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Authors’ response to Anonymous Referee #1

We thank the reviewer for their time and comments that helped us to improve the paper. Responses
to individual comments are provided below point-by-point. We also paste the text to reflect the
changes to the manuscript.

Comment 1: The authors tend to apply the HIDRA model for business forecasting. However,
the input for the model contains the atmospheric data in the future. Please clarify the datasource
in the business forecast process.

Response: Thank you for pointing this out. As is usual in supervised learning, HIDRA was
trained on past atmospheric model forecasts and sea level data. The HIDRA training data is
composed of two parts: (a) the atmospheric part consists of past forecasts from a single member
of ECMWF model ensemble, and (b) the sea level training data consists of tidal and residual sea
levels from 24 hours prior to the forecast obtained from observations in Koper. For operational
forecast, starting at time t0, the following datasets will be employed:

• The atmospheric data: ECMWF ensemble forecast (the same ECMWF product as in training
data) for time interval [t0, t0 + 72 hours]. This data is available at the time of the forecast
from ECMWF operational service.

• Sea Level data: tidal and residual data for the time interval [t0 − 24 hours, t0]. This data
is also available at the time of the forecast, assuming that the tide gauge in Koper works as
expected, which is a reasonable assumption, given the redundancy in the design (the gauge
consists of three independent bottom-mounted pressure gauges).

All the data required for HIDRA forecasting will be available for operational forecasts every day.
To make this clear, the following text in the Conclusion,

“HIDRA outperforms the current operational NEMO setup and is therefore an appropriate can-
didate for Agency’s operational pipeline.”

was re-written into:

“HIDRA outperforms the current operational NEMO setup and is therefore an appropriate
candidate for Slovenian Environment Agency’s operational pipeline. HIDRA integration should be
straightforward since ECMWF ensemble predictions and tide gauge sea level data are available at
the Agency every day in real time for operational forecasting.”

Comment 2: The authors declare “Extending the historical horizon beyond 24 hours did not
significantly affect the prediction accuracy”. Please give a concise description of how to find the
trade-off between the model forecast accuracy and the computing resource.
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Response: To improve the insight into the trade-off, we conducted an additional experiment in
which HIDRA was re-trained and tested for different values of historic horizon Tmin. The results
are shown in Table 1. We find that increasing the historic horizon beyond 24h does not yield
measurable improvements in prediction accuracy while increasing the number of parameters in the
lower layers and negatively impacting the computational performance. For this reason we decided
to set Tmin = 23.

MAE
[cm]

RMSE
[cm]

Bias
[cm]

Likelihood
CPU time

[s]

Overall
HIDRA12 5.3 7.0 -0.2 0.0440 0.17
HIDRA24 4.9 6.4 -0.4 0.0470 0.19
HIDRA36 4.8 6.4 -0.9 0.0455 0.21
HIDRA48 4.8 6.4 -0.6 0.0438 0.23

Storm surge events
HIDRA12 11.7 13.9 -11.2 0.0220 0.17
HIDRA24 10.3 12.9 -9.3 0.0253 0.19
HIDRA36 10.7 13.2 -9.8 0.0245 0.21
HIDRA48 10.4 12.8 -9.1 0.0251 0.23

Table 1: HIDRA performance for different historic horizons in terms of mean absolute error (MAE),
root mean squared error (RMSE) and model bias. CPU execution time (on a single core) per
example is also reported. Performance for the atmospheric tide is provided as reference.

This experiment is now described along with the Table 1 in a new section in the manuscript
(Section 4.1.1: Influence of the historic horizon):

”We first analyze the influence of the HIDRA historic horizon defined by the parameter Tmin

(see Section 3). Table 1 summarizes the performance of HIDRA with Tmin ∈ {11, 23, 31, 47}, which
translates to historic horizons of 12, 24, 36 and 48 hours. Increasing the historic horizon from 12
to 24 hours significantly improves the prediction accuracy (9% reduction in RMSE error), however,
further increases of the historic horizon (i.e., to 36 or 48 hours) do not show measurable benefits.
Note that the execution time increases with the length of the historic horizon due to a substantial
increase of parameters on the input layer. For this reason, we use a historic horizon of 24 hours
(Tmin = 23) as the best trade-off in the remaining analysis.”

