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Abstract. East China is one of the most economically developed and most densely populated areas in the world. Due to its 

special geographical location and climate, East China is affected by different weather systems like monsoon, such as monsoons, 

shear line, typhoonlines, typhoons and extratropical cyclone, incyclones. In the imminent future, the rainfall rate affected by 

which is difficult to predict precisely predict.due to these systems. Traditional physics-based methods like Numerical Weather 10 

Predictionsuch as numerical weather prediction (NWP) tend to perform poorly for theon nowcasting problemproblems due to 

its spinupthe spin-up issue. MeanwhileMoreover, various meteorological stations are distributed herein this region, generating 

a large amount of observation data every day, which has a great potential to be applied to data-driven methods. Thus, it is 

important to train a data-driven model from scratch that is suitable tofor the specific weather situation of East China. We 

collectHowever, due to the high degrees of freedom and nonlinearity of machine learning algorithms, it is difficult to add 15 

physical constraints. Therefore, with the intention of using various kinds of data as a proxy for physical constraints, we 

collected three kinds of data (radar, satellite, and precipitation data) in the flood season from 2017 to 2018 of this area and 

preprocesspreprocessed them into ndarraytensors (256×256) that cover East China with a domain of 12.8×12.8°. The Multi-

Source Data Model (MSDM) which we developed multisource data model (MSDM) combines the Opticaloptical flow, 

Randomrandom forest and Convolutional Neural Networkconvolutional neural network (CNN).) algorithms. It treats the 20 

precipitation nowcasting task as an image-to-image problem, which takes radar and satellite data with aan interval of 30 

minutes as inputs and predicts radar echo intensity atwith a lead time of 30 minutes. To reduce the smoothing caused by 

convolutionconvolutions, we use Opticalthe optical flow algorithm to predict satellite data in the following 120 minutes. The 

predicted radar echoechoes from the MSDM together with satellite data from Opticalthe optical flow algorithm are recursively 

implemented in the MSDM to achieve a 120 minutes-minute lead time.  The MSDM predictions from MSDM are comparable 25 

to those of other baseline models with a high temporal resolution of 6 minutes. To solve the blurry image problems, we applied 

a modified structural similarity (SSIM) index as a loss function. Furthermore, we use Randomthe random forest algorithm 

with predicted radar and satellite data to estimate the rainfall rate, and the results outperform those of the traditional , nonlinear 

radar reflectivity factor and rainfall rate (Z-R relationship.) relationships that use logarithmic functions. The experiments 

confirm that machine learning with multi-sourcemultisource data provides more reasonable predictions and reveals a better 30 

non-linearnonlinear relationship between radar echo and precipitation rate. Besides theApart from developing complicated 
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machine learning algorithms will be developed, exploiting the potential of multi-sourcemultisource data will bringyield more 

improvements. 

1. Introduction 

In recent years, deep learning and machine learning have achieved great advances with big data. The tremendousTremendous 35 

meteorological data are produced every day, which perfectly matches these novel data-driven artificial intelligence (AI) 

approaches. Quantitative Precipitation Nowcastingprecipitation nowcasting (QPN) by using Radar Echo Extrapolationradar 

echo extrapolation (REE) havehas recently become popular recently.(Tran and Song, 2019a). Precipitation Nowcasting makes 

the prediction of nowcasting predicts rainfall intensity in the following severalfew hours. Based on various data with high 

spatio-temporalspatiotemporal resolutions, the AI precipitation prediction can be relatively accurate compared with traditional 40 

numerical weather prediction (NWP) methods. U-Net (Ronneberger et al., 2015) is a well-known network designed for image 

segmentation, and its core is upsampling, downsampling, and skip connection. It can efficiently achieve high accuracy with a 

small number of samples. Agrawal et al.(Agrawal et al., 2019) treated the precipitation nowcasting as an image-to-image 

problem. They employed the U-Net (Ronneberger et al., 2015) to predict the change ofin radar echo for QPN, which is superior 

to NOAA’s High Resolution Rapid Refresh (HRRR) numerical prediction from the National Oceanic and Atmospheric 45 

Administration (NOAA) when the prediction time is within 6 hours. Sonderby et al.(Sønderby et al., n.d.)(2020) proposed a 

MetNet to discover the weather pattern from radar and satellite data which can predict the next 8 hours precipitation with a 

resolution of 1 kilometer in 2-minute intervals. Shi et al.(Shi et al., n.d.) used the Convolutional Long Short-Term Memory 

(ConvLSTM) to predict the spatiotemporal sequences of the precipitation. And they also provide the first benchmark as well 

as a new TrajGRU model to capture the spatiotemporal correlations(Shi et al., n.d.). Also, in the field of video prediction, 50 

Wang et al. proposed various recurrent networks like PredRNN++ (Wang et al., 2018), MIM(Wang et al., 2019b), E3D-

LSTM(Wang et al., 2019a). However, their work is based on a slight modification of existing techniques demanding massive 

computing resource to train and haven’t been applied to the numerous meteorological data.  proposed a neural weather model 

(NWM) called MetNet that uses axis self-attention (Ho et al., 2019) to discover weather patterns from radar and satellite data. 

MetNet can predict the next 8 hours of precipitation in 2-minute intervals with a resolution of 1 kilometer. Shi et al. (2015) 55 

treated precipitation nowcasting as a problem of predicting spatiotemporal sequences and modified the fully connected long 

short-term memory (FC-LSTM) by replacing the Hadamard product with a convolution operation in the input-to-state and 

state-to-state transitions. They believe that cloud movement is highly uniform in some areas, and convolutions can capture 

these local characteristics. Therefore, the convolution operation in the input transformations and recurrent transformations of 

their proposed convolutional LSTM (ConvLSTM) helps to handle the spatial correlations. Furthermore, they apply the same 60 

modification to the gated recurrent unit (GRU) and notice that convolution is location-invariant and focuses on only a fixed 

location because its hyperparameters (kernel size, padding, dilation) are fixed. However, in the QPN problem, a specific 

location of cloud clusters continuously changes over time. Hence, Shi et al. (2017) proposed a trajectory GRU (TrajGRU) that 
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uses a subnetwork to output a location-variant connection structure before state transitions. The dynamically changed 

connections help TrajGRU capture the trajectory of cloud clusters more accurately than previous methods. In the field of video 65 

prediction, Wang et al. proposed various recurrent neural networks (RNNs) based on LSTM. For example, they designed 

