (75"); 46% of wells show p greater than 0.5, 37% of wells
show p greater than 0.6, and 25% of wells showp greater than 0.7.

3.4.2  Soil moisture, Sy

Soil moisture (SM) anomalies (analogous to Ssoir) at the top layer of PFCONUSv1 (up to 0.1 m depth) were
compared to the ESA CCI soil moisture product at 0.25° resolution and aggregated to weekly totals. Results are
shown in Fig. 9. As in GRACE comparisons, we compared seasonal amplitude spatial signals across the
PFCONUSV1 domain, as well as basin-scale aggregates through time. The ESA CCI record is a state-of-the-art
multi-decadal, global satellite-observation of SM, created from combining single-sensor active and passive
microwave sensors; since its release, the literature has shown good agreement between the ESA CCI product and
spatial and LSM-modeled temporal SM patterns of soil moisture, and the harmonized product has shown better
performance than any of its individual single-sensor inputs (Dorigo et al., 2017; Gruber et al., 2019). Because we are
interested in ASs.i over time rather than the total water stored in the soil at any one moment, comparisons were made
to SM anomalies, or relative change in soil moisture with respect to the mean value.

Broadly speaking, the PFCONUSvI shows overall lower amplitude in the West and higher amplitude in the
East, relative to the CCI product (Fig. 9a,b). While this could be a result of PFECONUSv1 bias in evapotranspiration
or other fluxes in which seasonal signal is dominant, it is also possible that amplitude differences are simply a result
of temporal coverage or blending algorithms in the ESA CCI product. For instance, for the combined SM product,
blending weights are higher for active microwave sensors in the eastern U.S. and high elevation Rockies, while the
rest of the Southwest and the northern Great Plains region favored passive microwave sensors (Dorigo et al., 2017).
Further, ESA CCI SM is limited by temporal coverage; note that in the majority of the eastern PFCONUSv1
domain, less than 365 observation days are available (most likely a product of high humidity and cloud cover) (Fig.
9b), which makes us less confident in Sy amplitude estimates.

At the aggregated basin scale, however, temporal progression of SM shows temporal agreement between
PFCONUSv1 and CCI SM for most major basins: Individual p values for major basins are 0.25 (Upper Colorado),
0.79 (Lower Colorado), 0.75 (Arkansas-Red-White), 0.75 (Ohio), 0.43 (Missouri), 0.65 (Great Basin), 0.72
(Tennessee) and 0.55 (Upper Mississippi). The very weak correlation in the Upper Colorado basin may be indicative
of large uncertainties in the ESA CCI SM product that have been observed with particular surface conditions: For
regions of dense vegetation, topographic complexity, snow cover or frozen soils, uncertainty in ESA CCI SM is very
high (Dorigo et al., 2017), and we therefore have low confidence in ESACCI comparisons in Rocky Mountain

headwaters regions.

3.4.3  Snow water equivalent, Ssow
Finally, modeled PFCONUSVI Siuow storage component was validated against snow telemetry data in the
mountainous West of the model domain (Fig. 10). An important caveat to note is that point-measured snow water

equivalent (SWE) is likely to consistently overestimate gridded land surface model products, given that coarse-
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resolution model cells (in our case, 1km lateral discretization) represent an aggregate of highly heterogenous SWE
and canopy interference across a wide spatial area. Telemetry stations are frequently situated in clearings or in
breaks in canopy density in order to maximize throughfall. For instance, Molotch and Bales (2005) characterized the
distribution of SWE depth in 16-, 4-, and 1-km? grid elements surrounding SNOTEL stations in Rio Grande
headwaters, using a combination of field observations, remote sensing products, and snowpack mass balance
modeling. They found that in the majority of the sites, the SNOTEL station represented high percentiles of SWE
relative to the surround land area, and that SNOTEL site conditions (such as vegetation density, solar radiation
index, and terrain indices) were not representative of the vast majority of grid element space. In some regions,
SNOTEL SWE was more than 200% greater than the mean grid element value.

As would therefore be expected, the 1-km resolution PFCONUSv1 model underestimates annual peak
SWE (snow water equivalent at maximum accumulation) and April 1 SWE (snow water equivalent during ablation).
PBIAS for annual peak SWE was -50/6%, -33.5%, and -14.7% at 25", 50", and 75" percentiles, respectively. April
1 SWE PBIAS was similar, with some individual SNOTEL stations showing more than double the SWE than
PFCONUSV1 simulations (Fig. 10c). However, the PFCONUSv1 model clearly captures timing for snow
accumulation and ablation, with the fraction of snow-covered sites tracking almost identically between SNOTEL
and PFCONUSvI1(Fig. 10d). Percentiles for Spearman’s o values for cool-season daily SWE (Fig. 10d) are 0.85
(25" percentile), 0.92 (50™), and 0.96 (75™).

