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Response to Anonymous Referee #3

Thank you for the detailed review and suggestions for further improvements. In the fol-
lowing, we give a detailed presentation of how we will address all the questions and is-
sues raised. Below we would like to answer and provide possible solutions for the com-
ments and recommendations, following the referee’s questions (RC3). Please note the
following during reading the responses: - the supplement file includes the structured
and formatted version of the responses: https://gmd.copernicus.org/preprints/gmd-
2020-36/gmd-2020-36-AC2-supplement.pdf, - the responses are in blue regular font
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and inserted under the referee’s questions, - new text parts that will be added to the
manuscript are in blue italic font, - the reference to the lines and pages relates to
the discussion paper available from: https://gmd.copernicus.org/preprints/gmd-2020-
36/gmd-2020-36.pdf .

RC3: This manuscript aims to update the previously developed PTF for European
soils called euptfv1. More importantly, euptfv2 contributes to the understudied issue of
uncertainty in PTFs for potential users. Despite the existing large amount of results,
the paper is easy to follow with some possibilities to improve.

A: Thank you for the positive general comment.

RC3: The authors also provide a detailed and user-friendly website from euptfv2, how-
ever, no library called eutptf exists in R Repository, even the available zip file has
problems to be run.

A: The R package of euptfv2 is under construction. The available zip files include
the R scripts used to develop the predictions and the derived pedotransfer func-
tions. The dataset which we used for training and testing the algorithms cannot be
shared according to the agreement between the data holders. Regarding the model
development the following information is included separately for point and parame-
ter estimations: i) loading data, define path, input variables and function to com-
pute performance of the PTFs (setupRF.R), ii) parameter tuning of the random for-
est (tuneRF.R), iii) building final random forest (buildfinalRF.R), iv) compute perfor-
mance of the final random forest on the test set (testRF.R) . In a separate folder
(https://github.com/TothSzaboBrigitta/euptfv2/tree/master/help) a sample input dataset
(data_sample.csv) and an R script (apply_PTFs_script.R) - which shows some exam-
ples on how to apply the PTFs in R – have been added to the repository.

RC3: Many comparisons among the possibilities of PTFs for different soil hydraulic
properties were done. These series of “euptfv(i)” will contribute to the modelling of soil
processes. I recommend this paper for publication, however, I outlined some questions
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and comments as below (L denotes line and P for page)

A: Thank you for considering the usability of the euptfs.

RC3: L30, P1. variably saturated fluxes? do you mean flow through variably saturated
soil media?

AGREED

A: Yes, thank you for noting it, we will correct it: “Simulations of flow through variably
saturated soil media either rely on . . .”

RC3: L31. P.2. Not necessary to machine learning-based methods are able to cal-
culate uncertainty because the sampling effect can propagate parameter uncertainty,
which can be implemented even in simple regression-based models. Tens of resam-
ples for training and testing with different distributions can be drawn from the population
(Tranter etal., 2010; Kotlar et al., 2019). Do train and test datasets in bootstraps follow
the same distributions? Tranter, G., Minasny, B. and McBratney, A.B., 2010. Estimating
pedotransfer function prediction limits using fuzzy k-means with extragrades. Soil Sci-
ence Society of AmericaJournal, 74(6), pp.1967-1975. Kotlar, A.M., de Jong van Lier,
Q., Barros, A.H.C., Iversen, B.V. and Vereecken, H.,2019. Development and Uncer-
tainty Assessment of Pedotransfer Functions for Predicting Water Contents at Specific
Pressure Heads. Vadose Zone Journal, 18(1).

AGREED

A: Thank you to highlight it with references, we will add this information to P2 L16:

“Tranter et al. (2010) developed an uncertainty estimation method using fuzzy k-means
with extragrades classification that can be applied in any PTF prediction. Kotlar et al.
(2019) presented uncertainty assessment of PTFs through deriving PTFs on tens of
resamples for train and test sets.”

and we will add the following to P2 L33:

C3

“If PTFs are derived with these algorithms, the uncertainty of the predicted soil prop-
erty can be directly estimated when applying the PTF (Szabó et al., 2019a), although
this could also be achieved by applying the above mentioned uncertainty assessment
methods without using machine learning methods (e.g. Kotlar et al., 2019; Tranter et
al., 2010).”