Comment 3: In Equation (1), there is a “20” on the “sum” signal, which represents the different
spatial position on the feature maps, which is confusing that where this value comes from. Please
clarify the changes of the feature maps during the fore-propagation process in the Figure. 3,
especially in Figure 3 (a). Such as marking the size of the convolution kernel and the output size
in the red boxes.
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Response: Thank you for directing our attention to this issue. We agree that it is not imme-
diately clear that the “20” in the spatial position sum follows from the input feature maps are of
size 4 × 5. To address this, we now make the indexing in equation (1) explicit. In particular, the
equation

ft = ReLU

(
20∑
i=1

F
(i)
t w

(i)
t

)
(1)

is now changed to

ft = ReLU

 4∑
i=1

5∑
j=1

F
(i,j)
t w

(i,j)
t

 , (2)

where (i, j) denotes the spatial coordinates of the feature map and spatial weights. We believe this
is more precise and easier to follow.

Next, we address the comments regarding Figure 3a. We updated Figure 3 in the manuscript
and made the annotations in the figure (see Figure 1) and the caption consistent with with the
text in the paper’s body. The Atmospheric Spatial Encoder now contains the standard markings
of ResNet stages as well as the output feature map size for context. The previous caption of Figure 3

“The proposed HIDRA architecture. A convolutional Atmospheric Spatial Encoder (ASE) ex-
tracts spatial atmospheric features from each time-step. Atmospheric and sea level temporal features
are encoded by respective Temporal Encoder blocks, fused and passed to the fully-connected Residual
Regression Block to predict the residuals along with their uncertainties. The trainable blocks are
denoted by red color.”

was changed to

“The proposed HIDRA architecture. A convolutional Atmospheric Spatial Encoder (ASE) ex-
tracts spatial atmospheric features from each time-step. Atmospheric and sea level temporal features
are encoded by respective Temporal Encoder blocks, fused and passed to the fully-connected Resid-
ual Regression Block to predict the residuals along with their uncertainties. With n we denote the
number of filters or units of the block. The trainable blocks are colored red. The structure of the
bottleneck blocks used in the ASE is presented in Figure 4.”

Furthermore, we present the structure of the Bottleneck blocks in an additional figure (see
Figure 2), which also details the convolutional parameters (kernel sizes, stride) and output feature
map sizes.

Comment 4: Line 298: results → result

Response: Thank you for for spotting the grammar mistake. The manuscript was updated as
suggested.
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Figure 1: The proposed HIDRA architecture. A convolutional Atmospheric Spatial Encoder (ASE)
extracts spatial atmospheric features from each time-step. Atmospheric and sea level temporal fea-
tures are encoded by respective Temporal Encoder blocks, fused and passed to the fully-connected
Residual Regression Block to predict the residuals along with their uncertainties. With n we denote
the number of filters or units of the block. The trainable blocks are colored red. The structure of
the bottleneck blocks used in the ASE is presented in Figure 2.

1×1 Conv, n=Fin

3×3 Conv, n=Fin

1×1 Conv, n=Fout

H × W × Fin

H × W × Fout H/2 × W/2 × Fout

1×1 Conv, n=Fin , s=2

1×1 Conv, n=Fout , s=23×3 Conv, n=Fin

1×1 Conv, n=Fout

H × W × Fin

Bottleneck + DS, n=FoutBottleneck, n=Fout

Figure 2: Structure of the bottleneck blocks used in the Atmospheric Spatial Encoder (Figure 1).
The bottleneck block takes a feature map with depth Fin as the input and outputs a feature map
with depth Fout. A regular bottleneck block (left) retains the spatial dimensions of the feature
maps, while the downsampling (DS) bottleneck block (right) uses strided convolutions to reduce
the spatial dimensions in half. We denote the number of convolutional filters by n and the stride
parameter by s.
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Authors’ response to the Anonymous Referee #2 
 

