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I. POINT BY POINT AUTHORS' RESPONSE TO THE REVIEWERS 

 

1. RESPONSE TO REFEREE #1 

Thank you for the positive review. 
 

 

2. RESPONSE TO REFEREE #2 

Thank you for the review and constructive comments. We addressed the comments in a revised 
version of the article. Below we give details on exactly how we addressed the concerns raised by 
anonymous referee 2. Please note the following during reading the responses: 

‒ the responses are in blue regular font and follow the referee’s questions (RC2), 
‒ new text parts that were added to the manuscript are in blue italic font, 
‒ the reference to the lines (L) and pages (P) relates to the marked up version of the manuscript 

available in III. MARKED-UP MANUSCRIPT AND SUPPLEMENTARY MATERIAL VERSION section 
of this document. 

 
 
RC2: 
Soil pedotransfer functions are important when used for estimation of soil hydraulic parameters in 
catchment, regional, or continental scale applications. This manuscript improves the estimation of 
euptfv1 and provides information about prediction uncertainty, and can be applied for more predictor 
variable combinations than the euptfv1. Overall, the manuscript is interesting, important, well written, 
and organized in a logical well. Therefore, I recommend accepting this manuscript after minor revisions 
that are required to address the general and specific comments provided below. 

A: Thank you for the positive general comment. 
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RC2: 
1. The authors compared the estimation of water content at saturation, field capacity, wilting point, 
plant available water content, saturated hydraulic conductivity, etc., individually. I think these sections 
are somewhat lengthy. However, the most interesting part of the comparisons between point and 
parameter predictions and euptfv1 and v2 are very short. Is it possible to extend the comparisons and 
the discussion? 
AGREED. 

A1: Regarding comparison between point and parameter predictions, we added the 
following to be more specific: 

 
P12 L30-31: 
„ … more accurate and for further 8 cases RMSE were smaller.” 
 
P12 L31 – P13 L2: 
„The reason for higher RMSE in parameter estimation can be that the VG model does 
not always adequately describe the measured MRC data (Weber et al., 2019). 
Therefore, when THS, FC, FC_2 and WP are computed with parameter estimation those 
are not only affected by the uncertainty of the prediction of VG parameters but by the 
goodness of VG model fit as well.” 
 
P13 L4-6: we rephrased the sentence to make it clearer, which now reads: 
„For THS point estimation performed better than parameter estimation. When the 
moisture retention curve is not needed, but only THS and/or FC/FC_2 and/or WP, we 
recommend to compute those with …” 

  
In order to include the suggested comparison, between euptfv1 and v2, we included 
the following sentences 
 
P13 L9-13: 
“The most important reason for it can be that the interaction between the target 
variable and the predictors is more complex for the cases of predicting FC or VG 
parameters – to describe the MRC –, which can be untangled using random forest. This 
may provide a reasons the random forest algorithm performed significantly better than 
the PTFs derived with linear regression or a simple regression tree.” 
 
P13 L14-L21: 
„The RMSE of THS prediction was somewhat lower for euptfv1 than for euptfv2, but the 
difference was not significant. It could be due to the close to linear relationship between 
THS and BD and high relative importance of BD in THS prediction (84 %). This way their 
interaction can be efficiently described with the linear regression which is capable to 
extrapolate as well. Extrapolation with the random forest algorithm is not possible 
outside the training data, which can limit its performance. The general improvement 
of the PTFs in euptfv2 is threefold, it is due to i) using random forest instead of single 
regression tree or linear regression, ii) including more detailed information on soil 
sampling depth, not only distinguishing topsoils and subsoils and iii) providing 
information on prediction uncertainty. 
 
Regarding the description of the individual point and parameter estimations we keept 
the details because we think it is instructive to provide information about the 
importance of specific predictors. 
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RC2: 
2. The authors listed so many PTFs. When I was reading the conclusion part, I cannot find which PTF I 
should use. Is it possible to make some concluding remarks regarding which PTFs should be used for 
corresponding predictors? I think this will be very helpful for future readers. 
AGREED. 

A2: Thank you very much for this very helpful comment. Indeed, it is very important that 
users should easily understand which PTF to select and apply. To achieve this, we i) 
added a dedicated paragraph on it above the Conclusion section, ii) highlighted in the 
abstract and short summary that this section was provided, iii) moved Table S3 from 
supplementary material to the manuscript as Table 11. 

 
The new paragraph 4 reads P13 L25 – P14 L19: 

 
“4. Practical guidance on how to use the PTFs 
The minimum input requirements for all PTFs are sand, silt and clay content, and soil 
depth. Soil depth needs to be considered in regard to the depth of the other input 
properties and soil hydraulic data needs, e.g. if the soil hydraulic properties of the top 
20 cm (0-20 cm) is needed, then depth needs to be set at 10 cm in the input data of the 
prediction. 
If only soil texture information is available for the predictions, the class PTFs from 
euptfv1 could be applied (Tóth et al., 2015). 
We emphasise that: 

1. the units of input soil properties (predictors) have to be the same as indicated 
in the text and that the sand, silt, and clay are defined by the following 
particle diameters: clay < 2 μm, silt between 2 and 50 μm, and sand between 
50 and 2000 μm, 

2. when only specific water content values at saturation, field capacity or 
wilting point are required (ie. THS, FC_2, FC, WP) it is recommended to use 
point PTFs. This is also true for the prediction of KS, 

3. for AWC, the most accurate way is by first predicting FC and WP with the 
point predictions and then compute AWC using Eq. (1), and similarly for 
AWC_2 using FC_2 and Eq. (2), 

4. it is recommended to do the VG prediction if only moisture retention curve 
parameters are needed, and 

5. the MVG prediction when both moisture retention and hydraulic conductivity 
parameters are required. 

The VG algorithms predict the following van Genuchten model parameters: the residual 
water content ϑr (cm³ cm-3), the saturated water content ϑs (cm³ cm-3), and shape 
parameters α (cm-1) and n (-). Parameter m is provided based on m=1-1/n (van 
Genuchten, 1980), and for the  hydraulic conductivity curve, the two additional 
parameters: K0 (cm day-1) the hydraulic conductivity acting as a matching point at 
saturation and L, the shape parameter related to pore tortuosity (-). 

 
Table 11 shows the recommended PTFs for each predicted soil hydraulic property and 
available predictor variables. The users need to check which basic soil properties are 
available for the predictions, then look in Table 11 which PTF is recommended to use. 
The algorithms have been implemented in a web interface to facilitate the use of the 
PTFs, where the PTFs’ selection is automated based on soil properties available for the 
predictions and required soil hydraulic property. The Code and data availability section 
provides information on how to access this resource.” 

 
The additional text in the short summary and the abstract is given by: 
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Short summary: 
“... The influence of predictor variables on predicted soil hydraulic properties is explored 
and practical guidance on how to use the derived PTFs is provided. …” 
 
Abstract (P1 L25): 
“… for the prediction of water content at -100 cm matric potential head and plant 
available water content. A practical guidance on how to use the derived PTFs is 
provided.” 

 
 
Specific comments: 
 
RC2: 
1. Figures 2, 5, and 6: Is it possible to include R2 in these figures? This will make the comparison 
between different figures easier. 
AGREED 

A1: We added R2 to Figures 2 (P34), 5 (P37), 6 (P38) and S1 (P2 in supplementary material). 
 

 
RC2: 
2. In the abstract and conclusion sections: -15.000 should be -15,000 
AGREED 

A2: Thank you for noting it, we corrected it in the entire text. 
 
 
RC2: 
3. Page 6, line 4: why did the authors utilize median values instead of mean values? 
Nothing changed. 

A3: Our aim was to provide information about the uncertainty of the predictions, therefore 
we applied quantile regression forests. This way the most probable predicted response 
value is at the 50th percentile, i.e. the median, which is considered more robust against 
the outliers than the mean. In this way we decided to use the median as the predicted 
value (yhat) rather than the mean. 

 
 
RC2: 
4. Page 7, line 19: “in the study of (Khodaverdiloo et al., 2011)” should be “in the study of 
Khodaverdiloo et al. (2011)” 
AGREED 

A4: Thank you, we corrected it (P7 L30). 
 
 
RC2: 
5. Page 10, line 4: “and RMSE” should be “an RMSE” 
AGREED 

A5: Thank you, we corrected it (P10 L19). 
 
 
RC2: 
6. Page 10, Line 27: “;” should be “,” 
AGREED 
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A6: Thank you, we corrected it (P11 L11). 
 
RC2: 
7. Page 12, line 14: add a connection/linking word before “it is due to” 
AGREED 

A7: The text is rephrased to (P13 L18-19): “The general improvement of the PTFs in euptfv2 
is threefold, the better performance is due to …”. 

 

 

 

3. RESPONSE TO REFEREE #3 

Thank you for the detailed review and suggestions for further improvements. In the following, we give 
a detailed presentation of how we addressed the questions and issues raised, following the referee’s 
questions (RC3). Please note the following during reading the responses: 

‒ the responses are in blue regular font and inserted under the referee’s questions, 
‒ new text parts that were added to the manuscript are in blue italic font, 
‒ the reference to the lines (L) and pages (P) relates to the marked up version of the manuscript 

available in III. MARKED-UP MANUSCRIPT AND SUPPLEMENTARY MATERIAL VERSION section 
of this document. 

 
 
RC3: 
This manuscript aims to update the previously developed PTF for European soils called euptfv1. More 
importantly, euptfv2 contributes to the understudied issue of uncertainty in PTFs for potential users. 
Despite the existing large amount of results, the paper is easy to follow with some possibilities to 
improve. 

A: Thank you for the positive general comment. 
 
RC3: 
The authors also provide a detailed and user-friendly website from euptfv2, however, no library called 
eutptf exists in R Repository, even the available zip file has problems to be run. 

A: The R package of euptfv2 is under construction. 
The available zip files include the R scripts used to develop the predictions and the 
derived pedotransfer functions. The dataset which we used for training and testing the 
algorithms cannot be shared according to the agreement between the data holders. 
Regarding the model development the following information is included separately for 
point and parameter estimations: i) loading data, define path, input variables and 
function to compute performance of the PTFs (setupRF.R), ii) parameter tuning of the 
random forest (tuneRF.R), iii) building final random forest (buildfinalRF.R), iv) compute 
performance of the final random forest on the test set (testRF.R) .  
In a separate folder 
(https://github.com/TothSzaboBrigitta/euptfv2/tree/master/help) a sample input 
dataset (data_sample.csv) and an R script (apply_PTFs_script.R) - which shows some 
examples on how to apply the PTFs in R – have been added to the repository. 

 
RC3: 
Many comparisons among the possibilities of PTFs for different soil hydraulic properties were done. 
These series of “euptfv(i)” will contribute to the modelling of soil processes. I recommend this paper 

https://github.com/TothSzaboBrigitta/euptfv2/tree/master/help
https://github.com/TothSzaboBrigitta/euptfv2/blob/master/help/data_sample.csv
https://github.com/TothSzaboBrigitta/euptfv2/blob/master/help/apply_PTFs_script.R
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for publication, however, I outlined some questions and comments as below (L denotes line and P for 
page) 
 A: Thank you for considering the usability of the euptfs. 
 
RC3: 
L30, P1. variably saturated fluxes? do you mean flow through variably saturated soil media? 
AGREED 

A: Yes, thank you for noting it, we corrected it (P1 L30 – P2 L1): “Simulations of flow 
through variably saturated soil media either rely on …” 

 
RC3: 
L31. P.2. Not necessary to machine learning-based methods are able to calculate uncertainty because 
the sampling effect can propagate parameter uncertainty, which can be implemented even in simple 
regression-based models. Tens of resamples for training and testing with different distributions can be 
drawn from the population (Tranter etal., 2010; Kotlar et al., 2019). 
Do train and test datasets in bootstraps follow the same distributions? 
Tranter, G., Minasny, B. and McBratney, A.B., 2010. Estimating pedotransfer function prediction limits 
using fuzzy k-means with extragrades. Soil Science Society of AmericaJournal, 74(6), pp.1967-1975. 
Kotlar, A.M., de Jong van Lier, Q., Barros, A.H.C., Iversen, B.V. and Vereecken, H.,2019. Development 
and Uncertainty Assessment of Pedotransfer Functions for Predicting Water Contents at Specific 
Pressure Heads. Vadose Zone Journal, 18(1). 
AGREED 

A:  Thank you to highlight it with references, we added this information to P2 L17-19: 
 

“Tranter et al. (2010) developed an uncertainty estimation method using fuzzy k-means 
with extragrades classification that can be applied in any PTF prediction. Kotlar et al. 
(2019) presented uncertainty assessment of PTFs through deriving PTFs on tens of 
resamples for train and test sets.” 
 
and the following to P3 L1-3: 
 
“If PTFs are derived with these algorithms, the uncertainty of the predicted soil property 
can be directly estimated when applying the PTF (Szabó et al., 2019a), although this 
could also be achieved by applying the above mentioned uncertainty assessment 
methods without using machine learning methods (e.g. Kotlar et al., 2019; Tranter et 
al., 2010).” 
 
Using Kolmogorov–Smirnov tests, we tested whether training and test sets have the 
same frequency distributions, please find the results in Table 1. For THS, FC and WP 
the distribution of training and TEST_BASIC set is equal in almost all the cases of the 
most important basic soil properties. For KS, the distribution of sand and organic 
carbon content is equal in the training and TEST_BASIC set, in case of FC_2 only the 
distribution of sand content is equal based on the statistical test. The distributions of 
training and TEST_CHEM+ sets are equal only in case of FC. For the other sets, at least 
one soil property has equal distribution in the two sets. 
 



7 

 

Table 1. Results of the Kolmogorov–Smirnov test (p value of 0.05) computed to compare 
distribution of the most important basic soil properties of training and test datasets. 

Soil 
hydraulic 
property 

Input 
variable 

p-value of Kolgomorov-Smirnov test 

Training vs. 
TEST_BASIC set 

Training vs. 
TEST_CHEM+ set 

THS USSAND 0,137 0,000 
 USCLAY 0,022 0,000 
 OC 0,598 0,004 
 BD 0,483 0,021 

FC_2 USSAND 0,616 0,112 
 USCLAY 0,004 0,000 
 OC 0,018 0,000 
 BD 0,023 0,000 

FC USSAND 0,019 0,157 
 USCLAY 0,172 0,078 
 OC 0,662 0,737 
 BD 0,313 0,489 

WP USSAND 0,730 0,007 
 USCLAY 0,372 0,003 
 OC 0,649 0,000 
 BD 0,047 0,074 

KS USSAND 0,396 0,000 
 USCLAY 0,001 0,008 
 OC 0,755 0,001 
 BD 0,000 0,000 

 
Train and test datasets in bootstraps are divided in the following way: in the random 
forest algorithm for each tree 63% of the data is selected with replacement to build 
the tree, i.e. number of selected data will be increased to reach the number of samples 
of the training set with the replacement, this way some samples will be used multiple 
times in a single tree. Each tree of the forest is trained on different samples. The forest 
includes 200 trees and the predicted value is the median of all 200 trees.  However, it 
is difficult to compute the Kolgomorov-Smirnov test for all the 200 in-bag and out-of-
bag samples by each predicted soil hydraulic properties, we could confirm based on 
the literature (Hastie et al., 2009), that the forest will neither be biased nor overfitted 
to the data because of the two step randomization – bagging process and split-variable 
randomization –  implemented in the algorithm. 

 
RC3: 
Table1. P.18. Numbers are not aligned exactly below the names. 
Correlation matrix of observations would be useful information (in appendix) at least for the dataset 
used for the best PTFs. 
AGREED 

A: The columns’ names were aligned with the numbers below (Table 1 P21). 
The correlation plots of the best PTFs are inserted below the answers (Fig_responses_1 
– Fig_responses_7), however descriptive power of them are limited because the 
relationship between predicted parameters and predictors are not linear. This is the 
reason why PTFs are derived with a machine learning algorithm and partial 
dependence plots are shown in the manuscript. We feel that the correlation plots 
might not provide indispensable information. 
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Fig_responses_1 

 
Fig_responses_2 
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Fig_responses_3 

 
 

 
Fig_responses_4 
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Fig_responses_5 

 

 
Fig_responses_6 
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Fig_responses_7 

 
 
RC3: 
L6, P5: Please calculate variable importance of parameters in PTFs as relative which makes summation 
of all 100%. (e.g. Figure 3) 
AGREED 

A: We replaced Figure 3 (P35) and 7 (P39) with relative importance plots and specified in 
the figures’ caption that relative variable importance is shown. 

 
We added the following text in P6 L1-2: 
 
“The relative importance was assessed by dividing the variable importance of each 
predictor by the sum of the importance of all the predictors after Kotlar et al. (2019).” 

 
RC3: 
L3, P7: To give a better view of the performance of PTFs, compare the mean values of measured 
parameters with RMSE of predictions. Compared to Toth et al., (2015), improvement in the prediction 
of THS is less than FC and WP, why? 
AGREED 

A: Thank you for the suggestion. We added the normalized RMSE (RMSE/(ymax-ymin)), 
which was also suggested by the reviewer under ”L1-8, P10”. 

 
The following texts was added in the revised manuscript: 
P6 L15-19: 
“The different data range of the dataset influences the performance of the PTFs when 
that is compared to the studies in the literature. Therefore, normalized RMSE (NRMSE) 
was computed (Eq. 5.), where 𝑦𝑚𝑎𝑥 and 𝑦𝑚𝑖𝑛 are the maximum and minimum value of 

variable . 
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𝑵𝑹𝑴𝑺𝑬 =
𝑹𝑴𝑺𝑬

𝑦𝑚𝑎𝑥−𝑦𝑚𝑖𝑛
       (5)” 

 
and in P7 L16-18 we add 
“Table S3 shows the NRMSE for the point predictions computed for the TEST_BASIC and 
TEST_CHEM+ sets to provide possibility for comparison with other PTFs available from 
the literature.” 
 
And a table on “Normalized root mean square error (NRMSE) of the point predictions 
by soil hydraulic properties computed on the test datasets in cm3 cm-3 for water 
retention and log10 (cm day-1) for saturated hydraulic conductivity. In case of PTF01, 
02, 03 and 07 TEST_BASIC set was used for the analysis, for the rest of the PTFs 
TEST_CHEM+ set was considered” was added to the supplementary material as Table 
S3 (P5 of the revised supplementary material). The original TableS3 of the 
supplementary material available from https://gmd.copernicus.org/preprints/gmd-
2020-36/gmd-2020-36-supplement.pdf was moved to the manuscript as Table 11. 
 
Comparison to Toth et al. (2015): thank you for the reviewer’s comment on THS and 
BD, which helps to clarify findings related to comparison of euptfv1 and v2. There was 
no significant difference between euptfv1 and v2 in case of THS when BD was available 
for the prediction and euptfv1 was derived with linear regression. The reason for it – 
which was mentioned by the reviewer as well – that the relative importance of BD is 
84% in the prediction of THS and the relationship between THS and BD is close to linear. 
In this case random forest could not significantly improve the prediction. In case of FC 
and WP the interaction between the target variable and the predictors is more 
complex, this way the random forest algorithm performed significantly better than the 
PTFs derived with linear regression or a simple regression tree. We added the following 
information in P13 L9-18: 
 
“The most important reason for it can be that the interaction between the target 
variable and the predictors is more complex for the cases of predicting FC or VG 
parameters – to describe the MRC, which can be untangled using random forest. This 
may provide a reason the random forest algorithm performed significantly better than 
the PTFs derived with linear regression or a simple regression tree. For THS, WP, KS, 
and MVG only those PTFs did not improve significantly, for which comparisons on the 
TEST_CHEM+ set were possible – which includes reduced number of samples. The RMSE 
of THS prediction was somewhat lower for euptfv1 than for euptfv2, but the difference 
was not significant. It could be due to the close to linear relationship between THS and 
BD and high relative importance of BD in THS prediction (84 %). This way their 
interaction can be efficiently described with the linear regression which is capable to 
extrapolate as well. Extrapolation with the random forest algorithm is not possible, 
which can limit its performance.” 

 
RC3: 
Figure S2, please replace SE by RMSE so the reader doesn’t lose the track of comparison criteria. 
AGREED 

A: We replaced Figure S2, S4, S6, S8, S10, S12, S14, S16, S19 showing SE with the one 
showing RMSE, please find the new figures on P6, 8, 10, 12, 14, 16, 18, 20, 23 of the 
revised supplementary material below (III. MARKED-UP MANUSCRIPT AND 
SUPPLEMENTARY MATERIAL VERSION). 

 

https://gmd.copernicus.org/preprints/gmd-2020-36/gmd-2020-36-supplement.pdf
https://gmd.copernicus.org/preprints/gmd-2020-36/gmd-2020-36-supplement.pdf
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RC3: 
L1, P8. Please mention the correlation between THS and BD, lets arguably consider THS equal to total 
porosity, does the 1-BD/PD, assuming PD=2.65 give better RMSE than PTF03 for THS? or you might 
easily obtain the best PD to predict THS by this formula. In PTF 32, the relative importance of BD is 
almost 100%. 
DISAGREE 

A: Thank you for this idea, however, to remain consistent in methodology we would make 
use of the better performing PTF based on the random forest. The reason: the 
correlation between THS and BD is -0.92. We have computed the porosity on the test 
dataset of PTF03 (N = 1274) based on BD and PD (=2.65 g/cm3), then the RMSE of it. 
We found that the RMSE of PTF03 is smaller than that of porosity (POR_calc), please 
find the performance of POR_calc and PTF03 in the below table. 

 

Method 
ME 

(cm3 cm-3) 
RMSE 

(cm3 cm-3) 
R2 N 

POR_calc -0.007 0.038 0.789 1274 
PTF03 0.000 0.031 0.862 1274 

 
RC3: 
L31, P10. Elaborate the range of Ks values used in training for PTF02, so reader can judge how low is 
RMSE of 0.94. 
AGREED. 

A: Thank you for giving this helpful viewpoint. We will added it in that sentence (P10 L11-
12): 
“In the case of KS prediction, the simplest best performing PTF – which was derived on 
a training dataset with KS ranging between -3.00 and 4.67 log10(cm day-1) – has an 
RMSE of 0.94 log10(cm day-1) …” 

 
RC3: 
L1-8, P10. You can compare the randomized RMSE by PTF02 (RMSE/(maxKs-minKs)) by some studies 
in the literature (preferably Europe or at least temperate soils) 
AGREED 

A: Thank you for this suggestion. We computed it for all the derived PTFs and highlighted 
this error measure in the case of KS and called it normalized RMSE (NRMSE). We also 
computed the NRMSE for 
- the literature referred in the manuscript: 

- Zhang and Schaap (2017) (ROSETTA3): 0.11 log10 (cm/day) (PSD+BD) 
- Lilly et al. (2018) (HYPRES) 0.18 log10 (cm/day) (topsoil/subsoil 
distinction+USDA soil texture class+PSD+BD+OC), 
- Araya and Ghezehei (2019) (USKSAT database) 0.06 log10 (cm/day) 
(PSD+BD+OC), 

- Nemes et al. (2005) (HYPRES) 0.15 log10 (cm/day). 
 