Using Kolmogorov–Smirnov tests, we tested whether training and test sets have the
same frequency distributions, please find the results in Table 1 (please find readable
version here: https://gmd.copernicus.org/preprints/gmd-2020-36/gmd-2020-36-AC2-
supplement.pdf). For THS, FC and WP the distribution of training and TEST_BASIC
set is equal in almost all the cases of the most important basic soil properties. For
KS, the distribution of sand and organic carbon content is equal in the training and
TEST_BASIC set, in case of FC_2 only the distribution of sand content is equal based
on the statistical test. The distributions of training and TEST_CHEM+ sets are equal
only in case of FC. For the other sets, at least one soil property has equal distribution
in the two sets.

Table 1. Results of the Kolmogorov–Smirnov test (p value of 0.05) computed to com-
pare distribution of the most important basic soil properties of training and test datasets.
Soil hydraulic property Input variable p-value of Kolgomorov-Smirnov test Training vs.
TEST_BASIC set Training vs. TEST_CHEM+ set THS USSAND 0,137 0,000 USCLAY
0,022 0,000 OC 0,598 0,004 BD 0,483 0,021 FC_2 USSAND 0,616 0,112 USCLAY
0,004 0,000 OC 0,018 0,000 BD 0,023 0,000 FC USSAND 0,019 0,157 USCLAY 0,172
0,078 OC 0,662 0,737 BD 0,313 0,489 WP USSAND 0,730 0,007 USCLAY 0,372 0,003
OC 0,649 0,000 BD 0,047 0,074 KS USSAND 0,396 0,000 USCLAY 0,001 0,008 OC
0,755 0,001 BD 0,000 0,000

Train and test datasets in bootstraps are divided in the following way: in the random
forest algorithm for each tree 63% of the data is selected with replacement to build the
tree, i.e. number of selected data will be increased to reach the number of samples
of the training set with the replacement, this way some samples will be used multiple
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times in a single tree. Each tree of the forest is trained on different samples. The forest
includes 200 trees and the predicted value is the median of all 200 trees. However, it is
difficult to compute the Kolgomorov-Smirnov test for all the 200 in-bag and out-of-bag
samples by each predicted soil hydraulic properties, we could confirm based on the
literature (Hastie et al., 2009), that the forest will neither be biased nor overfitted to
the data because of the two step randomization – bagging process and split-variable
randomization – implemented in the algorithm.

RC3: Table1. P.18. Numbers are not aligned exactly below the names. Correlation
matrix of observations would be useful information (in appendix) at least for the dataset
used for the best PTFs.

AGREED

A: The columns’ names will be aligned with the numbers below. The correlation plots of
the best PTFs are inserted below the answers (Fig_responses_1 – Fig_responses_7),
however descriptive power of them are limited because the relationship between pre-
dicted parameters and predictors are not linear. This is the reason why PTFs are
derived with a machine learning algorithm and partial dependence plots are shown
in the manuscript. We feel that the correlation plots might not provide indispensable
information. Please find Fig_responses_1 - Fig_responses_7 below the text.

RC3: L6, P5: Please calculate variable importance of parameters in PTFs as relative
which makes summation of all 100%. (e.g. Figure 3)

AGREED

A: Please find here the relative importance plots, with which we will replace Figure 3
and 7 and specify that relative variable importance is shown. Please find Figure 3 and
7 below the text.

Figure 3. Relative variable importance computed with the random forest algorithm
for the prediction of water content with PTF32 at saturation (THS), at field capacity;
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-100 (FC_2) and -330 (FC) matric potential head, at wilting point (WP), of the plant
available water content based on FC_2 (AWC_2) and FC (AWC), and the saturated
hydraulic conductivity (KS). USSILT: silt content (2–50 µm (mass %)); USSAND: sand
content (50–2000 µm (mass %)); USCLAY: clay content ( <2 µm (mass %)); PH_H2O:
pH in water (-); OC: organic carbon content (mass %); DEPTH_M: mean soil depth
(cm); OC: organic carbon content (mass %); CEC: cation exchange capacity (cmol (+)
kg−1); CACO3: calcium carbonate content (mass %); BD: bulk density (g cm−3).