We thank the reviewer for their time and comments that helped us to improve the paper. Detailed                 
responses to individual comments are provided below point-by-point. We also paste the text to              
reflect the changes to the manuscript. In summary, two major changes have been made in line with                 
the reviewer’s suggestions: 
 

● We have turned off the wind stress parametrization and repeated training and analyses with              
wind-only input data. Results with raw wind input is indeed better than with the wind stress                
transformation. We now use raw wind input during training. The manuscript has been             
modified accordingly. 

● We have performed another sensitivity study to check the information redundancy in sea             
level pressure / wind input data. The HIDRA model was re-trained with wind-only and              
pressure-only inputs. The best results are obtained when both inputs are provided to HIDRA              
indicating complementarity of the two inputs and ability of HIDRA to compensate for any              
potential redundancy. 

 
 

 
Comment 1: This manuscript proposed a model named HIDRA based on a deep learning              
network to forecast the sea level in the Adriatic. This is a good try and shows the                 
deep-learning-based model has a good future in ocean environment research and           
forecasting. This work is worthwhile and the manuscript is well-written in general.  
 
Response:​ We thank the reviewer for the encouraging comment. 
 
Comment 2: However, there are still several critical issues to be clarified. The Large and Pond                
parameterization is suitable for calculating the wind stress over the open sea with deep              
water. In other words, this scheme cannot use in this study. As the data is the basic and core                   
of machine learning, the authors should find another scheme to redo this work. 
 
Response: We thank the reviewer for this insight. Indeed, Large and Pond formulation has its limits,                
but is often applied in oceanography as a tradeoff between complexity and accuracy. In our case it is                  
worth pointing out that this particular parametrization was not chosen to most concisely represent              
the vertical momentum flux at the sea surface (which would admittedly require more complex              
schemes and more data), but to merely introduce the nonlinear wind stress dependence on the               
wind. Thus our reasoning was that this would make learning the relationships between the              
atmospheric conditions and tide gauge sea level easier for the deep network.  
 
However, following the referee's insight, we have performed a number of new experiments. In              
particular, HIDRA was re-trained with using the raw wind instead of Large and Pond parametrization.               
The prediction performance did not change overall, which means that the network is capable of               
modeling, at some level, how wind translates into vertical momentum flux. We did notice that the                
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prediction performance on storm surges did improve on average by approximately 1 cm. These              
results will be added to the revised manuscript as a separate subsection in the “Hidra Architecture                
Analysis” Section 4.1. For convenience we include the new subsection below: 
 
“We proceed to inspect the impact of Large and Pond parametrization which might oversimplify the               
wind stress dependence on the wind. To this end we consider another variant of HIDRA, which uses                 
raw wind instead of wind stress. Results in Table 7 show that, overall, the performance between the                 
two wind-input variants is indistinguishable. However, on storm surges, using raw wind reduces the              
RMSE by approximately 1 cm when compared to the setup which uses wind stress. It appears that                 
HIDRA is capable of extracting the information important for sea level prediction during storm surges               
also directly from the raw wind.” 
 

 
 
Comment 3: In fact, the wind is associated with sea level pressure and latitude (Coriolis               
force).For the Adriatic, the difference of wind in different locations due to Coriolis force can               
be ignored, which means the wind is almost determined by sea level pressure. So, wind               
stress has included information on sea level pressure. I think it’s double-counted when the              
authors used wind stress as well as sea level pressure. 
 