We added the information on computing NRMSE to P6 L15-19 in the manuscript as 
mentioned above, and the following: 
 

 P10 L12-13: 
 “… has an RMSE of 0.94 log10(cm day-1) and NRMSE 0.14 log10(cm day-1) (Table S3).” 

 
P10 L17-22: 
“ROSETTA3 PTF with PSD and BD predictors had and RMSE of 0.68 log10 (cm day-1) with 
an NRMSE of 0.11 log10 (cm day-1) (Zhang and Schaap, 2017). Araya and Ghezzehei 



14 

 

(2019) published PTF using PSD, BD and OC predictors with highest accuracy in the 
literature with an RMSE of 0.34 log10 (cm day-1) and NRMSE of 0.06 log10 (cm day-1). In 
Lilly et al. (2008), the performance of the KS predictions and findings were similar to 
this study. They report an RMSE between 0.95 and 1.08 log10(cm day-1) – with an 
NRMSE between 0.17 and 0.20 log10(cm day-1) – for the KS prediction when analysed 
with several input combinations.” 

 
 
RC3: 
L19, P10. I expect to see the high importance of clay in THETAr. It is not clear exactly how to estimate 
VG and MVG parameters. 
AGREE SOMEWHAT 

A: It is right, expectation is not supported by the data, please see our answer above 
related to correlation plot: scatterplot of THR vs USCLAY. The reason for it can be that 
THETAr is a fitting parameter and for most of the samples it was close to 0. Please find 
here (Fig_responses_8) the histogram of THETAr and clay content based on all EU-HYDI 
samples that has measured chemical properties and fitted THETAr values:  

 
Fig_responses_8 

 
We also point out, that during the estimation of THR in the original model fitting of VG 
or MVG, THR is not only influenced by clay content, but also by pore connectivity, next 
to other soil structural properties. Importantly, THR is also influenced by the data 
range available during the fitting of the original data (Weber et al., 2020), which is a 
viable reason for the correlation between THR and USCLAY not to be as pronounced 
as one would expect. 
 

Weber, T.K.D., Finkel, M., Conceição Gonçalves, M., Vereecken, H., Diamantopoulos, E., 2020. 

Pedotransfer function for the Brunswick soil hydraulic property model and comparison to the van 

Genuchten‐Mualem model. Water Resour. Res. https://doi.org/10.1029/2019WR026820 

 
 
Each VG and MVG parameters are predicted separately with random forest models. 
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RC3: 
L23, P10. K0, matching point should be defined earlier. 
AGREED 

A: The following text was added to P4 L13-16: 
Similarly to euptfv1, for the description of the moisture retention curve (MRC), we 
predicted the VG model parameters: the residual water content (θr), the saturated 
water content (θs), and shape parameters α and n. For the hydraulic conductivity curve, 
two additional parameters: the hydraulic conductivity acting as a matching point at 
saturation K0 and a shape parameter related to pore tortuosity (L) are estimated too. 

 
RC3: 
L25-30, P11. How many of K data are obtained from evaporation method, this method usually goes up 
to -1000 cm, is it why overestimation occurs in Fig S21 in drier conditions or another reason? Note that 
in this dry region K data is obviously small and mean error of about 0.8 is significant. 
Moreover, comparing Fig s21 with Fig S1b (Toth et al., 2015), there less error in this dry region was 
observed. 
AGREED 

A: We deleted the sentence starting with “In parts, this is …” (it was on P11 L32- P12 L2 
in the discussion paper available from https://gmd.copernicus.org/preprints/gmd-
2020-36/gmd-2020-36.pdf) and added the following text to P12 L19-27: 

 
“Samples with measurements of the HCC at pressure heads < -1000 cm are less 
frequent and are not as numerous within a dataset of a single sample, if it was 
measured. Since the dataset of estimated VG model parameters were identical in this 
study and in Tóth et al. (2015), differences between the two studies of the unsaturated 
HCC are related to the PTF methods involved. However, at pressure heads <-1000 cm, 
the HCC is dominated by non-capillary conductivity (Weber et al., 2019, Streck and 
Weber 2020), which is not included in the MVG model. The considerable data mismatch 
observable for the dry range (Fig. 6) can only be overcome by a different soil hydraulic 
property model and by a different PTF, because of compensatory effects in the VG. With 
this we mean that better data descriptions in the dry end, will lead to a larger mismatch 
in the wet end, as a consequence of the rigid model structure in the MVG model, which 
only accounts for capillary storage and conductivity. For better data description at <-
1000 cm other more comprehensive models need to be adopted (Weber et al. 2020).” 
 

Streck, T., Weber, T.K.D., 2020. Analytical expressions for noncapillary soil water retention based on 

popular capillary retention models. Vadose Zo. J. 19, 1–5. https://doi.org/10.1002/vzj2.20042 

Weber, T.K.D., Finkel, M., Conceição Gonçalves, M., Vereecken, H., Diamantopoulos, E., 2020. 

Pedotransfer function for the Brunswick soil hydraulic property model and comparison to the van 

Genuchten‐Mualem model. Water Resour. Res. https://doi.org/10.1029/2019WR026820 

 
RC3: 
Fig2, 5. Explain the term “count” in legend 
AGREED 

A: The following was added to 
Figure 2 and Figure S1:  
“; Count: the number of cases in each rectangle.” 
 
Figures 5 and 6: 
“; Count: the number of cases in each hexagon.” 

 
RC3: 
Table 7. RMSE is log10(cm/d) but this belongs to retention curve. 

https://gmd.copernicus.org/preprints/gmd-2020-36/gmd-2020-36.pdf
https://gmd.copernicus.org/preprints/gmd-2020-36/gmd-2020-36.pdf
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AGREED 
A: Thank you for noting it, the unit was wrongly written in the title, we corrected it to cm3 

cm-3. 
 
RC3: 
Table 8. this RMSE was computed only by K(h) data? Did you consider Lambda=0.5? 
AGREED 

A: Yes, the RMSE is based on the predicted and measured K(h) data. 
We did not set Lambda = 0.5, but fitted it for the dataset based on measured K(h) 
data. For the description of the hydraulic conductivity curve we predicted all of the 
following parameters: θr: residual water content (cm³ cm-3), θs: saturated water 
content (cm³ cm-3), α (cm-1) and n (-): fitting parameters, K0: the hydraulic 
conductivity acting as a matching point at saturation (cm day-1) and L: shape 
parameter related to pore tortuosity (-). Parameter m is provided based on m=1-1/n 
(van Genuchten, 1980). Thank you for highlighting it.  
 
We added a paragraph entitled “Practical guidance on how to use the PTFs” on P13 
L25 – P14 L19, in which we shortly summarize what parameters are predicted with 
euptfv2. 
 

 
RC3: 
L5, P 12. That’s interesting to show Comparison of point and parameter predictions, however, you 
should emphasize that this works only when water retention curve matters. Because one can use the 
n value of WRC and l=0.5 for K function. 
AGREED 

A: We will strengthen the description on why point and parameter predictions were 
compared. To overcome this confusion, we added to P6 L25-26: 

 
“The aim of this comparison was to analyse whether point or parametric prediction 
performs better when only THS and/or FC/FC_2 and/or WP are needed.” 
 
and included the complementary information on P13 L5-6: 
 
“When moisture retention curve is not needed, but only THS and/or FC/FC_2 and/or 
WP, we recommend to compute those with the point PTFs, more detailed explanation 
on it is included in Tóth et al. (2015).” 

 
RC3: 
During some trials to run the package, I have faced with various errors such as 
Error in source_data 
("https://github.com/TothSzaboBrigitta/euptfv2/blob/master/suggested_PTFs/FC_EUHYDI/FC_PTF07
.rdata?raw=True") : could not find function "source_data" 
please check the files again in the attached zip files. I could not also find neither euptf1nor 2 in CRAN 
repository. 
AGREED 

A: As mentioned above, the github repository includes the R scripts, which were used to 
develop the predictions and the derived pedotransfer functions. The dataset which we 
used for training and testing the algorithms cannot be shared according to the 
agreement between the data holders. We added the following to P15 L3-4 for 
clarification: 
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“The training data set cannot be made publicly available due to legal restrictions of the 
EU-HYDI dataset, thus only a test sample is provided along with the model code.” 

 
euptfv1 is available from: https://esdac.jrc.ec.europa.eu/themes/soil-hydraulic-
properties , 
https://esdac.jrc.ec.europa.eu/public_path/shared_folder/themes/euptf.zip . 
The PTFs of euptfv2 are available from the web interface which can be used without 
any coding skills. The R package is under construction. After finalizing the package it 
will be available from the European Soil Data Center site of the EC JRC 
(https://esdac.jrc.ec.europa.eu/). It will not be possible to have the package in the 
CRAN repository because it will have too large size for it – it will include several RF 
models. 

 

 

II. LIST OF AUTHOR’S CHANGES IN MANUSCRIPT AND SUPPLEMENTARY 
MATERIAL 

Page and line numbering refer to that of the revised manuscript with track changes included under III. 
MARKED-UP MANUSCRIPT AND SUPPLEMENTARY MATERIAL VERSION section of this document. 

 

The following changes have been made in the manuscript: 

‒ P1 L17: matric potential is corrected to 15,000 cm, 
‒ P1 L25: sentence is added on practical guidance, 
‒ P1 L30 – P2 L1: sentence is rephrased, 
‒ P2 L17-19: more information is added related to uncertainty assessment, 
‒ P2 L21: matric potential is corrected to 15,000 cm, 
‒ P3 L2-3: further information is added about the estimation of uncertainty, 
‒ P4 L4: matric potential is corrected to 15,000 cm, 
‒ P4 L13-16: description of model parameters is added, 
‒ P6 L1-2: information on relative importance is added, 
‒ P6 L15-19: computation of normalized root mean square error (NRMSE) is added, 
‒ P6 L25-26: clarifying sentence – related to point and parametric prediction – is added, 
‒ P7 L15: RMSE of KS is rounded to two digits, 
‒ P7 L16-18: sentence on table of NRMSE is added, 
‒ P7 L30: format of citation is corrected, 
‒ P10 L11-13: range of KS in the training dataset and NRMSE is added, 
‒ P10 L16: RMSE is adjusted, 
‒ P10 L17-21: NRMSE of other published PTFs is added, 
‒ P10 L21: RMSE is rechecked and corrected, 
‒ P11 L11: “;” is changed to “,”, 
‒ P11 L31: matric potential is corrected to 15,000 cm, 
‒ P12 L1: matric potential is corrected to 15,000 cm, 
‒ P12 L16-18: the sentence starting with “In parts, this is …” is deleted, 
‒ P12 L19-L27: information is added to interpret the results, 
‒ P12 L29: language correction, 
‒ P12 L30 – P13 L2 and P13 L4-6: information and discussion is added, 
‒ P13 L9-13 and L14-21: discussion is added, 
‒ P13 L14: language correction – were instead of was, 
‒ P13 L25 – P14 L19: section on “Practical guidance on how to use the PTFs” is added, 

https://esdac.jrc.ec.europa.eu/themes/soil-hydraulic-
https://esdac.jrc.ec.europa.eu/themes/soil-hydraulic-
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‒ P14 L25: matric potential is corrected to 15,000 cm, 
‒ P15 L3-4: information about the training dataset is added, 
‒ P16 L25-27: reference is added, 
‒ P18 L31-32: reference is added, 
‒ P19 L8-10: reference is added, 
‒ P19 L31-32: reference is added, 
‒ P29: “a” is formatted to superscript in the 3rd row of WP, 
‒ P31: Table 11 is added, which lists the recommended PTFs, 
‒ P33-34: Figure 2 is reedited and replaced – R2 is added, 
‒ P34 L7: description of count is added, 
‒ P35: Figure 3 is reedited and replaced – relative importance is shown, 
‒ P35 L3: figure’s caption is corrected, 
‒ P37: Figure 5 is replaced – R2 is added, 
‒ P37 L6-7: description of count is added, 
‒ P38: Figure 6 is replaced – R2 is added, 
‒ P38 L6-7: description of count is added, 
‒ P39: Figure 7 is reedited and replaced – relative importance is shown, 
‒ P39 L3-5: figure’s caption is corrected. 

 

 

The following changes have been made in the short summary: 

‒ complementing the following sentence with the text in blue: “The influence of predictor 
variables on predicted soil hydraulic properties is explored and practical guidance on how to 
use the derived PTFs is provided.” 

 

 

The following changes have been made in the supplementary material: 

‒ P1-2: Figure S1: figure is reedited and replaced – R2 is added, meaning of count is added in the 
caption (L7). 

‒ P5: Table S3 on NRMSE values added, 
‒ P6-17, 19: Figures S2, S4, S6, S8, S10, S12, S14, S16, S19 are reedited and replaced and 

“Squared error (SE)” is changed to “Root mean square error (RMSE)” in the figures’ captions, 
‒ P21-22: Table S3 is moved to the manuscript. 

 

 

III. MARKED-UP MANUSCRIPT AND SUPPLEMENTARY MATERIAL VERSION 

Please find revised marked-up manuscript and supplementary material on the following pages. 
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Correspondence to: Brigitta Szabó (toth.brigitta@agrar.mta.hu) 10 

Abstract. Soil hydraulic properties are often derived indirectly, i.e. computed from easily available soil properties with 

pedotransfer functions (PTFs), when those are needed for catchment, regional or continental scale applications. When predicted 

soil hydraulic parameters are used for the modelling of the state and flux of water in soils, uncertainty of the computed values 

can provide more detailed information when drawing conclusions. The aim of this study was to update the previously published 

European PTFs (Tóth et al., 2015, euptf v1.4.0) by providing prediction uncertainty calculation built into the transfer functions. 15 

The new set of algorithms was derived for point predictions of soil water content at saturation (0 cm matric potential head), 

field capacity (both -100 and -330 cm matric potential head), wilting point (-15,.000 cm matric potential head), plant available 

water, and saturated hydraulic conductivity, as well as the Mualem-van Genuchten model parameters of the moisture retention 

and hydraulic conductivity curve. The minimum set of input properties for the prediction is soil depth and sand, silt and clay 

content. The effect of including additional information like soil organic carbon content, bulk density, calcium carbonate 20 

content, pH and cation exchange capacity were extensively analysed. The PTFs were derived adopting the random forest 

method. The advantage of the new PTFs is that they i) provide information about prediction uncertainty, ii) are significantly 

more accurate than the euptfv1, iii) can be applied for more predictor variable combinations than the euptfv1, 32 instead of 5, 

and iv) are now also derived for the prediction of water content at -100 cm matric potential head and plant available water 

content. A practical guidance on how to use the derived PTFs is provided. 25 

1 Introduction 

Quantitative information on state and flux of water in the critical zone is important for a wide range of environmental process 

models and decision support systems related to land surface processes (Lin, 2010; Zhao et al., 2018). Performance of 

hydrologic, climate, crop and other models related to soil hydrological processes depends on the quality and resolution of soil 

hydraulic input parameters (Vereecken et al., 2015). Simulations of flow through variably saturated moisture fluxessoil media 30 

mailto:toth.brigitta@agrar.mta.hu
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in the vadose zone either rely on simple modelling approaches which only require few directly measureable input variables 

such as porosity, field capacity, and wilting point, or on the Richards equation. While the former are simple and straightforward 

to obtain, the Richards equation requires knowledge about the soil hydraulic properties over the full moisture range. In practice, 

one of the most common approaches to describe the water retention and hydraulic conductivity curves required to solve the 

Richards equation is arguably (Weber et al., 2019) the Mualem-van Genuchten model (MVG) (van Genuchten, 1980; Mualem, 5 

1976). Since soil hydraulic measurements in the laboratory or in the field are often time consuming, expensive and difficult, 

indirect methods for estimating soil hydraulic properties using widely available surrogate data have been developed (Schaap, 

2006). To date, a large number of pedotransfer functions have become popular to predict soil hydraulic properties and MVG 

model parameters (Van Looy et al., 2017). 

Information on the uncertainty of the predicted soil hydraulic properties is important for modelling the state and flux of water 10 

in soil. The source of prediction uncertainty can be threefold: it can stem from the i) predictor (e.g. measurement uncertainty, 

non-representativeness of a sample), ii) predicted variables (e.g. uncertainty in the estimated soil hydraulic model parameters), 

and the iii) algorithm which describes the relation between the two. Information on the uncertainty of the predictor variables 

is commonly not available in PTFs derived before the 2000s, but has become a more intensively studied topic in the last decade. 

For example, Weynants et al. (2009) quantified uncertainty of derived PTFs related to experimental, model and fitting errors 15 

with the one-step inversion method. Deng et al. (2009) differentiated and quantified intrinsic and input uncertainty of PTFs. 

(Tranter et al., (2010) developed an uncertainty estimation method using fuzzy k-means with extragrades classification that 

can be applied in any PTF prediction. (Kotlar et al., (2019) presented uncertainty assessment of PTFs through deriving PTFs 

on tens of resamples for train and test sets. Román Dobarco et al. (2019) introduced prediction interval coverage probability 

to assess prediction uncertainty in PTFs derived on French soils. McNeill et al. (2018) provided estimation of the distribution 20 

and confidence intervals of the predicted soil hydraulic property (i.e. water content at 100 cm and 15,000 cm matric potential 

head and total available water). In the field of soil mapping it is an even more extensively studied topic where different 

computational methods have been proposed to assess uncertainty of the mapped properties. Examples are estimation of the 

90% prediction intervals based on a triangular distribution (Odgers et al. 2014), quantification of mapped soil properties 

uncertainties by quantile regression forest (Vaysse and Lagacherie, 2017), and a detailed comparison of uncertainties in 25 

mapped soil organic carbon content by different geostatistical and machine learning methods (Szatmári and Pásztor, 2019). 

Machine learning methods can be more robust to construct PTFs in comparison to previous approaches such as linear 

regression or simple decision trees if relationship between the predictors and response is highly non-linear (Araya and 

Ghezzehei, 2019). The random forest algorithm (Breiman, 2001) is able to outperform other machine learning methods (Olson 

et al., 2018), which was also shown for predicting soil properties (Hengl et al., 2018; Nussbaum et al., 2018). Improvements 30 

in computing power, statistical methods and statistical software provide the possibility to apply more easily even complex 

models on large datasets. Therefore, complexity of a prediction algorithm is no longer a barrier in selecting a suitable algorithm 

to develop and apply PTFs. Most of the recent machine learning algorithms have the built in possibility to compute the 

uncertainty in the predicted variable, e.g. by quantile regression forest (Meinshausen, 2006) or generalized boosted regression 
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(Ridgeway, 2017). If PTFs are derived with these algorithms, the uncertainty of the predicted soil property can be directly 

estimated when applying the PTF (Szabó et al., 2019a), although this could also be achieved by applying the above mentioned 

uncertainty assessment methods without using machine learning methods (e.g. (Kotlar et al., 2019; Tranter et al., 2010). 

Despite the above mentioned developments, the euptfv1 (Tóth et al., 2015) and derived soil hydraulic property maps for Europe 

on a 1km and 250m grid (Tóth et al., 2017) do not include uncertainties in the prediction. Hence, the aim of our study was to 5 

update the euptfv1 by deriving a new set of soil hydraulic PTFs (euptfv2) providing uncertainty calculation built into the PTF 

model. For this, we rely heavily on the datasets used in the construction of the euptfv1. Methodologically, we constructed new 

soil hydraulic PTFs on the basis of the random forest method which facilitates a quantification of prediction uncertainties. The 

predicted variables of interest included soil water content at saturation, field capacity and wilting point, plant available water 

content, saturated hydraulic conductivity, MVG parameters of the moisture retention and hydraulic conductivity curves. The 10 

predictions are based on easily available soil properties. The predictor variables were similar to those of euptfv1, except the 

topsoil and subsoil distinction, which was replaced by mean soil depth of the sample, since it is typically known, anyway. 

Additionally, the improved performance of the euptfv2 was assessed against predictions using the earlier version. Moreover, 

we determined the minimum sufficient predictor variables for 32 input variables combinations. 

2 Materials and Methods 15 

The construction of a pedotransfer function requires three elements: predictor variables, predicted variables as the property of 

interest, and a transfer method between the former two. The predicted variables are in this case directly measured soil hydraulic 

properties on samples contained in a large pan-European dataset, ensuring a representativeness of the PTF for Europe. 

Additionally, Tóth et al. (2015) had fitted MVG model parameters for each sample dataset individually by inverse modelling, 

which we reused in this study. 20 

2.1 Dataset 

The European Hydropedological Data Inventory (EU-HYDI) (Weynants et al., 2013) provided the basis for the preparation of 

the prediction algorithms. The dataset partitions for training and testing the prediction algorithms were almost identical to the 

ones used in Tóth et al. (2015), except that the samples had to have information on soil depth as well. Depending on the soil 

hydraulic property of interest, 76-99% of the originally selected samples were used to derive the new PTFs. It enabled 25 

comparison of the performance between the EU-PTFs (Tóth et al., 2015) – built in the euptfv1 (Weynants and Tóth, 2014) – 

and their improved version (euptfv2). Table 1 shows the number of samples in the training and test sets. 

2.2 Predicted soil hydraulic properties 

Prediction algorithms were derived for each of the following soil hydraulic properties: 

‒ water content at saturation (THS): water content at 0 cm matric potential head; 30 
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‒ water content at field capacity at 

‒ -100 cm matric potential head (FC_2), and 

‒ -330 cm matric potential head and (FC); 

‒ water content at wilting point (WP): water content at -15,000 cm matric potential head; 

‒ plant available water content (AWC) based on the following equations: 5 

‒ 𝐴𝑊𝐶 = 𝐹𝐶 − 𝑊𝑃         (1) 

‒ 𝐴𝑊𝐶_2 = 𝐹𝐶_2 − 𝑊𝑃         (2) 

‒ saturated hydraulic conductivity (KS): hydraulic conductivity at 0 cm matric potential head; 

‒ Mualem-van Genuchten model parameters (VG; for the water retention model only, MVG; for the water retention 

and hydraulic conductivity model). 10 

Transformation of predicted variables, and explanation on how (i) the water content at a certain matric potential head values 

were harmonized and (ii) the Mualem-van Genuchten model parameters were fitted is provided in great detail in (Tóth et al., 

2015). Similarly to euptfv1, for the description of the moisture retention curve (MRC), we predicted the VG model parameters: 

the residual water content (θr), the saturated water content (θs), and shape parameters α and n. For the hydraulic conductivity 

curve, two additional parameters: the hydraulic conductivity acting as a matching point at saturation K0 and a shape parameter 15 

related to pore tortuosity (L) are estimated too. FC_2 was not predicted in euptfv1 and was determined in this study as follows. 