Figure 7. Relative variable importance computed with the random forest algorithm
for the prediction of parameters of the van Genuchten and Mualem-van Genuchten
models based on PTF32. θr: residual water content (cm3 cm-3); θs: saturated water
content (cm3 cm-3); α (cm-1), n (-): fitting parameters; K0: the hydraulic conductivity
acting as a matching point at saturation (cm day-1); L: shape parameter related to
pore tortuosity (-); USSILT: silt content (2–50 µm (mass %)); USSAND: sand content
(50–2000 µm (mass %)); USCLAY: clay content,( <2 µm (mass %)); PH_H2O: pH in
water (-); OC: organic carbon content (mass %); DEPTH_M: mean soil depth (cm); OC:
organic carbon content (mass %); CEC: cation exchange capacity (cmol (+) kg−1);>
CACO3: calcium carbonate content (mass %); BD: bulk density (g cm−3).

We will add the following text in P5 L30:

“The relative importance was assessed by dividing the variable importance of each
predictor by the sum of the importance of all the predictors after Kotlar et al. (2019).”

RC3: L3, P7: To give a better view of the performance of PTFs, compare the mean
values of measured parameters with RMSE of predictions. Compared to Toth et al.,
(2015), improvement in the prediction of THS is less than FC and WP, why?

AGREED

A: Thank you for the suggestion. We will add the normalized RMSE (RMSE/(ymax-
ymin)), which was also suggested by the reviewer under ”L1-8, P10”.
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The following texts will be added: P6 L10: “The different data range of the dataset
influences the performance of the PTFs when that is compared to the studies in the lit-
erature. Therefore, normalized RMSE (NRMSE) was computed (Eq. 5.), where y_max
and y_min are the maximum and minimum value of variable . NRMSE=RMSE/(y_max-
y_min ) (5)”

and in P7 L6 we add “Table S3 shows the NRMSE for the point predictions computed
for the TEST_BASIC and TEST_CHEM+ sets to provide possibility for comparison with
other PTFs available from the literature.”

And the following table (please find readable version here:
https://gmd.copernicus.org/preprints/gmd-2020-36/gmd-2020-36-AC2-
supplement.pdf) will be included in the supplementary material as Ta-
ble S3 (The original TableS3 of the supplementary material available from
https://gmd.copernicus.org/preprints/gmd-2020-36/gmd-2020-36-supplement.pdf
will be moved to the manuscript as Table 11).