4 Discussion: Known and unknown sources of model bias

In Sect. 3, outputs from an integrated surface water-groundwater hydrologic model, PFCONUSv1, were
compared to available point-scale monitoring networks and remote sensing products in an effort to evaluate the
model’s ability to reliably reproduce components of the water budget listed in equation (1).

Broadly, results suggest that PFECONUSv1 shows promising ability to reproduce the timing, mean states,
and inter- and intra-annual variability of continental-scale water balance components. However, the PFCONUSv1
model should be considered a work in progress; with approximately 31 million cells in the domain, PFCONUSv1
bias can originate from errors associated with model physics, inputs, process representation, or epistemic uncertainty
(Table 2). The best publicly available datasets were used to populate and drive this simulation, but such inputs are
certainly subject to their own errors and uncertainties and must be continuously revisited to improve their fidelity. In

this section, we discuss identifiable errors in model inputs and implications to future model development.

4.1 Meteorological forcing errors and topographic processing

Major biases exist in preprocessing of PFECONUSv1 meteorological forcing and topography, which are
peripheral to but act simultaneously with all other sources of bias (Table 2). In this way, isolating the effects of a
single bias source can be challenging. Streamflow itself is sensitive to errors in drainage area, topographic relief, and
precipitation or temperature bias, and the errors in surface and subsurface moisture flux can propagate downstream

to impact moisture availability and evapotranspiration in areas remote from the original bias source.
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4.1.1  Terrain processing and drainage area

Topographic slopes were defined from a digital elevation model (DEM) generated by HydroSHEDS and
subsequently subjected to a hydrologic processing algorithm, which adjusted drainage networks to remove true and
artificial pits, depressions, and barriers and ensure complete river network connectivity (Barnes et al., 2016).
However, both loss of resolution in DEMs and the topographic processing can result in loss of topographic relief and
change in drainage area. Therefore, PFCONUSv1 streamflow percent bias should in theory reflect fidelity of
upstream watershed area. We compared PFCONUSvI drainage area with “true” drainage area determined based on
geospatial stream properties obtained from the GAGES-II (Falcone, 2002).

Figure 11 shows the relationship between percent difference in observed and simulated streamflow, versus
percent difference in observed and processed drainage area, for all 2,392 USGS stream gauges. There are three
primary conclusions to be drawn from this relationship (Fig. 11a): 1) A clear, linearly proportional correlation exists
between percent difference in drainage and percent difference in streamflow. For streamflow percent difference
from observed ranging from -200 to 200%, we find that 977 out of 2,392 stream gauges fall within +30% of this
flow-drainage relationship. Essentially, this means that for 41% of gauges in PFCONUSV1, the percent bias in
annual flow can be primarily attributed to errors in topographic processing. 2) A considerable number of gauges
exhibit positive percent difference between observed and simulated annual streamflow, and these gauges typically
are those with very low runoff ratios. Such a finding is not surprising, in that streams with low RR will be
particularly sensitive to external drivers. And 3) a certain amount of noise exists in these drainage-flow
relationships, with many locations exhibited higher or lower error in annual flow than that expected by drainage
errors, regardless of runoff ratio.

Figure 11b shows locations where the flow-drainage relationship was expected or unexpected. For the
majority of the eastern United States, bias in streamflow is simply a function of drainage area bias from topographic
processing. The mountainous West was considerably noisier, exhibiting in somewhat equal parts lower, higher, or
expected annual flow behavior from drainage bias. We expect that much of the noise in annual flow bias is a
function of precipitation and temperature bias and timing, and subsequently snowpack. However, in the Great Plains
region, the considerable, positive annual flow bias shown in Fig. 3 cannot be attributed to the error in drainage area.
In fact, for 600 gauges in the Great Plains area (~20% of all locations), the percent difference between PFCONUSv1
and true drainage area is near 0, but percent difference in streamflow is between 30 and 200%. We believe that the
greatest driver of this bias is the lack of groundwater extractions in the PFCONUSvI model. Note that not only is
the PFCONUSvI model naturalized for the 2002-2006 simulation period, but its initial condition is informed by
1985 naturalized spin-up, which does not include at least 50 years of groundwater depletion. However, some of the
positive annual flow bias behavior in this region could be attributed to some biases in cumulative precipitation,

which is detailed in Sect. 4.1.2.
4.1.2  Atmospheric forcing bias

The NLDAS meteorological forcing, which is described in Sect. 2.2, was bilinearly interpolated across the