Response: ​Thank you for the comment. Indeed, winds in the Adriatic basin have a substantial               
geostrophic component. But we would like to note that the two strongest winds, Bora and Scirocco,                
can also have a significant non-geostrophic contribution (orographic channeling, non-linear wave           
breaking, density-driven flows during weak Bora episodes etc., ​e.g​. Pasarić et al., 2007,             
https://angeo.copernicus.org/articles/25/1263/2007/​; Grisogono and Belušić, 2009,     
https://onlinelibrary.wiley.com/doi/10.1111/j.1600-0870.2008.00369.x​). In such cases the wind field       
can exhibit cross-isobaric flow and reflects other constraints beyond the geostrophic equilibrium. 
 
Thus, to explicitly verify the potential effect of the information redundancy between the wind and air                
pressure inputs, we trained several additional variants of HIDRA. One that used wind input but not                
pressure, and another that used the air pressure but not the wind. Results show that performance                
drops by approximately 10% when excluding either wind or air pressure, implying that the network               
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accounts for potential redundancy and capitalizes on the complementary information encoded in            
both inputs. These results will be added in the revised manuscript as a separate subsection in the                 
“Hidra Architecture Analysis” Section 4.1. For convenience we include the new subsection below: 
 
“Bora and Scirocco characteristics in the Adriatic basin are often determined through an interplay of               
geostrophic, orographic and other influences (Pasarić et al., 2007; Grisogono and Belušić, 2009). At              
other times however, non-geostrophic effects may play a lesser role and the wind field is largely                
determined by the pressure field. To investigate potential information redundancy between the wind             
and pressure inputs, two HIDRA variants were trained: one which did not use the wind input and                 
another which used the wind, but not the pressure. Results in Table 7 show that removing either                 
wind or air pressure input leads to an approximately 9% increase of RMSE. HIDRA seems to                
compensate for potential redundancy in the inputs and capitalizes on the fact that wind in the basin                 
is not entirely pressure driven. In any case using both inputs is preferred.” 
 

 
 
Comment 4: Topography is important for the sea level, besides the wind stress (or sea level                
pressure). Therefore, topography should also be considered in the HIDRA model. 
 
Response: We agree that topography affects the sea level dynamics and is imperative for sea level                
prediction in physical models. We would nevertheless like to point out that topography is constant               
and does not change with time, thus it is not necessary to provide it explicitly as an input parameter                   
to HIDRA. Note that HIDRA is not a dynamical model which would have to explicitly take into                 
account the complex per-point topography interaction. Rather, interactions between dynamic          
spatially-varying and static elements (like topography), relevant for sea level prediction accuracy, are             
learned implicitly by the deep neural network from the vast amount of data. To achieve this in                 
HIDRA, the spatial encoding is enforced by providing the normalized spatial coordinates as part of               
the input to the network (​x ​and ​y input channels), thus allowing the learning algorithm to make such                  
spatially-dependent relations. 
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Furthermore, HIDRA predicts the sea level for a single specific location, taking into account the past                
sea level measurements from that location (Koper tide gauge). These measurements already reflect             
Adriatic basin bathymetry: sea level experiences topographic amplification due to shallowness in the             
north, resonant amplification due to forcing frequency being close to the basin seiche frequency, and               
also reflection due to the closure of the basin in the north. All these bathymetry effects are already                  
implicitly contained in the observations that the network receives as the input. In fact, our               
experiments show that HIDRA can respond in a manner that consistently reflects these bathymetric              
constraints, for example that it amplifies the signal in the basin seiche (21.5 hr)​-1 frequency band                
during a Scirocco event. 
 
Comment 5: Line 327, the description is inaccurate. Usually, the regional ocean model,             
especially the coastal model, can simulate the sea level including the tidal directly by using               
the water level boundary condition.  
 
Response: Thank you for pointing this out. The description will be updated by including NEMO               
configuration namelist into the paper supplement (the parameter space of the NEMO model is too               
large to be completely covered in the descriptive text). We also agree that regional ocean models                
can simulate sea level (including tides) via open boundary conditions.  
 