In the EU-HYDI, 8231 samples have at least one water content observation in the matric potential head range -110 to -95 cm. 

86% of those have a measured water retention value exactly at -100 cm matric potential head. In 10% of the cases, FC_2 was 

set to the water content measured at the closest matric potential head in the range [-110, -95]. In the absence of a measured 

value at -100 cm, in 4 % of the cases, FC_2 was computed by linear interpolation between the two closest matric potential 20 

heads smaller and greater than -100 cm. In the case of AWC and AWC_2 direct and indirect predictions were analysed, i.e. 

AWC was once predicted directly from the predictor variables and once computed from the PTF predicted variables WP, and 

FC and FC_2, respectively. 

2.3 Predictor variables 

As predictors we used the following easily available soil properties: the particle size densities (PSD) characterised by the mass-25 

percentages of clay (<2 μm), silt (2–50 μm) and sand (50–2000 μm), organic carbon content (OC; mass-%) , bulk density (DB; 

g cm-3), calcium carbonate content (CACO3; mass-%), pH in water  (PH_H2O; -), cation exchange capacity (CEC; cmol (+) 

kg−1), and replaced the former topsoil and subsoil distinction in euptfv1 with mean soil depth (cm) (DEPTH). At minimum, 

the predictor variables, clay, silt and sand content, as well as mean soil depth were used regardless of predicted variable. In 

addition to that, we tested every possible combination of the other above mentioned soil properties (predictor variables) to 30 

determine which combination significantly improves the performance of the predictions. A total of 32 different combinations 

of predictor variables were studied in their respective ability to predict the nine different properties of interest; i.e. the set of 

soil hydraulic properties and model parameters.  
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Replacing the topsoil/subsoil distinction with depth for the new PTFs was supported by the fact that this information is 

commonly available, too, or can be based on expert knowledge. Introducing more accurate information on depth might improve 

the performance without using machine learning algorithms for the prediction. However, we did not test this hypothesis, 

because our aim was to provide uncertainty of the predictions related to predictor variables of the PTFs. Tested predictor 

variables are shown in Table 1 with number of samples used to derive the PTFs and compute their performance. 5 

2.4 The Random Forest algorithm to derive PTFs 

We derived the PTFs adopting the random forest method (Breiman, 2001), implemented in the ‘ranger’ R package (Wright 

and Ziegler, 2017). We selected this method, because (i) it is among the best performing prediction algorithms if there is a 

complex interaction structure in the dataset (Boulesteix et al., 2012), (ii) it computes quantiles of the predicted values, (iii) 

parallel processing is supported which saves significant computation time, and (iv) the initially black-box type algorithm can 10 

be interpreted based on computing variable importance and analysing partial dependence plots implemented in the ‘pdp’ R 

package (Greenwell, 2017b). 

In the case of a continuous response variable, a random forest is an ensemble of de-correlated regression trees (Breiman, 2001). 

The regression tree approach divides the predictor space into non-overlapping regions through minimizing the residual sum of 

squares. The aim of the method is to subset the data as homogeneously as possible at each split. The observations can be 15 

assigned to the defined regions in which the mean of the response variable is the predicted value. Single trees of the forest are 

noisy and limited in performance, but if many unbiased trees are derived and averaged with bagging, the variance is reduced 

and performance of the prediction improves (Hastie et al., 2009). Building of de-correlated trees is achieved by randomization 

at two levels. Firstly, each tree of the forest is grown on a randomly selected two thirds of the data with replacement, which is 

called bootstrap sample or in-bag fraction. Secondly, at each node of a single tree, randomly selected sets of predictors are 20 

analysed to split the data. This feature of randomization allows correlation between the response variables (Ziegler and König, 

2014), which is an important advantage in the case of pedotransfer functions where predictors are often highly correlated. 

Parameter tuning of the ranger was performed with the ‘caret’ R package (Kuhn et al., 2017, 2018). With the implemented 

train function, a fivefold cross-validation was repeated ten times to tune the number of randomly selected predictor variables 

at each split (𝑚𝑡𝑟𝑦) and find the best performing splitting rule (𝑠𝑝𝑙𝑖𝑡𝑟𝑢𝑙𝑒) during training. We started the tuning by setting 25 

the number of randomly selected predictor variables to two, then added one by one until the number of all available predictors 

for each input variable combination was reached. All three built-in splitting rules in the ranger function were tuned, namely 

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒, 𝑒𝑥𝑡𝑟𝑎𝑡𝑟𝑒𝑒𝑠 and 𝑚𝑎𝑥𝑠𝑡𝑎𝑡. The minimum node size was kept to 10. In addition to the tuning options included in 

the train function of the caret package, we optimized the number of trees in the forest. The above described tuning was 

performed by discretely altering the number of trees in the forest in separate tuning steps to 50, 100, 200, 500 and 1000, 30 

analysing the results and choosing the best number of trees for the random forest. 

We analysed the relevance of predictors and their influence on the response variable. The relevance of predictors was 

determined by computing the variable importance based on the mean decrease in impurity (Hastie et al., 2009) in the ranger 
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function. The relative importance was assessed by dividing the variable importance of each predictor by the sum of the 

importance of all the predictors after (Kotlar et al., (2019). The marginal effect of some selected predictors on the response – 

soil hydraulic parameters – was analysed with partial dependence plots (Greenwell, 2017a, 2017b). 

The final prediction algorithm was built on the whole training set based on the result of the tuning. For the description of the 

uncertainty, quantile regression was performed. Quantiles of the predicted values were estimated as implemented in quantile 5 

regression forest (Meinshausen, 2006). We analysed the 90% prediction interval for all predictions, but the derived algorithms 

(PTFs) provide the possibility to compute the individual predictions of each tree. 

2.5 Evaluation of derived PTFs 

The performance of the PTFs was calculated using the median values predicted by the random forests. It was described with 

the root mean square error (RMSE) (Eq. 3.), and the coefficient of determination (R2) (Eq. 4.) computed for the training and 10 

test sets. 

𝑹𝑴𝑺𝑬 = √
𝟏

𝑵
∑ (𝒚𝒊 − 𝒚̂𝒊)

𝟐𝑵
𝒊=𝟏 = √𝑴𝑺𝑬     (3) 

𝑹𝟐 = 𝟏 −
∑ (𝒚𝒊−𝒚̂𝒊)𝟐𝑵

𝒊=𝟏

∑ (𝒚𝒊−𝒚̅)𝟐𝑵
𝒊=𝟏

      (4) 

where 𝑦𝑖  is the measured and ŷ𝑖  the predicted soil water content or log-transformed saturated or unsaturated hydraulic 

conductivity, 𝑦̅𝑖 is the average of 𝑦𝑖, N is the number of 𝑦𝑖 and ŷ𝑖 data pairs, and MSE is the mean square error. The different 15 

data range of the dataset influences the performance of the PTFs when that is compared to the studies in the literature. 

Therefore, normalized RMSE (NRMSE) was computed (Eq. 5.), where 𝑦𝑚𝑎𝑥  and 𝑦𝑚𝑖𝑛 are the maximum and minimum value 

of variable. 

𝑵𝑹𝑴𝑺𝑬 =
𝑹𝑴𝑺𝑬

𝑦𝑚𝑎𝑥−𝑦𝑚𝑖𝑛
       (5) 

For each predicted variable, there was an initial set of 32 predictor combinations (Table 1), whose individual performance for 20 

each of the predicted variables was assessed. Based on the test results, we derived recommendations which PTF should be 

used when certain sets of predictor variables are available. We compared the performance of PTFs to quantify if there are 

significant differences between the predictions as a consequence of adding certain soil properties to the predictor variables. 

We also compared the performance of point and parameter estimations for those input combinations, which reflect the most 

frequently available soil property combination from a practical point of view. The aim of this comparison was to analyse 25 

whether point or parametric prediction performs better when only THS and/or FC/FC_2 and/or WP are needed. 

Additionally, the performance of the presented random forest based PTFs was compared to that of the euptfv1 (Tóth et al., 

2015). For comparison, those PTFs from euptfv2 were selected which corresponded to the analysed input variable combination 

of the euptfv1. 
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The comparison of PTFs was done using a non-parametric Kruskal-Wallis test at the 5% significance level applied on the MSE 

values – computed on TEST_BASIC and/or TEST_CHEM+ sets (Table 1) – using the R package agricolae (De Mendiburu, 

2017). Recommendation of PTFs for a given set of predictor variables was based on the performance of euptfv2 on the test 

sets. If there was no significant difference in performance, the PTF derived from the largest population was selected. 

All statistical analysis was performed in R [version 3.6.0] (R Core Team, 2019). 5 

3 Results and discussion 

3.1 General performance 

In the process of tuning the random forest parameters, the number of trees was found to be sufficient when set to 200 in all 

cases. The number of candidate predictors was found to be higher than the recommended square root of the number of available 

predictor variables (p) in most of the cases, especially when p was greater than 5 (Fig.1). When optimizing the splitting rules 10 

to build the trees in the forest, overall, the best performance was achieved by the 𝑒𝑥𝑡𝑟𝑎𝑡𝑟𝑒𝑒𝑠 rule in 54 %, by the 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 

rule in 28%, and by the 𝑚𝑎𝑥𝑠𝑡𝑎𝑡 rule in 18% of the cases (Fig. 1). 

The RMSE values were between 0.020 and 0.068 cm3 cm-3 for THS (Table 2), 0.046 and 0.055 cm3 cm-3 for FC (Table 3), 

0.040 and 0.060 cm3 cm-3 for FC_2 (Table 4), 0.037 and 0.048 cm3 cm-3 for WP (Table 5), 0.043 and 0.053 cm3 cm-3 for AWC 

(Table S1), 0.045 and 0.060 cm3 cm-3 for AWC_2 (Table S2), and 0.089 09 and 1.18 log10 (cm day-1) for KS (Table 6) in the 15 

case of including different predictor variables computed on the test sets. Table S3 shows the NRMSE for the point predictions 

computed for the TEST_BASIC and TEST_CHEM+ sets to provide possibility for comparison with other PTFs available from 

the literature. In the case of VG and MVG, RMSE for the entire matric potential head range was between 0.041 and 0.068 cm3 

cm-3 for the moisture retention (Table 7) and 0.61 and 0.71 log10 (cm day-1) for the hydraulic conductivity (Table 8). These 

RMSE values are within the range of recently published PTFs (McNeill et al., 2018; Nguyen et al., 2017; Román Dobarco et 20 

al., 2019; Zhang and Schaap, 2017). In the case of the point estimations, Figures 2, S1 depict the scatterplots of measured and 

predicted soil hydraulic parameters with 90% prediction interval. Performance of the worst to best PTFs are shown. The 

addition of predictors that significantly improve the predictions also decreases the uncertainty. Figures S2, S4, S6, S8, S10, 

S12, S14, S16, S19 show the squared error of the derived PTFs computed on the TEST_BASIC and TEST_CHEM+ sets. The 

PTFs are ordered based on their performance. Density plots of measured and predicted soil hydraulic values are included in 25 

Figures S3, S5, S7, S9, S11, S13, S15, S17, S20. Plots show the PTFs that use the most frequently available predictors. 

This study strengthens the importance of chemical soil properties in the prediction. CEC was found to be an important predictor 

by Pachepsky and Rawls (1999) for FC and WP, by Botula et al. (2013) for water retention at several matric potential head 

values, and by Hodnett and Tomasella (2002) for the VG parameters. Hodnett and Tomasella (2002) showed that pH influenced 

all four VG parameters. The role of CACO3 was shown to be not significant in the study of (Khodaverdiloo et al., (2011). 30 

They highlight that a possible influence of CACO3 might already have been indirectly included by bulk density. The role of 

PSD, BD and OC has been studied extensively by various authors, e.g. Nemes et al. (2003); Rawls et al. (2003); Vereecken et 
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al. (1989); Weynants et al. (2009); Wösten et al. (1999), which is in line with the general pattern of variable influence we see 

in this study. 

Table S3 summarizes the recommended PTF for each combination of available predictor variables. The importance and 

influence of soil properties on the performance of hydraulic PTFs and results of partial dependence plots are reported below 

by predicted soil hydraulic properties. 5 

3.2 Point estimations 

The performance of the PTFs was computed for the training and test sets (Tables 2-8 and Tables S1-2) indicating the presence 

of significant differences. For each predictor variable, the recommended PTF number is indicated and its predictor variables 

are highlighted in bold font in the respective tables. For easier comparison with euptfv1, the corresponding PTF number used 

in Tóth et al. (2015) is additionally provided in each table. In the following, detailed results of the constructed PTFs for the 10 

individual predicted variables are presented and discussed. 

Water content at saturation 

Table 2, Figures S2 and S3 show the performance of the PTFs predicting THS. The best performing random forest is PTF03. 

It is also the one trained on the largest population. It uses PSD, DEPTH and BD as predictors. For the prediction of THS, the 

most important variable by far is BD (Fig. 3). When BD is not used for the computation of THS, values above 0.60 cm3 cm-3 15 

are not well predicted (Fig. S3). The addition of OC or CACO3 or PH_H2O to PSD and DEPTH improves significantly the 

performance of the PTF. The picture changes if BD is known: if PSD, DEPTH and BD were available, further addition of OC 

or CACO3 or PH_H2O or CEC does not significantly improve the prediction, neither do their combinations. Figure 4 shows 

the dependence of THS on OC and BD, considering the average effect of the other predictor variables – i.e. PSD and DEPTH. 

When BD is lower than 1.5 g cm-3 changes in OC does not influence THS. If BD is larger than 1.5 g cm-3, samples with higher 20 

OC have higher THS. 

Water content at field capacity 

The performance of the PTFs computed on training and test set are shown in Table 3, Figures S4 and S5 for FC_2 and in Table 

4, Figures S6 and S7 for FC. The best performing PTF derived from the largest population is the one using i) PSD, DEPTH, 

OC, BD and PH_H2O (PTF18) in the case of FC_2, and ii) PSD, DEPTH, OC and BD (PTF07) for FC. 25 

For FC_2, the two most important variables are USSAND and BD (Fig. 3). When BD and USSAND increase, FC_2 decreases 

(Fig. 4). Adding OC or BD to PSD and DEPTH significantly improves the prediction of FC_2. If either of CACO3, PH_H2O 

or CEC is added as a further predictor to PSD and DEPTH, the performance of the PTF does not significantly improve. If PSD, 

DEPTH and BD are available, adding OC or CACO3 or PH_H2O does not significantly improve the prediction. Including 

CEC as an additional predictor besides PSD, DEPTH and BD, significantly improves the estimation of FC_2. 30 
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USSAND and USCLAY are the two most important variables for the prediction of FC (Fig. 3). Instead of analysing these two 

soil properties, both characterizing the soil texture, we include OC next to USSAND in the partial dependence plot analysis, 

because the amount of OC can be altered due to change in climate, land use, soil and water management, cropping systems, 

etc. (Wiesmeier et al., 2019). Within the range of OC in the dataset FC increases with increasing OC regardless of USSAND 

content by up to 0.08 cm3 cm-3 even when USSAND is greater than 60 % (Fig. 4). Adding OC or CEC to PSD and DEPTH 5 

significantly improves prediction of FC. The effect of CEC on the prediction of FC was also shown by Pachepsky and Rawls 

(1999). BD or CaCO3 or PH_H2O do not significantly improve the predictions if PSD, DEPTH, or PSD, DEPTH and OC are 

available. Predictions significantly improve when both CaCO3 and PH_H2O are added as predictors to PSD, DEPTH and OC. 

Water content at wilting point 

The performance of PTFs derived for WP prediction is shown in Table 5, Figures S8 and S9. Among the best performing 10 

PTFs, PTF09 is derived on the largest training set. It uses PSD, DEPTH, OC and PH_H2O as predictors. Even though the most 

important variables for WP prediction were USCLAY and USSAND (Fig. 3), we included OC on the partial dependence plot 

(Fig. 4) as in the FC analysis. USCLAY had the strongest influence on WP. The influence of OC on WP can be detected for 

soils with OC less than 4 % and USCLAY less than 50 %. Below 10 % USCLAY, the WP slightly increases with increasing 

OC. When USCLAY is between 10 and 50 % and OC is less than 4%, increasing OC generally decreases WP.  15 

OC significantly improves the prediction of WP if added to PSD and DEPTH. If BD or CACO3 or PH_H2O or CEC are added 

to PSD and DEPTH, the performance of the prediction does not improve significantly. Adding CACO3 and CEC to PSD, 

DEPTH and OC significantly improves the prediction. 

Plant available water content 

Table S1, S2 and Figures S1, S10-13 show the performance of AWC and AWC_2 predictions. PTF03 is the best performing 20 

algorithm with largest training set for both. It considers PSD, DEPTH and BD for the prediction. For both AWC and AWC_2, 

BD is the most important predictor among the analysed variables (Fig. 3). The second most important variable is USCLAY in 

the case of AWC_2 and USSILT for AWC. Increasing BD and USCLAY decreases AWC_2. In the case of AWC, increasing 

BD and decreasing USSILT decreases the water content (Fig. 4). 

OC and BD significantly improve the prediction of AWC_2 when added as input variables next to PSD and DEPTH. If either 25 

BD or OC is already included, adding the respective other, does not significantly improve the prediction. Neither PH_H2O, 

CACO3 nor CEC significantly improve the prediction.  

For the prediction of AWC, further addition of only BD or OC or CACO3 or PH_H2O or CEC to PSD and DEPTH does not 

significantly improve the prediction. If both OC and BD are included as predictors next to PSD and DEPTH, the prediction 

significantly improves. 30 

There is no significant difference between direct and indirect predictions, neither for AWC nor for AWC_2. However, the size 

of the test set used for the statistical analysis is limited. There were only 145 samples in the TEST_BASIC set and 64 samples 
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in TEST_CHEM+ set after merging datasets available for both direct and indirect predictions for analysing AWC, and 70 and 

34 samples in the case of AWC_2. Thus, if prediction of FC_2/FC and WP are needed in addition to AWC_2/AWC, we 

recommend to compute AWC from those to save on computing time. Variation in AWC could be explained less efficiently 

(Table S1, S2) than the other studied water retention values but the performance of the prediction is comparable with that of 

published in the literature (Li et al., 2016; Malone et al., 2009). 5 

Saturated hydraulic conductivity 

The performance of KS prediction is shown in Table 6, Figure S14 and S15. The predictors of the best performing PTF derived 

on largest training set are PSD, DEPTH and OC (PTF02). The prediction of KS significantly improves if OC is included among 

the predictor variables next to PSD and DEPTH. No other predictors significantly improve the performance of the PTF. On 

the training dataset, when OC is greater than 2.5 %, the influence of clay content on KS is more dominant than that of OC 10 

(Fig. 4). In the case of KS prediction, the simplest best performing PTF – which was derived on a training dataset with KS 

ranging between -3.00 and 4.67 log10(cm day-1) – has an RMSE of 0.94 log10(cm day-1) and NRMSE 0.14 log10(cm day-1) 

(Table S3). PSD and CEC are the most important input variables for the prediction of KS when all nine variables are considered 

as predictors (Fig. 3). In that case, OC is the fifth and BD is only the eighth most important variable. The prediction 

performance is influenced by the heterogeneity of measurement methods of KS in the EU-HYDI dataset. When the methods 15 

are homogeneous, the RMSE value is usually around 0.6-0.87 log10 (cm day-1) as reviewed by (Zhang and Schaap, 2019). 

ROSETTA3 PTF with PSD and BD predictors had an RMSE of 0.68 log10 (cm day-1) with an NRMSE of 0.11 log10 (cm day-

1) (Zhang and Schaap, 2017). Araya and Ghezzehei (2019) report that thepublished PTF using PSD, BD and OC predictors 

with the highest accuracy in the literature has with and RMSE of 0.3-0.4 log10 (cm day-1) and NRMSE of 0.06 log10 (cm day-

1). In Lilly et al. (2008), the performance of the KS predictions and findings were similar to this study. They report an RMSE 20 

between 0.95 and 1.098 log10(cm day-1) – with an NRMSE between 0.17 and 0.20 log10(cm day-1) – for the KS prediction when 

analysed with several input combinations. Even when information on soil structure and crack orientation was considered – 

next to topsoil and subsoil distinction, PSD, BD and OC – the RMSE was 0.97 log10(cm day-1). BD would be among the most 

important variables, but also in their analysis its influence was masked out. They derived the PTFs on the HYPRES dataset 

(Wösten et al., 1999), which also includes very diverse methods to determine the saturated hydraulic conductivity and part of 25 

which is also contained in the EU-HYDI. The uncertainty in the predictions (Fig. 2) could be decreased if the predictions 

would be differentiated according to the measurement methods, but that might decrease the applicability of the PTFs. On the 

contrary, this study indicates the necessity to include saturated hydraulic conductivity values determined from many different 

measurement techniques, otherwise the PTFs are expected to lose their generality. 

3.3 Parameter estimations 30 

The performance of parametric PTFs are shown in Tables 7 and 8 and Figures 5, 6, S16-S21. Figure 7 illustrates the importance 

of variables for the prediction of VG and MVG parameters. The best performing PTF derived on the largest training set is 
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PTF29 – with PSD, DEPTH, OC, BD, PH_H2O and CEC – for MRC and PTF27 – with PSD, DEPTH, OC, BD, CACO3, 

PH_H2O – for HCC. 

For θr, overall, BD is the most important predictor while all other predictors show similar variable importance (Fig. 7). 

Interpretation of this parameter is complex, but it was demonstrated that it is influenced by the soil specific surface area 

(Assouline and Or, 2013), and the measured data range (Weber et al. 2019). For θs, the most important predictor is by far BD, 5 

similarly to THS. The importance of CEC has to be noted for the prediction of parameters α, n and L. For prediction of 

parameter n – which relates to the pore size distribution – USCLAY and USSAND are the most important variables. K0 is 

influenced by several soil properties besides those included in the dataset used here, e.g. pore connectivity, tortuosity, primary 

pore orientation, some of which are not direction. These properties cannot be directly inferred from other soil properties 

limiting the explanatory power of the available properties. The prediction of K0 remains complex and challenging. Variable 10 

importance of all studied predictors is greater than 70%. Moreover, K0 is influenced by the data quality, and,; moreover, is 

correlated in parameter space, which is not treated, here. 