PredRNN++ (Wang et al., 2018) with a cascaded dual memory structure and gradient highway unit, which strengthens the 

power for modeling short-term dynamics and alleviates the vanishing gradient problem, respectively. In addition, to capture 

spatial characteristics through recurrent state transitions, Wang et al. (2019a) integrated 3D convolutions inside LSTM units 

and proposed Eidetic 3D LSTM (E3D-LSTM). Moreover, Wang et al. (2019b) designed the memory in memory (MIM) 70 

network to handle higher-order nonstationarity of spatiotemporal data. By using differential signals, MIM can model the 

nonstationary properties between adjacent recurrent states. However, their work is based on a slight modification of existing  

techniques demanding massive computing resources for model training and has not been applied to big meteorological data. 

Computer vision techniques have long been used in object detection, video prediction, and human motion prediction, etc. Tran 

and Song (Tran and Song, 2019b)(2019) used image quality assessment techniques as a new loss function instead of the 75 

common mean squared error (MSE), which will misleadmisled the process of training and generate thegenerated blurry image. 

Optical flow methods simply describe the position and velocity of the radar echo with a constant velocity.images. Ayzel et al. 

(Ayzel et al., 2019) designed an advanced model based on the multiple optical flow algorithm for QPN, but it still performs 

badlypoorly in the prediction of the onset and decay of precipitation systems. 

Hence, to make full use because optical flow methods simply calculate the position and velocity of the radar echo with a 80 

constant velocity rather than consider the changing intensity of radar echo. 

On the one hand, the current massive meteorological amounts of data combining Optical Flow methods and Deepare 

underutilized; on the other hand, scientists in the field of machine learning are conducted to predict the QPNfocus on pursuing 

high accuracy by increasing the complexity of models based on the characteristics of multi-a single source of data, such as 

radar echo, Infrared. Given this background, from the perspective of atmospheric science, we build a multisource data model 85 

(MSDM) with the aim of fully using multisource observation data (for example, radar reflectivity, infrared  satellite data, and 

observation data et al.,rain gauge data) and find suitable machine learning algorithms (for example, deep neural network, 

optical flow, and random forest algorithms) for each type of data that can ensure accuracy while saving computing resources. 

In addition, due to the high degrees of freedom and nonlinearity of neural networks, it is difficult to apply physical constraints 

to these machine learning models. Hence, we hope that multisource data will function as a proxy for physical constraints to 90 

guide the model during the training process. The main advantage of MSDM lies in its transferability: any machine learning 

model and observation data can be incorporated into the model. For example, wind speed data can be a proxy for dynamic 

constraints, and temperature data can function as a proxy for thermodynamic constraints. Due to the limit of computing 

resources, the aim of this paper is not to achieve a higher resolution or accuracy of the prediction accuracy but to propose a 

method of combining Optical Flowmachine learning and CNNdeep learning with radar echo data, satellite data, and automatic 95 

ground observation data to makeachieve physically reasonable QPN. 
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The dataset and methods used forin this study are described in section 2. Section 3 shows the results. Section 4 draws 

conclusions and discusses some possible future work. 

2. Materials and Methods 

2.1 Dataset 100 

The spatial and temporal distribution characteristics of precipitation are related to many factors like, such as the terrain, 

atmospheric circulation, and climatic conditions, etc. To train the Deepa deep learning model to learnthat can capture the 

precipitation characteristics of East China, we collected multi-sourcemultisource observation data of the flood season (May to 

September) for a total of 306 days from 2017 to 2018. Due to the missing radar data from May 1 to 9 and September 26 to 30, 

2018, the radar data is there are only 292 days of radar data in total. The missing data are obtained by interpolating the data at 105 

thefrom adjacent moments. Among the data, Precipitationthe precipitation data of regional automatic ground stations in East 

China with a time interval of 10 minutes are shown in Fig 1.  
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Figure 1. Distribution of the automatic ground stations in East China. 110 

The weather radar data (resolution of 0.5°×0.5°) have been preprocessed into the combined reflectivity, whose; the latitude 

range is from 21.0°N to 36.0°N, the longitude range is from 112.0°E to 125.9°E, and wasdata were available every 6 minutes 

(Fig 2(a)). The Himawari 8 satellite brightness temperature data (resolution 0.5° × 0.5°) for channelchannels 07-16 are used 

with a latitude range of 19-37°N, a longitude range of 110-127 °E, and a time interval of 30 minutes (Fig 2 (b)). The links for 

the datasets are as follows: 115 

Radar data: http://data.cma.cn/data/detail/dataCode/J.0012.0003.html, 

AWS data: http://data.cma.cn/data/detail/dataCode/A.0012.0001.html, 

Himawari 8 satellite data: http://www.cr.chiba-u.jp/databases/GEO/H8_9/FD/index.html. 

 

http://data.cma.cn/data/detail/dataCode/J.0012.0003.html
http://data.cma.cn/data/detail/dataCode/A.0012.0001.html
http://www.cr.chiba-u.jp/databases/GEO/H8_9/FD/index.html
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(a) 

 

 
(b) 

Figure 2.  Combined reflectivity (Unitunit: dBZ) in East China (a), Himawari 8 satellite brightness temperature data (Unitunit: ℃) 120 
of channel 707 (b) on May 1, 2017. 