Table S3. Normalized root mean squared error (NRMSE) of the point predictions
by soil hydraulic properties computed on the test datasets in cm3 cm-3 for water
retention and log10 (cm day-1) for saturated hydraulic conductivity. In case of PTF01,
02, 03 and 07 TEST_BASIC set was used for the analysis, for the rest of the PTFs
TEST_CHEM+ set was considered. Name of PTF in euptfv2 Predictor variables1
NRMSE in test sets2 THS FC_2 FC WP AWC_2 AWC KS PTF01 PSD+DEPTH_M
0.104 0.090 0.082 0.105 0.126 0.140 0.17 PTF02 PSD+DEPTH_M+OC 0.086
0.083 0.076 0.102 0.112 0.132 0.14 PTF03 PSD+DEPTH_M+BD 0.048 0.079
0.074 0.100 0.111 0.132 0.17 PTF04 PSD+DEPTH_M+CACO3 0.191 0.107 0.113
0.122 0.164 0.145 0.19 PTF05 PSD+DEPTH_M+PH_H2O 0.176 0.112 0.114 0.126
0.164 0.142 0.19 PTF06 PSD+DEPTH_M+CEC 0.191 0.107 0.107 0.118 0.181
0.156 0.19 PTF07 PSD+DEPTH_M+OC+BD 0.047 0.075 0.073 0.097 0.107 0.127
0.14 PTF08 PSD+DEPTH_M+OC+CACO3 0.184 0.097 0.109 0.117 0.160 0.143
0.19 PTF09 PSD+DEPTH_M+OC+PH_H2O 0.167 0.095 0.107 0.119 0.158 0.141
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0.18 PTF10 PSD+DEPTH_M+OC+CEC 0.172 0.098 0.108 0.116 0.158 0.150 0.18
PTF11 PSD+DEPTH_M+BD+CACO3 0.072 0.091 0.105 0.115 0.144 0.140 0.19
PTF12 PSD+DEPTH_M+BD+PH_H2O 0.069 0.086 0.103 0.117 0.143 0.137 0.19
PTF13 PSD+DEPTH_M+BD+CEC 0.070 0.091 0.100 0.115 0.144 0.142 0.19 PTF14
PSD+DEPTH_M+CACO3+PH_H2O 0.168 0.101 0.109 0.121 0.157 0.139 0.18 PTF15
PSD+DEPTH_M+CACO3+CEC 0.179 0.102 0.106 0.113 0.155 0.144 0.19 PTF16
PSD+DEPTH_M+PH_H2O+CEC 0.183 0.098 0.104 0.115 0.152 0.142 0.19 PTF17
PSD+DEPTH_M+OC+BD+CACO3 0.070 0.089 0.102 0.111 0.145 0.139 0.18 PTF18
PSD+DEPTH_M+OC+BD+PH_H2O 0.070 0.083 0.103 0.116 0.143 0.136 0.18 PTF19
PSD+DEPTH_M+OC+BD+CEC 0.070 0.087 0.099 0.113 0.139 0.143 0.18 PTF20
PSD+DEPTH_M+OC+CACO3+PH_H2O 0.166 0.105 0.107 0.114 0.154 0.137 0.18
PTF21 PSD+DEPTH_M+OC+CACO3+CEC 0.171 0.090 0.104 0.108 0.149 0.142 0.18
PTF22 PSD+DEPTH_M+OC+PH_H2O+CEC 0.166 0.089 0.102 0.111 0.148 0.140
0.18 PTF23 PSD+DEPTH_M+BD+CACO3+PH_H2O 0.071 0.089 0.104 0.116 0.147
0.139 0.18 PTF24 PSD+DEPTH_M+BD+CACO3+CEC 0.071 0.085 0.099 0.110 0.138
0.139 0.19 PTF25 PSD+DEPTH_M+BD+PH_H2O+CEC 0.067 0.084 0.100 0.112
0.137 0.135 0.19 PTF26 PSD+DEPTH_M+CACO3+PH_H2O+CEC 0.163 0.094 0.103
0.111 0.145 0.140 0.18 PTF27 PSD+DEPTH_M+OC+BD+CACO3+PH_H2O 0.072
0.086 0.101 0.111 0.148 0.135 0.18 PTF28 PSD+DEPTH_M+OC+BD+CACO3+CEC
0.070 0.082 0.098 0.106 0.136 0.138 0.18 PTF29
PSD+DEPTH_M+OC+BD+PH_H2O+CEC 0.068 0.083 0.095 0.109 0.135 0.134 0.18
PTF30 PSD+DEPTH_M+OC+CACO3+PH_H2O+CEC 0.162 0.100 0.101 0.108 0.145
0.138 0.17 PTF31 PSD+DEPTH_M+BD+CACO3+PH_H2O+CEC 0.070 0.081 0.097
0.108 0.134 0.137 0.18 PTF32 PSD+DEPTH_M+OC+BD+CACO3+PH_H2O+CEC
0.069 0.079 0.097 0.107 0.135 0.135 0.18 1PSD: particle size distribution (sand,
50–2000 µm; silt, 2–50 µm; clay, <2 µm (mass %)); DEPTH: mean soil depth (cm);
OC: organic carbon content (mass %); BD: bulk density (g cm−3); CACO3: calcium
carbonate content (mass %); PH_H2O: pH in water (-); CEC: cation exchange capacity
(cmol (+) kg−1). 2THS: saturated water content (pF 0); FC_2: water content at -100
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cm matric potential head (pF 2.0); FC: water content at -330 cm matric potential head
(pF 2.5); AWC_2: plant available water content based on FC_2; AWC: plant available
water content based on FC; WP: water content at wilting point (pF 4.2); KS: saturated
hydraulic conductivity;

Comparison to Toth et al. (2015): thank you for the reviewer’s comment on THS and
BD, which helps to clarify findings related to comparison of euptfv1 and v2. There
was no significant difference between euptfv1 and v2 in case of THS when BD was
available for the prediction and euptfv1 was derived with linear regression. The reason
for it – which was mentioned by the reviewer as well – that the relative importance of
BD is 84% in the prediction of THS and the relationship between THS and BD is close
to linear. In this case random forest could not significantly improve the prediction. In
case of FC and WP the interaction between the target variable and the predictors is
more complex, this way the random forest algorithm performed significantly better than
the PTFs derived with linear regression or a simple regression tree. We will add the
following information in P12 L12:

“The most important reason for it can be that the interaction between the target vari-
able and the predictors is more complex for the cases of predicting FC or VG param-
eters – to describe the MRC, which can be untangled using random forest. This may
provide a reason the random forest algorithm performed significantly better than the
PTFs derived with linear regression or a simple regression tree. For THS, WP, KS,
and MVG only those PTFs did not improve significantly, for which comparisons on the
TEST_CHEM+ set were possible – which includes reduced number of samples. The
RMSE of THS prediction was somewhat lower for euptfv1 than for euptfv2, but the dif-
ference was not significant. It could be due to the close to linear relationship between
THS and BD and high relative importance of BD in THS prediction (84 %). This way
their interaction can be efficiently described with the linear regression which is capable
to extrapolate as well. Extrapolation with the random forest algorithm is not possible,
which can limit its performance.”
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RC3: Figure S2, please replace SE by RMSE so the reader doesn’t lose the track of
comparison criteria.

AGREED

A: We will replace Figure S2, S4, S6, S8, S10, S12, S14, S16, S19 showing SE with
the one showing RMSE, e.g.: Figure S2, which is inserted below the text.

Figure S2. Root mean squared error (RMSE) of the pedotransfer functions derived to
predict water content at saturation (THS) computed on TEST_BASIC (N=1274) and
TEST_CHEM+ set (N=156). USSAND: sand (50–2000 µm) content (mass %); US-
SILT: silt (2–50 µm) content (mass %), USCLAY: clay (<2 µm) content (mass %);
DEPTH_M: mean soil depth (cm); OC: organic carbon content (mass %); BD: bulk
density (g cm−3); CACO3: calcium carbonate content (mass %); PH_H2O: pH in wa-
ter (-); CEC: cation exchange capacity (cmol (+) kg−1).

RC3: L1, P8. Please mention the correlation between THS and BD, lets arguably
consider THS equal to total porosity, does the 1-BD/PD, assuming PD=2.65 give better
RMSE than PTF03 for THS? or you might easily obtain the best PD to predict THS by
this formula. In PTF 32, the relative importance of BD is almost 100%.

DISAGREE

A: Thank you for this idea, however, to remain consistent in methodology and make
use of the better performing PTF based on the random forest. The reason: the cor-
relation between THS and BD is -0.92. We have computed the porosity on the test
dataset of PTF03 (N = 1274) based on BD and PD (=2.65 g/cm3), then the RMSE
of it. We found that the RMSE of PTF03 is smaller than that of porosity (POR_calc),
please find the performance of POR_calc and PTF03 in the below table (please find its
readable version here: https://gmd.copernicus.org/preprints/gmd-2020-36/gmd-2020-
36-AC2-supplement.pdf).

Method ME (cm3 cm-3) RMSE (cm3 cm-3) R2 N POR_calc -0.007 0.038 0.789 1274
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PTF03 0.000 0.031 0.862 1274

RC3: L31, P10. Elaborate the range of Ks values used in training for PTF02, so reader
can judge how low is RMSE of 0.94.

AGREED.

A: Thank you for giving this helpful viewpoint. We will add it in that sentence: “In the
case of KS prediction, the simplest best performing PTF – which was derived on a
training dataset with KS ranging between -3.00 and 4.67 log10(cm day-1) – has an
RMSE of 0.94 log10(cm day-1) . . .”

RC3: L1-8, P10. You can compare the randomized RMSE by PTF02 (RMSE/(maxKs-
minKs)) by some studies in the literature (preferably Europe or at least temperate soils)

AGREED

A: Thank you for this suggestion. We computed it for all the derived PTFs and
will highlight this error measure in the case of KS and call it normalized RMSE
(NRMSE). We also computed the NRMSE for - the literature referred in the manuscript:
- Zhang and Schaap (2017) (ROSETTA3): 0.11 (cm/day) (PSD+BD) - Lilly et al.
(2018) (HYPRES) 0.18 log10 (cm/day) (topsoil/subsoil distinction+USDA soil texture
class+PSD+BD+OC), - Araya and Ghezehei (2019) (USKSAT database) 0.06 log10
(cm/day) (PSD+BD+OC), - Nemes et al. (2005) (HYPRES) 0.15 log10 (cm/day).