Only a few studies have analysed the importance of CEC for MRC and HCC PTFs (Botula et al., 2013; Hodnett and Tomasella, 

2002; Pachepsky and Rawls, 1999) which might be linked to the fact that CEC is rarely available in soil hydraulic datasets. It 

is noteworthy to highlight that all best performing MRC PTFs (PTF24, PTF28, PTF29, PTF30, PTF31) include CEC among 15 

the predictors (Table 7). In addition to that, Hodnett and Tomasella (2002) found that CEC was important for the prediction of 

θr and α parameters of the van Genuchten model. This is because CEC provides indirect information on soil mineralogy and 

reflects soil specific surface area, charge density and pore size which influence soil water retention (Lal and Shukla, 2004).  

Moisture retention curve 

If BD or OC or CACO3 or CEC or PH_H2O are added as a predictor to information on PSD and DEPTH, the performance of 20 

the PTF significantly improves (Table 7., Fig. S16). Adding BD next to PSD and DEPTH improves the predictions more than 

adding OC (Table 7., Fig. S17). BD and OC together significantly improve the prediction compared to using PSD, DEPTH 

together with either BD or OC. Adding OC next to PSD, DEPTH, BD and chemical soil properties (CACO3 and/or CEC and 

/or PH_H2O) does not significantly improve the prediction. If PSD, DEPTH, CACO3 and CEC are available, further addition 

of PH_H2O does not improve the prediction. The best performing PTF includes USSAND, USSILT, USCLAY, DEPTH, BD, 25 

CACO3, CEC. Figure 5 shows a scatterplot of measured and predicted water content values, including the performance of the 

worst and the best performing PTF (PTF01 and PTF29). The importance of including chemical properties and most importantly 

bulk density among the predictors is visible when measured water contents are greater than 0.50 cm3 cm-3. Those high water 

content values are characteristic when the soil is close to saturation, thus indirect information about the structure is needed for 

more accurate predictions of those water content values. Parametric PTFs underestimate water content near saturation and 30 

between -200 and -15,000 cm matric potential head (Fig. S18). Overestimation occurs between -10 and -50 cm matric potential 

head and above 16000 cm matric potential head. When chemical soil properties are included, the degree of underestimation 
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decreases between -200 and -15,000 cm matric potential head, but overestimation increases between -5 and -10 cm with around 

0.02 cm3 cm-3. 

Hydraulic conductivity curve 

OC, CACO3, PH_H2O and CEC significantly improve the prediction of HCC when added to PSD and DEPTH. Adding BD 

next to PSD and DEPTH does not improve the predictions (Table 8, Fig. S19, S20). If PSD, DEPTH and OC are used as 5 

predictors, further addition of  BD or CACO3 or PH_H2O or CEC does not significantly improve the performance of the PTFs. 

However, adding CaCO3 and CEC or PH_H2O significantly improve the prediction. The performance of the worst and the 

best performing PTF is shown on Figure 6. The PTF with only PSD and DEPTH underestimate hydraulic conductivity values 

smaller than 0.01 cm day-1. When OC, BD, PH_H2O and CEC are included, the underestimation decreases. This could be 

explained by the fact that these predictors contain indirect information of soil particle surface area and surface characteristics, 10 

which are some of the governing properties of low hydraulic conductivities. 

When soil chemical properties are not used as predictors, hydraulic conductivity is underestimated close to saturation and at 

matric potential heads smaller than -500 cm; overestimation occurs between -10 and -500 cm matric potential head (Fig. S21). 

If chemical properties are also considered, hydraulic conductivity is i) underestimated at matric potential head smaller than -

5000 cm, and ii) overestimated between -5 and -5000 cm. With added information on chemical properties, the degree of 15 

underprediction decreases close to saturation and at the very dry end of the hydraulic conductivity curve. In parts, this is not 

an effect of the PTFs but the limitations inherent to MVG to describe the entire hydraulic conductivity curve (Weber et al., 

2019). Increase in prediction performance for values lower than 0.1 cm day-1 is visible also on Figure 6. 

Samples with measurements of the HCC at pressure heads < -1000 cm are less frequent and are not as numerous within a 

dataset of a single sample, if it was measured. Since the dataset of estimated VG model parameters were identical in this study 20 

and in Tóth et al. (2015), differences between the two studies of the unsaturated HCC are related to the PTF methods involved. 

However, at pressure heads <-1000 cm, the HCC is dominated by non-capillary conductivity (Streck and Weber, 2020; Weber 

et al., 2019), which is not included in the MVG model. The considerable data mismatch observable for the dry range (Fig. 6) 

can only be overcome by a different soil hydraulic property model and by a different PTF, because of compensatory effects in 

the VG. With this we mean that better data descriptions in the dry end, will lead to a larger mismatch in the wet end, as a 25 

consequence of the rigid model structure in the MVG model, which only accounts for capillary storage and conductivity. For 

better data description at <-1000 cm other more comprehensive models need to be adopted (Weber et al., 2020). 

3.4 Comparison of point and parameter predictions 

We compared the performance of the best point prediction methods (Table 2-5) with the best parameter estimations (Table 7) 

on the test sets. In 5 out of 20 cases, point predictions are significantly more accurate and for further 8 cases RMSE were 30 

smaller. In all other cases, we have no significant difference between point and parametric PTFs (Table 9). The reason for 

higher RMSE in parameter estimation can be that the VG model does not always adequately describe the measured MRC data 
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(Weber et al., 2019). Therefore, when THS, FC, FC_2 and WP are computed with parameter estimation those are not only 

affected by the uncertainty of the prediction of VG parameters but by the goodness of VG model fit as well. We found similar 

results in the case of euptfv1 (Tóth et al., 2015). Tomasella et al. (2003) and Børgesen and Schaap (2005) had comparable 

findings regarding the performance of point and parametric PTFs. For THS point estimation performed better than parameter 

estimation. When the moisture retention curve is not needed, Wbut only THS and/or FC/FC_2 and/or WP, we recommend to 5 

compute THS, FC, FC_2 and WPthose with the point PTFs, more detailed explanation on it is included in Tóth et al. (2015). 

3.5 Comparison of euptfv1 and v2 

In 14 out of 19 cases, the PTFs of euptfv2 perform significantly better predicting the test sets than the PTFs of euptfv1. In the 

remaining 5 cases there is no significant difference (Table 10). Predictions of FC and MRC improve in all cases. The most 

important reason for it can be that the interaction between the target variable and the predictors is more complex for the cases 10 

of predicting FC or VG parameters – to describe the MRC –, which can be untangled using random forest. This may provide 

a reason the random forest algorithm performed significantly better than the PTFs derived with linear regression or a simple 

regression tree. For THS, WP, KS, and MVG only those PTFs did not improve significantly, for which comparisons on the 

TEST_CHEM+ set wereas possible – which includes reduced number of samples. The RMSE of THS prediction was somewhat 

lower for euptfv1 than for euptfv2, but the difference was not significant. It could be due to the close to linear relationship 15 

between THS and BD and high relative importance of BD in THS prediction (84 %). This way their interaction can be 

efficiently described with the linear regression which is capable to extrapolate as well. Extrapolation with the random forest 

algorithm is not possible outside the training data, which can limit its performance.  The general improvement of the PTFs in 

euptfv2 is twofoldthreefold, the better performance it is due to i) using random forest instead of single regression tree or linear 

regression, and ii) including more detailed information on soil sampling depth, not only distinguishing topsoils and subsoils 20 

and iii) providing information on prediction uncertainty. 

We recommend the use of euptfv2 instead of euptfv1 if continuous soil properties are available. If only texture classes – i.e. 

no particle size distribution – are available, class PTFs of euptfv1 can be used, that is PTF18 for modified FAO texture classes 

and PTF19 for USDA texture classes. 

4 Practical guidance on how to use the PTFs 25 

The minimum input requirements for all PTFs are sand, silt and clay content, and soil depth. Soil depth needs to be considered 

in regard to the depth of the other input properties and soil hydraulic data needs, e.g. if the soil hydraulic properties of the top 

20 cm (0-20 cm) is needed, then depth needs to be set at 10 cm in the input data of the prediction. 

If only soil texture information is available for the predictions, the class PTFs from euptfv1 could be applied (Tóth et al., 2015). 

We emphasise that: 30 
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1. the units of input soil properties (predictors) have to be the same as indicated in the text and that the sand, silt, and 

clay are defined by the following particle diameters: clay < 2 μm, silt between 2 and 50 μm, and sand between 50 

and 2000 μm, 

2. when only specific water content values at saturation, field capacity or wilting point are required (ie. THS, FC_2, 

FC, WP) it is recommended to use point PTFs. This is also true for the prediction of KS, 5 

3. for AWC, the most accurate way is by first predicting FC and WP with the point predictions and then compute 

AWC using Eq. (1), and similarly for AWC_2 using FC_2 and Eq. (2), 

4. it is recommended to do the VG prediction if only moisture retention curve parameters are needed, and 

5. the MVG prediction when both moisture retention and hydraulic conductivity parameters are required. 

The VG algorithms predict the following van Genuchten model parameters: the residual water content θr (cm³ cm-3), the 10 

saturated water content θs (cm³ cm-3), and shape parameters α (cm-1) and n (-). Parameter m is provided based on m=1-1/n (van 

Genuchten, 1980), and for the hydraulic conductivity curve, the two additional parameters: K0 (cm day-1) the hydraulic 

conductivity acting as a matching point at saturation and L (-), a shape parameter related to pore tortuosity.  

Table 11 shows the recommended PTFs for each predicted soil hydraulic property and available predictor variables. The users 

need to check which basic soil properties are available for the predictions, then look in Table 11 which PTF is recommended 15 

to use. 

The algorithms have been implemented in a web interface to facilitate the use of the PTFs, where the PTFs’ selection is 

automated based on soil properties available for the predictions and required soil hydraulic property. The Code and data 

availability section provides information on how to access this resource. 

45 Conclusions 20 

The updated EU-PTFs – euptfv2 – perform significantly better than euptfv1 and are applicable for 32 predictor variables 

combinations. Uncertainties of the predicted soil hydraulic properties and model parameters can be computed. These 

uncertainties are, without further discrimination, related to the considered input data, predictors and the applied algorithm. The 

euptfv2 includes transfer functions to compute soil water content at saturation (0 cm matric potential head), field capacity 

(both -100 and -330 cm matric potential head) and wilting point (-15.,000 cm matric potential head), plant available water 25 

content computed with field capacity at -100 and -330 cm matric potential head, saturated hydraulic conductivity, and Mualem-

van Genuchten parameters of the moisture retention and hydraulic conductivity curves. For analyses of the impact as well as 

the significance of the uncertainties on the predicted soil hydraulic properties and model parameters, further studies are 

required. 

Code and data availability. The current version of euptfv2 is available from  a user friendly web 30 

interface:  https://ptfinterface.rissac.hu (Szabó et al., 2019b) under the Creative Commons Attribution-NonCommercial 3.0 

https://ptfinterface.rissac.hu/


15 

 

Unported License. The exact version of the model used to produce the results used in this paper is archived on Zenodo 

(https://doi.org/10.5281/zenodo.3759443, Szabó et al., 2020), as are the R scripts to develop the predictions and the derived 

pedotransfer functions – in RData format – presented in this paper. The training data set cannot be made publicly available 

due to legal restrictions of the EU-HYDI dataset, thus only a test sample is provided along with the model code. 

Supplement. The Supplement related to this article is available online. 5 
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TABLES 

Table 1. Number of samples by predictor variable combinations used to derive the new European PTFs (euptfv2). Rows in 

italic font indicate PTFs with the same predictor variables as were tested in euptfv1 (Tóth et al., 2015). 

Name  Predictor variables1 
Number of samples in TRAIN set2 

THS FC_2 FC WP KS AWC_2 AWC VG MVG 

PTF01 PSD+DEPTH 3354 5109 2196 5264 3157 3528 1863 4669 739 

PTF02 PSD+DEPTH+OC 2966 4131 1716 4802 2620 3208 1650 3708 407 

PTF03 PSD+DEPTH+BD 3305 5034 2176 5197 3146 3472 1849 4593 726 

PTF04 PSD+DEPTH+CACO3 678 1670 1537 1816 639 1548 1531 1671 273 

PTF05 PSD+DEPTH+PH_H2O 1203 2062 1278 2039 907 1849 1245 1897 230 

PTF06 PSD+DEPTH+CEC 895 1649 1097 1703 567 1550 1092 1488 141 

PTF07 PSD+DEPTH+OC+BD 2959 4117 1711 4786 2609 3197 1645 3695 404 

PTF08 PSD+DEPTH+OC+CACO3 673 1586 1340 1599 613 1464 1336 1589 250 

PTF09 PSD+DEPTH+OC+PH_H2O 1052 1808 1100 1678 862 1615 1074 1663 224 

PTF10 PSD+DEPTH+OC+CEC 744 1437 1001 1459 525 1358 998 1293 138 

PTF11 PSD+DEPTH+BD+CACO3 678 1666 1526 1806 639 1545 1522 1670 272 

PTF12 PSD+DEPTH+BD+PH_H2O 1156 2008 1267 1979 898 1796 1236 1847 229 

PTF13 PSD+DEPTH+BD+CEC 848 1596 1093 1648 558 1498 1088 1437 140 

PTF14 PSD+DEPTH+CACO3+PH_H2O 678 1314 1235 1375 620 1195 1230 1264 223 

PTF15 PSD+DEPTH+CACO3+CEC 373 770 793 831 405 726 791 758 136 

PTF16 PSD+DEPTH+PH_H2O+CEC 894 1350 744 1349 567 1255 739 1188 141 

PTF17 PSD+DEPTH+OC+BD+CACO3 673 1585 1338 1596 613 1464 1334 1588 249 

PTF18 PSD+DEPTH+OC+BD+PH_H2O 1047 1799 1098 1667 853 1607 1072 1655 223 

PTF19 PSD+DEPTH+OC+BD+CEC 739 1427 998 1447 516 1349 995 1284 137 

PTF20 PSD+DEPTH+OC+CACO3+PH_H2O 673 1249 1062 1183 613 1130 1059 1201 219 

PTF21 PSD+DEPTH+OC+CACO3+CEC 369 727 709 743 401 683 707 712 135 

PTF22 PSD+DEPTH+OC+PH_H2O+CEC 744 1142 663 1121 525 1067 660 996 138 

PTF23 PSD+DEPTH+BD+CACO3+PH_H2O 678 1310 1224 1365 620 1192 1221 1263 222 

PTF24 PSD+DEPTH+BD+CACO3+CEC 373 768 790 827 405 725 788 757 135 

PTF25 PSD+DEPTH+BD+PH_H2O+CEC 847 1298 741 1295 558 1204 736 1138 140 

PTF26 PSD+DEPTH+CACO3+PH_H2O+CEC 373 727 734 772 405 684 732 717 136 

PTF27 PSD+DEPTH+OC+BD+CACO3+PH_H2O 673 1248 1060 1180 613 1130 1057 1200 218 

PTF28 PSD+DEPTH+OC+BD+CACO3+CEC 369 726 707 740 401 683 705 711 134 

PTF29 PSD+DEPTH+OC+BD+PH_H2O+CEC 739 1133 661 1110 516 1059 658 988 137 

PTF30 PSD+DEPTH+OC+CACO3+PH_H2O+CEC 369 684 655 689 401 641 653 671 135 

PTF31 PSD+DEPTH+BD+CACO3+PH_H2O+CEC 373 725 731 768 405 683 729 716 135 

PTF32 PSD+DEPTH+OC+BD+CACO3+PH_H2O+CEC 369 683 653 686 401 641 651 670 134 
 Number of samples in TEST_BASIC set 1247 1762 801 2088 1117 1372 705 1591 176 
 Number of samples in TEST_CHEM+ set 156 296 280 294 169 274 279 288 57 
1PSD: particle size distribution (sand, 50–2000 μm; silt, 2–50 μm; clay, <2 μm (mass %)); DEPTH: mean soil depth (cm); OC: organic carbon content (mass 

%); BD: bulk density (g cm−3); CACO3: calcium carbonate content (mass %); PH_H2O: pH in water (-); CEC: cation exchange capacity (cmol (+) kg−1). 5 
2THS: saturated water content (pF 0); FC_2: water content at -100 cm matric potential head (pF 2.0); FC: water content at -330 cm matric potential head (pF 

2.5); AWC_2: plant available water content based on FC_2; AWC: plant available water content based on FC; WP: water content at wilting point (pF 4.2); 

KS: saturated hydraulic conductivity; VG: parameters of the van Genuchten model; MVG: parameters of the Mualem – van Genuchten model; TEST_BASIC: 

samples with measured PSD, DEPTH, OC and BD; TEST_CHEM+: samples with measured PSD, DEPTH, OC, BD, CACO3, PH_H2O and CEC. 
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Table 2. Performance of pedotransfer functions (PTFs) by input combination on training and test datasets to predict water 

content at saturation (THS). N: number of samples, RMSE: root mean square error (cm3 cm-3), and R2: determination 

coefficient, TEST_BASIC: samples with measured PSD, DEPTH, OC and BD; TEST_CHEM+: samples with measured PSD, 

DEPTH, OC, BD, CACO3, PH_H2O and CEC. Recommended PTFs are highlighted in bold. 

Name of 

PTF in 

euptfv2 

Predictor variables1 

Training set Test set Sign. difference2 

Recom-

mended 

PTF 

Pair 

from 

euptfv1 
N RMSE R2 N RMSE R2 

T
E

S
T

_
B

A
S

IC
 

se
t 

T
E

S
T

_
C

H
E

M
+

 

se
t 

PTF01 PSD+DEPTH 3354 0.067 0.366 1274 0.068 0.344 a a PTF01 - 

PTF02 PSD+DEPTH+OC 2966 0.053 0.577 1274 0.056 0.552 b abc PTF02 PTF04 

PTF03 PSD+DEPTH+BD 3305 0.029 0.880 1274 0.031 0.862 c d PTF03 - 

PTF04 PSD+DEPTH+CACO3 678 0.046 0.187 156 0.057 0.053 - bc PTF04 - 

PTF05 PSD+DEPTH+PH_H2O 1203 0.056 0.298 156 0.053 0.193 - bc PTF05 - 

PTF06 PSD+DEPTH+CEC 895 0.055 0.401 156 0.057 0.048 - ab PTF01 - 

PTF07 PSD+DEPTH+OC+BD 2959 0.027 0.888 1274 0.030 0.869 c d PTF03 PTF05 

PTF08 PSD+DEPTH+OC+CACO3 673 0.044 0.209 156 0.055 0.118 - bc PTF02 - 

PTF09 PSD+DEPTH+OC+PH_H2O 1052 0.046 0.457 156 0.050 0.272 - c PTF02 - 

PTF10 PSD+DEPTH+OC+CEC 744 0.046 0.519 156 0.051 0.233 - abc PTF02 - 

PTF11 PSD+DEPTH+BD+CACO3 678 0.023 0.791 156 0.022 0.863 - d PTF03 - 

PTF12 PSD+DEPTH+BD+PH_H2O 1156 0.027 0.826 156 0.021 0.878 - d PTF03 - 

PTF13 PSD+DEPTH+BD+CEC 848 0.027 0.848 156 0.021 0.873 - d PTF03 - 

PTF14 PSD+DEPTH+CACO3+PH_H2O 678 0.045 0.231 156 0.050 0.265 - bc PTF05 - 

PTF15 PSD+DEPTH+CACO3+CEC 373 0.045 0.257 156 0.054 0.164 - abc PTF04 - 

PTF16 PSD+DEPTH+PH_H2O+CEC 894 0.052 0.459 156 0.055 0.132 - bc PTF05 - 

PTF17 PSD+DEPTH+OC+BD+CACO3 673 0.019 0.856 156 0.021 0.872 - d PTF03 - 

PTF18 PSD+DEPTH+OC+BD+PH_H2O 1047 0.024 0.848 156 0.021 0.871 - d PTF03 PTF06 

PTF19 PSD+DEPTH+OC+BD+CEC 739 0.027 0.837 156 0.021 0.874 - d PTF03 - 

PTF20 PSD+DEPTH+OC+CACO3+PH_H2O 673 0.043 0.251 156 0.050 0.285 - c PTF02 - 

PTF21 PSD+DEPTH+OC+CACO3+CEC 369 0.043 0.309 156 0.051 0.242 - bc PTF02 - 

PTF22 PSD+DEPTH+OC+PH_H2O+CEC 744 0.046 0.531 156 0.050 0.280 - bc PTF02 - 

PTF23 PSD+DEPTH+BD+CACO3+PH_H2O 678 0.023 0.796 156 0.021 0.869 - d PTF03 - 

PTF24 PSD+DEPTH+BD+CACO3+CEC 373 0.021 0.841 156 0.021 0.869 - d PTF03 - 

PTF25 PSD+DEPTH+BD+PH_H2O+CEC 847 0.027 0.850 156 0.020 0.883 - d PTF03 - 

PTF26 PSD+DEPTH+CACO3+PH_H2O+CEC 373 0.044 0.305 156 0.049 0.308 - abc PTF05 - 

PTF27 PSD+DEPTH+OC+BD+CACO3+ 

PH_H2O 

673 0.019 0.858 156 0.022 0.865 - d PTF03 - 

PTF28 PSD+DEPTH+OC+BD+CACO3+CEC 369 0.021 0.845 156 0.021 0.874 - d PTF03 - 

PTF29 PSD+DEPTH+OC+BD+PH_H2O+CEC 739 0.026 0.843 156 0.020 0.880 - d PTF03 - 

PTF30 PSD+DEPTH+OC+CACO3+PH_H2O+ 

CEC 

369 0.042 0.356 156 0.049 0.319 - bc PTF02 PTF04 

PTF31 PSD+DEPTH+BD+CACO3+PH_H2O+ 

CEC 

373 0.021 0.843 156 0.021 0.871 - d PTF03 - 

PTF32 PSD+DEPTH+OC+BD+CACO3+ 

PH_H2O+CEC 

369 0.021 0.844 156 0.021 0.876 - d PTF03 PTF06 

1PSD: particle size distribution (sand, 50–2000 μm; silt, 2–50 μm; clay, <2 μm (mass %)); DEPTH: mean soil depth (cm); OC: organic carbon content (mass 5 
%); BD: bulk density (g cm−3); CACO3: calcium carbonate content (mass %); PH_H2O: pH in water (-); CEC: cation exchange capacity (cmol (+) kg−1). 
2Different letters indicate significant differences at the 0.05 level between the accuracy of the methods based on the squared error; for example performance 

indicated with the letter c is significantly better than the one noted with letters b and a.  
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Table 3. Performance of pedotransfer functions (PTFs) by input combination on training and test datasets to predict water 

content at -100 cm matric potential head (FC_2). N: number of samples, RMSE: root mean square error (cm3 cm-3), and R2: 

determination coefficient, TEST_BASIC: samples with measured PSD, DEPTH, OC and BD; TEST_CHEM+: samples with 

measured PSD, DEPTH, OC, BD, CACO3, PH_H2O and CEC. Recommended PTFs are highlighted in bold. FC_2 was not 

analysed in euptfv1. 5 

Name of 

PTF in 

euptfv2 

Predictor variables1 

Training set Test set Sign. difference2 

Recom-
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PTF 

Pair 
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N RMSE R2 N RMSE R2 
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PTF01 PSD+DEPTH 5109 0.062 0.651 1762 0.060 0.669 a a PTF01 - 