2.2 Methods 

To test our method, we compared with the optical flow method, ConvLSTM, U-net methods. Due to the limit of the 

computational resource, we use the sequence of 5 frames before time t to predict the following 5 frames. Then, the output 

results are used to further predict the radar echo (Fig 3). 125 



 

7 

 

 

Figure 3. The time sequences of the optical flow, ConvLSTM, U-net and our method 
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Model Description 

Model Architecture 

 130 

Figure 3. Structure of the MSDM. 
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To incorporate multisource data, we designed an MSDM with three parts: deep learning, optical flow, and random forest (Fig 

3). The deep learning part of the MSDM is inspired by the state-of-the-art U-Net (Ronneberger et al., 2015) designed for image 

segmentation. It follows the encoder-decoder structure that encoder has 8 down sample blocks and decoder has 7 up sample 

blocks. Each downsampling block in the encoder consists of Conv2D, batch normalization, and leaky rectified linear unit 135 

(LeakyReLU) activation layers. Each upsampling block in the decoder includes transposed convolutional, batch normalization, 

dropout of 0.5 (applied to the first 3 blocks), and ReLU activation layers. In each convolutional layer, the step size parameter 

(stride) is set to 2, and padding is set to ‘same’. The kernel size varies between 4×4 and 2×2 to extract the spatial characteristics 

at different scales. The batch normalization layer effectively avoids the gradient disappearance problem and improves the 

convergence speed. We use dropout to randomly discard some information with a probability of 50% to prevent overfitting. 140 

The activation function adds nonlinearity to each block and allows the model to better learn the nonlinear relationship between 

the input and target. Transposed convolutional layers are introduced to substitute upsampling layers in U-Net to increase the 

resolution of the images. As in U-Net, there are skip connections between the encoder and decoder to solve the problem of 

gradient explosion and gradient disappearance during training. 

The primary reason that we use transposed convolutional layers to replace upsampling layers is that both layers are used for 145 

upsampling images. Upsampling layers use an interpolation method (for example, nearest neighbor interpolation, bilinear 

interpolation, and bicubic interpolation) to rescale the input image to a desired size with a higher resolution. These interpolation 

methods are preset, so there is little room for the network to learn. The deconvolution operation is not a predefined interpolation 

method, and it has some learnable parameters to convert the output to the original image resolution. Through the training of 

the model, it will learn an optimal upsampling method instead of a preset method. 150 

In the deep learning part, the MSDM takes the array with a shape of 256×256×2, which represents the height, width and 

channel of the image. Radar and satellite grid point data are at different channels. The output of this part is a predicted radar 

image 30 minutes later with a shape of 256×256×1. The optical flow part takes 5 consecutive satellite frames as input to 

extrapolate the satellite image in the following 2 hours. Subsequently, the predicted radar image and satellite image will be 

used in two parts. First, it will flow into the random forest part to estimate the precipitation rate. Second, it will be recursively 155 

used as the input of the deep learning part to achieve a lead time of two hours. 

The reasons why we do not predict precipitation directly using deep learning are as follows: 1) The precipitation data we 

collected are irregular site data, which are distributed only on land and do not include precipitation on the sea (Fig 1). The 

combined radar reflectivity (Fig 2(a)) and Himawari 8 satellite data (Fig 2(b)) are regular grid point data and include sea data. 

The spatial distributions of these three types of data are inconsistent, so it is impossible to make a feature-label correspondence 160 

to directly predict precipitation. 2) The use of shapefiles to extract radar echo or satellite data on land will cause the edge of 

the echo to be limited to the land, which loses the meaning of extrapolation. 3) We hope to improve the transferability of 

MSDM that can integrate different kinds of data except grid point data. Therefore, the method of processing precipitation data 

can be used on other observation site data in daily operation. 4) We believe that deep learning efficiently extracts the long-
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period trend in precipitation, but it cannot capture the transient characteristics of precipitation. Therefore, for each rainfall 165 

event, we use random forest to model the nonlinear relationship between multisource data to capture its unique characteristics. 

Reference Models 

2.2.1 Optical flow method 

We first employed the rainy motion v1, an optical flow model proposed by Ayzel et al (Ayzel et al., 2019), to seeevaluate the 

performance of the optical flow algorithm for tracking and extrapolating radar echoechoes by our dataset. It performs poorly 170 

on the radar echo data when the leadinglead time is up to 60 minutes. However, it performs better on satellite data, which isare 

recorded every 30 minutes. We believe that the cloud layer motion is dominated by air advection transportation,; thus, the 

optical flow method can better simulate its motion characteristics. Also, the larger intervals between twoAdditionally, the 

temporal resolution of satellite data is coarser (30 minutes), so we can directly obtain the sequence of four frames make it of 

the following 2 hours through one prediction rather than iterative prediction. Optical flow can predict better because it 175 

extrapolates fewer frames forsuch short sequences quickly and shows great advantages in saving computing resources and 

avoiding error accumulation. In addition, the satellite data than those for the radar echo data at the same lead time. 

Convolutionmain drawback of the convolution operation is that it smooths the characteristics of the image, and the level of 

smoothness increases when applying convolutions recursively in deep learning models not only learn the decay and initiation 

of radar echo, but also smooth the characteristics, which would increase its level through recursive application.. Therefore, to 180 

ease the smoothing of radar echoechoes and preserve more details of precipitation systems, we decide to use the results of 

predicted satellite data predicted by the optical flow incomponent of our multi-input models to save characteristics of 

precipitating systemmodel. 

2.2.2 ConvLSTM 

ConvLSTM (Shi et al., n.d.)2015) was one of the most classic modelsis a traditional model for the precipitation 185 

nowcastingQPN problem. Hence, we compare our model with ConvLSTM to see whether the model with multi-

sourcemultisource data performs well when we simply formulate precipitation nowcastingQPN as an image-to-image problem 

rather than spatio-temporal a spatiotemporal sequence problem (Eq. 1). 

𝒳𝑡+1, … ,𝒳𝑡+5 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝒳𝑡+1,…,𝒳𝑡+5

𝑝(𝒳𝑡+1, … ,𝒳𝑡+5 ∣ 𝒳𝑡−5+1, 𝒳𝑡−5+2, … ,𝒳𝑡),                        ( 1 ) 

Tensor 𝒳𝑡  represents the radar echo map in the shape of 256×256 at time t, and tensor �̃�𝑡+1 represents the model prediction 190 

result. 
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2.2.3 Multi-U-Net 

U-Net (Ronneberger et al., 2015) was employed by Agrawal et al. (2019) for QPN. They treat the problem as an image-to-

image problem (Eq. 2) to forecast the precipitation in the next hour. 