PFCONUSv1 domain; biases in precipitation, evaporation, wind speed, humidity, and radiation can therefore come
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from either the NLDAS product or its statistical downscaling. We compared daily total precipitation and average

daily air temperature from the interpolated NLDAS product at 9,139 (P) and 1,678 (temperature) GHCND

meteorological stations across the PFCONUSv1 domain, calculating relative bias and Spearman’s p at each location.

Figure 12 summarizes these comparisons. Broadly, we can identify several examples where NLDAS biases are

potential drivers of the bias in timing and volume of hydrologic fluxes:

PFCONUSvV1 Annual precipitation over the Kansas-Nebraska border in the Great Plains region is 10-25%
greater than observed (Fig. 12b). This bias could be one source of positive flow bias at USGS stream
gauges east of the High Plains aquifer.

Fidelity in streamflow timing will of course be a function of accurate precipitation timing and intensity. A
hydrologic model cannot be expected to perform considerably better than its recharge forcing, or results
could be considered spurious. Areas with weakest correlation between observed and NLDAS daily
precipitation are in the Rocky Mountain headwaters region (Fig. 12¢). In the Upper Colorado watershed as
a whole, the 50" percentile p value for daily precipitation is 0.56, or the lowest of all other major basins.
The Upper Colorado is also the basin with poorest overall daily streamflow timing, with pso»=0.33.

Our interpolated NLDAS product underestimates the diurnal temperature fluctuations, primarily by
considerably overestimating minimum (nighttime) daily temperature (Fig. 12¢), which is likely a
considerable driver of underestimated SWE. Further, maximum daily temperature is underestimated over
the Rockies (Fig. 12h). Given that ET is largely dependent upon available radiative forcing, this could
explain some of PFCONUSv1 negative bias at FLUXNET stations over the Rockies.

Annual temperature errors could also explain several regions where PFCONUSv1 comparisons to the
MOD16A2 and to SSEBop MODIS algorithms agree. For example, warm temperature biases and positive
ET biases (relative to both MODIS algorithms, Fig. 6g,h) are seen in much of the lower elevations of the
mountainous West and in the majority of the Pacific Northwest. Spatial patterns of ET biases (Fig. 7g,h) in
the Upper Mississippi and Ohio River Basins seem to instead follow the spatial pattern of precipitation bias
(Fig. 11b), with regions receiving higher precipitation also experiencing higher ET.

NLDAS-simulated daily temperature timing is excellent. However, temperature was not deseasonalized
before correlation was calculated, and the seasonal signal will certainly account for the majority of

temperature variance.

More specifically, we can verify specific impacts of NLDAS bias to SWE and ET at individual SNOTEL

and FLUXNET sites. Figure 13 shows observed and simulated (or interpolated) meteorological conditions and water

balance components for snow and evapotranspiration.

SWE bias at SNOTEL sites is preferentially low at higher elevations (Fig. 13d). While this difference, as

discussed above, can to a certain extent be attributed to differences in heterogeneous land and vegetation between

the point and grid scale (Molotch and Bales, 2005), we also find that biases in temperature and precipitation likely

drive the PFCONUSv1 low bias snowpack. PFCONUSvI SWE experiences a low bias in cumulative annual
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precipitation at SNOTEL sites (Fig. 13c), and lower elevations exhibit a warm cool season and annual temperature
bias (Fig. 13 a,b), both of which would contribute to low accumulation and high ablation rates.

While NLDAS shows good agreement with observed FLUXNET temperature (Fig. 13g), comparisons
between NLDAS and observed vapor pressure deficit and wind speed both exhibit a considerable amount of scatter
(Fig. 13e,f). Overall, the poorest performing sites for vapor pressure (those in the Upper Colorado river basin) also
exhibited the highest magnitude ET biases (Fig. 13h). PFCONUSv1 under(over)-estimates relatively high (low)
daily evapotranspiration rates (Figure 13h). For FLUXNET locations and days exhibiting ET rates over (under) 4
mm day!, mean daily bias is -1.2 mm (0.3 mm). Biases in NLDAS vapor pressure and wind speed could be a
contributing factor. Lower vapor pressure deficits (0 to 20 Pa) and lower wind speeds (0 to 6 m s!) have an overall
positive bias, could explain PFCONUSv1 overpredicting low ET days. Similarly, we believe the bias on high-
evapotranspiration days (ET >4 mm day!), which PFCONUSv1 preferentially under-predicts, could be attributed to
NLDAS under predicting wind speeds greater than ~10 m s™..