PTF02 PSD+DEPTH+OC 4131 0.057 0.711 1762 0.055 0.718 b ab PTF02 - 

PTF03 PSD+DEPTH+BD 5034 0.053 0.750 1762 0.052 0.745 bc bcdef PTF03 - 

PTF04 PSD+DEPTH+CACO3 1670 0.052 0.566 296 0.054 0.467 - abcd PTF01 - 

PTF05 PSD+DEPTH+PH_H2O 2062 0.056 0.630 296 0.056 0.419 - abc PTF01 - 

PTF06 PSD+DEPTH+CEC 1649 0.056 0.658 296 0.054 0.469 - abcde PTF01 - 

PTF07 PSD+DEPTH+OC+BD 4117 0.051 0.769 1762 0.050 0.769 c bcdefg PTF03 - 

PTF08 PSD+DEPTH+OC+CACO3 1586 0.050 0.589 296 0.049 0.565 - bcdefgh PTF02 - 

PTF09 PSD+DEPTH+OC+PH_H2O 1808 0.050 0.679 296 0.048 0.581 - bcdefg PTF02 - 

PTF10 PSD+DEPTH+OC+CEC 1437 0.051 0.688 296 0.049 0.554 - cdefghij PTF06 - 

PTF11 PSD+DEPTH+BD+CACO3 1666 0.044 0.701 296 0.046 0.616 - fghijklmn PTF03 - 

PTF12 PSD+DEPTH+BD+PH_H2O 2008 0.046 0.746 296 0.043 0.657 - efghijkl PTF03 - 

PTF13 PSD+DEPTH+BD+CEC 1596 0.046 0.763 296 0.046 0.614 - hijklmn PTF13 - 

PTF14 PSD+DEPTH+CACO3+PH_H2O 1314 0.051 0.600 296 0.051 0.528 - bcdef PTF05 - 

PTF15 PSD+DEPTH+CACO3+CEC 770 0.052 0.605 296 0.051 0.520 - cdefghij PTF04 - 

PTF16 PSD+DEPTH+PH_H2O+CEC 1350 0.053 0.699 296 0.049 0.556 - cdefghi PTF05 - 

PTF17 PSD+DEPTH+OC+BD+CACO3 1585 0.043 0.689 296 0.045 0.634 - ghijklmn PTF07 - 

PTF18 PSD+DEPTH+OC+BD+PH_H2O 1799 0.044 0.749 296 0.042 0.679 - ghijklmn PTF07 - 

PTF19 PSD+DEPTH+OC+BD+CEC 1427 0.045 0.753 296 0.044 0.650 - jklmn PTF13 - 

PTF20 PSD+DEPTH+OC+CACO3+PH_H2O 1249 0.049 0.613 296 0.053 0.483 - bcdefgh PTF02 - 

PTF21 PSD+DEPTH+OC+CACO3+CEC 727 0.050 0.603 296 0.046 0.620 - fghijklmn PTF08 - 

PTF22 PSD+DEPTH+OC+PH_H2O+CEC 1142 0.051 0.693 296 0.045 0.630 - efghijklm PTF09 - 

PTF23 PSD+DEPTH+BD+CACO3+PH_H2O 1310 0.044 0.701 296 0.045 0.629 - defghijkl PTF03 - 

PTF24 PSD+DEPTH+BD+CACO3+CEC 768 0.043 0.722 296 0.043 0.666 - lmn PTF11 - 

PTF25 PSD+DEPTH+BD+PH_H2O+CEC 1298 0.046 0.773 296 0.043 0.668 - jklmn PTF12 - 

PTF26 PSD+DEPTH+CACO3+PH_H2O+CEC 727 0.051 0.633 296 0.048 0.587 - defghijk PTF05 - 

PTF27 PSD+DEPTH+OC+BD+CACO3+ 

PH_H2O 

1248 0.043 0.693 296 0.044 0.653 - efghijklm PTF07 - 

PTF28 PSD+DEPTH+OC+BD+CACO3+CEC 726 0.044 0.702 296 0.041 0.687 - klmn PTF11 - 

PTF29 PSD+DEPTH+OC+BD+PH_H2O+CEC 1133 0.046 0.757 296 0.042 0.681 - ijklmn PTF12 - 

PTF30 PSD+DEPTH+OC+CACO3+PH_H2O+ 

CEC 

684 0.050 0.617 296 0.051 0.533 - efghijklm PTF09 - 

PTF31 PSD+DEPTH+BD+CACO3+PH_H2O+ 

CEC 

725 0.043 0.731 296 0.041 0.698 - mn PTF11 - 

PTF32 PSD+DEPTH+OC+BD+CACO3+ 

PH_H2O+CEC 

683 0.044 0.712 296 0.040 0.709 - n PTF18 - 

1PSD: particle size distribution (sand, 50–2000 μm; silt, 2–50 μm; clay, <2 μm (mass %)); DEPTH: mean soil depth (cm); OC: organic carbon content (mass 

%); BD: bulk density (g cm−3); CACO3: calcium carbonate content (mass %); PH_H2O: pH in water (-); CEC: cation exchange capacity (cmol (+) kg−1). 
2Different letters indicate significant differences at the 0.05 level between the accuracy of the methods based on the squared error; for example performance 
indicated with the letter c is significantly better than the one noted with letters b and a.
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Table 4. Performance of pedotransfer functions (PTFs) by input combination on training and test datasets to predict water 

content at -330 cm matric potential head, field capacity (FC). N: number of samples, RMSE: root mean square error (cm3  

cm-3), and R2: determination coefficient, TEST_BASIC: samples with measured PSD, DEPTH, OC and BD; TEST_CHEM+: 

samples with measured PSD, DEPTH, OC, BD, CACO3, PH_H2O and CEC. Recommended PTFs are highlighted in bold. 
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PTF01 PSD+DEPTH 2196 0.056 0.639 801 0.054 0.595 a a PTF01 - 

PTF02 PSD+DEPTH+OC 1716 0.049 0.707 801 0.050 0.650 b abc PTF02 PTF09 

PTF03 PSD+DEPTH+BD 2176 0.048 0.727 801 0.049 0.668 ab abcd PTF01 - 

PTF04 PSD+DEPTH+CACO3 1537 0.047 0.650 280 0.055 0.591 - abcde PTF01 - 

PTF05 PSD+DEPTH+PH_H2O 1278 0.048 0.653 280 0.055 0.586 - ab PTF01 - 

PTF06 PSD+DEPTH+CEC 1097 0.046 0.711 280 0.052 0.630 - bcdefghi PTF06 - 

PTF07 PSD+DEPTH+OC+BD 1711 0.046 0.736 801 0.048 0.677 b bcdefg PTF02 PTF09 

PTF08 PSD+DEPTH+OC+CACO3 1340 0.043 0.678 280 0.053 0.616 - abcdef PTF02 - 

PTF09 PSD+DEPTH+OC+PH_H2O 1100 0.044 0.687 280 0.052 0.631 - abcde PTF02 - 

PTF10 PSD+DEPTH+OC+CEC 1001 0.044 0.720 280 0.052 0.628 - bcdefghi PTF02 - 

PTF11 PSD+DEPTH+BD+CACO3 1526 0.044 0.696 280 0.051 0.649 - bcdefgh PTF03 - 

PTF12 PSD+DEPTH+BD+PH_H2O 1267 0.045 0.698 280 0.050 0.658 - bcdefgh PTF03 - 

PTF13 PSD+DEPTH+BD+CEC 1093 0.044 0.741 280 0.049 0.678 - fghi PTF06 - 

PTF14 PSD+DEPTH+CACO3+PH_H2O 1235 0.048 0.667 280 0.053 0.623 - bcdef PTF04 - 

PTF15 PSD+DEPTH+CACO3+CEC 793 0.047 0.720 280 0.052 0.639 - efghi PTF04 - 

PTF16 PSD+DEPTH+PH_H2O+CEC 744 0.047 0.726 280 0.051 0.651 - efghi PTF06 - 

PTF17 PSD+DEPTH+OC+BD+CACO3 1338 0.042 0.699 280 0.050 0.667 - cdefghi PTF02 - 

PTF18 PSD+DEPTH+OC+BD+PH_H2O 1098 0.043 0.704 280 0.050 0.660 - bcdefgh PTF02 PTF09 

PTF19 PSD+DEPTH+OC+BD+CEC 998 0.042 0.739 280 0.048 0.684 - fghi PTF07 - 

PTF20 PSD+DEPTH+OC+CACO3+PH_H2O 1062 0.044 0.694 280 0.052 0.634 - abcde PTF02 - 

PTF21 PSD+DEPTH+OC+CACO3+CEC 709 0.045 0.709 280 0.051 0.652 - efghi PTF04 - 

PTF22 PSD+DEPTH+OC+PH_H2O+CEC 663 0.046 0.706 280 0.050 0.664 - defghi PTF09 - 

PTF23 PSD+DEPTH+BD+CACO3+PH_H2O 1224 0.045 0.704 280 0.051 0.651 - bcdefgh PTF03 - 

PTF24 PSD+DEPTH+BD+CACO3+CEC 790 0.044 0.744 280 0.048 0.688 - hi PTF11 - 

PTF25 PSD+DEPTH+BD+PH_H2O+CEC 741 0.045 0.748 280 0.048 0.682 - hi PTF11 - 

PTF26 PSD+DEPTH+CACO3+PH_H2O+CEC 734 0.046 0.742 280 0.050 0.658 - fghi PTF14 - 

PTF27 PSD+DEPTH+OC+BD+CACO3+ 

PH_H2O 

1060 0.042 0.712 280 0.049 0.676 - bcdefghi PTF02 - 

PTF28 PSD+DEPTH+OC+BD+CACO3+CEC 707 0.043 0.731 280 0.048 0.693 - ghi PTF07 - 

PTF29 PSD+DEPTH+OC+BD+PH_H2O+CEC 661 0.044 0.725 280 0.046 0.709 - fghi PTF07 - 

PTF30 PSD+DEPTH+OC+CACO3+PH_H2O+ 

CEC 

655 0.044 0.731 280 0.049 0.672 - fghi PTF08 PTF09 

PTF31 PSD+DEPTH+BD+CACO3+PH_H2O+ 

CEC 

731 0.043 0.763 280 0.047 0.700 - i PTF06 - 

PTF32 PSD+DEPTH+OC+BD+CACO3+ 

PH_H2O+CEC 

653 0.043 0.743 280 0.047 0.696 - fghi PTF07 PTF09 

1PSD: particle size distribution (sand, 50–2000 μm; silt, 2–50 μm; clay, <2 μm (mass %)); DEPTH: mean soil depth (cm); OC: organic carbon content (mass 5 
%); BD: bulk density (g cm−3); CACO3: calcium carbonate content (mass %); PH_H2O: pH in water (-); CEC: cation exchange capacity (cmol (+) kg−1). 
2Different letters indicate significant differences at the 0.05 level between the accuracy of the methods based on the squared error; for example performance 

indicated with the letter c is significantly better than the one noted with letters b and a. 
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Table 5. Performance of pedotransfer functions (PTFs) by input combination on training and test datasets to predict water 

content at wilting point (WP). N: number of samples, RMSE: root mean square error (cm3 cm-3), and R2: determination 

coefficient, TEST_BASIC: samples with measured PSD, DEPTH, OC and BD; TEST_CHEM+: samples with measured PSD, 

DEPTH, OC, BD, CACO3, PH_H2O and CEC. Recommended PTFs are highlighted in bold. 
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PTF01 PSD+DEPTH 5264 0.048 0.736 2088 0.048 0.728 a a PTF01 - 

PTF02 PSD+DEPTH+OC 4802 0.047 0.755 2088 0.046 0.745 bc abc PTF02 PTF12 

PTF03 PSD+DEPTH+BD 5197 0.046 0.757 2088 0.046 0.754 ab ab PTF01 - 

PTF04 PSD+DEPTH+CACO3 1816 0.042 0.693 294 0.042 0.643 - a PTF01 - 

PTF05 PSD+DEPTH+PH_H2O 2039 0.046 0.673 294 0.044 0.621 - abc PTF01 - 

PTF06 PSD+DEPTH+CEC 1703 0.043 0.725 294 0.041 0.662 - a PTF01 - 

PTF07 PSD+DEPTH+OC+BD 4786 0.045 0.769 2088 0.044 0.769 c abc PTF02 PTF12 

PTF08 PSD+DEPTH+OC+CACO3 1599 0.041 0.695 294 0.041 0.671 - abcd PTF02 - 

PTF09 PSD+DEPTH+OC+PH_H2O 1678 0.045 0.682 294 0.041 0.661 - abcd PTF02 - 

PTF10 PSD+DEPTH+OC+CEC 1459 0.043 0.704 294 0.040 0.674 - abcd PTF02 - 

PTF11 PSD+DEPTH+BD+CACO3 1806 0.041 0.706 294 0.040 0.682 - abcd PTF01 - 

PTF12 PSD+DEPTH+BD+PH_H2O 1979 0.045 0.691 294 0.041 0.671 - abcd PTF01 - 

PTF13 PSD+DEPTH+BD+CEC 1648 0.042 0.729 294 0.040 0.683 - abcd PTF01 - 

PTF14 PSD+DEPTH+CACO3+PH_H2O 1375 0.043 0.689 294 0.042 0.649 - abcd PTF01 - 

PTF15 PSD+DEPTH+CACO3+CEC 831 0.044 0.657 294 0.039 0.694 - abcd PTF01 - 

PTF16 PSD+DEPTH+PH_H2O+CEC 1349 0.043 0.727 294 0.040 0.681 - abc PTF01 - 

PTF17 PSD+DEPTH+OC+BD+CACO3 1596 0.041 0.705 294 0.039 0.702 - abcd PTF07 - 

PTF18 PSD+DEPTH+OC+BD+PH_H2O 1667 0.045 0.687 294 0.040 0.674 - abcd PTF07 PTF12 

PTF19 PSD+DEPTH+OC+BD+CEC 1447 0.042 0.714 294 0.039 0.691 - abcd PTF07 - 

PTF20 PSD+DEPTH+OC+CACO3+PH_H2O 1183 0.042 0.691 294 0.040 0.686 - abcd PTF02 - 

PTF21 PSD+DEPTH+OC+CACO3+CEC 743 0.044 0.638 294 0.037 0.722 - d PTF08 - 

PTF22 PSD+DEPTH+OC+PH_H2O+CEC 1121 0.044 0.697 294 0.039 0.701 - abcd PTF07 - 

PTF23 PSD+DEPTH+BD+CACO3+PH_H2O 1365 0.042 0.701 294 0.040 0.678 - abcd PTF01 - 

PTF24 PSD+DEPTH+BD+CACO3+CEC 827 0.043 0.673 294 0.038 0.708 - abcd PTF01 - 

PTF25 PSD+DEPTH+BD+PH_H2O+CEC 1295 0.043 0.726 294 0.039 0.698 - abcd PTF01 - 

PTF26 PSD+DEPTH+CACO3+PH_H2O+CEC 772 0.043 0.680 294 0.039 0.702 - cd PTF05 - 

PTF27 PSD+DEPTH+OC+BD+CACO3+ 

PH_H2O 

1180 0.042 0.698 294 0.039 0.703 - abcd PTF07 - 

PTF28 PSD+DEPTH+OC+BD+CACO3+CEC 740 0.043 0.648 294 0.037 0.732 - bcd PTF17 - 

PTF29 PSD+DEPTH+OC+BD+PH_H2O+CEC 1110 0.043 0.699 294 0.038 0.712 - abcd PTF07 - 

PTF30 PSD+DEPTH+OC+CACO3+PH_H2O+ 

CEC 

689 0.044 0.645 294 0.038 0.719 - abcd PTF02 PTF12 

PTF31 PSD+DEPTH+BD+CACO3+PH_H2O+ 

CEC 

768 0.043 0.678 294 0.037 0.720 - cd PTF05 - 

PTF32 PSD+DEPTH+OC+BD+CACO3+ 

PH_H2O+CEC 

686 0.043 0.656 294 0.037 0.723 - d PTF09 PTF12 

1PSD: particle size distribution (sand, 50–2000 μm; silt, 2–50 μm; clay, <2 μm (mass %)); DEPTH: mean soil depth (cm); OC: organic carbon content (mass 5 
%); BD: bulk density (g cm−3); CACO3: calcium carbonate content (mass %); PH_H2O: pH in water (-); CEC: cation exchange capacity (cmol (+) kg−1). 
2Different letters indicate significant differences at the 0.05 level between the accuracy of the methods based on the squared error; for example performance 

indicated with the letter c is significantly better than the one noted with letters b and a.  
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Table 6. Performance of pedotransfer functions (PTFs) by input combination on training and test datasets to predict saturated 

hydraulic conductivity (KS). N: number of samples, RMSE: root mean square error (log10 (cm day-1)), and R2: determination 

coefficient, TEST_BASIC: samples with measured PSD, DEPTH, OC and BD; TEST_CHEM+: samples with measured PSD, 

DEPTH, OC, BD, CACO3, PH_H2O and CEC. Recommended PTFs are highlighted in bold. 
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PTF01 PSD+DEPTH 3157 1.200 0.434 1117 1.181 0.307 a ab PTF01 - 

PTF02 PSD+DEPTH+OC 2620 0.957 0.566 1117 0.953 0.548 b bc PTF02 PTF16 

PTF03 PSD+DEPTH+BD 3146 1.160 0.467 1117 1.170 0.320 a a PTF01 - 

PTF04 PSD+DEPTH+CACO3 639 0.861 0.241 169 0.959 0.123 - abc PTF01 - 

PTF05 PSD+DEPTH+PH_H2O 907 0.875 0.213 169 0.944 0.151 - bc PTF01 - 

PTF06 PSD+DEPTH+CEC 567 0.984 0.215 169 0.940 0.157 - bc PTF01 - 

PTF07 PSD+DEPTH+OC+BD 2609 0.931 0.590 1117 0.939 0.562 b bc PTF02 PTF16 

PTF08 PSD+DEPTH+OC+CACO3 613 0.872 0.244 169 0.943 0.153 - bc PTF02 - 

PTF09 PSD+DEPTH+OC+PH_H2O 862 0.847 0.257 169 0.938 0.162 - bc PTF02 - 

PTF10 PSD+DEPTH+OC+CEC 525 0.977 0.223 169 0.938 0.162 - bc PTF02 - 

PTF11 PSD+DEPTH+BD+CACO3 639 0.851 0.259 169 0.952 0.136 - bc PTF01 - 

PTF12 PSD+DEPTH+BD+PH_H2O 898 0.853 0.256 169 0.947 0.145 - bc PTF05 - 

PTF13 PSD+DEPTH+BD+CEC 558 0.980 0.230 169 0.941 0.157 - bc PTF01 - 

PTF14 PSD+DEPTH+CACO3+PH_H2O 620 0.855 0.267 169 0.923 0.189 - bc PTF05 - 

PTF15 PSD+DEPTH+CACO3+CEC 405 0.937 0.263 169 0.941 0.156 - abc PTF01 - 

PTF16 PSD+DEPTH+PH_H2O+CEC 567 0.942 0.282 169 0.940 0.158 - bc PTF01 - 

PTF17 PSD+DEPTH+OC+BD+CACO3 613 0.856 0.272 169 0.933 0.171 - bc PTF02 - 

PTF18 PSD+DEPTH+OC+BD+PH_H2O 853 0.831 0.289 169 0.932 0.172 - bc PTF02 PTF16 

PTF19 PSD+DEPTH+OC+BD+CEC 516 0.979 0.228 169 0.928 0.179 - c PTF02 - 

PTF20 PSD+DEPTH+OC+CACO3+PH_H2O 613 0.860 0.264 169 0.929 0.177 - bc PTF02 - 

PTF21 PSD+DEPTH+OC+CACO3+CEC 401 0.935 0.271 169 0.925 0.184 - bc PTF02 - 

PTF22 PSD+DEPTH+OC+PH_H2O+CEC 525 0.931 0.295 169 0.933 0.170 - c PTF02 - 

PTF23 PSD+DEPTH+BD+CACO3+PH_H2O 620 0.844 0.286 169 0.889 0.247 - c PTF05 - 

PTF24 PSD+DEPTH+BD+CACO3+CEC 405 0.922 0.286 169 0.958 0.125 - abc PTF01 - 

PTF25 PSD+DEPTH+BD+PH_H2O+CEC 558 0.944 0.286 169 0.950 0.140 - bc PTF05 - 

PTF26 PSD+DEPTH+CACO3+PH_H2O+CEC 405 0.922 0.286 169 0.922 0.190 - bc PTF05 - 

PTF27 PSD+DEPTH+OC+BD+CACO3+ 

PH_H2O 

613 0.844 0.293 169 0.893 0.241 - c PTF02 - 

PTF28 PSD+DEPTH+OC+BD+CACO3+CEC 401 0.926 0.285 169 0.925 0.185 - abc PTF02 - 

PTF29 PSD+DEPTH+OC+BD+PH_H2O+CEC 516 0.932 0.301 169 0.921 0.193 - bc PTF02 - 

PTF30 PSD+DEPTH+OC+CACO3+PH_H2O+ 

CEC 

401 0.931 0.278 169 0.887 0.250 - bc PTF02 PTF17 

PTF31 PSD+DEPTH+BD+CACO3+PH_H2O+ 

CEC 

405 0.914 0.298 169 0.912 0.207 - bc PTF05 - 

PTF32 PSD+DEPTH+OC+BD+CACO3+ 

PH_H2O+CEC 

401 0.921 0.292 169 0.916 0.201 - bc PTF02 PTF17 

1PSD: particle size distribution (sand, 50–2000 μm; silt, 2–50 μm; clay, <2 μm (mass %)); DEPTH: mean soil depth (cm); OC: organic carbon content (mass 5 
%); BD: bulk density (g cm−3); CACO3: calcium carbonate content (mass %); PH_H2O: pH in water (-); CEC: cation exchange capacity (cmol (+) kg−1). 
2Different letters indicate significant differences at the 0.05 level between the accuracy of the methods based on the squared error; for example performance 

indicated with the letter c is significantly better than the one noted with letters b and a.
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Table 7. Performance of pedotransfer functions (PTFs) by input combination on training and test datasets to predict parameters 

of the van Genuchten model to describe soil moisture retention curve (VG). N: number of samples, RMSE: root mean square 

error (cm3 cm-3)(log10 (cm day-1)), and R2: determination coefficient, TEST_BASIC: samples with measured PSD, DEPTH, 