𝒳𝑡+5 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝒳𝑡+5

 𝑝(𝒳𝑡+5 ∣ 𝒳𝑡),                                                                                  ( 2 ) 195 

Tensor 𝒳𝑡  and  �̃�𝑡  is as in Eq. 1, we use the U-Net architecture to predict the radar image 30 minutes later in comparison to 

the MSDM to demonstrate that the combination of multisource data is better than single source Data data.Model (MSDM) 

Training and evaluation method of the MSDM 

The model whichthat we designed is a modified U-netNet model (Fig 4). Each downsample block in the encoder consists of 

Conv2D, Batchnorm, Leaky ReLU. Each upsample block in the decoder is Transposed Conv, Batchnorm, Dropout of 0.5 200 

(applied to the first block), ReLU. As in U-net, there are skip connections between the encoder and decoder.3). We use the 

radar and satellite data as inputs, and the output is the intensity of the radar echo after half- an hour (Eq. 23). The two kinds of 

data were fed into the encoder, and then they were concatenated by skip connections and flowflowed into the decoder and 

transposed convolutionconvolutional layer (Fig 43). 

𝒳𝑡+5 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝒳𝑡+5

𝑎𝑟𝑔𝑚𝑎𝑥 
𝒳𝑡+5

𝑝(𝒳𝑡+5 ∣ 𝒳𝑡 , 𝒴𝑡),                                                                             205 

( 2      ( 3 ) 

Our model wants to use theThe MSDM uses weather radar echo data 𝒳𝑡  and Himawari 8 satellite brightness temperature data 

𝒴𝑡 to predict the radar echo map at time t+5. ThenAfter the first round of prediction, we combined 𝒳𝑡+5 from our model and 

the predictions of �̃�𝑡+5 from Opticaloptical flow for further prediction. During preprocessing, the weather radar data and 

Himawari 8 satellite brightness temperature data are extracted, which cover the area of 23.0-35.8°N, 113.0-125.8 °E with a 210 

256×256 window. Then, the valuevalues of these data 𝑍 are transformed into pixels 𝑃 by Eq. 3 4 

𝑃 =
𝑍−𝑚𝑖𝑛{𝑍}

𝑚𝑎𝑥{𝑍}−𝑚𝑖𝑛{𝑍}
,                                                                                                                                                   (3    (4) 

In order toTo improve the image quality of images, we apply a modified structural similarity index (SSIM)) (Wang et al., 

2004) as the loss function, which is helpful to solve the blurry image problems. The loss function for the predicted image and 

ground truth is defined asby Eq. 45: 215 

𝐿𝑜𝑠𝑠 = −1 × 𝑆𝑆𝐼𝑀( 𝑦𝑝𝑟𝑒𝑑 , 𝑦𝑡𝑟𝑢𝑒) = −1 ×
(2𝜇𝑦𝑝𝑟𝑒𝑑𝜇𝑦𝑡𝑟𝑢𝑒+𝐶1)(2𝜎𝑦𝑝𝑟𝑒𝑑𝑦𝑡𝑟𝑢𝑒+𝐶2)

(𝜇𝑦𝑝𝑟𝑒𝑑
2 +𝜇𝑦𝑡𝑟𝑢𝑒

2 +𝐶1)(𝜎𝑦𝑝𝑟𝑒𝑑
2 +𝜎𝑦𝑡𝑟𝑢𝑒

2 +𝐶2)
,                                                           (   4                         

(     5    ) 

In whichwhere 𝑦𝑝𝑟𝑒𝑑 is the predicted image, 𝑦𝑡𝑟𝑢𝑒 is the ground truth, and 𝜇𝑦𝑝𝑟𝑒𝑑 and 𝜇𝑦𝑡𝑟𝑢𝑒 are the average valuevalues of 

𝑦𝑝𝑟𝑒𝑑  and 𝑦𝑡𝑟𝑢𝑒, respectively. 𝜎𝑦𝑝𝑟𝑒𝑑
2  and 𝜎𝑦𝑡𝑟𝑢𝑒

2  are variancethe variances of 𝑦𝑝𝑟𝑒𝑑 and 𝑦𝑡𝑟𝑢𝑒, respectively. 𝜎𝑦𝑝𝑟𝑒𝑑𝑦𝑡𝑟𝑢𝑒 is the 

cross-correlation of 𝑦𝑝𝑟𝑒𝑑  and 𝑦𝑡𝑟𝑢𝑒. 𝐶1and 𝐶2 are small positive constants. In each calculation, a window of 3×3 is taken from 220 
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the image, and then the window is continuously sliding for calculation, and finally. Finally, the average value is taken as the 

global SSIM. 

 

Figure 4. Structure of Multi-source Data Model 
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3. Results 225 

3.1. REE 

To test ifevaluate our model, a comparison was made between the multi-source data can help to improve REEoptical flow 

method, ConvLSTM, and QPN tasks. U-Net methods. Due to limits on computational resources, we use a few frames to predict 

the results for the half-hour. Then, the output results are used to iteratively predict the radar echo in the next half-hour to 

achieve a lead time of 2 hours (Fig 4). For the baseline sequence-to-sequence models (ConvLSTM, optical flow), we use the 230 

first 5 frames (T-4~T0) to predict a sequence of the next 5 frames (T1~T5) and use this result to iteratively predict the remaining 

three sequences (T6~T10, T11~T15, T16~T20). For image-to-image models (U-Net, MSDM), we use frame T0 to predict frame T5 

and use this prediction as input to iteratively predict the following frames (T10, T15, T20). 

 

Figure 4. The time sequences of the optical flow, ConvLSTM, U-Net and MSDM. 235 

Performance Evaluation 

The MSDM is trained with our dataset on Google Colab proPro with TensorflowTensorFlow-GPU-2.2.0 and executed on an 

NVIDIA Tesla P100 GPU (16GB).16 GB). In total, 240 days of data are used for training, 26 days for validatingvalidation 

and 26 days for testing. All the models are compiled with the Adam optimizer, and the learning rate is set at 0.001. To avoid 

overfitting, we apply the early-stopping strategy to monitor the loss of validation set. The critical success index 240 

(CSI=
hits

hits+misses+falsealarms
 ) is used to show the performance of different models. Other similar scores do the same work, so we 
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do not take themin the validation set. We use several metrics to evaluate the model’s performance on the test set, namely, the 

critical success index (CSI, Eq. 6), Heide skill score (HSS, Eq. 7), false alarm ratio (FAR, Eq. 8) (Woo and Wong, 2017), root 

mean square errors (RMSEs), and use the SSIM to evaluate the structural similarity between the generated image and target 

image. 245 

CSI=
hits

hits+misses+false alarms
 ,               ( 6 ) 