We will add the information on computing NRMSE to P6 L10 in the manuscript as
mentioned above, and the following:

P9 L31: “. . . has an RMSE of 0.94 log10(cm day-1) and NRMSE 0.14 log10(cm day-1)
(Table S3).”

P10 L3-7: “ROSETTA3 PTF with PSD and BD predictors had and RMSE of 0.68 log10
(cm day-1) with an NRMSE of 0.11 log10 (cm day-1) (Zhang and Schaap, 2017). Araya
and Ghezzehei (2019) published PTF using PSD, BD and OC predictors with highest
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accuracy in the literature with an RMSE of 0.34 log10 (cm day-1) and NRMSE of 0.06
log10 (cm day-1). In Lilly et al. (2008), the performance of the KS predictions and find-
ings were similar to this study. They report an RMSE between 0.95 and 1.08 log10(cm
day-1) – with an NRMSE between 0.17 and 0.20 log10(cm day-1) – for the KS predic-
tion when analysed with several input combinations.”

RC3: L19, P10. I expect to see the high importance of clay in THETAr. It is not clear
exactly how to estimate VG and MVG parameters.

AGREE SOMEWHAT

A: It is right, expectation is not supported by the data, please see our answer above
related to correlation plot: scatterplot of THR vs USCLAY. The reason for it can be that
THETAr is a fitting parameter and for most of the samples it was close to 0. Please find
here the histogram of THETAr and clay content based on all EU-HYDI samples that has
measured chemical properties and fitted THETAr values. Please find the histograms
on Fig_responses_8 below the text.

We also point out, that during the estimation of THR in the original model fitting of VG
or MVG, THR is not only influenced by clay content, but also by pore connectivity, next
to other soil structural properties. Importantly, THR is also influenced by the data range
available during the fitting of the original data (Weber et al., 2020), which is a viable
reason for the correlation between THR and USCLAY not to be as pronounced as one
would expect.

Weber, T.K.D., Finkel, M., Conceição Gonçalves, M., Vereecken, H., Diamantopou-
los, E., 2020. Pedotransfer function for the Brunswick soil hydraulic property model
and comparison to the van GenuchtenâĂŘMualem model. Water Resour. Res.
https://doi.org/10.1029/2019WR026820

Each VG and MVG parameters are predicted separately with random forest models.

RC3: L23, P10. K0, matching point should be defined earlier.
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AGREED

A: The following text will be added to P4 L10: Similarly to euptfv1, for the description
of the moisture retention curve (MRC), we predicted the VG model parameters: the
residual water content (θr), the saturated water content (θs), and shape parameters α
and n. For the hydraulic conductivity curve, two additional parameters: the hydraulic
conductivity acting as a matching point at saturation K0 and a shape parameter related
to pore tortuosity (L) are estimated too.

RC3: L25-30, P11. How many of K data are obtained from evaporation method, this
method usually goes up to -1000 cm, is it why overestimation occurs in Fig S21 in drier
conditions or another reason? Note that in this dry region K data is obviously small and
mean error of about 0.8 is significant. Moreover, comparing Fig s21 with Fig S1b (Toth
et al., 2015), there less error in this dry region was observed.

AGREED

A: We will delete the sentence starting with “In parts, this is . . .” (P11 L32- P12 L2) and
add the following text to P12 L2:

“Samples with measurements of the HCC at pressure heads < -1000 cm are less fre-
quent and are not as numerous within a dataset of a single sample, if it was measured.
Since the dataset of estimated VG model parameters were identical in this study and in
Tóth et al. (2015), differences between the two studies of the unsaturated HCC are re-
lated to the PTF methods involved. However, at pressure heads <-1000 cm, the HCC is
dominated by non-capillary conductivity (Weber et al., 2019, Streck and Weber 2020),
which is not included in the MVG model. The considerable data mismatch observable
for the dry range (Fig. 6) can only be overcome by a different soil hydraulic property
model and by a different PTF, because of compensatory effects in the VG. With this we
mean that better data descriptions in the dry end, will lead to a larger mismatch in the
wet end, as a consequence of the rigid model structure in the MVG model, which only
accounts for capillary storage and conductivity. For better data description at <-1000
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cm other more comprehensive models need to be adopted (Weber et al. 2020).”