Errors in atmospheric forcing products often necessitate statistical bias correction before simulations are
run (Piani et al., 2010). NDLAS specifically has been validated in its ability to reproduce meteorological conditions
for streamflow (Xia, Mitchell, Ek, Cosgrove, et al., 2012), soil moisture (Xia, Ek, et al., 2015), and
evapotranspiration (Xia, Hobbins, et al., 2015) prediction by LSMs. While long-term spatial patterns and seasonal
signals were captured for soil moisture and evapotranspiration, NLDAS fidelity at daily or weekly timescales is less
certain. In this study, it is difficult to directly attribute the portion of streamflow, SWE or ET errors that occur from
atmospheric forcing bias, but these water balance components would certainly improve with continued progress in
meteorological forcing datasets. The ParFlow-CLM water budget has been shown to be particularly sensitive to
uncertainty in both precipitation and temperature forcings in mountainous regions, largely due to their additive
influence on snow accumulation, melt, and subsequent mountain block recharge (Schreiner-McGraw and Ajami,
2021). Other studies have also highlighted the persistent biases in precipitation and temperature estimates from
continental or global meteorological products, which can propagate into hydrologic model predictions (e.g., Ashfaq

et al., 2010; Sperna Weiland et al., 2015).

4.2 Anthropogenic process representation and other epistemic errors

Plenty of sources of uncertainty can contribute to biases not discussed in Sect. 4.1 (Table 2). We have
chosen to address meteorological forcing and topographic processing errors above, simply because they are
somewhat readily quantifiable, while parameter values and other epistemic uncertainties, such as simplification or
scaling of model physics, are poorly constrained or simply unknown. Other biases include population of model
parameter fields.

While we do not discuss model parameter uncertainty, such as conductivity, porosity, van Genuchten
parameters, Manning’s surface roughness, land and vegetation parameters, or model horizontal and vertical
discretization, these are also areas for improvement. For example, Maxwell et al. (2015) show that national geologic
and soil parameters datasets are prone to errors via political boundaries, such as state lines; and the PFCONUSv1

model oversimplifies deeper geology, with a 100m vertically homogenous layer.
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However, as mentioned above, these fields are poorly constrained at the continental scale, and simulations
are necessarily limited by availability of appropriate distributed products. Model parameter population is often
addressed through calibration, but population of parameter fields becomes increasingly difficult as resolution
increases and calibration becomes more computationally demanding. Future model iterations may need to take
advantage of methods that allow transfer of parameters (e.g. conductivity) from coarse-resolution, efficient models
to high resolution ones (Foster & Maxwell, 2019). Model discretization is another concern. Coarsening of vertical
and lateral resolution is a necessity at the continental scale but aggregating to ~1km resolution certainly comes with
inherent uncertainties and loss of information. DEMs in particular will lose topographic drivers with scale (Wu et
al., 2008), resulting in loss of relief; but on the other hand, coarse resolution cells could result in inappropriately
steep pressure gradients as a function of Richards’ equation parameterization and pressure-dependent permeability
(Maxwell and Condon, 2016), and suitable vertical length scales for Richards’ equations generally do not exceed
several meters (Or et al., 2015). This calls to question the scalability of model physics; as Beven and Cloke (2012)
rightly point out, whether or not governing partial differential equations will scale linearly is a concern. However,
the current governing equations for PFCONUSVI are simply the best currently known representation of hydrologic
processes at this scale.