HSS =
2( hit ⋅ correct negative −miss⋅ false alarm )

 miss 2+ false alarm 2+2⋅ hit ⋅ correct negative +( miss + false alarm )( hit + correct negative )
,         ( 7 ) 

FAR =
 false alarm 

 hit + false alarm 
,               ( 8 ) 

where the correct negatives, hits, misses and false alarms are determined by the threshold value. Woo and Wong (2017) provide 

more details about these metrics. We applied six thresholds of 0.1, 1, 5, 10, 25, and 40 dBZ to calculate the CSI, HSS and 250 

FAR. To stress the importance of areas with large radar reflectivity, we assign a weight w( threshold ) (Eq. 9) to different 

thresholds and calculate the weighted CSI and HSS (the larger the better). 

𝑤(threshold) =

{
 
 

 
 
1, threshold = 0.1
1, threshold = 1
2, threshold = 5
3, threshold = 10
5, threshold = 25
8, threshold = 40

,              ( 9 ) 

We set all the weights to 1 for the FAR (the smaller the better) because we believe that the influence of false alarms of every 

threshold is the same. The RMSE is used to evaluate the global error of the predicted radar image. For the SSIM, we set the 255 

Gaussian filter size to 3×3 and the width to 1.5 to evaluate the local structural similarity between the generated image and 

target image. 

3. Results 

3.1 REE 

In the region we select over eastEast China, the radar echo as well asand precipitating cloud changessystem change little 260 

between two adjacent frames (6 minutes). Therefore, the results of all the models are shown every 30 minutes (Fig 5). The 

input of Opticaloptical flow and ConvLSTM is a sequence of 5 frames before time 0, and the output is a sequence of 5 frames 

in the following half-hour. The input of U-netNet is a single frame of the radar echo data at time 0, and the input of the MSDM 

includes a frame of satellite data and a frame of the radar echo data. When the output of the first 30 minutes is gotobtained, we 

take it as the input to replace the real data for further prediction. After the first step of prediction, the satellite data are input 265 

into the MSDM to predictfor QPN by the Opticaloptical flow algorithm. Because the movement of the cloud was movements 

are dominated by the advective motion, the Opticaloptical flow method is used. 
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Figure 5. Illustrations of the observed radar echo, the radar echo simulated one by the optical flow, ConvLSTM, U-netNet and 

MSDM. For the Opticaloptical flow and ConvLSTM, we select one frame every half -hour for comparison with other models. In Fig 

5(a), each model was trained with the modified SSIM. In Fig 5(b) each model was trained with the MSE. The date and time are 275 
September 7, 2018, 00:00. 

In Fig 5, theIn Fig 5, we present the comparison of 4 models trained with different loss functions. Fig 5(a) shows that the 

models trained with the modified SSIM predict many large-value areas of radar echo because the SSIM can extract the local 

structural similarity through the training process. In contrast, Fig 5(b) shows that models trained with the MSE tend to smooth 

the details of radar echo and seldom predict large radar echo values because the large-value area is only a small part of the 280 

entire echo, and the MSE will ignore these areas when it optimizes errors on a global scale. Hence, the modified SSIM shows 

its advantage when compared with the conventional loss function in the REE task. 

The radar echoes predicted by the ConvLSTM, U-netNet and MSDM decay in the following 2 hours, while the radar 

echoesthose predicted by the Opticaloptical flow method always keep.remain stable. Thus, the Opticaloptical flow method 

couldcan perfectly predict the edge and shape of the radar echo, which is the reason why it getsobtains the highest average 285 

weighted CSI score with the thresholdat a lead time of 0.1dBZ30 minutes (Table 1) on the testing set. However, the fatal 

weakness of the Opticaloptical flow method is that the predicted radar echo intensity is larger than the observed oneit simply 

predicts radar echo movement from previous images without predicting radar echo decay and initiation, which leads to the 

lowest CSI score with the threshold of 40 dBZ causes its accuracy to decrease over time (Table 2). Besides, it cannot extrapolate 

the tail of radar echo because it tracks features by the 1), and the FAR keeps increasing (Table 3). In addition, it employs an 290 
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algorithm called a corner detector(Ayzel et al., 2019). We notice that the (Ayzel et al., 2019) to identify special points from 

previous frames and track the movement of these points. When it extrapolates the tail of the radar echo, it cannot find 

corresponding points from previous images because the tail of the radar echo at this moment was in a position outside the radar 

image of previous frames. Consequently, unreasonable shapes exist in the tail of the predicted radar echo. In Fig 5(a), we find 

that ConvLSTM performs the best for the strong echoes, but it cannot maintain the shape of the echo. AlsoAdditionally, there 295 

exists a phenomenon thatin which only the strong -echo area is increasing solely, while the weak -echo area is continuously 

decreasing, which is contradictory according to the fluid continuity theory. The ConvLSTM captures the temporal features 

from previous frames, which strengthens the intensity, but it could notcannot properly predict the initiation and decay of the 

whole system. ThatThis finding could explain why it gets the highest CSI scores with a threshold of 40 dBZ, but it looks quite 

different from ground truth after 60 minutes. obtains the lowest FAR in the last hour (Table 3) because the fewer the number 300 

of predicted echoes, the lower the ratio of making mistakes is. 

The ConvLSTM is prone to error accumulation due to the iterative training and needsrequires massive computing resources. 

So we decide to (Yu et al., 2018). Therefore, we use a convolutional neural network (CNN) as a substitute to treat REE as an 

image-to-image problem. U-netNet along with our MSDM couldcan generally simulate the motion of the radar echo withwhile 

maintaining its outline, but the MSDM with the satellite data couldcan avoid the radar echo decayingdecay through iterations. 305 

OurThe MSDM ranks second with a threshold of 40dBZ (Table 2) and performs relatively well in the first hour has comparable 

performance with a threshold of 0.1dBZ (Table 1).baseline models and outperforms other models in the short-term period 

(Table 1 and Table 2). We believe it keepsretains the merits of the Opticaloptical flow method, which can maintain the 

patternshape of the radar echo, as well asand it has the ability to predictingpredict the strong -echo area from U-net. When Net. 

