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Abstract. Interactions between atmospheric forcing, topographic constraints to air and water flow, and resonant character

of the basin make sea level modeling in Adriatic a challenging problem. In this study we present an ensemble deep-neural-

network-based sea level forecasting method HIDRA, which outperforms our setup of the general ocean circulation model

ensemble (NEMO v3.6) for all forecast lead times and at a minuscule fraction of the numerical cost (order of 2× 10−6).

HIDRA exhibits larger bias but lower RMSE than our setup of NEMO over most of the residual sea level bins. It introduces a5

trainable atmospheric spatial encoder and employs fusion of atmospheric and sea level features into a self-contained network

which enables discriminative feature learning. HIDRA architecture building blocks are experimentally analyzed in detail and

compared to alternative approaches. Results show the importance of sea level input for forecast lead times below 24 h and the

importance of atmospheric input for longer lead times. The best performance is achieved by considering the input as the total sea

level, split into disjoint sets of tidal and residual signals. This enables HIDRA to optimize the prediction fidelity with respect to10

atmospheric forcing while compensating for the errors in the tidal model. HIDRA is trained and analysed on a ten-year (2006-

2016) timeseries of atmospheric surface fields from a single member of ECMWF atmospheric ensemble. In the testing phase,

both HIDRA and NEMO ensemble systems are forced by the ECMWF atmospheric ensemble. Their performance is evaluated

on a one-year (2019) hourly time series from tide gauge in Koper (Slovenia). Spectral and continuous wavelet analysis of the

forecasts at the semi-diurnal frequency (12 h)−1 and at the ground-state basin seiche frequency (21.5 h)−1 is performed. The15

energy at the basin seiche in the HIDRA forecast is close to the observed, while our setup of NEMO underestimates it. Analyses

of the January 2015 and November 2019 storm surges indicate that HIDRA has learned to mimic the timing and amplitude of

basin seiches.

1 Introduction

Climate change is inducing sea level rise, adversely affects coastal ecosystems, economies and civil safety. In the shallow20

Northern Adriatic, low sea levels influence port activities and inhibit marine cargo while high sea levels cause substantial

coastal flooding, inundation and erosion (Ferrarin et al., 2020), thus presenting a serious threat to Venice, Chioggia, Piran

and other coastal towns and businesses in the region. Low sea levels predominantly occur when periods of high atmospheric

pressure coincide with spring tide sea level minimums. High sea levels typically occur as storm surges during passages of
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Figure 1. Adriatic orography and bathymetry. The following abbreviations are used: TS - Trieste, KP - Koper, GoT - Gulf of Trieste, VE -

Venice, N Adr Shelf - Northern Adriatic Shelf, SAP - Southern Adriatic Pit, OT - Otranto Strait. Direction of Scirocco is marked with a red

arrow. The image was created by the authors based on EMODnet bathymetry data, available at https://portal.emodnet-bathymetry.eu/ (last

access: 27 October 2020) and Copernicus European Digital Elevation Model, available at https://land.copernicus.eu/imagery-in-situ/eu-dem/

eu-dem-v1-0-and-derived-products/eu-dem-v1.0 (last access: 27 October 2020).

atmospheric cyclones which manifest themselves as substantial air pressure lows and related winds over the basin. Reliable25

and timely sea level forecasting is thus a crucial element of early warning systems for mitigating the flooding consequences.

Adriatic Sea has an elongated basin with northwest-southeast orientation, lies in the Northern Central Mediterranean, and

connects to the eastern Mediterranean basin through the Otranto strait at its southern end (see Figure 1). The basin lies embed-

ded between the Alps (to the north), the Apennines (to the west) and Dinaric Alps (to the east) – it spans a 800 km long and 200

km wide area. The ridges significantly influence the basin circulation through topographic control of the air flow, especially30

during wind events of Bora (northeasterly wind) and Scirocco (southeasterly wind). Scirocco, predominantly directed along

the basin long axis, is among the main drivers of the Adriatic storm surges. Northern Adriatic shelf is closed at its northern end

and is the shallowest part of the Adriatic basin. Storm surges in this part are consequently most pronounced, causing substantial

coastal flooding, inundation and erosion (Ferrarin et al., 2020).

The elongated basing results in seiches with a fundamental period of 21.5 h (and first excited mode period of 10.9 h)35

(Cerovecki et al., 1997; Medvedev et al., 2020). Diurnal and semi-diurnal tides enter the Adriatic through the Otranto Strait

and force the basin close to its eigen-periods (Medvedev et al., 2020). Both seiches and tides are resonantly and topographically
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amplified in the shallow northern Adriatic. In Northern Adriatic, crest-to-trough range of tidal sea level movement can reach

up to 1.5 m (and up to 10 cm/s in current speed (Cosoli et al., 2013)). In absence of strong winds, this signal dominates the sea

level dynamics. During storm surges however, tides are generally too weak to be dominant but remain a crucial part of the total40

sea level signal. Moreover, since Adriatic seiches decay on scales of several days, seiches and tides may continue to reinforce

(or diminish) each other for several days.

The resonant character and high sensitivity to temporal phase lag between tides and seiches make Adriatic sea levels predic-

tion a challenge for deterministic numerical ocean models. Even modest modeling errors in the timing, intensity or trajectory

of an atmospheric cyclone, often lead to substantial modeling errors in the predicted sea level. Introduction of atmospheric45

numerical forecast ensembles has thus enabled implementation of operational sea surface height forecast systems that yield

probabilistic forecasts along with error variance estimation, which show promise world-wide, see i.e. (Ferrarin et al., 2020;

Bernier and Thompson, 2015; Mel and Lionello, 2014; Bertotti et al., 2011).

These systems, however, often involve a high computational cost, usually requiring running tens of runs of basin scale

numerical ocean models (each forced by a different member of the atmospheric ensemble) each day (or even several times50

per day). Ensemble numerical modeling is therefore prohibitively demanding for many operational or civil rescue services that

lack access to dedicated high-performance computing facilities.

Machine-learning-based ensemble modelling offers a possible solution to the challenges described above. Even though

training a machine-learning model may involve substantial amount of training data and computational resources, the subsequent

forecasting – even ensemble forecasting – is numerically cheap enough to be executed in some cases instantaneously on a55

standard personal computer. Early approaches employ classic machine learning methods (Imani et al., 2018) or shallow fully-

connected neural networks (Pashova and Popova, 2011; Karimi et al., 2013) for daily or hourly sea level forecasting. The

reported results show promise in sea level prediction, but fall short with simplistic architectures that ignore the atmospheric

forcing. Ishida et al. (2020) attempt to improve the dynamics of hourly scale sea level forecasts by using a long short-term

memory (LSTM) network, which are well established methods for sequence modelling and time-series prediction. The network60

considers several atmospheric variables (wind speed and direction, sea level pressure, air temperature) as well as relative

positions of the Sun and the Moon and annual global air temperatures as the input. Empirically, the short-term sea level

prediction of one hour in the future is improved compared to older approaches. While predictions farther into the future

could be achieved by iterative auto-regression, the errors would likely exponentially increase. A longer prediction horizon

is considered by Braakmann-Folgmann et al. (2017), who apply a combination of recurrent neural networks (LSTMs) and65

convolutional neural networks to model monthly spatial sea level time series. This is one of the first works that considers both

spatial and temporal aspects of the input data, however, predictions are made at a much coarser temporal resolution than that

considered in this paper. A higher temporal resolution is considered by Hieronymus et al. (2019), which is the most closely

related work to ours. Autoregressive neural networks are used to model the sea level time-series with addition of atmospheric

forcing reduced by empirical orthogonal function (EOF) decomposition. For northern Adriatic, Venice lagoon specifically,70

artificial neural networks have already been shown to be useful at modelling numerical model errors in sea level prediction

(Bajo and Umgiesser, 2010).
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In this work we propose HIDRA – a HIgh-performance Deep tidal Residual estimation method using Atmospheric data.