Finally, process representation is certainly a concern. Transient anthropogenic modules, such as urban
hydrology models, pumping and injections, or surface water diversions, are currently possible but add to
computational demand and require detailed historical data on water use with temporal and spatial coverage simply
not yet available. As a naturalized model, the PFCONUSv1 simulations presented here will necessarily overpredict
water tables and baseflow in regions where extractions are apparent. For instance, Maxwell and Condon (2016,
supplemental information), show streamflow examples at Lees Ferry USGS gauge, where timing and volume of
streamflow are entirely governed by dam hydraulics. Condon and Maxwell (2019) show that incorporating a century
of groundwater depletion across the PFCONUSv1 domain considerably decreases streamflow, with sensitivity to
pumping concentrating downstream; more specifically, they found that long-term depletions over the High Plains
aquifer resulted in a swap of discharging to recharging groundwater. However, naturalized continental models with
high fidelity in non-anthropogenic settings could be used to estimate impact from human influence, simply by

examining the difference between observed and simulated conditions.

5 Conclusions and implications

In this study, we present the detailed evaluation of a transient, coupled hydrologic-land surface simulation
at the continental scale and at hyper-resolution using a diverse set of monitoring networks and state-of-the-art
remote sensing products. We found that PFCONUSv1 reproduced temporal patterns for continental scale water
budget components with an accuracy of at least p=0.5. The following are 50" percentile (in space, over the entire
domain) Spearman’s rank correlation p for individual water balance components: pson = 0.65 for R, with evaluation
against daily USGS stream gauge observations; pson = 0.72 for ET, with evaluation against daily FLUXNET eddy
covariance observations (for monthly HUC8-aggregated remote sensing products, pson = 0.85 for ET relative to

MOD16A2 algorithm and pson = 0.91 for ET relative to SSEBop algorithm); oson = 0.80 for major basin-aggregate
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S, with evaluation against monthly GRACE remote gravity field sensing; pson = 0.46 for filtered USGS well
observations, which are related but not equivalent to Sgw; psom = 0.69 major basin-aggregate Ssoir, with evaluation
against ESA CCI weekly SM from active/passive microwave sensors (Upper Colorado is not excluded, but note the
uncertainties in ESA CCI over snow-covered, densely forested, and topographically complex land area); and psomn =
0.92 for Ssnow, with evaluation against daily SNOTEL point observations. In terms of temporally aggregated annual
fluxes, which represent long term water budget component states, PFCONUSv1 simulates 50 percentile [PBIAS| of
41.3% for streamflow relative to USGS gauges: 14.2% for ET relative to MOD16A2 and 13.2% for ET relative to
SSEBop at the aggregated monthly and HUCS scales; 37.9% for ET relative to FLUXNET sites; and 35.3% for peak
annual SWE relative to SNOTEL locations. We also found RSR for PFCONUSv1 performance at point locations,
with RSR504#=0.92 at FLUXNET sites and RSRs04=1.2 at USGS streams, while RSR for PEFECONUSV1 relative to
MODIS products aggregated at the monthly and HUCS scale are 0.85 and 0.47 for MOD16A2 and SSEBop,
respectively. Performance varies widely across the model domain, with the eastern United States showing better
overall performance at USGS stream gauges and relative to MODIS remote sensing products than the western U.S.
In terms of S terms, PFCONUSv1 simulated SM is best for the Tennessee, Ohio, and Lower Colorado river basins,
relative to the spatially aggregated ESACCI soil moisture product; and total water storage performance is best for
the Upper Mississippi river basin relative to the GRACE TWS anomaly products. Further, we discussed three
primary sources of model bias: terrain processing, errors in atmospheric forcing, and lack of anthropogenic
influence.

The results presented here provide benefits to the high-resolution, continental (and above) -scale hydrologic
community. First, our level of agreement with observations and remote sensing products suggests great promise for
extreme-scale and high-resolution modeling to become a reality. We argue that PFCONUSv1 and similar models are
feasible and will certainly see improvements in the near future with increased availability of open-access and
distributed datasets, remote sensing advancements, improved monitoring networks, and advancements in highly
parallelized computing.

Second, these results provide a guide for PFECONUS development. Some areas for model improvement that
were immediately identified in this study include the following: 1) The source of high positive bias in the Central
Plains should be further addressed. While we propose that this bias is largely attributed to the lack of groundwater
pumping in the model (we estimate that at least 25% of stream gauges are impacted by High Plains aquifer
depletions), other potential sources of error could include inappropriate soil or geology hydraulic conductivity or
van Genuchten parameters, the lack of spatially distributed Manning’s coefficient (Maxwell et al., 2015), or loss of
topographic relief associated with 1-km lateral resolution. 2) We show that topographic processing has resulted in
considerable error in drainage area for approximately 40% of stream gauges. Accessible improvements could be
made to streamflow bias with improved topographic processing algorithms. And, 3) interpolated atmospheric
forcing from NLDAS reanalysis has two primary biases that, if corrected with statistical bias correction or other
methods, would immediately benefit streamflow, ET, and snow water equivalent. First, precipitation timing is