OC and BD; TEST_CHEM+: samples with measured PSD, DEPTH, OC, BD, CACO3, PH_H2O and CEC. Recommended 

PTFs are highlighted in bold. 5 
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PTF01 PSD+DEPTH 4669 0.055 0.846 1591 0.068 0.776 a a PTF01 - 

PTF02 PSD+DEPTH+OC 3708 0.047 0.887 1591 0.060 0.826 b c PTF02 PTF19 

PTF03 PSD+DEPTH+BD 4593 0.041 0.913 1591 0.056 0.846 c hi PTF03 - 

PTF04 PSD+DEPTH+CACO3 1671 0.039 0.911 288 0.052 0.852 - d PTF04 - 

PTF05 PSD+DEPTH+PH_H2O 1897 0.045 0.894 288 0.055 0.834 - b PTF05 - 

PTF06 PSD+DEPTH+CEC 1488 0.044 0.886 288 0.054 0.839 - d PTF06 - 

PTF07 PSD+DEPTH+OC+BD 3695 0.037 0.933 1591 0.054 0.859 d fg PTF07 PTF21 

PTF08 PSD+DEPTH+OC+CACO3 1589 0.036 0.924 288 0.048 0.871 - f PTF08 - 

PTF09 PSD+DEPTH+OC+PH_H2O 1663 0.039 0.922 288 0.050 0.865 - gh PTF09 - 

PTF10 PSD+DEPTH+OC+CEC 1293 0.036 0.920 288 0.051 0.858 - fg PTF10 - 

PTF11 PSD+DEPTH+BD+CACO3 1670 0.034 0.934 288 0.043 0.900 - mn PTF11 - 

PTF12 PSD+DEPTH+BD+PH_H2O 1847 0.038 0.926 288 0.044 0.892 - l PTF12 - 

PTF13 PSD+DEPTH+BD+CEC 1437 0.039 0.908 288 0.044 0.892 - lm PTF13 - 

PTF14 PSD+DEPTH+CACO3+PH_H2O 1264 0.037 0.928 288 0.052 0.854 - e PTF14 - 

PTF15 PSD+DEPTH+CACO3+CEC 758 0.040 0.907 288 0.049 0.870 - ij PTF15 - 

PTF16 PSD+DEPTH+PH_H2O+CEC 1188 0.042 0.905 288 0.051 0.858 - f PTF16 - 

PTF17 PSD+DEPTH+OC+BD+CACO3 1588 0.031 0.944 288 0.042 0.904 - n PTF11 - 

PTF18 PSD+DEPTH+OC+BD+PH_H2O 1655 0.033 0.943 288 0.043 0.900 - l PTF12 PTF22 

PTF19 PSD+DEPTH+OC+BD+CEC 1284 0.033 0.934 288 0.044 0.892 - lm PTF13 - 

PTF20 PSD+DEPTH+OC+CACO3+PH_H2O 1201 0.033 0.943 288 0.048 0.874 - f PTF09 - 

PTF21 PSD+DEPTH+OC+CACO3+CEC 712 0.035 0.932 288 0.047 0.881 - l PTF21 - 

PTF22 PSD+DEPTH+OC+PH_H2O+CEC 996 0.033 0.939 288 0.049 0.869 - i PTF22 - 

PTF23 PSD+DEPTH+BD+CACO3+PH_H2O 1263 0.032 0.948 288 0.044 0.895 - lm PTF11 - 

PTF24 PSD+DEPTH+BD+CACO3+CEC 757 0.033 0.939 288 0.041 0.906 - o PTF24 - 

PTF25 PSD+DEPTH+BD+PH_H2O+CEC 1138 0.038 0.922 288 0.042 0.902 - n PTF25 - 

PTF26 PSD+DEPTH+CACO3+PH_H2O+CEC 717 0.037 0.924 288 0.047 0.878 - jk PTF15 - 

PTF27 PSD+DEPTH+OC+BD+CACO3+ 

PH_H2O 

1200 0.030 0.953 288 0.043 0.897 - lm PTF11 - 

PTF28 PSD+DEPTH+OC+BD+CACO3+CEC 711 0.032 0.941 288 0.041 0.906 - o PTF24 - 

PTF29 PSD+DEPTH+OC+BD+PH_H2O+CEC 988 0.032 0.945 288 0.041 0.906 - o PTF29 - 

PTF30 PSD+DEPTH+OC+CACO3+PH_H2O+ 

CEC 

671 0.031 0.946 288 0.047 0.880 - k PTF21 PTF20 

PTF31 PSD+DEPTH+BD+CACO3+PH_H2O+ 

CEC 

716 0.031 0.948 288 0.042 0.904 - o PTF24 - 

PTF32 PSD+DEPTH+OC+BD+CACO3+ 

PH_H2O+CEC 

670 0.031 0.948 288 0.042 0.903 - o PTF29 PTF22 

1PSD: particle size distribution (sand, 50–2000 μm; silt, 2–50 μm; clay, <2 μm (mass %)); DEPTH: mean soil depth (cm); OC: organic carbon content (mass 

%); BD: bulk density (g cm−3); CACO3: calcium carbonate content (mass %); PH_H2O: pH in water (-); CEC: cation exchange capacity (cmol (+) kg−1). 
2Different letters indicate significant differences at the 0.05 level between the accuracy of the methods based on the squared error; for example performance 
indicated with the letter c is significantly better than the one noted with letters b and a.
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Table 8. Performance of pedotransfer functions (PTFs) by input combination on training and test datasets to predict parameters 

of the Mualem-van Genuchten model to describe soil moisture retention and hydraulic conductivity curve (MVG). N: number 

of samples, RMSE: root mean square error (log10 (cm day-1)), and R2: determination coefficient, TEST_BASIC: samples with 

measured PSD, DEPTH, OC and BD; TEST_CHEM+: samples with measured PSD, DEPTH, OC, BD, CACO3, PH_H2O 

and CEC. Recommended PTFs are highlighted in bold. 5 

Name of 

PTF in 

euptfv2 

Predictor variables1 

Training set Test set Sign. difference2 

Recom-

mended 

PTF 

Pair 

from 

euptfv1 
N RMSE R2 N RMSE R2 

T
E

S
T

_
B

A
S

IC
 

se
t 

T
E

S
T

_
C

H
E

M
+

 

se
t 

PTF01 PSD+DEPTH 739 0.604 0.804 176 0.708 0.796 a b PTF01 - 

PTF02 PSD+DEPTH+OC 407 0.619 0.829 176 0.676 0.814 b jkl PTF02 PTF19 

PTF03 PSD+DEPTH+BD 726 0.568 0.824 176 0.688 0.808 a ab PTF01 - 

PTF04 PSD+DEPTH+CACO3 273 0.587 0.878 57 0.644 0.863 - ijk PTF04 - 

PTF05 PSD+DEPTH+PH_H2O 230 0.578 0.889 57 0.663 0.855 - def PTF05 - 

PTF06 PSD+DEPTH+CEC 141 0.672 0.858 57 0.662 0.856 - fghij PTF06 - 

PTF07 PSD+DEPTH+OC+BD 404 0.529 0.873 176 0.659 0.824 b a PTF02 PTF19 

PTF08 PSD+DEPTH+OC+CACO3 250 0.587 0.880 57 0.699 0.839 - b PTF02 - 

PTF09 PSD+DEPTH+OC+PH_H2O 224 0.597 0.882 57 0.686 0.845 - fghi PTF02 - 

PTF10 PSD+DEPTH+OC+CEC 138 0.699 0.846 57 0.702 0.837 - cde PTF02 - 

PTF11 PSD+DEPTH+BD+CACO3 272 0.542 0.895 57 0.637 0.866 - defg PTF04 - 

PTF12 PSD+DEPTH+BD+PH_H2O 229 0.520 0.909 57 0.620 0.873 - jklm PTF12 - 

PTF13 PSD+DEPTH+BD+CEC 140 0.644 0.866 57 0.637 0.866 - lm PTF13 - 

PTF14 PSD+DEPTH+CACO3+PH_H2O 223 0.539 0.904 57 0.691 0.842 - c PTF04 - 

PTF15 PSD+DEPTH+CACO3+CEC 136 0.735 0.830 57 0.684 0.846 - c PTF04 - 

PTF16 PSD+DEPTH+PH_H2O+CEC 141 0.666 0.860 57 0.666 0.854 - hijk PTF06 - 

PTF17 PSD+DEPTH+OC+BD+CACO3 249 0.526 0.902 57 0.662 0.855 - ab PTF02 - 

PTF18 PSD+DEPTH+OC+BD+PH_H2O 223 0.553 0.897 57 0.642 0.864 - klm PTF02 PTF19 

PTF19 PSD+DEPTH+OC+BD+CEC 137 0.619 0.876 57 0.676 0.849 - b PTF02 - 

PTF20 PSD+DEPTH+OC+CACO3+PH_H2O 219 0.573 0.891 57 0.661 0.856 - n PTF20 - 

PTF21 PSD+DEPTH+OC+CACO3+CEC 135 0.730 0.831 57 0.653 0.860 - m PTF21 - 

PTF22 PSD+DEPTH+OC+PH_H2O+CEC 138 0.699 0.846 57 0.664 0.855 - lm PTF02 - 

PTF23 PSD+DEPTH+BD+CACO3+PH_H2O 222 0.515 0.911 57 0.639 0.865 - lm PTF23 - 

PTF24 PSD+DEPTH+BD+CACO3+CEC 135 0.678 0.852 57 0.656 0.858 - c PTF04 - 

PTF25 PSD+DEPTH+BD+PH_H2O+CEC 140 0.595 0.885 57 0.646 0.862 - ghijk PTF12 - 

PTF26 PSD+DEPTH+CACO3+PH_H2O+CEC 136 0.712 0.841 57 0.669 0.852 - cd PTF04 - 

PTF27 PSD+DEPTH+OC+BD+CACO3+PH_

H2O 

218 0.524 0.907 57 0.606 0.879 - o PTF27 - 

PTF28 PSD+DEPTH+OC+BD+CACO3+CEC 134 0.656 0.860 57 0.639 0.865 - n PTF28 - 

PTF29 PSD+DEPTH+OC+BD+PH_H2O+CEC 137 0.646 0.865 57 0.638 0.866 - n PTF29 - 

PTF30 PSD+DEPTH+OC+CACO3+PH_H2O+C

EC 

135 0.726 0.833 57 0.680 0.847 - fghi PTF20 PTF19 

PTF31 PSD+DEPTH+BD+CACO3+PH_H2O+C

EC 

135 0.679 0.851 57 0.668 0.853 - c PTF12 - 

PTF32 PSD+DEPTH+OC+BD+CACO3+PH_H2

O+CEC 

134 0.645 0.864 57 0.678 0.848 - efgh PTF27 PTF19 

1PSD: particle size distribution (sand, 50–2000 μm; silt, 2–50 μm; clay, <2 μm (mass %)); DEPTH: mean soil depth (cm); OC: organic carbon content (mass 

%); BD: bulk density (g cm−3); CACO3: calcium carbonate content (mass %); PH_H2O: pH in water (-); CEC: cation exchange capacity (cmol (+) kg−1). 
2Different letters indicate significant differences at the 0.05 level between the accuracy of the methods based on the squared error; for example performance 
indicated with the letter c is significantly better than the one noted with letters b and a.  
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Table 9. The results of comparing the performance of parametric and point pedotransfer functions (PTFs) on the test sets of 

EU-HYDI to predict saturated water content (THS), water content at -100 cm matric potential head (FC_2), water content at -

330 cm matric potential head (FC), water content at wilting point (WP). Rows in italic indicate cases where there was no 

significant difference between the two PTFs. 

Predicted 

soil 

hydraulic 

property 

Available predictor variables1 

Performance of 

parameter estimation 

(MRC with VG)2 

Performance of point 

estimation 

N
u

m
b

er
 o

f 

sa
m

p
le

s 
in

 

te
st

 d
a
ta

se
t 

Recommended 

PTF number 
RMSE 

Recommended 

PTF number 
RMSE 

THS PSD+DEPTH_M+OC PTF02a 0.065 PTF02a 0.061 216 

(cm3 cm-3) PSD+DEPTH_M+OC+BD PTF07a 0.041 PTF03b 0.032 216 

 PSD+DEPTH_M+OC+BD+PH_H2O PTF12a 0.028 PTF03b 0.022 63 

 PSD+DEPTH_M+OC+CACO3+PH_H2O+CEC PTF21a 0.051 PTF02a 0.060 63 

 PSD+DEPTH_M+OC+BD+CACO3+PH_H2O+CEC PTF29a 0.028 PTF03a 0.022 63 

FC_2 PSD+DEPTH_M+OC PTF02a 0.057 PTF02b 0.054 424 

(cm3 cm-3) PSD+DEPTH_M+OC+BD PTF07a 0.051 PTF03a 0.051 424 

 PSD+DEPTH_M+OC+BD+PH_H2O PTF12a 0.043 PTF07a 0.049 68 

 PSD+DEPTH_M+OC+CACO3+PH_H2O+CEC PTF21a 0.043 PTF09a 0.047 68 

 PSD+DEPTH_M+OC+BD+CACO3+PH_H2O+CEC PTF29a 0.036 PTF18a 0.043 68 

FC PSD+DEPTH_M+OC PTF02a 0.057 PTF02a 0.048 319 

(cm3 cm-3) PSD+DEPTH_M+OC+BD PTF07a 0.056 PTF02a 0.048 319 

 PSD+DEPTH_M+OC+BD+PH_H2O PTF12a 0.047 PTF02a 0.047 129 

 PSD+DEPTH_M+OC+CACO3+PH_H2O+CEC PTF21a 0.046 PTF08a 0.045 129 

 PSD+DEPTH_M+OC+BD+CACO3+PH_H2O+CEC PTF29a 0.041 PTF07a 0.046 129 

WP PSD+DEPTH_M+OC PTF02a 0.064 PTF02b 0.047 429 

(cm3 cm-3) PSD+DEPTH_M+OC+BD PTF07a 0.061 PTF02b 0.047 429 

 PSD+DEPTH_M+OC+BD+PH_H2O PTF12a 0.053 PTF07a 0.045 91 

 PSD+DEPTH_M+OC+CACO3+PH_H2O+CEC PTF21a 0.051 PTF07a 0.045 91 

 PSD+DEPTH_M+OC+BD+CACO3+PH_H2O+CEC PTF29a 0.054 PTF09a 0.039 91 
1PSD: particle size distribution (sand, 50–2000 μm; silt, 2–50 μm; clay, <2 μm (mass %)); DEPTH: mean soil depth (cm); OC: organic carbon content (mass 5 
%); BD: bulk density (g cm−3); CACO3: calcium carbonate content (mass %); PH_H2O: pH in water (-); CEC: cation exchange capacity (cmol (+) kg−1). 
2MRC: moisture retention curve; VG: parameters of the van Genuchten model. Different letters in a row indicate significant differences at the 0.05 level 
between the accuracy of the methods based on the squared error; for example performance indicated with the letter b is significantly better than the one noted 

with letter a. RMSE: root mean squared error. 

formázott: Felső index
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Table 10. The results of comparing the performance of euptfv1 and euptfv2 on the test sets of EU-HYDI to predict soil 

hydraulic properties. Rows in italic indicate cases where there was no significant difference between the two PTFs. 

Predicted soil 

hydraulic property1 

Performance2 

euptfv1 euptfv2 
Name of test set  

Number of 

samples in 

test datasets 
Name of PTF RMSE Name of PTF RMSE 

THS PTF04a 0.063 PTF02b 0.056 TEST_BASIC 1274 

(cm3 cm-3) PTF05a 0.034 PTF03b 0.031 TEST_BASIC 1274 

 PTF06a 0.020 PTF03a 0.024 TEST_CHEM+ 156 

FC PTF09a 0.054 PTF02b 0.050 TEST_BASIC 801 

(cm3 cm-3) PTF09a 0.054 PTF07b 0.048 TEST_BASIC 801 

 PTF09a 0.058 PTF08b 0.053 TEST_CHEM+ 280 

WP PTF12a 0.048 PTF02b 0.046 TEST_BASIC 2088 

(cm3 cm-3) PTF12a 0.048 PTF07b 0.044 TEST_BASIC 2088 

 PTF12a 0.043 PTF09a 0.041 TEST_CHEM+ 294 

KS PTF16a 1.06 PTF02b 0.95 TEST_BASIC 1117 

(log10 cm day-1) PTF17a 1.00 PTF02a 0.91 TEST_CHEM+ 169 

VG PTF19a 0.068 PTF02b 0.060 TEST_BASIC 1591 

(cm3 cm-3) PTF21a 0.064 PTF07b 0.054 TEST_BASIC 1591 

 PTF22a 0.046 PTF12b 0.044 TEST_CHEM+ 288 

 PTF20a 0.054 PTF21b 0.047 TEST_CHEM+ 288 

 PTF22a 0.046 PTF29b 0.041 TEST_CHEM+ 288 

MVG PTF19a 0.77 PTF02b 0.68 TEST_BASIC 176 

(log10 cm day-1) PTF19a 0.66 PTF20a 0.66 TEST_CHEM+ 57 

 PTF19a 0.66 PTF27a 0.61 TEST_CHEM+ 57 
1THS: saturated water content (pF 0); FC_2: water content at -100 cm matric potential head (pF 2.0); FC: water content at -330 cm matric potential head (pF 
2.5); WP: water content at wilting point (pF 4.2); KS: saturated hydraulic conductivity; VG: parameters of the van Genuchten model; MVG: parameters of 

the Mualem – van Genuchten model. 5 
2Different letters in a row indicate significant differences at the 0.05 level between the accuracy of the methods based on the squared error;for example 

performance indicated with the letter b is significantly better than the one noted with letter a. RMSE: root mean squared error; TEST_BASIC: samples with 

measured PSD, DEPTH, OC and BD; TEST_CHEM+: samples with measured PSD, DEPTH, OC, BD, CACO3, PH_H2O and CEC; N: number o f samples. 
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Table 11. List of recommended pedotransfer functions (PTFs) by predicted soil hydraulic property and available predictor 

variables. 

Predictor variables1 
Recommended PTFs2 

THS FC_2 FC WP AWC_

2 

AWC KS VG MVG 

PSD+DEPTH_M PTF01 PTF01 PTF01 PTF01 PTF01 PTF01 PTF01 PTF01 PTF01 

PSD+DEPTH_M+OC PTF02 PTF02 PTF02 PTF02 PTF02 PTF01 PTF02 PTF02 PTF02 

PSD+DEPTH_M+BD PTF03 PTF03 PTF01 PTF01 PTF03 PTF01 PTF01 PTF03 PTF01 

PSD+DEPTH_M+CACO3 PTF04 PTF01 PTF01 PTF01 PTF01 PTF01 PTF01 PTF04 PTF04 

PSD+DEPTH_M+PH_H2O PTF05 PTF01 PTF01 PTF01 PTF01 PTF01 PTF01 PTF05 PTF05 

PSD+DEPTH_M+CEC PTF01 PTF01 PTF06 PTF01 PTF01 PTF01 PTF01 PTF06 PTF06 

PSD+DEPTH_M+OC+BD PTF03 PTF03 PTF02 PTF02 PTF03 PTF03 PTF02 PTF07 PTF02 

PSD+DEPTH_M+OC+CACO3 PTF02 PTF02 PTF02 PTF02 PTF02 PTF01 PTF02 PTF08 PTF02 

PSD+DEPTH_M+OC+PH_H2O PTF02 PTF02 PTF02 PTF02 PTF02 PTF01 PTF02 PTF09 PTF02 

PSD+DEPTH_M+OC+CEC PTF02 PTF06 PTF02 PTF02 PTF02 PTF01 PTF02 PTF10 PTF02 

PSD+DEPTH_M+BD+CACO3 PTF03 PTF03 PTF03 PTF01 PTF03 PTF01 PTF01 PTF11 PTF04 

PSD+DEPTH_M+BD+PH_H2O PTF03 PTF03 PTF03 PTF01 PTF03 PTF01 PTF05 PTF12 PTF12 

PSD+DEPTH_M+BD+CEC PTF03 PTF13 PTF06 PTF01 PTF03 PTF01 PTF01 PTF13 PTF13 

PSD+DEPTH_M+CACO3+PH_H2O PTF05 PTF05 PTF04 PTF01 PTF01 PTF01 PTF05 PTF14 PTF04 

PSD+DEPTH_M+CACO3+CEC PTF04 PTF04 PTF04 PTF01 PTF01 PTF01 PTF01 PTF15 PTF04 

PSD+DEPTH_M+PH_H2O+CEC PTF05 PTF05 PTF06 PTF01 PTF01 PTF01 PTF01 PTF16 PTF06 

PSD+DEPTH_M+OC+BD+CACO3 PTF03 PTF07 PTF02 PTF07 PTF03 PTF03 PTF02 PTF11 PTF02 

PSD+DEPTH_M+OC+BD+PH_H2O PTF03 PTF07 PTF02 PTF07 PTF03 PTF03 PTF02 PTF12 PTF02 

PSD+DEPTH_M+OC+BD+CEC PTF03 PTF13 PTF07 PTF07 PTF03 PTF03 PTF02 PTF13 PTF02 

PSD+DEPTH_M+OC+CACO3+PH_H2O PTF02 PTF02 PTF02 PTF02 PTF02 PTF01 PTF02 PTF09 PTF20 

PSD+DEPTH_M+OC+CACO3+CEC PTF02 PTF08 PTF04 PTF08 PTF02 PTF01 PTF02 PTF21 PTF21 

PSD+DEPTH_M+OC+PH_H2O+CEC PTF02 PTF09 PTF09 PTF02 PTF02 PTF01 PTF02 PTF22 PTF02 

PSD+DEPTH_M+BD+CACO3+PH_H2O PTF03 PTF03 PTF03 PTF01 PTF03 PTF01 PTF05 PTF11 PTF23 

PSD+DEPTH_M+BD+CACO3+CEC PTF03 PTF11 PTF11 PTF01 PTF03 PTF01 PTF01 PTF24 PTF04 

PSD+DEPTH_M+BD+PH_H2O+CEC PTF03 PTF12 PTF11 PTF01 PTF03 PTF01 PTF05 PTF25 PTF12 

PSD+DEPTH_M+CACO3+PH_H2O+CEC PTF05 PTF05 PTF14 PTF05 PTF01 PTF01 PTF05 PTF15 PTF04 

PSD+DEPTH_M+OC+BD+CACO3+PH_H2O PTF03 PTF07 PTF02 PTF07 PTF03 PTF03 PTF02 PTF11 PTF27 

PSD+DEPTH_M+OC+BD+CACO3+CEC PTF03 PTF11 PTF07 PTF17 PTF03 PTF03 PTF02 PTF24 PTF28 

PSD+DEPTH_M+OC+BD+PH_H2O+CEC PTF03 PTF12 PTF07 PTF07 PTF03 PTF03 PTF02 PTF29 PTF29 

PSD+DEPTH_M+OC+CACO3+PH_H2O+CE

C 
PTF02 PTF09 PTF08 PTF02 PTF02 PTF01 PTF02 PTF21 PTF20 

PSD+DEPTH_M+BD+CACO3+PH_H2O+CE

C 
PTF03 PTF11 PTF06 PTF05 PTF03 PTF01 PTF05 PTF24 PTF12 

PSD+DEPTH_M+OC+BD+CACO3+PH_H2O

+CEC 
PTF03 PTF18 PTF07 PTF09 PTF03 PTF03 PTF02 PTF29 PTF27  

1PSD: particle size distribution (sand, 50–2000 μm; silt, 2–50 μm; clay, <2 μm (mass %)); DEPTH: mean soil depth (cm); OC: organic carbon content (mass 