HIDRA is a novel deep learning architecture which employs tidal and atmospheric forcing contributions for accurate sea

level predictions. The model is trained end-to-end with discriminative feature extraction as part of the learning to maximize75

the forecast accuracy and to compensate for the inaccuracies of the astronomical tide estimates. HIDRA is benchmarked

against the operational general circulation model ensemble, based on
::::
setup

::
of

:
NEMO v3.6 engine

::::::
general

:::::::::
circulation

::::::
model

:::::
engine

:
(Madec, 2008), which is run daily

:
as

::::
part

::
of

:::
the

:::::::
National

:::::::::::
Hydrological

::::::::::
Forecasting

::::::
Service at the Slovenian Environment

Agency (ARSO).
:::
For

::::::
brevity,

::::
we

::::
refer

:::
to

:::
this

:::::::::
particular

:::::
setup

::::
(see

:::
the

:::::
Code

::::
and

::::
data

::::::::::
availability

::::::
Section

:::
for

::
a

:::::::
detailed

:::::::::::
configuration

::::::::
namelist)

::
as

:::
the

::::::
NEMO

:::::
model

:
.80

The remainder of the paper is structured as follows. The input sea level and atmospheric data, and the datasets used in

this study are described in Section 2. The HIDRA architecture, our NEMO ocean model setup and the ensemble structure are

presented in Section 3. Section 4 reports a detailed analysis of the HIDRA architecture and empirical comparison to the NEMO

system on a challenging setup. Conclusions are drawn in Section 5.

2 Sea Level and Atmospheric Data85

2.1 Sea Level Data

Sea surface height (SSH) measurements were obtained from the Koper Mareographic Station (45◦33′ N, 13◦44′ E; see Figure 2

for location), which is operated by the Slovenian Environment Agency (ARSO). The measurements are acquired by a bottom-

mounted pressure gauge in ten minute intervals, which are subsequently quality controlled at ARSO. The tidal part of the sea

level is independent from atmospheric forcing and can be approximated by tidal models. We analyzed the tidal contribution to90

Koper SSH using the Tidal Analysis Program for Python TAPPY (Cera, 2011). Tidal contribution is estimated from a 20-year

hourly time-series of Koper SSH for the period between January 1995 and September 2014. Tidal constituents are then used

to estimate past and future tidal values. The residual sea level is defined in this paper as the arithmetic difference between the

total and the tidal sea level.

2.2 Atmospheric Data95

Atmospheric data is obtained from Ensemble Prediction System (EPS) of the European Centre for Medium-Range Weather

Forecasts (ECMWF). The data comes as an ensemble of fifty integrations of global atmospheric models (Leutbecher and

Palmer, 2007). Ensemble forecasts have a 0.125◦ arc degree spatial (zonal and meridional) resolution and a 3-hour temporal

resolution. In this study, the following forecast fields were subset to the Adriatic basin, represented by a 73× 57 spatial grid

(see Figure 2): (i) 10-meter zonal and meridional winds, (ii) mean sea level pressure and (iii) air temperature at 2 metres. The100

forecasts were linearly interpolated to hourly timesteps to match the SSH temporal resolution. Atmospheric fields over land and

sea are treated in the same manner, i.e. while HIDRA does receive an explicit spatial encoding of atmospheric fields (Section

3.1.1), it does not employ a land/sea mask.
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Figure 2. Left: NEMO ocean model domain (orange rectangle) and ECMWF ensemble grid points (white dots). Every second ECMWF grid

point is displayed for clarity. Koper tide gauge location is marked with red-white circle. Right: four ECMWF atmospheric fields are extracted

over the region at each time-step: zonal (x) and meridional (y) wind, air temperature at 2 meters and surface air pressure.

Direct wind influence on the ocean is exerted through vertical momentum transfer or wind stress. Configurations with both

raw wind and wind stress were tested to obtain optimal neural network configuration. Whenever wind stress was used, turbulent105

momentum transfer (wind drag) coefficient was computed using the Large and Pond parametrization (Large and Pond, 1981).

Note that the purpose of wind stress parametrization in this study is not to most concisely represent the vertical momentum flux

at ocean surface (which would require more complex schemes), but merely to introduce to the neural network the nonlinear

wind stress dependence on the wind to assist its learning process.

2.3 Evaluation datasets110

Atmospheric and sea level data described in previous sections were used to create a dataset for years 2006–2016. The first 80%

of the dataset is used for training (70%) and validation (10%), while the last 20% (September 2014 - December 2016) is used

for testing. The data is standardised and global average pooling is used to reduce the dimensionality of the atmospheric data –

spatial dimension of the data in samples is reduced in half, from 73× 57 points to 37× 29 points, and the temporal dimension

of atmospheric data is reduced by a factor of 4. Sea level data retains 1-hour resolution. An additional test-only dataset for the115

year 2019 was constructed in the same manner and was used for comparison of our setup of NEMO and HIDRA prediction

performance.
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Oversampling is applied to the training data to improve the prediction accuracy of the rare storm surge events. The training

dataset is split into two subsets by thresholding the residuals at 40 cm. Storm surges (residual > 40 cm) represent approximately

two percent of the data. During training the samples are randomly sampled from each of the two subsets with equal probability.120

3 Numerical Models

3.1 HIDRA

HIDRA (a HIgh-performance Deep tidal Residual estimation method using Atmospheric data) is a deep neural network that

predicts future surface height residual values (relative to the tidal model) from the sea level and atmospheric forcing input

tensors. The atmospheric state at time-step t is represented by an atmospheric tensor It ∈RH×W×4, where W = 37 and125

H = 29 are the numbers of domain cells in longitudinal and latitudinal direction, respectively. The third dimension of It

corresponds to the four atmospheric surface input fields: two components of the wind stress, mean sea level pressure and air

temperature at 2 m (see Figure 2).

To account for the causal relation between past atmospheric and tidal forcing in the basin and future sea surface heights,

HIDRA considers the forcing data over a range of past and future timesteps. In particular, for prediction starting at time t0,130

HIDRA takes as the input atmospheric tensors It for the interval t ∈ [t0−Tmin +1, t0 +Tmax] and the tidal and the residual

values from the interval t ∈ [t0−Tmin, t0], and predicts residual values for the interval t ∈ [t0+1, t0+Tmax]. Here, Tmin defines

the number of past hours considered in sea level prediction and Tmax denotes the prediction horizon. In our experiments

the predictions are made for 72 hours into the future, thus Tmax = 72 h and we have determined (see Section 4.1.1) that

extending the historical horizon beyond 24 hours does not affect the prediction accuracy, thus we set Tmin = 24 h. Note that135

the atmospheric tensor contains future forecasts as well, while the input sea level vectors contain only tides and residuals

observed up to the prediction time t0.