lacking in many areas of the domain, particularly over the Rocky Mountain region. Second, mean nighttime air
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temperature exhibits a high temperature bias, resulting in an underestimated diurnal temperature fluctuation for the
majority of the domain. Average daytime maximum temperature is also underestimated over the Rocky Mountains.
Finally, we argue that model fidelity can only be reliably understood at a process-based level if all water
balance components available in the model outputs are evaluated. While single parameter validation may be
effective for operational forecasts, we do risk the equifinality dilemma of arriving at the right answer for the wrong
reasons (Kirchner, 2006). The value in the type of validation exercise presented here is clearly a mechanistic
understanding of model performance and a higher level of confidence in overall water balance modeling skill.
Further work should be done to continue to incorporate additional observational and remote sensing networks as
they become available. Also, while explicit comparisons with observations and simulations, like those presented
here, are valuable, comparisons with other models are equally an asset, used to build confidence in the plausibility of
parameterization, outputs, and their mechanistic relationships. Gleeson et al. (2021) stress the importance of model
intercomparison projects, such as ISIMIP (Warszawski et al., 2014) and IH-MIP2 (Kollet et al., 2017) as tools for
model evaluation for global groundwater simulations. Impressive model validation toolkits that exist in the land
surface community, such as the Land surface Validation Toolkit (LVT) (Kumar et al., 2012) and the International
Land Model Benchmarking (ILAMB) System (Collier et al., 2018), as well as nascent model comparisons in the
continental hydrology community, such as the Continental Hydrologic Intercomparison Project (CHIP) (Tijerina et
al., 2021), are inspiring collaborative efforts to streamline and standardize model evaluation. We hope to take
advantage of the LVT and ILAMB platforms in the future, to compare model performance to other similar
continental- and global-scale simulations, to standardize our model evaluation, and to add to our existing
observation datasets. Further work is also needed to assess the scale gaps prevalent in observation and remote
sensing data. Specifically, point-scale observations sensitive to small-scale heterogeneity, such as in-situ soil
moisture observations, are unlikely to be applicable to the 1-km scale, resulting in commensurability errors (Gleeson
et al., 2021); conversely, we cannot guarantee that PFCONUSv1 outputs scale linearly to coarser-resolution products
and models. Improved understanding of how model bias scales with loss of spatial or temporal resolution is a vital

area of research.
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Table 1: Products used to evaluate PFCONUSv1 simulated water balance component performance

Water balance component

Data product Spatial scale

Product type

Surface runoff, R

Evapotranspiration, ET

Storage, A4S

Precipitation, Temperature
Precipitation, Temperature

Temperature, Vapor Pressure
Deficit, Wind Speed

Comparisons to Modeled Water Budget Components

USGS stream gauges Aggregate of upstream area, 2392
locations
MODIS 1 km resolution, global scale
SSeBOP 1 km resolution, global scale
FLUXNET Local, 30 locations
SNOTEL Local, 556 locations
GRACE (5 products) 0.25 to 1 degree resolution, 3 degree
basis function, global scale
ESACCI Active/Passive 0.25 degree resolution, global scale
USGS wells Local
41,269 locations static, 2486 locations
temporal

Comparisons to atmospheric forcing

GHCND Local, 9139 locations
SNOTEL Local, 556 locations
FLUXNET Local, 30 locations

38

Point observation

Remote sensing
Remote sensing
Point observation
Point observation

Remote sensing

Remote sensing

Point observation

Point observation
Point observation

Point observation
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Bias category

Bias source examples

Table 2: Examples of potential sources of bias acting on PFCONUSVI results

Components directly affected

Topographic processing

Atmospheric forcing

Anthropogenic

Model parameters

Epistemic uncertainty

Watershed drainage area
Topographic relief

Stream network mapping

Precipitation volume
Precipitation timing and intensity

Temperature trends and diurnal, seasonal cycles

Humidity
Wind speed

Dams and reservoirs
Groundwater extractions

Land disturbance

Hydraulic conductivity

Porosity

Manning’s n

Land and vegetation (albedo, LAI)

Aquifer model depth

Initial conditions of pressure and saturation

Scalability of model physics
Vertical and lateral parameter aggregation

Process interaction; groundwater-surface water
and land-atmosphere exchange at various spatial
and temporal scales