%); BD: bulk density (g cm−3); CACO3: calcium carbonate content (mass %); PH_H2O: pH in water (-); CEC: cation exchange capacity (cmol (+) kg−1). 
2THS: saturated water content (pF 0); FC_2: water content at -100 cm matric potential head (pF 2.0); FC: water content at -330 cm matric potential head (pF 5 
2.5); AWC_2: plant available water content based on FC_2; AWC: plant available water content based on FC; WP: water content at wilting point (pF 4.2); 
KS: saturated hydraulic conductivity; VG: parameters of the van Genuchten model; MVG: parameters of the Mualem – van Genuchten model; TEST_BASIC: 

samples with measured PSD, DEPTH, OC and BD; TEST_CHEM+: samples with measured PSD, DEPTH, OC, BD, CACO3, PH_H2O and CEC.  
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FIGURES 1 

 2 

 3 

Figure 1. Results of parameter tuning of the random forest: optimization of a) the number of randomly selected predictors at 4 

each split by number of available predictors and b) splitting rule applied to build the trees in the random forest. 5 
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Figure 2. Scatter plot of the measured versus median predicted water retention values of the worst and best performing PTF 2 

with 90% prediction interval on test datasets. THS: saturated water content (PTF01 vs. PTF03); FC_2: water content at -100 3 

cm matric potential head (PTF01 vs. PTF18); FC: water content at -330 cm matric potential head (PTF01 vs. PTF07); WP: 4 

water content at wilting point (PTF01 vs. PTF09); log10KS: saturated hydraulic conductivity (PTF01 vs. PTF02); PSD: particle 5 

size distribution (sand, 50–2000 μm; silt, 2–50 μm; clay, <2 μm (mass %)); DEPTH_M: mean soil depth (cm); OC: organic 6 

carbon content (mass %); BD: bulk density (g cm−3); PH_H2O: pH in water (-); Count: the number of cases in each rectangle. 7 
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Figure 3. Relative Vvariable importance computed with the random forest algorithm for the prediction of water content with 3 

PTF32 at saturation (THS), at field capacity; -100 (FC_2) and -330 (FC) matric potential head, at wilting point (WP), of the 4 

plant available water content based on FC_2 (AWC_2) and FC (AWC), and the saturated hydraulic conductivity (KS). 5 

USSILT: silt content (2–50 μm (mass %)); USSAND: sand content (50–2000 μm (mass %)); USCLAY: clay content ( <2 μm 6 

(mass %)); PH_H2O: pH in water (-); OC: organic carbon content (mass %); DEPTH_M: mean soil depth (cm); OC: organic 7 

carbon content (mass %); CEC: cation exchange capacity (cmol (+) kg−1); CACO3: calcium carbonate content (mass %); BD: 8 

bulk density (g cm−3). 9 
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Figure 4. Partial dependence plot computed based on the random forest algorithm (PTF07) for the prediction of water content 2 

at saturation (THS), field capacity at -100 (FC_2) and -330 (FC) matric potential head, wilting point (WP), plant available 3 

water content computed with field capacity at -100 and -330 cm matric potential head (AWC_2, AWC) and saturated hydraulic 4 

conductivity (KS) for selected predictors. 5 
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Figure 5. Scatter plot of the measured versus median predicted water retention values computed with the van Genuchten (VG) 3 

model (PTF01 vs. PTF29, i.e. the worst versus best performing PTF). PSD: particle size distribution (sand, 50–2000 μm; silt, 4 

2–50 μm; clay, <2 μm (mass %)); DEPTH_M: mean soil depth (cm); OC: organic carbon content (mass %); BD: bulk density 5 

(g cm−3); PH_H2O: pH in water (-); CEC: cation exchange capacity (cmol (+) kg−1); Count: the number of cases in each 6 

hexagon. 7 
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Figure 6. Scatter plot of the measured versus median predicted hydraulic conductivity values computed with the Mualem-van 3 

Genuchten (MVG) model (PTF01 vs. PTF27, i.e. the worst versus best performing PTF). PSD: particle size distribution (sand, 4 

50–2000 μm; silt, 2–50 μm; clay, <2 μm (mass %)); DEPTH_M: mean soil depth (cm); OC: organic carbon content (mass %); 5 

BD: bulk density (g cm−3); CACO3: calcium carbonate content (mass %); PH_H2O: pH in water (-); Count: the number of 6 

cases in each hexagon. 7 
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Figure 7. Relative Vvariable importance computed with the random forest algorithm for the prediction of parameters of the 3 

van Genuchten and Mualem-van Genuchten models based on PTF32. θr: residual water content (cm³ cm-3); θs: saturated water 4 

content (cm³ cm-3); α (cm-1), n (-): fitting shape parameters; K0: the hydraulic conductivity acting as a matching point at 5 

saturation (cm day-1); L: shape parameter related to pore tortuosity (-); USSILT: silt content (2–50 μm (mass %)); USSAND: 6 

sand content (50–2000 μm (mass %)); USCLAY: clay content,( <2 μm (mass %)); PH_H2O: pH in water (-); OC: organic 7 

carbon content (mass %); DEPTH_M: mean soil depth (cm); OC: organic carbon content (mass %); CEC: cation exchange 8 

capacity (cmol (+) kg−1);> CACO3: calcium carbonate content (mass %); BD: bulk density (g cm−3). 9 
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Figure S1. The scatter plot of the measured versus predicted plant available water content values of the worst and best 

performing PTF with 90% prediction interval on test datasets. AWC_2: plant available water content based on filed capacity 

at -100 cm matric potential head (PTF01 vs. PTF03); AWC: plant available water content based on filed capacity at -330 cm 5 

matric potential head (PTF01 vs. PTF03); PSD: particle size distribution (sand, 50–2000 μm; silt, 2–50 μm; clay, <2 μm (mass 

%)); DEPTH_M: mean soil depth (cm); BD: bulk density (g cm−3); Count: the number of cases in each rectangle. 
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Table S1. Performance of pedotransfer functions (PTF) by input combination on training and test datasets to predict the plant available water content 

of the soil (AWC_2) belonging to the -100 cm matric potential head. N: number of samples, RMSE: root mean square error (cm3 cm-3), and R2: 

determination coefficient, TEST_BASIC: samples with measured PSD, DEPTH, OC and BD; TEST_CHEM+: samples with measured PSD, 

DEPTH, OC, BD, CACO3, PH_H2O and CEC. Recommended PTFs are highlighted in bold. 

Name of 

PTF in 

euptfv2 

Predictor variables1 

Training set Test set Sign. difference2 

Recommended 

PTF N RMSE  R2 N RMSE R2 
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PTF01 PSD+DEPTH 3528 0.062 0.446 1372 0.060 0.432 a ab PTF01 

PTF02 PSD+DEPTH+OC 3208 0.055 0.540 1372 0.054 0.544 b abcd PTF02 

PTF03 PSD+DEPTH+BD 3472 0.054 0.581 1372 0.053 0.552 b abcd PTF03 

PTF04 PSD+DEPTH+CACO3 1548 0.050 0.326 274 0.055 0.219 - abcd PTF01 

PTF05 PSD+DEPTH+PH_H2O 1849 0.058 0.463 274 0.055 0.216 - a PTF01 

PTF06 PSD+DEPTH+CEC 1550 0.059 0.512 274 0.060 0.050 - abcd PTF01 

PTF07 PSD+DEPTH+OC+BD 3197 0.051 0.609 1372 0.051 0.588 b abcd PTF03 

PTF08 PSD+DEPTH+OC+CACO3 1464 0.048 0.353 274 0.053 0.257 - abcd PTF02 

PTF09 PSD+DEPTH+OC+PH_H2O 1615 0.055 0.490 274 0.053 0.270 - abc PTF02 

PTF10 PSD+DEPTH+OC+CEC 1358 0.054 0.563 274 0.053 0.278 - abcd PTF02 

PTF11 PSD+DEPTH+BD+CACO3 1545 0.044 0.470 274 0.048 0.396 - d PTF03 

PTF12 PSD+DEPTH+BD+PH_H2O 1796 0.052 0.565 274 0.048 0.406 - abcd PTF03 

PTF13 PSD+DEPTH+BD+CEC 1498 0.053 0.598 274 0.048 0.398 - abcd PTF03 

PTF14 PSD+DEPTH+CACO3+PH_H2O 1195 0.051 0.341 274 0.052 0.284 - abcd PTF01 

PTF15 PSD+DEPTH+CACO3+CEC 726 0.050 0.286 274 0.052 0.303 - abcd PTF01 

PTF16 PSD+DEPTH+PH_H2O+CEC 1255 0.058 0.539 274 0.051 0.331 - abcd PTF01 

PTF17 PSD+DEPTH+OC+BD+CACO3 1464 0.044 0.465 274 0.048 0.390 - bcd PTF03 

PTF18 PSD+DEPTH+OC+BD+PH_H2O 1607 0.051 0.556 274 0.048 0.407 - abcd PTF03 

PTF19 PSD+DEPTH+OC+BD+CEC 1349 0.052 0.593 274 0.046 0.441 - abcd PTF03 

PTF20 PSD+DEPTH+OC+CACO3+PH_H2O 1130 0.050 0.367 274 0.051 0.309 - abcd PTF02 

PTF21 PSD+DEPTH+OC+CACO3+CEC 683 0.049 0.305 274 0.050 0.359 - abcd PTF02 

PTF22 PSD+DEPTH+OC+PH_H2O+CEC 1067 0.054 0.561 274 0.049 0.367 - abcd PTF02 

PTF23 PSD+DEPTH+BD+CACO3+PH_H2O 1192 0.046 0.471 274 0.049 0.375 - bcd PTF03 

PTF24 PSD+DEPTH+BD+CACO3+CEC 725 0.045 0.420 274 0.046 0.444 - d PTF03 

PTF25 PSD+DEPTH+BD+PH_H2O+CEC 1204 0.052 0.621 274 0.046 0.456 - abcd PTF03 

PTF26 PSD+DEPTH+CACO3+PH_H2O+CEC 684 0.049 0.318 274 0.048 0.388 - abcd PTF01 

PTF27 PSD+DEPTH+OC+BD+CACO3+PH_H2O 1130 0.045 0.475 274 0.049 0.367 - abcd PTF03 

PTF28 PSD+DEPTH+OC+BD+CACO3+CEC 683 0.045 0.408 274 0.045 0.466 - bcd PTF03 

PTF29 PSD+DEPTH+OC+BD+PH_H2O+CEC 1059 0.052 0.603 274 0.045 0.473 - bcd PTF03 

PTF30 PSD+DEPTH+OC+CACO3+PH_H2O+CEC 641 0.049 0.330 274 0.048 0.393 - abcd PTF02 

PTF31 PSD+DEPTH+BD+CACO3+PH_H2O+CEC 683 0.044 0.450 274 0.045 0.480 - cd PTF03 

PTF32 PSD+DEPTH+OC+BD+CACO3+PH_H2O+CEC 641 0.045 0.425 274 0.045 0.471 - cd PTF03 
1PSD: particle size distribution (sand, 50–2000 μm; silt, 2–50 μm; clay, <2 μm (mass %)); DEPTH: mean soil depth (cm); OC: organic carbon content (mass %); BD: bulk density (g 5 
cm−3); CACO3: calcium carbonate content (mass %); PH_H2O: pH in water (-); CEC: cation exchange capacity (cmol (+) kg−1). 
2Different letters indicate significant differences at the 0.05 level between the accuracy of the methods based on the squared  error; for example performance indicated with the letter c 

is significantly better than the one noted with letters b and a. 
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Table S2. Performance of pedotransfer functions (PTF) by input combination on training and test datasets to predict the plant available water content 

of the soil (AWC) belonging to the -330 cm matric potential head. N: number of samples, RMSE: root mean square error (cm3 cm-3), and R2: 

determination coefficient, TEST_BASIC: samples with measured PSD, DEPTH, OC and BD; TEST_CHEM+: samples with measured PSD, 

DEPTH, OC, BD, CACO3, PH_H2O and CEC. Recommended PTFs are highlighted in bold. 

Name of 

PTF in 

euptfv2 

Predictor variables1 

Training set Test set Sign. difference2 

Recommended 

PTF N RMSE  R2 N RMSE R2 
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PTF01 PSD+DEPTH 1863 0.042 0.312 705 0.048 0.196 a a PTF01 

PTF02 PSD+DEPTH+OC 1650 0.041 0.337 705 0.045 0.288 ab a PTF01 

PTF03 PSD+DEPTH+BD 1849 0.040 0.374 705 0.045 0.285 ab a PTF01 

PTF04 PSD+DEPTH+CACO3 1531 0.040 0.366 279 0.050 0.199 - a PTF01 

PTF05 PSD+DEPTH+PH_H2O 1245 0.042 0.344 279 0.048 0.238 - a PTF01 

PTF06 PSD+DEPTH+CEC 1092 0.041 0.356 279 0.053 0.078 - a PTF01 

PTF07 PSD+DEPTH+OC+BD 1645 0.040 0.381 705 0.043 0.337 b a PTF03 

PTF08 PSD+DEPTH+OC+CACO3 1336 0.041 0.345 279 0.049 0.219 - a PTF01 

PTF09 PSD+DEPTH+OC+PH_H2O 1074 0.042 0.345 279 0.048 0.242 - a PTF01 

PTF10 PSD+DEPTH+OC+CEC 998 0.039 0.413 279 0.051 0.147 - a PTF01 

PTF11 PSD+DEPTH+BD+CACO3 1522 0.038 0.428 279 0.048 0.258 - a PTF01 

PTF12 PSD+DEPTH+BD+PH_H2O 1236 0.039 0.429 279 0.047 0.287 - a PTF01 

PTF13 PSD+DEPTH+BD+CEC 1088 0.038 0.429 279 0.049 0.231 - a PTF01 

PTF14 PSD+DEPTH+CACO3+PH_H2O 1230 0.041 0.376 279 0.047 0.263 - a PTF01 

PTF15 PSD+DEPTH+CACO3+CEC 791 0.041 0.366 279 0.049 0.214 - a PTF01 

PTF16 PSD+DEPTH+PH_H2O+CEC 739 0.042 0.321 279 0.048 0.237 - a PTF01 

PTF17 PSD+DEPTH+OC+BD+CACO3 1334 0.039 0.399 279 0.048 0.262 - a PTF03 

PTF18 PSD+DEPTH+OC+BD+PH_H2O 1072 0.040 0.393 279 0.047 0.293 - a PTF03 

PTF19 PSD+DEPTH+OC+BD+CEC 995 0.038 0.432 279 0.049 0.223 - a PTF03 

PTF20 PSD+DEPTH+OC+CACO3+PH_H2O 1059 0.042 0.362 279 0.047 0.289 - a PTF01 

PTF21 PSD+DEPTH+OC+CACO3+CEC 707 0.041 0.358 279 0.049 0.229 - a PTF01 

PTF22 PSD+DEPTH+OC+PH_H2O+CEC 660 0.041 0.339 279 0.048 0.253 - a PTF01 

PTF23 PSD+DEPTH+BD+CACO3+PH_H2O 1221 0.039 0.442 279 0.047 0.267 - a PTF01 

PTF24 PSD+DEPTH+BD+CACO3+CEC 788 0.039 0.405 279 0.047 0.269 - a PTF01 

PTF25 PSD+DEPTH+BD+PH_H2O+CEC 736 0.039 0.402 279 0.046 0.307 - a PTF01 

PTF26 PSD+DEPTH+CACO3+PH_H2O+CEC 732 0.040 0.405 279 0.048 0.254 - a PTF01 

PTF27 PSD+DEPTH+OC+BD+CACO3+PH_H2O 1057 0.040 0.415 279 0.046 0.312 - a PTF03 

PTF28 PSD+DEPTH+OC+BD+CACO3+CEC 705 0.040 0.383 279 0.047 0.277 - a PTF03 

PTF29 PSD+DEPTH+OC+BD+PH_H2O+CEC 658 0.040 0.385 279 0.046 0.315 - a PTF03 

PTF30 PSD+DEPTH+OC+CACO3+PH_H2O+CEC 653 0.040 0.395 279 0.047 0.274 - a PTF01 

PTF31 PSD+DEPTH+BD+CACO3+PH_H2O+CEC 729 0.039 0.431 279 0.047 0.290 - a PTF01 

PTF32 PSD+DEPTH+OC+BD+CACO3+PH_H2O+CEC 651 0.039 0.403 279 0.046 0.307 - a PTF03 
1PSD: particle size distribution (sand, 50–2000 μm; silt, 2–50 μm; clay, <2 μm (mass %)); DEPTH: mean soil depth (cm); OC: organic carbon content (mass %); BD: bulk density (g 5 
cm−3); CACO3: calcium carbonate content (mass %); PH_H2O: pH in water (-); CEC: cation exchange capacity (cmol (+) kg−1). 
2Different letters indicate significant differences at the 0.05 level between the accuracy of the methods based on the squared error;for example performance indicated with the letter c is 

significantly better than the one noted with letters b and a.
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Table S3. Normalized root mean square error (NRMSE) of the point predictions by soil hydraulic properties computed on the test datasets in cm3 

cm-3 for water retention and log10 (cm day-1) for saturated hydraulic conductivity. In case of PTF01, 02, 03 and 07 TEST_BASIC set was used for 

the analysis, for the rest of the PTFs TEST_CHEM+ set was considered. 

Name of 

PTF in 

euptfv2 

Predictor variables1 
NRMSE in test sets2 

THS FC_2 FC WP AWC_2 AWC KS 

PTF01 PSD+DEPTH_M 0.104 0.090 0.082 0.105 0.126 0.140 0.17 

PTF02 PSD+DEPTH_M+OC 0.086 0.083 0.076 0.102 0.112 0.132 0.14 

PTF03 PSD+DEPTH_M+BD 0.048 0.079 0.074 0.100 0.111 0.132 0.17 

PTF04 PSD+DEPTH_M+CACO3 0.191 0.107 0.113 0.122 0.164 0.145 0.19 

PTF05 PSD+DEPTH_M+PH_H2O 0.176 0.112 0.114 0.126 0.164 0.142 0.19 

PTF06 PSD+DEPTH_M+CEC 0.191 0.107 0.107 0.118 0.181 0.156 0.19 

PTF07 PSD+DEPTH_M+OC+BD 0.047 0.075 0.073 0.097 0.107 0.127 0.14 

PTF08 PSD+DEPTH_M+OC+CACO3 0.184 0.097 0.109 0.117 0.160 0.143 0.19 

PTF09 PSD+DEPTH_M+OC+PH_H2O 0.167 0.095 0.107 0.119 0.158 0.141 0.18 

PTF10 PSD+DEPTH_M+OC+CEC 0.172 0.098 0.108 0.116 0.158 0.150 0.18 

PTF11 PSD+DEPTH_M+BD+CACO3 0.072 0.091 0.105 0.115 0.144 0.140 0.19 

PTF12 PSD+DEPTH_M+BD+PH_H2O 0.069 0.086 0.103 0.117 0.143 0.137 0.19 

PTF13 PSD+DEPTH_M+BD+CEC 0.070 0.091 0.100 0.115 0.144 0.142 0.19 

PTF14 PSD+DEPTH_M+CACO3+PH_H2O 0.168 0.101 0.109 0.121 0.157 0.139 0.18 

PTF15 PSD+DEPTH_M+CACO3+CEC 0.179 0.102 0.106 0.113 0.155 0.144 0.19 

PTF16 PSD+DEPTH_M+PH_H2O+CEC 0.183 0.098 0.104 0.115 0.152 0.142 0.19 

PTF17 PSD+DEPTH_M+OC+BD+CACO3 0.070 0.089 0.102 0.111 0.145 0.139 0.18 

PTF18 PSD+DEPTH_M+OC+BD+PH_H2O 0.070 0.083 0.103 0.116 0.143 0.136 0.18 

PTF19 PSD+DEPTH_M+OC+BD+CEC 0.070 0.087 0.099 0.113 0.139 0.143 0.18 

PTF20 PSD+DEPTH_M+OC+CACO3+PH_H2O 0.166 0.105 0.107 0.114 0.154 0.137 0.18 

PTF21 PSD+DEPTH_M+OC+CACO3+CEC 0.171 0.090 0.104 0.108 0.149 0.142 0.18 

PTF22 PSD+DEPTH_M+OC+PH_H2O+CEC 0.166 0.089 0.102 0.111 0.148 0.140 0.18 

PTF23 PSD+DEPTH_M+BD+CACO3+PH_H2O 0.071 0.089 0.104 0.116 0.147 0.139 0.18 

PTF24 PSD+DEPTH_M+BD+CACO3+CEC 0.071 0.085 0.099 0.110 0.138 0.139 0.19 

PTF25 PSD+DEPTH_M+BD+PH_H2O+CEC 0.067 0.084 0.100 0.112 0.137 0.135 0.19 

PTF26 PSD+DEPTH_M+CACO3+PH_H2O+CEC 0.163 0.094 0.103 0.111 0.145 0.140 0.18 

PTF27 PSD+DEPTH_M+OC+BD+CACO3+PH_H2O 0.072 0.086 0.101 0.111 0.148 0.135 0.18 

PTF28 PSD+DEPTH_M+OC+BD+CACO3+CEC 0.070 0.082 0.098 0.106 0.136 0.138 0.18 

PTF29 PSD+DEPTH_M+OC+BD+PH_H2O+CEC 0.068 0.083 0.095 0.109 0.135 0.134 0.18 

PTF30 PSD+DEPTH_M+OC+CACO3+PH_H2O+CEC 0.162 0.100 0.101 0.108 0.145 0.138 0.17 

PTF31 PSD+DEPTH_M+BD+CACO3+PH_H2O+CEC 0.070 0.081 0.097 0.108 0.134 0.137 0.18 

PTF32 PSD+DEPTH_M+OC+BD+CACO3+PH_H2O+CEC 0.069 0.079 0.097 0.107 0.135 0.135 0.18 
1PSD: particle size distribution (sand, 50–2000 μm; silt, 2–50 μm; clay, <2 μm (mass %)); DEPTH: mean soil depth (cm); OC: organic carbon content (mass %); BD: bulk density (g 

cm−3); CACO3: calcium carbonate content (mass %); PH_H2O: pH in water (-); CEC: cation exchange capacity (cmol (+) kg−1). 5 
2THS: saturated water content (pF 0); FC_2: water content at -100 cm matric potential head (pF 2.0); FC: water content at -330 cm matric potential head (pF 2.5); AWC_2: plant 

available water content based on FC_2; AWC: plant available water content based on FC; WP: water content at wilting point (pF 4.2); KS: saturated hydraulic conductivity; 
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Figure S2. Root mean sSquared error (RMSE) of the pedotransfer functions derived to predict water content at saturation 