The HIDRA architecture is summarized in Figure 3. Atmospheric tensors from all considered time-steps are individually

encoded by an atmospheric spatial encoder (ASE) module (Section 3.1.1) and fused by the temporal encoder block (Section

3.1.2) based on the temporal attention mechanism into an atmospheric feature vector. The resulting vector is concatenated with140

the past tidal and residual measurements. This is followed by a residual regression block (Section 3.1.3) to generate the final

residual predictions r̂t along with their uncertainties σt.

3.1.1 Atmospheric Spatial Encoder

The atmospheric spatial encoder (ASE) encodes the spatially-represented atmospheric data into features, fine-tuned for the task

of sea level prediction, i.e., the atmospheric tensor It ∈R29×37×4 for time-step t is encoded into a feature vector ft ∈R256×1.145

The ASE architecture (shown in Figure 3a) follows design principles of the ResNet20 v2 convolutional neural network (He

et al., 2016), which has already demonstrated remarkable performance in image processing tasks. ASE is composed of 22

convolutional layers. Spatial dependence in feature extraction in enforced by concatenating the atmospheric tensor It with a
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Figure 3. The proposed HIDRA architecture. A convolutional Atmospheric Spatial Encoder (ASE) extracts spatial atmospheric features

from each time-step. Atmospheric and sea level temporal features are encoded by respective Temporal Encoder blocks, fused and passed to

the fully-connected Residual Regression Block to predict the residuals along with their uncertainties. With n we denote the number of filters

or units of the block. The trainable blocks are colored red. The structure of the bottleneck blocks used in the ASE is presented in Figure 4.

1×1 Conv, n=Fin

3×3 Conv, n=Fin

1×1 Conv, n=Fout

H × W × Fin

H × W × Fout H/2 × W/2 × Fout

1×1 Conv, n=Fin , s=2

1×1 Conv, n=Fout , s=23×3 Conv, n=Fin

1×1 Conv, n=Fout

H × W × Fin

Bottleneck + DS, n=FoutBottleneck, n=Fout

Figure 4. Structure of the bottleneck blocks used in the Atmospheric Spatial Encoder (Figure 3). The bottleneck block takes a feature map

with depth Fin as the input and outputs a feature map with depth Fout. A regular bottleneck block (left) retains the spatial dimensions of the

feature maps, while the downsampling (DS) bottleneck block (right) uses strided convolutions to reduce the spatial dimensions in half. We

denote the number of convolutional filters by n and the stride parameter by s.
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spatial encoding tensor sxy ∈R29×37×2, which contains the x and y coordinates (scaled between 0 and 1) of each pixel in

the tensor. The augmented tensor is then processed by a convolutional layer with 16 filters of 3× 3 size, followed by three150

ResNet20 v2 stages, a spatial pooling layer and a time-dependent spatial attention layer (Figure 3b).

Each ResNet stage consists of two residual (bottleneck) blocks, where each block contains three convolutional layers (i.e.,

1× 1, 3× 3 and 1× 1) and a residual connection, which sums the block input with its output. To match the number of output

features in the residual connection, the first residual block in each stage uses an additional 1× 1 convolutional projection.

Spatial feature downsampling (DS) is applied by a stride of length 2 in the first convolutional layer of the second and third155

stage to increase the effective receptive field of neurons. A ReLU activation layer is appended to each convolutional layer,

except from the first one, are pre-pended by a batch-normalization layer to stabilize the learning.

The output of the last residual block is spatially reduced by half with an average pooling layer, resulting in a feature tensor

Ft of size 5×4×256. Finally, a time-dependent spatial attention layer produces the final feature vector ft ∈R1×256, which is

a weighted sum of spatial positions160

ft =ReLU

 4∑
i=1

5∑
j=1

F
(i,j)
t w

(i,j)
t

 , (1)

where F
(i,j)
t is a slice of the feature tensor at time t at spatial coordinates (i, j), w(i,j)

t is the respective spatial weight and

ReLU(·) is the ReLU activation function. Note that the weight matrices are temporally dependent, which allows them to focus

on different parts of the atmospheric feature maps over time. With the exception of the spatial attention layer, all weights of

the ASE network are temporally-independent and are thus shared between all atmospheric input tensors.165

3.1.2 Temporal Encoders

The ASE encodes input sequence of atmospheric tensors into a sequence of atmospheric features. These are stacked into

an atmospheric feature matrix F ∈R256×T∆ , where T∆ is the number of time-steps in the atmospheric input tensor It, and

compressed into a single feature vector f ∈R256×1 by a weighted summation

f = FwT , (2)170

where w is a temporal weights vector which serves as a temporal attention mechanism (Figure 3c) and adjusts the contributions

of different past time-steps to maximize the prediction performance.

The input tidal and residual sequences, each a Tmin×1 vector, are concatenated with the encoded atmospheric feature vector

(2) into the combined temporally-encoded atmospheric and surface height feature vector. This vector is passed to the residual

regression block (Section 3.1.3) for the final prediction.175

3.1.3 Residual Regression Block

Probabilistic regression is employed to enable predicting the most likely residual values along with their uncertainties. For

each time-step, the mean and variance of a Gaussian probability density function are predicted. The residual regression block
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output are thus two sequences r̂ and σ̂, each a 1×Tmax vector, where Tmax is the prediction horizon. The residual regression

block (Figure 3) is composed of three dense fully-connected layers, each consisting of 256 units, followed by a fully-connected180

layer that maps into two 1×Tmax vectors for the means r̂ and standard deviations σ̂. A soft-plus function (Glorot et al., 2011)

is applied to the standard deviation vector to ensure positive values.

3.1.4 Network Training

A loss function that takes into account the probabilistic outputs is designed for training HIDRA end-to-end. In particular, a

log-likelihood of the ground-truth data (i.e., the residuals series rt0 = {rt0+δ}δ=0:Tmax
), is computed under the sequence of185

predicted Gaussians (Figure 3, r̂t0 and σ̂t0 ) for all training sequences starting at different times t0 ∈ T . The loss is thus defined

as

L(r, r̂, σ̂) =−
∑
t0∈T

Tmax∑
δ=0

log

(
1

σ̂t0+δ

√
2π

exp
(
(rt0+δ − r̂t0+δ)

2/σ̂2
t0+δ

))
, (3)

where r are the sets of training samples, while r̂ and σ̂ are the corresponding HIDRA predictions and their error estimates,

respectively.190

The network and experiments are implemented using Google’s machine learning library TensorFlow (Abadi et al., 2015).

We use the ADAM optimizer with learning rate of 0.001, β1 = 0.9 and β2 = 0.999 to train the model. The training batch size

is set to 64 data samples. The models are trained for 30 epochs, each epoch consisting of 1000 training steps (batches). A

computer with a NVIDIA GeForce GTX 980 graphics card was used for model training and evaluation.