The MSDM performs poorly when the lead time is longer than 6090 minutes, the MSDM performs poorly, because the 310 

accumulativecumulative error from the two kinds of data was larger than either of both. Besides, theIn addition, satellite data 

may provide more details that the radar echo may not contain, for example, data over the sea,; instead, these details may be 

treated as noise or false alarmalarms, so the CSI scoresaccuracy will be lowerdecrease. 

Table 1. CSI of four models with the threshold of Table 1 and Table 2 show the weighted average CSI and HSS on the test set 

with different thresholds (0.1, 1, 5, 10, 25, 40, unit: dBZ). The two metrics are used to evaluate the performance of each model (the higher 315 

the better). From Table 1, we notice that optical flow method achieves the best score when the lead time is 30 minutes, which shows its great 

advantage in short-term forecasting. However, its long-term predictions are not accurate due to a lack of simulation of the radar echo 

evolution. ConvLSTM performs poorly because it increases only the strong echo but neglects the prediction of low-value areas. Hence, even 

though it obtains high scores on large reflectivity areas, its weighted CSI and HSS are still lower than those of the other models. U-Net also 

performs poorly due to its inability to handle temporal correlations and the absence of key spatial information. The MSDMs with different 320 

loss functions (MSE and SSIM) perform well in long-term forecasting. The SSIM can capture the structural similarities of radar images, 

while the MSE can calculate the global errors. However, SSIM is prone to error accumulation through iterative prediction. Therefore, in 

Table 1, MSDM_ssim ranks best for lead times of 60 minutes and 90 minutes, while MSDM_mse ranks best for other lead times. Satellite 

data add more spatial information for the MSDM to learn and set physical constraints on it. Therefore, the MSDM best scores in the first 

three moments of the weighted HSS. Regarding the FAR, the MSDM still performs best in the first two moments due to its reasonable 325 
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prediction of the shape and intensity of the radar echoes. ConvLSTM ranks best in the last two moments because it forecasts only strong 

echoes of a few areas, which greatly reduces the probability of false alarms. 

Table 1. Weighted average CSI on the test set with different thresholds (0.1dBZ at the 30th min, 60th min, 90th min and 

120th min.1, 1, 5, 10, 25, 40, unit: dBZ). The best score isscores are highlighted in bold-face. The second-best score 

is underscored (the larger the better). 330 

Model 30 min 60 min 90 min 120 min 

Optical Flow 0.6917414 0.6004303 0.5433209 0.5037205 

MSDMConvLSTM 0.6344399 0.6065269 0.4663211 0.3813157 

ConvLSTMU-Net 0.5688348 0.5532259 0.5384216 0.5143184 

U-netMSDM_mse 0.6282362 0.5661286 0.5014245 0.4484218 

MSDM_ssim 0.405 0.317 0.258 0.217 

 

Table 2. As in Table 1 except the threshold of 40dBZ 

 

Table 2. Weighted average HSS on the test set with different thresholds (0.1, 1, 5, 10, 25, 40, unit: dBZ). The best scores are 

highlighted in bold. The second-best score is underscored (the larger the better). 335 

Model 30 min 60 min 90 min 120 min 

Optical Flow 0.1589512 0.0894409 0.058634 0.0411304 

MSDMConvLSTM 0.1836487 0.1559311 0.1280246 0.114718 

U-Net 0423 0.307 0.25 0.209 

ConvLSTMMSDM_mse 0.2711437 0.1739341 0.120329  0.0857255 

U-netMSDM_ssim 0.1816514 0.1557413 0.1368343 0.1215291 

 

 

Table 3. Average FAR on the test set with different thresholds (0.1, 1, 5, 10, 25, 40, unit: dBZ). The best scores are 

highlighted in bold. The second-best score is underscored (the smaller the better). 

▪ Model
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 340 

▪  
▪ (a) 

▪  
▪ (b) 

Figure 6. (a) MAESSIM of fourthe five models, dBZ. (b) RMSE of fourthe five models, dBZ. 

We calculate the mean absolute error (MAE) and root mean squared error (SSIM and RMSE) between the predicted radar 

echoes of the four models and the ground truth on the testingtest set, respectively (Figure (Fig 6). the OpticalThe optical flow 

model performs better than other models, while the U-net and MSDM model performs badly. We believe achieves the lowest 

SSIM (Fig 6a), which means that it has the worst SSIM to the ground truth. MSDM_ssim obtains the highest score on the 345 

SSIM but the worst performance on the RMSE because it focuses on only local features but ignores the minimization of the 

global error. ConvLSTM, U-Net, and MSDM_mse are trained on the MSE loss function, which achieve a lower RMSE. We 

believe that when the SSIM is used as the loss function, the CNN would focus on the local features andmodel will generate 

more reasonable predictions with proper shapes, but it will lead to the badpoor performance of theon global evaluation index 

like metrics such as the mean absolute error (MAE) and RMSE. MeanwhileMoreover, we notice that the ConvLSTM model 350 

produces biggerlarger errors in the first frame of each sequence than other models. This phenomenon can result from the 

deficiency of LSTM that cannot handle accumulative error, which is magnified by the way of iterative prediction. 
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3.2. QPN 

Previous works seem to pay little attention to QPN after they getachieve good performance on REE tasks. Researchers tend to 

use an empirical formula to calculate the precipitation rate based on the prediction of radar echo from models. Shi et al .. (Shi 355 

et al., n.d.)(2015) employed the Z-R relationship (𝑍 = 10 𝑙𝑜𝑔 𝑎 + 10𝑏 𝑙𝑜𝑔 𝑅) to calculate the rainfall, herewhere Z represents 

the radar echo in the dBZ and, R represents the rainfall rate in mm/h, and a and b are two constants that are calculated based 

on the statistical data of specific regions. We believe that this empirical formulation cannot describe the non-linearnonlinear 

relationship between the radar echo intensity and the rainfall rate. Therefore, the random forest machine learning regression 

techniques from machine learning are used to describe this relationship. The weather radar data and precipitation data one hour 360 

before the prediction time are used for training. The method we take is as follows. Firstly, looking forFirst, an automatic 

station. is identified. Then, the radar and satellite data onfor these grid points as well as the corresponding rainfall rate from 

site points are applied to train the random forest model. Finally, the learned non-linearnonlinear relationship is used to predict 

the rainfall rate an hour later. 