Streck, T., Weber, T.K.D., 2020. Analytical expressions for noncapillary soil wa-
ter retention based on popular capillary retention models. Vadose Zo. J. 19, 1–5.
https://doi.org/10.1002/vzj2.20042 Weber, T.K.D., Finkel, M., Conceição Gonçalves,
M., Vereecken, H., Diamantopoulos, E., 2020. Pedotransfer function for the Brunswick
soil hydraulic property model and comparison to the van GenuchtenâĂŘMualem
model. Water Resour. Res. https://doi.org/10.1029/2019WR026820

RC3: Fig2, 5. Explain the term “count” in legend

AGREED

A: The following will be added to Figure 2 and Figure S1: “; Count: the number of cases
in each rectangle.”

Figures 5 and 6: “; Count: the number of cases in each hexagon.”

RC3: Table 7. RMSE is log10(cm/d) but this belongs to retention curve.

AGREED

A: Thank you for noting it, the unit was wrongly written in the title, we will correct it to
cm3 cm-3.

RC3: Table 8. this RMSE was computed only by K(h) data? Did you consider
Lambda=0.5?

AGREED

A: Yes, the RMSE is based on the predicted and measured K(h) data. We did not
set Lambda = 0.5, but fitted it for the dataset based on measured K(h) data. For the
description of the hydraulic conductivity curve we predicted all of the following parame-
ters: θr: residual water content (cm3 cm-3), θs: saturated water content (cm3 cm-3), α
(cm-1) and n (-): fitting parameters, K0: the hydraulic conductivity acting as a matching
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point at saturation (cm day-1) and L: shape parameter related to pore tortuosity (-).
Parameter m is provided based on m=1-1/n (van Genuchten, 1980). Thank you for
highlighting it.

We will add a paragraph entitled “Practical guidance on how to use the PTFs” on P12
L20, in which we shortly summarize what parameters are predicted with euptfv2.

RC3: L5, P 12. That’s interesting to show Comparison of point and parameter predic-
tions, however, you should emphasize that this works only when water retention curve
matters. Because one can use the n value of WRC and l=0.5 for K function.

AGREED

A: We will strengthen the description on why point and parameter predictions were
compared. To overcome this confusion, we will add to P6 L16:

“The aim of this comparison was to analyse whether point or parametric prediction
performs better when only THS and/or FC/FC_2 and/or WP are needed.”

and add the complementary information on P12 L8:

“When moisture retention curve is not needed, but only THS and/or FC/FC_2 and/or
WP, we recommend to compute those with the point PTFs, more detailed explanation
on it is included in Tóth et al. (2015).”

RC3: During some trials to run the package, I have
faced with various errors such as Error in source_data
("https://github.com/TothSzaboBrigitta/euptfv2/blob/master/suggested_PTFs/FC_EUHYDI/FC_PTF07.rdata?raw=True")
: could not find function "source_data" please check the files again in the attached zip
files. I could not also find neither euptf1nor 2 in CRAN repository.

AGREED

A: As mentioned above, the github repository includes the R scripts, that
were used to develop the predictions and the derived pedotransfer functions.
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The dataset which we used for training and testing the algoritms can not be
shared according to the agreement between the data holders. euptfv1 is
available from: https://esdac.jrc.ec.europa.eu/themes/soil-hydraulic-properties ,
https://esdac.jrc.ec.europa.eu/public_path/shared_folder/themes/euptf.zip . The
PTFs of euptfv2 are available from the web interface which can be used without
any coding skills. The R package is under construction. After finalizing the pack-
age it will be available from the European Soil Data Center site of the EC JRC
(https://esdac.jrc.ec.europa.eu/). It will not be possible to have the package in the
CRAN repository because it will have too large size for it – it will include several RF
models.

Please also note the supplement to this comment:
https://gmd.copernicus.org/preprints/gmd-2020-36/gmd-2020-36-AC2-supplement.pdf

Interactive comment on Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-36,
2020.
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Fig. 1. Fig_responses_1

C17

Fig. 2. Fig_responses_2
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Fig. 3. Fig_responses_3
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Fig. 4. Fig_responses_4
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Fig. 5. Fig_responses_5
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Fig. 6. Fig_responses_6
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Fig. 7. Fig_responses_7
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Fig. 8. Figure 3
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Fig. 9. Figure 7
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Fig. 10. Figure S2
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Fig. 11. Fig_responses_8
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