3.2 NEMO Ocean Model195

General circulation model NEMO v3.6 (Madec, 2008) is used as a baseline for comparison with HIDRA. Detailed configuration

namelist of our particular setup described below is available in the supplementary material in the paper.

Adriatic NEMO model used in this study is set up on a regular longitude-latitude grid (648×504 cells) with a 1◦/72 arc-

degree horizontal resolution and 31 vertical partial step z∗-levels. The model domain spans 12–21◦ E and 39–46◦ N (see Figure

2). In all regions shallower than 2 m, a 2 m depth is enforced. Baroclinic timestep was set to 120 s. Barotropic timestep is200

adjusted to meet Courant-Friedrichs-Lewy stability condition. This operational suite runs every day at Slovenian Environment

Agency (ARSO) High Performance Computing Center and is hotstarted from the run of the previous day. Hourly lateral

boundary conditions in the Ionian Sea are taken from the hourly Copernicus CMEMS Mediterranean Sea Analysis and Forecast

product. Turbulent momentum and heat fluxes across the air-sea interface are parametrized using CORE bulk flux formulation

(Large and Yeager, 2004) using ECMWF ensemble atmospheric fields.205

Rivers are modeled as discharge of fresh water at the respective river location as described in Ličer et al. (2016). Flather

boundary condition determines barotropic dynamics at the lateral open boundary, while Flow Relaxation Scheme (Engedahl,

1995) is applied for baroclinic dynamics and tracers. Lateral momentum boundary condition at the coast is free-slip. Bottom

boundary layer is logarithmic with nonlinear bottom friction. Lateral diffusion is governed by Laplacian operators for tracers
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and dynamics, both operating over geopotential surfaces. Generic Length Scale k-ε scheme is used for vertical diffusion. Sur-210

face wave mixing is parametrized using Craig and Banner formulation (Craig and Banner, 1994). The full NEMO configuration

namelist is provided as supplementary material (Žust et al., 2021).

NEMO was run in this study without tidal forcing and predicts the residual sea level for the entire Adriatic basin with the

forecast period set to 72 h (as in HIDRA). In the ensemble simulations, only eight out of fifty ECMWF ensemble members

were used as forcing to our NEMO circulation model due to computational constraints. These eight ensemble members were215

selected from ECMWF ensemble based on the wind strength each member exhibits in the central Adriatic: ECMWF ensemble

members were ordered by wind strength in the central Adriatic and then a subset of members was made from the strongest

to the weakest member in steps of 6 (i.e. integer part of 50/8). This generates eight possible forcing scenarios in the Adriatic

basin while conserving the wind forecast spread of the reduced ensemble. For the i-th (i= 1, . . . ,8) NEMO ensemble member

run, residual sea level forecast for Koper is extracted from the NEMO basin prediction as a single time-series. This is then220

added to the tidal time series, obtained via tidal analysis from observations, to obtain the total modeled sea level, which we

denote as ynemo(i, t).

Each member of the NEMO ensemble sea level forecast for Koper is further corrected for bias. This is necessary to compen-

sate for the fact that NEMO sea level reflects departures from a local geoid and does not represent the absolute local depth of

the water, which is also driven by low-frequency processes (like planetary waves in air pressure), which cannot be reflected in225

the 72 hour run in a regional basin. To obtain the absolute sea level needed by port and civil rescue authorities, the NEMO sea

level predictions have to be adjusted to the Koper tide gauge observations.

On the n-th hour of the forecast day, the model bias with respect to Koper tide gauge observations ykp(t) can is estimated

as

εn(i) = n−1
n∑
k=1

[
ynemo(i, tk)− ykp(tk)

]
. (4)230

The i-th ensemble NEMO prediction time-series ynemo(i, t) is then shifted by εn(i) so that the bias of the first n-hours of the

ynemo(i,1< t < n) with respect to observations is zero. Complete forecast time-series ynemo(i, t) will of course still exhibit a

non-zero bias. This procedure is applied every hour as new observations from Koper tide gauge arrive. Note that, unlike NEMO

ensemble, HIDRA ensemble does not need any such bias correction, because it already contains local tide gauge information

through its sea level input in the day prior to the forecast and learns to adjust for the possible bias.235

For operational reasons, first daily NEMO sea level ensemble run usually becomes available between 11 00 and 12 00

UTC at the earliest. This means that the earliest bias correction of each day generally takes into account the first 12 hours of

tide gauge observations of that day. Raw NEMO time-series from i-th ensemble member ynemo(i, t) therefore gets shifted by

ε12h(i) to produce the first bias-corrected forecast of that day, i.e.,

ynemo
bc12h(i, t) = ynemo(i, t)− ε12h(i), (5)240
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with ε12h(i) defined in (4). The bias-corrected NEMO ensemble mean, ensemble maximum and ensemble minimum time-

series is then constructed from 12-hour bias-corrected ensemble members at each forecast timestep in an identical fashion as

with HIDRA – see (6)-(8). The corresponding time-series are denoted as ybc12h(t), y
max
bc12h(t) and ymin

bc12h(t).

3.3 Ensemble Statistics

As mentioned in Section 2.2, a total of fifty ECMWF atmospheric ensemble members are available daily. This results in an245

ensemble of nens = 50 sea level forecasts by HIDRA and an ensemble of nens = 8 sea level forecasts by NEMO. The ensemble

mean time-series is defined as the average over all ensemble members predictions

y(t) = n−1
ens

nens∑
i=1

y(i, t), (6)

where y(i, t) is the i-th member. Similarly, the ensemble prediction envelope, i.e., the per-time-step minimum and maximum

sequence, is defined as250

ymax(t) = max
i

[y(i, t)] , (7)

ymin(t) = min
i
[y(i, t)]. (8)

In the interest of clarity, only ensemble means, maximums and minimums, as defined above, are analyzed in the following

(rather than individual ensemble members).

4 Results and Discussion255

Predictions from HIDRA and NEMO are discussed in two sections. Section 4.1 analyzes the influence of atmospheric and sea

level input on HIDRA forecasts and concludes with a brief analysis of HIDRA atmospheric encoder design. Statistical and

spectral analyses of HIDRA and NEMO predictions are then presented in Section 4.2.

4.1 HIDRA Architecture Analysis

The HIDRA architecture design choices and their impact on forecast accuracy is analyzed in this section. Forecast accuracy is260

tested (i) with regard to the prediction lead time, i.e., the number of hours in the future we are forecasting, and (ii) with regard

to the sea level residual value, i.e., how far away from astronomical tide lies the sea level. All experiments regarding network

design are performed on the Koper test sea level dataset, which spans November 2014 to December 2016.

Influence of the historic horizon is examined in Section 4.1.1. Contribution of individual data sources (i.e. atmospheric data

and sea level history data) is analyzed in Section 4.1.2. The influence of the residual forecasting approach is evaluated in Sec-265

tion 4.1.3. The influence of the proposed atmospheric data encoder in comparison to reconstruction-based empirical orthogonal

functions (EOF) is examined in Section 4.1.4, while the influence of the temporal encoder is analyzed in Section 4.1.5.
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Table 1. HIDRA performance for different historic horizons in terms of mean absolute error (MAE), root mean squared error (RMSE),

model bias and likelihood shown separately on all data and on storm surge events. CPU execution time (on a single core) per example is also

reported.