 

 
(a) 

 

 
(b) 

 

 
(c) 

Figure 7. (a) Ground truth interpolated from site points, mm/h. (b) Rainfall rate calculated by the Z-R relationship, mm/h. (c) 365 
Rainfall rate calculated by the random forest model, mm/h 
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 370 

(b) 

Figure 8. CSIRMSE of selected 480 QPN samples predicted by the two methods with the threshold of 0.1mm/h (a), 5mm/h(b) 

 

Figure 7 shows the results of the Z-R relationship and Randomrandom forest model. Since the precipitation data ontoon the 

grid points are obtained by the interpolation and might have errors, so thewe did not make a quantitative comparison did not 375 

make.for the whole dataset. However, this example could showshows that the Z-R relationship tends to overestimate the rain 

intensity. Figure 8 shows CSIFor example, the Z-R relationship predicts many areas with precipitation rates larger than 15 

mm/h, but there are few areas that reach the value on the ground truth. Figure 8 shows the RMSEs of 480 QPN samples using 

different methods and data. When only usingwe use the radar data as the input its performance is poor. Because there is no 

precipitation in most of the areas, the Random forest may overfit and predict less rain. However, when we add the satellite 380 

data as input, the Randomrandom forest presentsmodel shows its superiority in the QPN task. Especially forIts RMSEs are 

lower than those of the Z-R relationship in most of the samples in the red frames in Fig 8. Hence. Therefore, we believe multi-

sourcethat multisource data canhave great potential to make the results more precise. 

  

Formatted: Normal



 

24 

 

 385 

4. Conclusions and discussionsdiscussion 

Discussion 

In order to predict QPN by machine learning based on the observed precipitation, the radar echo data, and Himawari 8 

satellite brightness temperature data, we designed an image-to-image MSDM that uses the weather radar data and satellite 

dataTable 4, we evaluate four models in terms of 12 performance indictors (amount of data required for training, time 390 

needed for training the model, false alarm rate, cumulative system error, ability to capture spatial/temporal characteristics, 

ability to predict the radar echo 30 minutes later. It performs well in the first hours with the threshold of 0.initiation and 

decay, 0~1 dBZ and ranks second with a threshold of 40dBZ within 2 hours. The MSDM combines the merits from the 

Optical flow method and CNNhour forecast accuracy, 1~2 hour forecast accuracy, ability to maintain the radar echo shape, 

clarity of the radar image, conforming to the laws of physics).  We use the mark ‘↓’ to represent that the lower the better and 395 

the mark ‘↑’ to represent the higher the better. Subsequently, we discuss and summarize the advantages and limitations of the 

models and their combinations. 

Table 4. Evaluation on four models with the performance indictors  

 Amount of data required 

for training ↓ 

Time needed for 

training the model 

↓ 

False alarm rate ↓ Cumulative system 

error ↓ 

Optical flow 1 1 2 1 

ConvLSTM 4 4 3 2 

U-Net 2 2 4 2 

MSDM 3 3 1 4 

 

 Ability to capture 

spatial 

characteristics ↑ 

Ability to capture 

temporal 

characteristics ↑ 

Ability to predict radar 

echo initiation and decay 

↑ 

0~1 hour forecast 

accuracy ↑ 

Optical flow 1               3 1 3 

ConvLSTM 2              4 2 1 

U-Net 3              1 3 2 

MSDM 4              1 4 4 

 400 
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 1~2 hour forecast 

accuracy ↑ 

Ability to maintain the 

radar echo shape ↑ 

Clarity of the radar 

image ↑ 

Conforming to the laws 

of physics ↑ 

Optical flow 1 4 4 4 

ConvLSTM 4 1 1 1 

U-Net 3 2 2 2 

MSDM 2 3 3 3 

Here, the smaller the first four indictors values are (amount of data required for training, time needed for training the model, 

false alarm rate, cumulative system error), the better the model performance is; the larger the last eight indictors values are 

(ability to capture spatial/temporal characteristics, ability to predict the radar echo initiation and decay, 0~1 hour forecast 

accuracy, 1~2 hour forecast accuracy, ability to maintain the radar echo shape, clarity of the radar image, conforming to the 

laws of physics), the better the model performance is. Form Table 4 we can see that all of them have advantages and 405 

disadvantages. We are going to discuss the strong points and weak points of the methods. 

Optical Flow: 

The advantages of the optical flow algorithm are as follows: (1) It has the fewest parameters and takes the least time to train. 

(2) The amount of data required for training the model is small, and at least 2 radar images can be used to extrapolate the radar 

echo. (3) It maintains the shape of the radar echo very well, and the prediction result is closest to the real echo. Therefore, its 410 

MSE is the smallest. (4) It is suitable for the extrapolation of advection precipitation from 0 to 1 hour in the future. 

The disadvantages of the optical flow algorithm are as follows: (1) It cannot extract features of the evolution process of the 

radar echo. (2) Except the advective precipitation, it performs poorly in other precipitation situations (e.g. convective 

precipitation and typhoon precipitation), in which the radar reflectivity changes rapidly in a short period of time. For the large-

value area of radar echo, it basically has no forecasting ability. (3) The tail of the echo cannot be extrapolated due to the lack 415 

of previous data. As a result, the longer the lead time, the more irregular the shape of the echo at the tail. 

ConvLSTM: 

The advantages of ConvLSTM are as follows: (1) It can extract the spatial characteristics of echoes while capturing the time 

characteristics efficiently. (2) It can simulate the initiation and decay of radar echo better than optical flow. (3). It is the best 

for the prediction of long time and large-value areas of radar echo. 420 

The disadvantages of ConvLSTM are as follows: (1) There are many parameters, many matrix operation and various gating 

structures in ConvLSTM. Therefore, its training speed is the slowest among the four models. (2) It 

overestimated/underestimated the large/lowvalue radar echo, which does not conform to the fluid continuity theory. (3) It 

predicts the worst shape of the echo in that there is no transition between the large echo area and the nonecho area, which is 

far away from the true echo and has no guidance for operational forecasting. For example, we cannot issue an early warning 425 

of heavy precipitation in one place, and at the same time it cannot forecast if there will be no rain in its neighboring places. 