As pointed out by the referee, tides are not included in the forcing of the current NEMO setup. This                   
decision is partly based on the fact that we have a tide-gauge in Koper and we can analyze the tidal                    
constituents for Koper directly from the local observations, which seemed to be the most              
straightforward way of obtaining tides in Koper. We have however in the past compared full (with                
tides on open boundaries) NEMO sea-levels to the setup presented in this paper. The main result                
(unpublished) was that sea level from NEMO with tides at the open boundary offers comparable, but                
somewhat worse representation of observed total sea levels than the non-tidal setup of NEMO with               
tides computed on the Koper tide gauge.  
 
Furthermore, as explained in the paper, HIDRA is using tidal sea-levels and residuals obtained from               
the Koper tide-gauge. Allowing NEMO and HIDRA to use the same tidal signal allows for more                
consistent comparisons of their performance. We have therefore chosen not to include tidal forcing              
at NEMO open boundary (in the Ionian Sea) in this study, but to obtain the tidal part of the sea level                     
signal from local observations. 
 
Comment 6: Moreover, the authors cannot claim HIDRA is better than NEMO because they              
only compared with results from only one NEMO configuration they used. If the NEMO is               
tuned carefully, maybe the results are better. In fact, the NEMO in the storm surge events                
seems better than HIDRA. 
 
Response: We thank the reviewer for this comment. We agree -- there certainly exists a possibility                
that a better tuned setup of NEMO would produce better results. For example, assimilation of sea                
level data might be of substantial benefit and our current setup does not have it. Therefore, we must                  
certainly clarify that we do not claim that HIDRA is better than NEMO in general - but rather that                   
HIDRA does compare favorably with the only specific operational setup of NEMO at our disposal. 
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To make the manuscript more consistent with the referee's arguments, we have amended the              
manuscript to be very specific that we are referring to the specific operational setup of NEMO at                 
Slovenian Environment Agency. We however fear that a stand-alone NEMO setup sensitivity study             
would diverge too far from the scope of our paper, which is to present a numerically cheap machine                  
learning architecture which can compete with (and most often outperform) a much more complex              
and numerically demanding general circulation model. 
 

Minor comments: 
 
Comment 7: How to deal with the land points in this study is missed. 
 
Response: ​HIDRA does not distinguish between wet and dry points - it focuses on the synoptic                
pattern of surface meteorological fields. It does however receive spatial encoding of atmospheric             
fields (x and y input channels). Again, as in topography, ECMWF land/sea mask is a constant field                 
and as such cannot profoundly impact gradient descent during the learning process. To make this               
clearer, the following sentence was added to the manuscript: 
 
“Atmospheric fields over land and sea are treated in the same manner, i.e. while HIDRA does                
receive an explicit spatial encoding of atmospheric fields (Section 3.1.1), it does not employ a               
land/sea mask.“ 
 
Comment 8: Why did the authors select the 29x37 for the atmospheric tensor? 
 
Response: The spatial size is specific to the input ECMWF ensemble grid. The ECMWF ensemble               
forecast over the domain of the study contains 73×57 grid points. As described in Section 2.3, we                 
further downscale the data by a factor of two and end up with a grid of dimensions 37×29. Following                   
the standard convention, spatial maps are represented as height-first tensors, thus 29×37. To clarify              
the origin of the atmospheric tensor dimensions we changed a line in Section 2.2 to 
 
“… In this study, the following forecast fields were subset to the Adriatic basin, ​represented by a                 
73×57 spatial grid​ (see Figure 2) …” 
 
and a line in Section 2.3 to 
 
“The data is standardised and global average pooling is used to reduce the dimensionality of the                
atmospheric data -- spatial dimension of the data in samples is ​reduced in half, from 73 x 57 points                   
to 37 x 29 points,​ and the temporal dimension is reduced by a factor of 4.” 
  