MAE
[cm]

RMSE
[cm]

Bias
[cm] Likelihood

CPU time
[s]

Overall
Tmin = 12 5.3 7.0 -0.2 0.0440 0.17
Tmin = 24 4.9 6.4 -0.4 0.0470 0.19
Tmin = 36 4.8 6.4 -0.9 0.0455 0.21
Tmin = 48 4.8 6.4 -0.6 0.0438 0.23

Storm surge events
Tmin = 12 11.7 13.9 -11.2 0.0220 0.17
Tmin = 24 10.3 12.9 -9.3 0.0253 0.19
Tmin = 36 10.7 13.2 -9.8 0.0245 0.21
Tmin = 48 10.4 12.8 -9.1 0.0251 0.23

4.1.1 Influence of the Historic Horizon

We first analyze the influence of the HIDRA historic horizon defined by the parameter Tmin (see Section 3.1). Table 1 summa-

rizes the performance of HIDRA with Tmin ∈ {12,24,36,48}, which translates to historic horizons of 12, 24, 36 and 48 hours270

prior to the beginning of forecast. Increasing the historic horizon from 12 to 24 hours significantly improves the prediction

accuracy (9% reduction in RMSE error), however, further increases of the historic horizon (i.e., to 36 or 48 hours) do not show

measurable benefits. Note that the execution time increases with the length of the historic horizon due to a substantial increase

of parameters on the input layer. For this reason, we use a historic horizon of 24 hours (Tmin = 24) as the best trade-off in the

remaining analysis and denote this version as HIDRA0.275

4.1.2 Contribution of Atmospheric and Sea Level Inputs

HIDRA uses two input sources: the atmospheric data and the sea level history. In this study we analyze the individual contri-

butions of both input sources. The full HIDRA model (using both atmosphere and sea level data input, denoted as HIDRA0) is

compared with two single-input-source models: (i) HIDRAAi, using only atmospheric inputs, and (ii) HIDRASLi, using only

sea level inputs. In both setups, the network branch responsible for processing the ignored input source is removed. Results are280

presented in Table 2 and Figure 5.

Table 2 indicates that HIDRA exhibits best performance when using both atmospheric and sea level input and outperforms

both single-source variants by a large margin. This holds overall and also within limited time windows during storm surge

events (defined as the timestamps where the residual is larger than 40 cm). Removing each source individually leads to a

significant performance drop. The RMSE increases by 77% when using only the atmospheric input data (HIDRAAi), while a285

83% RMSE increase is observed when using only sea level data (HIDRASLi). This confirms that both input data sources are
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Table 2. HIDRA performance for individual input data sources in terms of mean absolute error (MAE), root mean squared error (RMSE)

and model bias. Full HIDRA0 with both input sources is compared with alternatives that use only atmospheric (HIDRAAi) or tidal forcing

(HIDRASLi) as the input. Performance for the atmospheric tide is provided as reference. Performance is reported on all data as well as on

storm surge events only.

MAE
[cm]

RMSE
[cm]

Bias
[cm] Likelihood

Overall
HIDRA0 4.9 6.4 -0.4 0.0470
HIDRAAi 8.8 11.3 -0.5 0.0315
HIDRASLi 8.6 11.7 3.3 0.0279
Reference (tide) 12.1 15.7 -2.4 –

Storm surge events
HIDRA0 10.3 12.9 -9.3 0.0253
HIDRAAi 20.1 22.5 -19.5 0.0093
HIDRASLi 21.1 25.5 -20.2 0.0134
Reference (tide) 49.6 50.4 -49.6 –
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Figure 5. Performance of single-input-source models. Root Mean Squared Error (RMSE) with respect to (a) prediction lead time and

(b) residual value bins for different input sources is visualized. The full HIDRA model is compared with single-input-source variants –

atmospheric data only HIDRAAi model and tidal data only HIDRASLi model. The RMSE of the astronomic tide is shown for reference.
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essential for accurate prediction. Note also that both input data sources have a similar overall contribution to the prediction

accuracy.

Performance analysis over prediction lead time (Figure 5a) reveals further insights. HIDRAAi is very consistent across the

entire prediction interval. In fact, the error slightly decreases over time (8% decrease in RMSE over the interval of 72 h).290

HIDRASLi, on the other hand, is a much better sea level predictor in the short-term, but the error increases rapidly over the

prediction interval (by 400% over the interval of 72h). Thus, while the sea level data is important for short-term predictions,

the atmospheric data is more informative for predictions further into the future.

Grey dashed line in Figure 5 depicts forecast errors of using the astronomical tide values as the surface height predictor.

Since tidal forecast is done independently of prediction lead time, its RMSE over prediction time window is simply a root295

mean square error of the tidal model, plotted as a horizontal line. Bias of the reference tidal model with regard to specific

residual bin is, by definition, the negated value of the residual itself, while its RMSE is, again by definition, simply the absolute

value of the residual itself. Whenever HIDRA exhibits lower biases or RMSEs than tidal reference model, they are essentially

predicting more accurately than a tidal model would. Note that this is the case for all prediction lead times and practically all

residual values.300

On large residual values that correspond to storm surges (Figure 5b), HIDRAAi outperforms HIDRASLi, confirming that

atmospheric data is essential for accurate storm surge prediction. Both models achieve similar performance on small residual

values, and both perform worse than the full model.

4.1.3 Influence of Sea Level Input Type

HIDRA considers the total sea level information split into the tide and the residual provided as separate input time series, and305

predicts the residual which is added to the tidal signal to predict the full surface height. To analyze the contribution of different

sea level input types, two additional variants were considered: (i) HIDRAres considered only the residual as the input to predict

the future residuals and (ii) HIDRAsl considered a single total sea level input and predicted the total sea level output.

Results are shown in Table 3. Sea-level-only model (HIDRAsl) performs significantly worse than reference HIDRA0 with

a 35% increase in RMSE, which speaks in favor of residual prediction over the total sea level. The residuals-only model310

HIDRAres also performs slightly worse than the full model, causing an 8% RMSE increase, indicating that tidal information

as an additional input provides useful context for improved prediction accuracy.

Performance analysis over different prediction lead times (Figure 6a) shows that the sea-level-only model HIDRAsl makes

much larger errors (41% increase compared to HIDRA0 ) when predicting far into the future (prediction lead time is high),

which suggests that the network has trouble predicting the tidal component that far into the future using only the data from the315

last 24 hours. Comparing predictions over different residual values (Figure 6b) shows a similar situation. HIDRAsl performs

substantially worse (40-50% larger RMSE than HIDRA0 ) for small residual values. This is the range at which the tidal model

typically is most accurate and thus provides sufficient information for accurate predictions. Note also that although the sea

level only model HIDRAsl does not use tidal information, its prediction errors still follow a similar pattern of increasing
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Table 3. Performance evaluation of different HIDRA sea level input variants. Results are reported on the entire test set (2014-2016) and

separately on storm surge events.