U-Net: 
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The advantages of U-Net are as follows: (1) It is an efficient CNN that has relatively few parameters and can achieve high 

accuracy with a small amount of data. (2) It is capable in capturing the spatial characteristics of radar echoes and predicting 

the evolution of echoes. (3) The forecasting effect is very good for the next one or two frames. 430 

The disadvantages of U-Net are as follows: (1) It is unable to extract the temporal characteristics of changes in the radar echo. 

(2) The convolution operation will smooth the characteristics of the radar echo so that the shape of the predicted echo will 

change and deviate from the true one. (3) Through iterative training and prediction, the error accumulates. 

 

Conclusions 435 

As a conventional QPN method, the optical flow method has played a certain role in the forecasting of advective precipitation. 

However, it performs poorly in the prediction of advective precipitation due to the simplicity of its algorithm and the lack of 

use of existing big data (Woo and Wong, 2017). Moreover, deep learning shows great advantages in processing vast amounts 

of data. By using convolution and LSTM structures, deep learning algorithms are better at capturing spatiotemporal 

correlations. Nevertheless, recurrent networks (represented by ConvLSTM) for predicting spatiotemporal sequences are 440 

widely known to be difficult to train and computationally expensive (Yu et al., 2018). Compared with traditional 

spatiotemporal sequence tasks in the field of machine learning, such as moving Modified National Institute of Standards and 

Technology (MNIST) prediction, human position prediction, and traffic flow prediction, the REE task has specific background 

and physical constraints. Therefore, merely obtaining predictions with higher scores does not reflect the quality of the results. 

Wang et al. (2018,2019) designed state-of-the-art models to capture comprehensive correlations between spatiotemporal 445 

sequences. However, when we apply them to the physics-based tasks represented by REE and QPN, we must evaluate their 

prediction from the perspective of atmospheric science. The prediction is of reference significance only when it is physically 

reasonable rather than having high scores. However, it is difficult to apply physical constraints to neural networks due to their 

high degrees of freedom and nonlinearity. Hence, we input more kinds of data as features into the network with the intention 

that it can obtain more information through feature interaction. Therefore, we collect multisource data and design an MSDM. 450 

In a situation in which when the model becomes incorrect and tries to predict low radar reflectivity, the incorporated satellite 

data will balance it. We hope the multisource data function as another form of model constraint. Solving the sequence-to-

sequence problem is computationally expensive, so we treat the QPN as an image-to-image problem and design the MSDM 

based on a CNN (U-Net) with high efficiency and few parameters. The main advantage of the MSDM is its transferability. 

Apart from satellite data, any other data (wind speed, pressure, temperature, etc.) can be used as input into the model in the 455 

future. Wind speed data could add dynamic constraints, and temperature data could add thermodynamic constraints. To further 

save computational resources, we use optical flow to predict the sequence of satellite data with the assumption that the cloud 

cluster is dominated by convective movement. This approach is adopted by an operational nowcasting system to estimate 

convective cloud movement (Shi et al., 2017). Subsequently, we use the satellite data predicted by optical flow and radar 
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reflectivity predicted by the MSDM as input for iterative prediction to achieve a lead time of 2 hours. After predicting the 460 

radar echo, we replace the empirical formula (Z-R relationships) with a random forest model to estimate the rainfall rate. We 

believe that deep learning models capture the long-term trend in precipitation. There should be an algorithm that captures real-

time dynamic characteristics, and random forest regression is very suitable for short-term prediction with small samples. 

Therefore, we trained a random forest regressor using radar and precipitation data from one hour prior. Subsequently, the 

learned nonlinear relationships were applied to estimate the precipitation rate from radar reflectivity. 465 

In conclusion, the MSDM combines the merits of optical flow and U-Net, maintains the pattern of the radar echo, and predicts 

their initiation and decay. The results predicted by the MSDM also containscontain more details that U-netNet cannot produce. 

TheGiven the background that ConvLSTM gets high scores for the strong radar echo, but it overestimates the strong echo and 

underestimates the weak echo. In conclusion, it, the MSDM shows great potential in predicting areas of both strong and weak 

radar echo. We makeconducted an experiment by using the random forest for QPN, which getsobtained relatively better results 470 

than thatthose obtained by the Z-R relationship. It provesThis finding suggests that the empirical formula is not suitable for all 

areas. So weWe believe that by the combination of multi-sourcemultisource data, the radar echoes predicted by the MSDM 

couldcan provide more details and have fewer errorsmore physical constraints than those predicted by the single observing 

data-observation data. It not only learns the long-term trend through deep learning but also incorporates real-time dynamic 

characteristics captured by the optical flow and random forest models. Hence, the prediction from the MSDM is more 475 

physically reasonable and of reference significance. 

In this paper, we did not make any quality control for these data through training. Thus，the trained MSDM is more robust in 

the real case where there are missing data or noises. For REE task, we combined the Optical flow with Deep learning, in the 

future, there should be more work on the combination of multi-source data and RNNs. As for QPN, we make a trial on Random 

forest Currently, methods still exist to estimate the precipitation. In this field, CNN should be considered for this task. 480 

Now there still exist methods to estimate precipitation rate more precisely. For example, Wu et al(Wu et al., 2020). use Graph 

Convolutional Regression Network (2020) used a graph convolutional regression network to produce more spatial 

characteristics of precipitation. For future works, we believe that the predictions could be more accurate with RNNs and GRUs. 

AlsoAdditionally, the precipitation rate should consider the influence of the terrain and different scales. In fact, we are going 

to makewill perform further experiments on these factors. 485 

 

Code and data availability. Rainymotion v1 is available at github repository https://github.com/hydrogo/rainymotion. The 

source code and pretrained model of MSDM are provided through google drive 

https://drive.google.com/drive/folders/1oEU_m0mZ2BssMeNTCDjkOBrFJg92LWOb?usp=sharing. available at 

http://doi.org/10.5281/zenodo.4749183. 490 
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