(THS) computed on TEST_BASIC and TEST_CHEM+ set. USSAND: sand (50–2000 μm) content (mass %); USSILT: silt 

(2–50 μm) content (mass %), USCLAY: clay (<2 μm) content (mass %); DEPTH_M: mean soil depth (cm); OC: organic 5 

carbon content (mass %); BD: bulk density (g cm−3); CACO3: calcium carbonate content (mass %); PH_H2O: pH in water (-

); CEC: cation exchange capacity (cmol (+) kg−1). 
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Figure S3. Density plot of observed (OBS) and predicted median (PSD+DEPTH_M+*) water content at saturation (THS) for 

selected pedotransfer functions, computed on TEST_BASIC and TEST_CHEM+ set. USSAND: sand (50–2000 μm) content 

(mass %); USSILT: silt (2–50 μm) content (mass %), USCLAY: clay (<2 μm) content (mass %); DEPTH_M: mean soil depth 

(cm); OC: organic carbon content (mass %); BD: bulk density (g cm−3); CACO3: calcium carbonate content (mass %); 5 

PH_H2O: pH in water (-); CEC: cation exchange capacity (cmol (+) kg−1). 
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Figure S4. Root mean sSquared error (RMSE) of the pedotransfer functions derived to predict water content at -100 cm matric 

potential head (FC_2) computed on TEST_BASIC and TEST_CHEM+ set. USSAND: sand (50–2000 μm) content (mass %); 

USSILT: silt (2–50 μm) content (mass %), USCLAY: clay (<2 μm) content (mass %); DEPTH_M: mean soil depth (cm); OC: 

organic carbon content (mass %); BD: bulk density (g cm−3); CACO3: calcium carbonate content (mass %); PH_H2O: pH in 5 

water (-); CEC: cation exchange capacity (cmol (+) kg−1). 

 

 

Figure S5. Density plot of observed (OBS) and predicted median (PSD+DEPTH_M+*) water content at -100 cm matric 

potential head (FC_2) for selected pedotransfer functions, computed on TEST_BASIC and TEST_CHEM+ set. USSAND: 10 

sand (50–2000 μm) content (mass %); USSILT: silt (2–50 μm) content (mass %), USCLAY: clay (<2 μm) content (mass %); 

DEPTH_M: mean soil depth (cm); OC: organic carbon content (mass %); BD: bulk density (g cm−3); CACO3: calcium 

carbonate content (mass %); PH_H2O: pH in water (-); CEC: cation exchange capacity (cmol (+) kg−1). 
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Figure S6. Root mean sSquared error (RMSE) of the pedotransfer functions derived to predict water content at -330 cm matric 

potential head (FC) computed on TEST_BASIC and TEST_CHEM+ set. USSAND: sand (50–2000 μm) content (mass %); 

USSILT: silt (2–50 μm) content (mass %), USCLAY: clay (<2 μm) content (mass %); DEPTH_M: mean soil depth (cm); OC: 5 

organic carbon content (mass %); BD: bulk density (g cm−3); CACO3: calcium carbonate content (mass %); PH_H2O: pH in 

water (-); CEC: cation exchange capacity (cmol (+) kg−1). 
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Figure S7. Density plot of observed (OBS) and predicted median (PSD+DEPTH_M+*) water content at -330 cm matric 

potential head (FC) for selected pedotransfer functions, computed on TEST_BASIC and TEST_CHEM+ set. USSAND: sand 

(50–2000 μm) content (mass %); USSILT: silt (2–50 μm) content (mass %), USCLAY: clay (<2 μm) content (mass %); 

DEPTH_M: mean soil depth (cm); OC: organic carbon content (mass %); BD: bulk density (g cm−3); CACO3: calcium 5 

carbonate content (mass %); PH_H2O: pH in water (-); CEC: cation exchange capacity (cmol (+) kg−1). 
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Figure S8. Root mean sSquared error (RMSE) of the pedotransfer functions derived to predict water content at wilting point 

(WP) computed on TEST_BASIC and TEST_CHEM+ set. USSAND: sand (50–2000 μm) content (mass %); USSILT: silt (2–

50 μm) content (mass %), USCLAY: clay (<2 μm) content (mass %); DEPTH_M: mean soil depth (cm); OC: organic carbon 

content (mass %); BD: bulk density (g cm−3); CACO3: calcium carbonate content (mass %); PH_H2O: pH in water (-); CEC: 5 

cation exchange capacity (cmol (+) kg−1). 

 

 

Figure S9. Density plot of observed (OBS) and predicted median (PSD+DEPTH_M+*) water content at wilting point (WP) 

for selected pedotransfer functions, computed on TEST_BASIC and TEST_CHEM+ set. USSAND: sand (50–2000 μm) 10 

content (mass %); USSILT: silt (2–50 μm) content (mass %), USCLAY: clay (<2 μm) content (mass %); DEPTH_M: mean 

soil depth (cm); OC: organic carbon content (mass %); BD: bulk density (g cm−3); CACO3: calcium carbonate content (mass 

%); PH_H2O: pH in water (-); CEC: cation exchange capacity (cmol (+) kg−1). 
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Figure S10. Root mean sSquared error (RMSE) of the pedotransfer functions derived to predict plant available water content 

(AWC_2) considering field capacity at -100 matric potential head (FC_2), computed on TEST_BASIC and TEST_CHEM+ 

set. USSAND: sand (50–2000 μm) content (mass %); USSILT: silt (2–50 μm) content (mass %), USCLAY: clay (<2 μm) 5 

content (mass %); DEPTH_M: mean soil depth (cm); OC: organic carbon content (mass %); BD: bulk density (g cm−3); 

CACO3: calcium carbonate content (mass %); PH_H2O: pH in water (-); CEC: cation exchange capacity (cmol (+) kg−1). 
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Figure S11. Density plot of observed (OBS) and predicted median (PSD+DEPTH_M+*) plant available water content 

(AWC_2) considering field capacity at -100 matric potential head (FC_2) for selected pedotransfer functions, computed on 

TEST_BASIC and TEST_CHEM+ set. USSAND: sand (50–2000 μm) content (mass %); USSILT: silt (2–50 μm) content 

(mass %), USCLAY: clay (<2 μm) content (mass %); DEPTH_M: mean soil depth (cm); OC: organic carbon content (mass 5 

%); BD: bulk density (g cm−3); CACO3: calcium carbonate content (mass %); PH_H2O: pH in water (-); CEC: cation exchange 

capacity (cmol (+) kg−1). 
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Figure S12. Root mean sSquared error (RMSE) of the pedotransfer functions derived to predict plant available water content 

(AWC) considering field capacity at -330 matric potential head (FC), computed on TEST_BASIC and TEST_CHEM+ set. 

USSAND: sand (50–2000 μm) content (mass %); USSILT: silt (2–50 μm) content (mass %), USCLAY: clay (<2 μm) content 

(mass %); DEPTH_M: mean soil depth (cm); OC: organic carbon content (mass %); BD: bulk density (g cm−3); CACO3: 5 

calcium carbonate content (mass %); PH_H2O: pH in water (-); CEC: cation exchange capacity (cmol (+) kg−1). 

 

 

Figure S13. Density plot of observed (OBS) and predicted median (PSD+DEPTH_M+*) plant available water content (AWC) 

considering field capacity at -330 matric potential head (FC) for selected pedotransfer functions, computed on TEST_BASIC 10 

and TEST_CHEM+ set. USSAND: sand (50–2000 μm) content (mass %); USSILT: silt (2–50 μm) content (mass %), 

USCLAY: clay (<2 μm) content (mass %); DEPTH_M: mean soil depth (cm); OC: organic carbon content (mass %); BD: 

bulk density (g cm−3); CACO3: calcium carbonate content (mass %); PH_H2O: pH in water (-); CEC: cation exchange capacity 

(cmol (+) kg−1). 
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Figure S14. Root mean sSquared error (RMSE) of the pedotransfer functions derived to predict saturated hydraulic 

conductivity (KS), computed on TEST_BASIC and TEST_CHEM+ set. USSAND: sand (50–2000 μm) content (mass %); 

USSILT: silt (2–50 μm) content (mass %), USCLAY: clay (<2 μm) content (mass %); DEPTH_M: mean soil depth (cm); OC: 5 

organic carbon content (mass %); BD: bulk density (g cm−3); CACO3: calcium carbonate content (mass %); PH_H2O: pH in 

water (-); CEC: cation exchange capacity (cmol (+) kg−1). 

 



16 

 

 

Figure S15. Density plot of observed (OBS) and predicted median (PSD+DEPTH_M+*) saturated hydraulic conductivity 

(KS) for selected pedotransfer functions, computed on TEST_BASIC and TEST_CHEM+ set. USSAND: sand (50–2000 μm) 

content (mass %); USSILT: silt (2–50 μm) content (mass %), USCLAY: clay (<2 μm) content (mass %); DEPTH_M: mean 

soil depth (cm); OC: organic carbon content (mass %); BD: bulk density (g cm−3); CACO3: calcium carbonate content (mass 5 

%); PH_H2O: pH in water (-); CEC: cation exchange capacity (cmol (+) kg−1). 
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Figure S16. Root mean sSquared error (RMSE) of the pedotransfer functions derived to predict parameters of the van 

Genuchten model for the description of the moisture retention curve (MRC), computed on TEST_BASIC and TEST_CHEM+ 

set. USSAND: sand (50–2000 μm) content (mass %); USSILT: silt (2–50 μm) content (mass %), USCLAY: clay (<2 μm) 

content (mass %); DEPTH_M: mean soil depth (cm); OC: organic carbon content (mass %); BD: bulk density (g cm−3); 5 

CACO3: calcium carbonate content (mass %); PH_H2O: pH in water (-); CEC: cation exchange capacity (cmol (+) kg−1). 

 

 

Figure S17. Density plot of observed (OBS) and predicted median (PSD+DEPTH_M+*) water retention values (MRC) 

computed based on the parameters of the van Genuchten model, computed on TEST_BASIC and TEST_CHEM+ set. Predicted 10 

values of those PTFs are shown which use the most often available predictor variables. USSAND: sand (50–2000 μm) content 

(mass %); USSILT: silt (2–50 μm) content (mass %), USCLAY: clay (<2 μm) content (mass %); DEPTH_M: mean soil depth 

(cm); OC: organic carbon content (mass %); BD: bulk density (g cm−3); CACO3: calcium carbonate content (mass %); 

PH_H2O: pH in water (-); CEC: cation exchange capacity (cmol (+) kg−1). 
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Figure S18. Mean error of the pedotransfer functions derived to predict parameters of the van Genuchten model for the 

description of the moisture retention curve, computed on TEST_BASIC (N = 1591) (A) and TEST_CHEM+ (N = 288) (B) 

sets by matric potential head values. 5 
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Figure S19. Root mean sSquared error (RMSE) of the pedotransfer functions derived to predict parameters of the Mualem-

van Genuchten model for the description of the hydraulic conductivity curve (HCC), computed on TEST_BASIC and 

TEST_CHEM+ set. USSAND: sand (50–2000 μm) content (mass %); USSILT: silt (2–50 μm) content (mass %), USCLAY: 5 

clay (<2 μm) content (mass %); DEPTH_M: mean soil depth (cm); OC: organic carbon content (mass %); BD: bulk density 

(g cm−3); CACO3: calcium carbonate content (mass %); PH_H2O: pH in water (-); CEC: cation exchange capacity (cmol (+) 

kg−1). 
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Figure S20. Density plot of observed (OBS) and predicted median (PSD+DEPTH_M+*) hydraulic conductivity values (HCC) 

computed based on the parameters of the Mualem-van Genuchten model, computed on TEST_BASIC and TEST_CHEM+ 

set. Predicted values of those PTFs are shown which use the most often available predictor variables. USSAND: sand (50–

2000 μm) content (mass %); USSILT: silt (2–50 μm) content (mass %), USCLAY: clay (<2 μm) content (mass %); DEPTH_M: 5 

mean soil depth (cm); OC: organic carbon content (mass %); BD: bulk density (g cm−3); CACO3: calcium carbonate content 

(mass %); PH_H2O: pH in water (-); CEC: cation exchange capacity (cmol (+) kg−1). 
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Figure S21. Mean error of the pedotransfer functions derived to predict parameters of the Mualem-van Genuchten model for 

the description of the hydraulic conductivity curve, computed on TEST_BASIC (N = 176) (A) and TEST_CHEM+ (N = 57) 

(B) sets by matric potential head values.Table S3. List of recommended pedotransfer functions (PTFs) by predicted soil 5 

hydraulic property and available predictor variables. 

Predictor variables1 Recommended PTFs2 

THS FC_2 FC WP AWC

_2 

AWC KS VG MVG 

PSD+DEPTH_M PTF0

1 

PTF0

1 

PTF0

1 

PTF0

1 

PTF0

1 

PTF01 PTF0

1 

PTF0

1 

PTF0

1 
PSD+DEPTH_M+OC PTF0

2 

PTF0

2 

PTF0

2 

PTF0

2 

PTF0

2 

PTF01 PTF0

2 

PTF0

2 

PTF0

2 
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PSD+DEPTH_M+BD PTF0

3 

PTF0

3 

PTF0

1 

PTF0

1 

PTF0

3 

PTF01 PTF0

1 

PTF0

3 

PTF0

1 
PSD+DEPTH_M+CACO3 PTF0

4 

PTF0

1 

PTF0

1 

PTF0

1 

PTF0

1 

PTF01 PTF0

1 

PTF0

4 

PTF0

4 
PSD+DEPTH_M+PH_H2O PTF0

5 

PTF0

1 

PTF0

1 

PTF0

1 

PTF0

1 

PTF01 PTF0

1 

PTF0

5 

PTF0

5 
PSD+DEPTH_M+CEC PTF0

1 

PTF0

1 

PTF0

6 

PTF0

1 

PTF0

1 

PTF01 PTF0

1 

PTF0

6 

PTF0

6 PSD+DEPTH_M+OC+BD PTF0

3 

PTF0

3 

PTF0

2 

PTF0

2 

PTF0

3 

PTF03 PTF0

2 

PTF0

7 

PTF0

2 
PSD+DEPTH_M+OC+CACO3 PTF0

2 

PTF0

2 

PTF0

2 

PTF0

2 

PTF0

2 

PTF01 PTF0

2 

PTF0

8 

PTF0

2 
PSD+DEPTH_M+OC+PH_H2O PTF0

2 

PTF0

2 

PTF0

2 

PTF0

2 

PTF0

2 

PTF01 PTF0

2 

PTF0

9 

PTF0

2 
PSD+DEPTH_M+OC+CEC PTF0

2 

PTF0

6 

PTF0

2 

PTF0

2 

PTF0

2 

PTF01 PTF0

2 

PTF1

0 

PTF0

2 
PSD+DEPTH_M+BD+CACO3 PTF0

3 

PTF0

3 

PTF0

3 

PTF0

1 

PTF0

3 

PTF01 PTF0

1 

PTF1

1 

PTF0

4 
PSD+DEPTH_M+BD+PH_H2O PTF0

3 

PTF0

3 

PTF0

3 

PTF0

1 

PTF0

3 

PTF01 PTF0

5 

PTF1

2 

PTF1

2 
PSD+DEPTH_M+BD+CEC PTF0

3 

PTF1

3 

PTF0

6 

PTF0

1 

PTF0

3 

PTF01 PTF0

1 

PTF1

3 

PTF1

3 
PSD+DEPTH_M+CACO3+PH_H2O PTF0

5 

PTF0

5 

PTF0

4 

PTF0

1 

PTF0

1 

PTF01 PTF0

5 

PTF1

4 

PTF0

4 
PSD+DEPTH_M+CACO3+CEC PTF0

4 

PTF0

4 

PTF0

4 

PTF0

1 

PTF0

1 

PTF01 PTF0

1 

PTF1

5 

PTF0

4 
PSD+DEPTH_M+PH_H2O+CEC PTF0

5 

PTF0

5 

PTF0

6 

PTF0

1 

PTF0

1 

PTF01 PTF0

1 

PTF1

6 

PTF0

6 
PSD+DEPTH_M+OC+BD+CACO3 PTF0

3 

PTF0

7 

PTF0

2 

PTF0

7 

PTF0

3 

PTF03 PTF0

2 

PTF1

1 

PTF0

2 
PSD+DEPTH_M+OC+BD+PH_H2O PTF0

3 

PTF0

7 

PTF0

2 

PTF0

7 

PTF0

3 

PTF03 PTF0

2 

PTF1

2 

PTF0

2 
PSD+DEPTH_M+OC+BD+CEC PTF0

3 

PTF1

3 

PTF0

7 

PTF0

7 

PTF0

3 

PTF03 PTF0

2 

PTF1

3 

PTF0

2 
PSD+DEPTH_M+OC+CACO3+PH_H2O PTF0

2 

PTF0

2 

PTF0

2 

PTF0

2 

PTF0

2 

PTF01 PTF0

2 

PTF0

9 

PTF2

0 
PSD+DEPTH_M+OC+CACO3+CEC PTF0

2 

PTF0

8 

PTF0

4 

PTF0

8 

PTF0

2 

PTF01 PTF0

2 

PTF2

1 

PTF2

1 
PSD+DEPTH_M+OC+PH_H2O+CEC PTF0

2 

PTF0

9 

PTF0

9 

PTF0

2 

PTF0

2 

PTF01 PTF0

2 

PTF2

2 

PTF0

2 
PSD+DEPTH_M+BD+CACO3+PH_H2O PTF0

3 

PTF0

3 

PTF0

3 

PTF0

1 

PTF0

3 

PTF01 PTF0

5 

PTF1

1 

PTF2

3 PSD+DEPTH_M+BD+CACO3+CEC PTF0

3 

PTF1

1 

PTF1

1 

PTF0

1 

PTF0

3 

PTF01 PTF0

1 

PTF2

4 

PTF0

4 
PSD+DEPTH_M+BD+PH_H2O+CEC PTF0

3 

PTF1

2 

PTF1

1 

PTF0

1 

PTF0

3 

PTF01 PTF0

5 

PTF2

5 

PTF1

2 PSD+DEPTH_M+CACO3+PH_H2O+CEC PTF0

5 

PTF0

5 

PTF1

4 

PTF0

5 

PTF0

1 

PTF01 PTF0

5 

PTF1

5 

PTF0

4 
PSD+DEPTH_M+OC+BD+CACO3+PH_H2O PTF0

3 

PTF0

7 

PTF0

2 

PTF0

7 

PTF0

3 

PTF03 PTF0

2 

PTF1

1 

PTF2

7 
PSD+DEPTH_M+OC+BD+CACO3+CEC PTF0

3 

PTF1

1 

PTF0

7 

PTF1

7 

PTF0

3 

PTF03 PTF0

2 

PTF2

4 

PTF2

8 
PSD+DEPTH_M+OC+BD+PH_H2O+CEC PTF0

3 

PTF1

2 

PTF0

7 

PTF0

7 

PTF0

3 

PTF03 PTF0

2 

PTF2

9 

PTF2

9 
PSD+DEPTH_M+OC+CACO3+PH_H2O+CE

C 

PTF0

2 

PTF0

9 

PTF0

8 

PTF0

2 

PTF0

2 

PTF01 PTF0

2 

PTF2

1 

PTF2

0 
PSD+DEPTH_M+BD+CACO3+PH_H2O+CE

C 

PTF0

3 

PTF1

1 

PTF0

6 

PTF0

5 

PTF0

3 

PTF01 PTF0

5 

PTF2

4 

PTF1

2 
PSD+DEPTH_M+OC+BD+CACO3+PH_H2O

+CEC 

PTF0

3 

PTF1

8 

PTF0

7 

PTF0

9 

PTF0

3 

PTF03 PTF0

2 

PTF2

9 

PTF2

7  
1PSD: particle size distribution (sand, 50–2000 μm; silt, 2–50 μm; clay, <2 μm (mass %)); DEPTH: mean soil depth (cm); OC: organic carbon content (mass 

%); BD: bulk density (g cm−3); CACO3: calcium carbonate content (mass %); PH_H2O: pH in water (-); CEC: cation exchange capacity (cmol (+) kg−1). 

2THS: saturated water content (pF 0); FC_2: water content at -100 cm matric potential head (pF 2.0); FC: water content at -330 cm matric potential head (pF 

2.5); AWC_2: plant available water content based on FC_2; AWC: plant available water content based on FC; WP: water content at wilting point (pF 4.2); 

KS: saturated hydraulic conductivity; VG: parameters of the van Genuchten model; MVG: parameters of the Mualem – van Genuchten model; TEST_BASIC: 5 

samples with measured PSD, DEPTH, OC and BD; TEST_CHEM+: samples with measured PSD, DEPTH, OC, BD, CACO3, PH_H2O and CEC.  
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