MAE
[cm]

RMSE
[cm]

Bias
[cm] Likelihood

Overall
HIDRA0 4.9 6.4 -0.4 0.0470
HIDRAres 5.3 7.0 0.8 0.0443
HIDRAsl 6.6 8.7 0.2 0.0312
Reference (tide) 12.1 15.7 -2.4 –

Storm surge events
HIDRA0 10.3 12.9 -9.3 0.0253
HIDRAres 11.9 14.4 -11.1 0.0221
HIDRAsl 11.7 14.4 -9.6 0.0216
Reference (tide) 49.6 50.4 -49.6 –

with growing residual values. This is an interesting result and shows that the examples belonging to small residual values are320

inherently easier to predict regardless of whether the tidal estimation is used or not.
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Figure 6. Performance comparison of HIDRA sea level input variants. HIDRA0 is compared with residuals only model HIDRAres, which

does not use the estimated tide signal at the input and the sea level only model HIDRAsl, which does not use separate tidal estimation and

predicts the entire sea level signal. The RMSE with respect to (a) prediction lead time and (b) residual value bins is reported. The errors of

the astronomic tide are presented for reference.

4.1.4 Influence of the Atmospheric Encoder

The role of trainable discriminative atmospheric encoder ASE is analyzed by replacing it with a reconstructive embedding

proposed in Hieronymus et al. (2019). A principal component analysis is applied to the atmospheric input to compute a low-
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Table 4. Comparison of the proposed ASE-based HIDRA0 and the EOF-based HIDRAEOF in terms of overall performance and performance

on storm surges. The astronomic tide model performance is reported for reference.

MAE
[cm]

RMSE
[cm]

Bias
[cm] Likelihood

Overall
HIDRA0 4.9 6.4 -0.4 0.0470
HIDRAEOF 5.0 6.6 -0.1 0.0431
Reference (tide) 12.1 15.7 -2.4 –

Storm surge events
HIDRA0 10.3 12.9 -9.3 0.0253
HIDRAEOF 11.1 13.6 -10.1 0.0225
Reference (tide) 49.6 50.4 -49.6 –

dimensional subspace (empirical orthogonal functions, EOFs) that maximizes the data reconstruction. Following Hieronymus325

et al. (2019), the top three EOF are used in the subspace construction. The input is projected into this subspace producing a

low-dimensional signal that is directly used in the HIDRA regression network. The modified HIDRA is denoted by HIDRAEOF

in the following.

The HIDRA variants with ASE and with EOF are compared in Table 4. In normal conditions, the EOF-based version

(HIDRAEOF) performs on par with HIDRA using the proposed ASE. The HIDRAEOF RMSE is approximately 3% larger than330

that of HIDRA0 . However, the difference increases on the less frequent conditions with high residuals (i.e. surges) in which

the EOF-based version results in a 5% RMSE increase compared to ASE-based version. This supports the choice of using

end-to-end learned feature encoder as opposed to a hand-crafted one.

4.1.5 Influence of Temporal Encoders

Temporal encoder with temporal attention weights (Section 3.1.2) plays an important part in HIDRA. Two additional variants335

are created to study alternative choices of feature encoding. The first HIDRA variant (HIDRATCN) uses temporal convolutional

networks (TCN) (Bai et al., 2018) for encoding the atmospheric and the sea level branch of the network. The atmospheric

branch applies three TCN blocks with 128 units, while the sea level branch applies three TCN blocks with 64 units. The second

HIDRA variant (HIDRALSTM) uses a popular long short-term memory (LSTM) (Hochreiter and Schmidhuber, 1997) networks

for temporal encoding. Three LSTM layers are used in both the atmospheric and the sea level branch of the model. Each layer340

contains 128 units in the atmospheric and 64 in the sea level branch.

Results are reported in Table 5 and Figure 7. Overall, HIDRA0 performs on par with the more complex TCN-based

HIDRATCN (RMSE of HIDRATCN is 3% larger), while LSTM-based HIDRALSTM performs worse (RMSE is 14% larger

than HIDRA0 ). HIDRA0 outperforms both TCN and LSTM-based versions by a solid margin on the storm surge events (31%

and 32% RMSE increase, respectively). Furthermore, temporal weights of HIDRA0 use very few parameters compared with345

the other variants (see Table 6) – TCN and LSTM-based variations increase the total model size (including other network

layers) by 50% and 150% respectively.
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Figure 7. Comparison of different temporal encoder variants. HIDRA0 is compared with more complex variants using different temporal

encoders: LSTMs (HIDRALSTM) and TCNs (HIDRATCN). The RMSE with respect to (a) prediction lead time and (b) residual values is

shown. The prediction errors using the astronomic tide are presented for reference.

Table 5. Performance of HIDRA model variants using different temporal encoders. HIDRA0 model uses fixed temporal attention for the

atmospheric data. HIDRATCN uses TCNs and HIDRALSTM uses LSTMs to encode temporal features of atmospheric and sea level data.

Performance of the astronomic tide is provided for reference.

MAE
[cm]

RMSE
[cm]

Bias
[cm] Likelihood

Overall
HIDRA0 4.9 6.4 -0.4 0.0470
HIDRATCN 4.9 6.6 -0.2 0.0431
HIDRALSTM 5.5 7.3 -0.8 0.0461
Reference (tide) 12.1 15.7 -2.4 -

Storm surge events
HIDRA0 10.3 12.9 -9.3 0.0253
HIDRATCN 13.5 15.3 -13.2 0.0180
HIDRALSTM 13.6 16.2 -12.9 0.0188
Reference (tide) 49.6 50.4 -49.6 -

Table 6. Total number (in millions) of trainable parameters of HIDRA variants with different temporal encoders.

Method # of parameters

HIDRA0 0.8 M
HIDRATCN 1.2 M
HIDRALSTM 2.1 M
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Table 7. Performance of HIDRA variants with different wind and pressure input configurations. HIDRA0 uses the wind stress, HIDRAwnd

uses the raw wind, HIDRAno_wnd does not use wind inputs and HIDRAno_prs uses the wind stress, but not the air pressure. Performance of

the astronomic tide is provided for reference.