39

Surface flow volume
Surface flow volume and timing

Surface flow volume and timing

Surface flow volume and SWE
Storm hydrographs

Evapotranspiration,
snowmelt amount and timing

Evapotranspiration

Evapotranspirtion

Surface flow volume and timing
Groundwater storage

Evapotranspiration, snow accumulation

Infiltration, recharge
Subsurface storage
Surface flow timing and hydrograph

Evapotranspiration,
snow accumulation and melt

Groundwater storage

Groundwater depth

All/unknown
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Figure 1: A conceptual model of the a) complete and b) simplified water budget for a hydrologic control volume,
1375  corresponding to equations (1) and (2).
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b) CONUSV1 Annual Evapotranspiration

a) Interpolated NLDAS Annual Precipitation
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Figure 2: Mean annual water balance components from PFCONUSvI at 1-km resolution: a) interpolated
precipitation P from atmospheric forcing inputs, b) simulated mean annual evapotranspiration E7, ¢) simulated
mean annual runoff R, and d) simulated mean annual total water storage AS amplitude (combined seasonality of
snow water equivalent, groundwater, soil water, and surface water). Total water storage amplitude is the peak-to-
peak seasonal storage anomaly, rather than annual storage trend; seasonality (rather than interannual variability)
explained the majority of the variance in total AS. Dotted lines are states, while thicker solid lines are major U.S.

1385 river basin outlines, which are labeled in (a).
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a) Observed Annual Streamflow b) Percent Bias Annual Streamflow

Figure 3: (a) Observed annual streamflow R from USGS gauge network, (b) PBIAS for simulated PFCONUSv1
1390  streamflow, (c) runoff ratio calculated from USGS stream gauges and GHCND precipitation gauges, (d) simulated
minus observed runoff ratio, (¢) p of simulated daily flows, and (f) RSR of simulated daily flows.
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1395 Figure 4: Timeseries of PFCONUSv1 modeled and USGS observed streamflow timeseries at representative

gauge locations for each major basin.
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a) Annual Evapotranspiration, FIuxXNET b) Percent Bias Annual ET
Y T
(%) I