Comment 9: It’s better to give a table for the HIDRA and NEMO configuration 
 
Response: As pointed out in our response to Reviewer’s Comment 5, we now include the NEMO                
configuration namelist in the supplementary material. Apart from the architectural design of HIDRA             
specified in Figure 3, the only free parameters are the learning rates and batch sizes summarized in                 
the last paragraph of Section 3.1.4.  
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HIDRA 1.0: Deep-Learning-Based Ensemble Sea Level Forecasting
in the Northern Adriatic
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Abstract. Complex interactions
::::::::::
Interactions between atmospheric forcing, topographic constraints to air and water flow, and

resonant character of the basin, make sea level modeling in Adriatic a particularly challenging problem. In this study we

present an ensemble deep-neural-network-based sea level forecasting method HIDRA, which outperforms our
::::
setup

::
of

:
general

ocean circulation model ensemble (NEMO v3.6) for all forecast lead times and at a minuscule fraction of the numerical cost

(order of 2× 10−6). HIDRA exhibits larger bias but lower RMSE than
:::
our

:::::
setup

::
of

:
NEMO over most of the residual sea5

level bins. It introduces a trainable atmospheric spatial encoder and employs fusion of atmospheric and sea level features

into a self-contained network which enables discriminative feature learning. The HIDRA architecture building blocks are

experimentally analyzed in detail and compared to alternative approaches. Results show individual importance of sea level

input for accurate forecast lead times below 24 h and of the
:::::::::
importance

::
of atmospheric input for longer time leads

:::
lead

:::::
times.

The best performance is achieved by considering the input as the total sea level, split into disjoint sets of tidal and residual10

signals. This enables HIDRA to optimize the prediction fidelity with respect to atmospheric forcing, while compensating for

the errors in the tidal model. HIDRA is trained and analysed on a ten-year (2006-2016) timeseries of atmospheric surface fields

from a single member of ECMWF atmospheric ensemble. In the testing phase, both HIDRA and NEMO ensemble systems are

forced by the ECMWF atmospheric ensemble. Their performance is evaluated on a one-year (2019) hourly time series from

tide gauge in Koper (Slovenia). Spectral
:::
and

:::::::::
continuous

:::::::
wavelet analysis of the forecasts at semi-diurnal frequency (12 h)−115

and at ground-state basin seiche frequency (21.5 h)−1 is performedby a continuous wavelet transform. The energy at the basin

seiche in the HIDRA forecast is close to the observed, while
::
our

:::::
setup

::
of

:
NEMO underestimates it. Analyses of the January

2015 and November 2019 storm surges indicate that HIDRA has learned to mimic timing and amplitude of resonant sea level

excitations in the basin .
::::
basin

:::::::
seiches.

1 Introduction20

Climate change is inducing sea level rise, adversely affects coastal ecosystems, economies and civil safety. In the shallow

Northern Adriatic, low sea levels influence port activities and inhibit marine cargo while high sea levels cause substantial

coastal flooding, inundation and erosion (Ferrarin et al., 2020), thus presenting a serious threat to Venice, Chioggia, Piran

and other coastal towns and businesses in the region. Low sea levels predominantly occur when periods of high atmospheric
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Figure 1. Adriatic basin
:::::::
orography

::::
and bathymetry. Abbreviations

:::
The

::::::::
following

::::::::::
abbreviations

:
are as follows

::::
used: TS - Trieste, KP -

Koper, GoT - Gulf of Trieste, VE - Venice, N Adr Shelf - Northern Adriatic Shelf, SAP - Southern Adriatic Pit, OT - Otranto Strait.

Direction of Scirocco is marked with a red arrow.
:::
The

:::::
image

::::
was

:::::
created

:::
by

:::
the

::::::
authors

::::
based

:::
on

::::::::
EMODnet

:::::::::
bathymetry

::::
data,

:::::::
available

:
at
:

https://portal.emodnet-bathymetry.eu/
:::
(last

::::::
access:

::
27

:::::::
October

:::::
2020)

:::
and

:::::::::
Copernicus

::::::::
European

:::::
Digital

::::::::
Elevation

::::::
Model,

:::::::
available

::
at

https://land.copernicus.eu/imagery-in-situ/eu-dem/eu-dem-v1-0-and-derived-products/eu-dem-v1.0
:::
(last

::::::
access:

::
27

::::::
October

:::::
2020).

pressure coincide with spring tide sea level minimums. High sea levels typically occur as storm surges during passages of25

atmospheric cyclones which manifest themselves as substantial air pressure lows and related winds over the basin. Reliable

and timely sea level forecasting is thus a crucial element of early warning systems for mitigating the flooding consequences.