MAE
[cm]

RMSE
[cm]

Bias
[cm] Likelihood

Overall
HIDRA0 4.9 6.4 -0.4 0.0470
HIDRAwnd 4.9 6.4 0.2 0.0465
HIDRAno_wnd 5.3 7.1 -0.3 0.0434
HIDRAno_prs 5.3 7.0 -0.1 0.0451
Reference (tide) 12.1 15.7 -2.4 -

Storm surge events
HIDRA0 10.3 12.9 -9.3 0.0253
HIDRAwnd 9.3 11.6 -7.8 0.0274
HIDRAno_wnd 13.7 16.5 -12.9 0.0192
HIDRAno_prs 11.6 14.0 -10.8 0.0225
Reference (tide) 49.6 50.4 -49.6 -

4.1.6 Influence of the Wind Input Type and Wind-Pressure Redundancy

Bora and Scirocco characteristics in the Adriatic basin are often determined through an interplay of geostrophic, orographic

and other influences (Pasarić et al., 2007; Grisogono and Belušić, 2009). At other times however, non-geostrophic effects may350

play a lesser role and the wind field is largely determined by the pressure field. To investigate potential information redundancy

between the wind and pressure inputs, two HIDRA variants were trained: one which did not use the wind input and another

which used the wind, but not the pressure. Results in Table 7 show that removing either wind or air pressure input leads to an

approximately 9% increase of RMSE. HIDRA seems to compensate for potential redundancy in the inputs and capitalizes on

the fact that wind in the basin is, in the last instance, not entirely pressure driven. In any case using both inputs is preferred.355

We proceed to inspect the impact of Large and Pond parametrization (Large and Pond, 1981) which might oversimplify

the wind stress dependence on the wind. To this end we consider another variant of HIDRA, which uses raw wind instead of

wind stress. Results in Table 7 show that, overall, the performance between the two wind-input variants is indistinguishable.

However, on storm surges, using raw wind reduces the RMSE by approximately 1 cm when compared to the setup which uses

wind stress. It appears that HIDRA is capable of extracting the information important for sea level prediction during storm360

surges also directly from the raw wind.

4.2 Comparisons between HIDRA and NEMO

In regional ocean modeling setups, tides are often implemented as open boundary conditions and are treated as an external part

of model’s sea level response. In HIDRA on the other hand, tides enter the model as information that gets inextricably linked

into its residual (i.e. non-tidal part of) prediction: results of Section 4.1.3 show that including tides improves the prediction of365

the residual itself. Thus in HIDRA, the quantity we refer to as the residual, is in fact composed of two entangled parts: the
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Table 8. Comparison of HIDRA and NEMO on the Koper 2019 test dataset. Overall performance is shown separately from performance

during storm surge events. Performance of the astronomic tide is provided for reference.

MAE
[cm]

RMSE
[cm]

Bias
[cm] Likelihood

Overall
HIDRA 8.4 10.8 0.2 0.0323
NEMO 9.5 12.7 -3.0 0.0337
Reference (tide) 16.0 21.0 -4.7 -

Storm surge events
HIDRA 15.6 20.2 -13.5 0.0180
NEMO 17.1 22.4 -9.7 0.0202
Reference (tide) 54.9 56.7 -54.9 -

atmospheric part of the residual and the error correction of the tidal model. We nevertheless use the term residual to differentiate

it not from the tide, but rather from total sea level. For these reasons we cannot, as is otherwise customary in sea level modeling,

focus on the verification of the residual part of the total sea level signal. In this section, we thus compare the best-performing

variant of HIDRA from the ablation study (Section 4.1.6) and NEMO on the total sea levels, which, in HIDRA and in NEMO,370

contain both residuals and tides.

4.2.1 Overall Performance

HIDRA and NEMO are compared on the 2019 tide-gauge sea level observations in Koper. While HIDRA enables prediction

starting at each time-step, NEMO does not, since it runs once per day. The models are thus compared only on the prediction

windows matching the NEMO runs. The analysis uses the ensemble mean of NEMO members with a 12 h bias correction, i.e.,375

ybc12h(t) defined in (5). The corresponding ensemble mean HIDRA time series are denoted as yH(t) and the Koper tide gauge

time series are denoted by ykp(t).

Results are reported in Table 8. Overall (top panel of Table 8), HIDRA outperforms NEMO, obtaining a lower MAE, RMSE

and bias. During storm surges (bottom panel of Table 8) HIDRA also outperforms NEMO, but exhibits a larger bias. The

results visualised with respect to the residual sea level bin in Figure 9 confirm this. To track the prediction error growth with380

prediction horizon, we show RMSE with respect to the prediciton lead time in Figure 8. Both NEMO and HIDRA exhibit a

similar RMSE growth trend of approximately +4 cm per 72 h. But NEMO exhibits a higher mean error and a higher error

variance. HIDRA outperforms NEMO over the entire range of prediction lead times with lower and less volatile errors.

To gain further insights, the NEMO, HIDRA and tide gauge 2019 time-series power spectra were analyzed by computing

spectral energy densities of the signals over the frequency domain (2h)−1− (96h)−1 (Figure 10). The power spectra were385

computed as absolute values of one-dimensional Fast Fourier Transforms. The tide gauge power spectrum exhibits clear tidal

presence and also a clear peak at the fundamental Adriatic seiche period of 21.5 h. Some higher harmonics are also present in

the tide gauge spectrum at shorter periods (below 8 h) which are present in NEMO but absent from HIDRA. They are, however,

less important as they contain at least an order of magnitude less energy than tides or the ground state seiche, which may be the
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Figure 8. Performance comparison of HIDRA and NEMO with respect to the prediction lead time. Error of the astronomic tide is presented

for reference as a grey dashed line.
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Figure 9. Comparison of HIDRA and NEMO over the sea level distribution. Bias (a) and RMSE (b) with respect to the residual value are

shown. Error of the astronomic tide is shown for reference.
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reason HIDRA learned to partially ignore it. Both NEMO and HIDRA contain adequate amount of energy at tidal periods. But390

NEMO significantly underestimates the amount of energy contained in the frequency band around the fundamental Adriatic

seiche. HIDRA, on the other hand, contains an adequate, if slightly underestimated, amount of energy in the seiche frequency

band. This seems to be a solid argument to claim that the network has learned to mimic the fundamental basin seiche behaviour.

However, adequate HIDRA energy content in the (21.5h)−1 frequency band does not in itself mean that Adriatic seiches are

excited at appropriate times during storm surge events. To test whether this is indeed the case, inspection of specific storm395

surge cases is required.
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Figure 10. Power spectrum of NEMO ybc12h(t) ensemble forecast mean time-series (blue line), HIDRA ensemble forecast mean time-series

yH(t) (orange line) and tide gauge observations time-series ykp(t) (black line) for year 2019. Turquoise symbols denote spectral peaks due

to respective tidal constituent. E0 denotes the spectral peak due to fundamental Adriatic seiche with a period of 21.5 h, also marked with the

vertical turquoise dotted line.

4.2.2 Specific Storm Surge Events

We now proceed to investigate the total sea level time-series predicted by NEMO and HIDRA during specific storm surges

by analyzing the total sea level ensemble envelopes from a 12-hour bias corrected NEMO ybc12h(t) and HIDRA yH(t). In

addition, continuous wavelet transforms (CWT, see e.g. Mallat (2009)) over time windows containing the specific storm surges400

are computed. This allows comparison of the excitation level of specific harmonic contributions to the total sea level during

each particular storm surge event. The analysis is focused on the semi-diurnal tidal signal (with periods around 12 h) and on

the fundamental seiche period (with a period of 21.5 h). A Morlet wavelet was used for the CWT convolution computation.
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Figure 11. Comparison between NEMO (with a 12-hour bias correction) and HIDRA ensembles during a historic surge of November 2019.

Panels A and B depict NEMO and HIDRA ensemble predictions for Koper sea level, together with Koper tide gauge time series. Mean values

and minimum-maximum ensemble spans are depicted, as defined in Section 3.3. Panel C depits a CWT of yH(t) HIDRA mean timeseries.