|| g 150 |
I 100 [T

50
0
-50

LB
|

~~~~~~

e) US-Ne1: Mead - irrigated continuous maise site, Nebraska

- 10.0 -
- — FluxN
'? 75 r=0.82 uxtet
S ., Relative bias = 12% — ParFlow
e 5

é 25

=

w oo

2003 2004 2005 2006
ts
f) US-NR1: Niwot Ridge site, Colorado

T r=0.57

§ 4 Relative bias = -58.5%

£

E2

=

Wo

2003 2004 2005 2006

o N & o

ET (mm day™")

2003 2004 2005 2006
ts

Figure 5: a) Cumulative annual ET observed at 30 FLUXNET sites across the contiguous United States, b) percent
bias of PFCONUSV1 daily simulated ET at FLUXNET locations, ¢) Spearman o of PFCONUSv1 daily simulated
ET at FLUXNET locations, and d) RSR of PFCONUSv1 simulated daily ET, and e-g) examples of observed and
simulated daily ET at three FLUXNET sites with complete observation periods during the simulation timeframe.
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Figure 6: PFCONUSvI1 ET estimates compared to results from MODIS remote sensing and thermal imaging

1415  algorithms. a-c) Annual cumulative ET across HUCS watersheds, d-f) differences in annual ET, g-i) PBIAS of
monthly ET, j-1) Spearman’s p of monthly ET, and m-0) RSR of monthly ET, for PFCONUSv1 and MODIS
products (MOD16A2 and SSEBop algorithms).
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a) JPL Mascon Amplitude, gain-corrected b) CONUSv1 Amplitude
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Figure 7: Summary of GRACE and PFCONUSv1 comparisons. Seasonal storage amplitude for a) the JPL mascon
solution and b) PFCONUSv1 total water storage, with darker red areas indicating a high degree of seasonality and
white areas indicating no sub-annual storage fluctuation. c-h) Timeseries of total water storage anomalies for five
GRACE products and for PFCONUSv1 across complete major basins in the PFCONUSv1 domain. Shaded regions
indicate uncertainty in the JPLm product based on leakage and measurement error.
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a) Observed Water Table Depth b) Difference in Observed and Simulated Head: CONUSv1 - USGS
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Figure 8: a) Observed water table depth (N=41,269), b) difference in observed and PFCONUSv1 simulated WTD, c)
1430  difference in observed and PFCONUSv1 simulated WTD at filtered locations (N=2486), and d) Spearman p values
at filtered locations using at least 10 instantaneous (daily) observations.
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a) ESACCI Combined Active/Passive Soil Moisture Amplitude
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Figure 9: Summary of ESACCI and PFCONUSvV1 soil moisture comparisons. Seasonal SM amplitude for a) the
ESACCI solution and b) PFCONUSv1 — ESACCI amplitude difference. Stippling in (b) indicates that the ESACCI
product timeseries was less than 50% complete during the simulation period (less than 750 available observation
days). Grey areas (excluded) indicate that the average ESACCI annual cycle had at least three months with zero
available observations (and therefore the annual amplitude is uncertain). c-h) Timeseries of weekly SM anomalies
across complete major basins in the CONUSvI domain. Shaded regions indicate £1 standard deviation taken

spatially across the basin.
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1445 Figure 10: Summary of PFCONUSv1 modeled snow water equivalent performance relative to SNOTEL sites.
Shown are observed peak SWE at SNOTEL sites (a), percent bias for peak SWE (b) and April 1 SWE (c), daily
spatial fraction of stations with snow coverage (d) and mean daily SWE (e). In (e), shaded regions indicate +1
standard deviation in space.
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a) Percent difference annual flow and drainage area b) Expected percent difference in annual flow based on drainage area error
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Figure 11: a) Percent difference between observed and simulated annual flow volume as a function of percent

difference in true and PFCONUSV1 drainage area, colored by annual runoff ratio. b) Locations where error in

simulated flow volume is greater than, less than, or expected from drainage area bias. Expected behavior was
1455 defined as locations that lie within the £30% dashed error bars shown in (a).
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a) Observed annual precipitation b) Percent bias annual precipitation
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Figure 12: Observed precipitation and temperature at GHCND meteorological stations compared to interpolated
NLDAS at their nearest neighbor PFECONUSv1 cell. a) Observed cumulative annual precipitation, b) percent bias in
annual precipitation, ¢) Spearman’s p between simulated and observed daily precipitation. Also shown are observed
average daily minimum (d), average (g), and maximum (j) temperature, the total bias in minimum (e), average (h),
and maximum daily temperature (k), and the Spearman correlation for minimum (f), average (i) and maximum (1)
daily temperature.
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a) SNOTEL: Annual Cool Season Temperature

b) SNOTEL: Annual Temperature

¢) SNOTEL: Annual Cumulative Precipitation

d) SNOTEL: Annual Peak SWE
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Figure 13: Meteorological forcing, SWE and ET bias at SNOTEL and FLUXNET stations. At SNOTEL locations,
colored by elevation: a) mean NLDAS mean cool season temperature versus observed cool season temperature, b)
mean NLDAS annual temperature versus observed cool season temperature, c) NLDAS annual cumulative
precipitation versus observed, and d) PFCONUSvI annual peak SWE versus observed. At FLUXNET locations,
colored by the major basin location of the FLUXNET site: ) Daily NLDAS vapor pressure deficit versus observed,
f) daily NLDAS near-surface lateral wind speed versus observed, g) daily NLDAS mean air temperature versus
observed, and h) PFCONUSv1 daily ET versus observed. Lines show linear regression with p<0.05 in all cases.
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Code and data availability

ParFlow-CLM is an open-source, parallel, modular hydrologic model that is freely available on Github at
https://github.com/parflow/parflow.git. The version of ParFlow-CLM used in this study, v3.6, is archived on Zenodo
at https://doi.org/10.5281/zen0do.4639761 (Smith et al., 2019). All data generated from the ParFlow-CLM CONUS

configuration version 1.0 is available upon request. Given the considerable storage demand (approximately 60
terabytes for four water years of hourly data, including forcing and daily or monthly processed climatologies), the
model outputs are stored on a private server. The authors will coordinate with the HydroFrame project team, funded
through the NSF Cyberinfrastructure for Sustained Scientific Innovation (CSSI) project, to ultimately provide a
FAIR-aligned, publicly accessible data repository of all raw model results. A primary objective of the HydroFrame
project is to provide a platform for users to freely access PFCONUS model results, as well as to subset or modify
inputs and forcing to locally run their own ParFlow-CLM simulations. As HydroFrame capabilities develop and

future versions are completed, we plan to make PFCONUS results publicly available through this platform.
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