Adriatic Sea has an elongated basin with northwest-southeast orientation, lies in the Northern Central Mediterranean, and

connects to the eastern Mediterranean basin through the Otranto strait at its southern end (see Figure 1). Surrounded from all

sides by mountain ridges – the Alps in the north
::::
The

:::::
basin

:::
lies

:::::::::
embedded

:::::::
between

::::
the

::::
Alps

:::
(to

:::
the

::::::
north), the Apennines30

in the west
::
(to

::::
the

:::::
west)

:
and Dinaric Alps in the east

:::
(to

:::
the

::::
east)

:
– it spans a 800 km long and 200 km wide area. The

ridges significantly influence the basin circulation through topographic air flow control, most notably during strong wind

episodes of the northeasterly Bora and the southeasterly Scirocco
::::::
control

::
of

:::
the

:::
air

::::
flow,

:::::::::
especially

:::::
during

:
wind

:::::
events

::
of

:::::
Bora

:::::::::::
(northeasterly

:::::
wind)

::::
and

:::::::
Scirocco

::::::::::::
(southeasterly

:::::
wind). Scirocco, predominantly directed along the basin long axis, is among

the main drivers of the Adriatic storm surges. Northern Adriatic shelf is closed at its northern end and is the shallowest part of35

the Adriatic basin. Storm surges in this part are consequently most pronounced, causing substantial coastal flooding, inundation

and erosion (Ferrarin et al., 2020).

2
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The elongated basing results in seiches with a fundamental period of 21.5 h (and first excited mode period of 10.9 h)

(Cerovecki et al., 1997; Medvedev et al., 2020). Diurnal and semi-diurnal tides enter the Adriatic through the Otranto Strait and

force the basin close to its resonant frequencies with both seiches resonantly amplified (Medvedev et al., 2020)
:::::::::::
eigen-periods40

:::::::::::::::::::
(Medvedev et al., 2020)

:
.
::::
Both

::::::
seiches

::::
and

::::
tides

:::
are

:::::::::
resonantly

:::
and

:::::::::::::
topographically

::::::::
amplified

::
in

:::
the

:::::::
shallow

:::::::
northern

:::::::
Adriatic.

In Northern Adriatic, crest-to-trough range of tidal sea level movement can reach up to 1 meter
::
1.5

:
m (and up to 10 cmcm/s s

in current speed (Cosoli et al., 2013)). In absence of strong winds, this signal dominates the sea level dynamics. During storm

surges however, tides are generally too weak to be dominant but remain a crucial part of the total sea level signal. Moreover,

since Adriatic seiches decay on scales of several days, seiches and tides may continue to reinforce (or diminish) the surges45

::::
each

::::
other

:
for several days.

The resonant character and high sensitivity to temporal phase lag between tides and seiches make Adriatic sea levels pre-

diction challenging with
:
a
:::::::::
challenge

:::
for deterministic numerical ocean models. Even modest modeling errors in the timing,

intensity or trajectory of an atmospheric cyclone, often lead to substantial modeling errors in the predicted sea level. Introduc-

tion of atmospheric numerical forecast ensembles has thus enabled implementation of operational sea surface height forecast50

systems that yield probabilistic forecasts along with error variance estimation, which show promise world-wide, see i.e. (Fer-

rarin et al., 2020; Bernier and Thompson, 2015; Mel and Lionello, 2014; Bertotti et al., 2011).