Panels D and E depict a CWTs of Koper tide gauge, HIDRA and NEMO time-series at semi-diurnal (12 h) and E0 (21.5 h) wavelet width

respectively. Flooding threshold in the historic coastal town of Piran (Slovenia) is marked by a dashed red line in the top two panels.
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We first discuss the historic storm surge flooding event from mid-November 2019. Atmospheric conditions during November

2019 were not remarkable in themselves. Mean sea level pressures were moving between 990-1000 mbar, while Scirocco405

speeds in Northern Adriatic were measured to be around 10 ms−1. However, an unfortunate coinciding of a general low

pressure, high neap tide and seiche-inducing high-frequency forcing due to a local pressure low caused one of the worst

Northern Adriatic floods in history (Cavaleri et al., 2020). These multifaceted circumstances made forecasting of these floods,

using a lower resolution forcing such as ECMWF ensemble, challenging (Cavaleri et al., 2020). This problem is at least partly

reflected in the November 2019 forecasts, presented in Figure 11.410

Panel A in Figure 11 depicts NEMO ybc12h(t) mean time-series, together with the ymin
bc12h(t)−ymax

bc12h(t) ensemble envelope,

while panel B depicts HIDRA predictions. Both NEMO and HIDRA mean time-series seem to underestimate the storm surge

peak values. Both ensembles, however, exhibit high forecast spread, with maximums often adequately representing the ob-

served peaks. The first peak on 12th November 2019 is missed by HIDRA, but the subsequent dynamics is better represented

in HIDRA than in NEMO. In particular, HIDRA does not exhibit a substantial false positive on 15th November and also over-415

shoots less during the surge of 17th November 2019. Judging from CWT signals of mean ensembles from both HIDRA and

NEMO (in panels D and E), HIDRA missing the first peak can be at least partly attributed to underestimation of semi-diurnal

tidal signal in the HIDRA forecast. Semi-diurnal tides are similarly represented in both models and both underestimate the

signal in this band. On the other hand the seiche signal seems better represented in HIDRA (panel E) during the storm surge.

Note that HIDRA excites the seiche immediately after the sea level peak on 12th November. NEMO, of course, cannot do this420

since the seiche period is 21.5 h. Panel D of Figure 11 show that, like NEMO, HIDRA resolves well the low frequency tidal

variability between spring and neap tides.

We now move to an event from late January and early February 2015, which turned out to be quite problematic for NEMO

to forecast, while HIDRA behaved much better. During this period, Adriatic was impacted by several days of low pressures

(990-1000 mbar) and moderate Scirocco (with speeds 8-12 ms−1). These conditions led to a series of moderate storm surges425

in the Northern Adriatic, as shown in Figure 12.

NEMO ensemble, depicted in Panel A of Figure 12, performs particularly poorly during this time window. While it did

predict the first surge on 30th January, the following peaks were underestimated and the crest-to-trough sea level range of

NEMO is overall unsatisfactory throughout the time-window. Since the tidal part of the NEMO signal is appropriate (Figure

12, Panel D), the reason for poor forecast seems to lie in insufficient excitation of the fundamental basin seiche, which is430

drastically underestimated in our setup of NEMO (Figure 12, Panel E). HIDRA yields a more accurate overall forecast in

this case (Figure 12, panel B), and does not underestimate the seiche signal at the (21.5 h)−1 frequency as much as NEMO.

Semi-diurnal tidal signal is reasonably well represented in both models (panel D of Figure 12). These performances of NEMO

and HIDRA are consistent with the power spectrum in Figure 10.
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Figure 12. Comparison between NEMO (with a 12-hour bias correction) and HIDRA ensembles during surge of January and February 2015.

Panels A and B depict NEMO and HIDRA ensemble predictions for Koper sea level, together with Koper tide gauge time series. Mean values

and minimum-maximum ensemble spans are depicted, as defined in Section 3.3. Panel C depits a CWT of yH(t) HIDRA mean timeseries.

Panels D and E depict a CWTs of Koper tide gauge, HIDRA and NEMO time-series at semi-diurnal (12 h) and E0 (21.5 h) wavelet width

respectively. Severe flooding threshold in the historic coastal town of Piran (Slovenia) is marked by a dashed red line in the top two panels.

24



5 Conclusions435

In this study, we presented HIDRA, a novel deep learning network for sea level modeling in complex environments like the

Adriatic. We describe key HIDRA architecture blocks and discuss several aspects of how both HIDRA architecture and its input

influence its performance. HIDRA outperforms
::::::::
compares

::::::::
favorably

::
to

:
the current operational NEMO setup and is therefore

::
of

:::
the

:::::::
National

:::::::::::
Hydrological

::::::::::
Forecasting

:::::::
Service

::
at

::::::::
Slovenian

:::::::::::
Environment

::::::::
Agency.

:::::
While

::::::
further

::::::
tuning

::
of

:::
the

::::::::::
operational

::::::
NEMO

:::::
setup

::
at

:::
the

::::::
Agency

::
is
::::
also

:::::
under

::::
way

:::::
(with

:::
the

:::
aim

::
of
:::::::::

improving
:::
its

:::::::::
forecasting

:::::
skill),

::::::
results

::::::::
presented

::
in
::::
this

:::::
study440

::::::::::
nevertheless

:::::::
indicate

:::
that

:::::::
HIDRA

::
is
:
an appropriate candidate for Slovenian Environment

::
the

:
Agency’s operational pipeline.

Furthermore, preliminary
::::::::::
Preliminary tests (not reported in this study) indicate that HIDRA also generalizes well to other

geographical locations.

Last but not least, numerical cost of both setups is vastly different. NEMO ensemble runs require dedicated HPC facilities,

while the HIDRA ensemble forecast can be executed on a personal computer (even without a dedicated GPU) and exhibits an445

extremely low energy footprint. A single HIDRA run for our requirements takes less than half a CPU second per ensemble

member, while a full basin NEMO ensemble requires tens of CPU hours per ensemble member – a speedup in order of 0.5×106

times.

We believe the presented results are a promising first step. In our future work we plan to focus on improving the performance

of both HIDRA and NEMO in the tails of the sea level distributions as well as explore other environmental input streams and450

architectural designs to further reduce the prediction errors with increasing forecast horizon. We hope this study builds a strong

case in favor of machine learning capabilities with carefully designed architectures to discern sea level dynamics in regional

basins and will inspire other groups to consider similar solutions.

Code and data availability. HIDRA code and data samples are available in the Git repository: https://github.com/lojzezust/HIDRA (last

access: 5 January 2021). Persistent version of the HIDRA 1.0 source code is available through https://doi.org/10.5281/zenodo.4457305 (Žust455

et al., 2020a). ECMWF ensemble data are available through the Meteorological Archive and Retrieval System (MARS), but access is limited

to member countries. Sea level datasets employed in this paper are available at https://doi.org/10.5281/zenodo.4106440 (Žust et al., 2020b)

and NEMO configuration namelist used in the experiments is published at https://doi.org/10.5281/zenodo.4419333 (Žust et al., 2021).
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