These systems, however, often involve a high computational cost, usually requiring running tens of runs of basin scale

numerical ocean models (each forced by a different member of the atmospheric ensemble) each day (or even several times

per day). Ensemble numerical modeling is therefore prohibitively demanding for many operational or civil rescue services that55

lack access to dedicated high-performance computing facilities.

Machine-learning-based ensemble modelling offers a possible solution to the challenges described above. Even though

training a machine-learning model may involve substantial amount of training data and computational resources, the subsequent

forecasting – even ensemble forecasting – is numerically cheap enough to be executed in some cases instantaneously on a

standard personal computer. Early approaches employ classic machine learning methods (Imani et al., 2018) or shallow fully-60

connected neural networks (Pashova and Popova, 2011; Karimi et al., 2013) for daily or hourly sea level forecasting. The

reported results show promise in sea level prediction, but fall short with simplistic architectures that ignore the atmospheric

forcing. Ishida et al. (2020) attempt to improve the dynamics of hourly scale sea level forecasts by using a long short-term

memory (LSTM) network, which are well established methods for sequence modelling and time-series prediction. The network

considers several atmospheric variables (wind speed and direction, sea level pressure, air temperature) as well as relative65

positions of the Sun and the Moon and annual global air temperatures as the input. Empirically, the short-term sea level

prediction of one hour in the future is improved compared to older approaches. While predictions farther into the future

could be achieved by iterative auto-regression, the errors would likely exponentially increase. A longer prediction horizon

is considered by Braakmann-Folgmann et al. (2017), who apply a combination of recurrent neural networks (LSTMs) and

convolutional neural networks to model monthly spatial sea level time series. This is one of the first works that considers both70

spatial and temporal aspects of the input data, however, predictions are made at a much coarser temporal resolution than that

considered in this paper. A higher temporal resolution is considered by Hieronymus et al. (2019), which is the most closely
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related work to ours. Autoregressive neural networks are used to model the sea level time-series with addition of atmospheric

forcing reduced by empirical orthogonal function (EOF) decomposition.
:::
For

:::::::
northern

::::::::
Adriatic,

::::::
Venice

:::::::
lagoon

::::::::::
specifically,

:::::::
artificial

:::::
neural

::::::::
networks

:::::
have

::::::
already

:::::
been

:::::
shown

:::
to

::
be

::::::
useful

::
at

:::::::::
modelling

::::::::
numerical

::::::
model

:::::
errors

::
in

::::
sea

::::
level

:::::::::
prediction75

:::::::::::::::::::::::
(Bajo and Umgiesser, 2010).

:

In this work we propose HIDRA
::::::
HIDRA

:
– a HIgh-performance Deep tidal Residual estimation method using Atmospheric

data. HIDRA
::::::
HIDRA

:
is a novel deep learning architecture which employs tidal and atmospheric forcing contributions for

accurate sea level predictions. The model is trained end-to-end with discriminative feature extraction as part of the learning to

maximize the forecast accuracy and to compensate for the inaccuracies of the astronomical tide estimates. HIDRA is bench-80

marked against the operational general circulation model ensemble, based on NEMO v3.6 engine (Madec, 2008), which is run

daily at the Slovenian Environment Agency (ARSO).

The remainder of the paper is structured as follows. The input sea level and atmospheric data, and the datasets used in this

study are described in Section 2. The HIDRA architecture, the
:::
our NEMO ocean model setup and the ensemble structure are

presented in Section 3. Section 4 reports a detailed analysis of the HIDRA architecture and empirical comparison to the NEMO85

system on a challenging setup. Conclusions are drawn in Section 5.

2 Sea Level and Atmospheric Data

2.1 Sea Level Data

Sea surface height (SSH) measurements were obtained from the Koper Mareographic Station (45◦33′ N, 13◦44′ E; see Figure 2

for location), which is operated by the Slovenian Environment Agency (ARSO). The measurements are acquired by a bottom-90

mounted pressure gauge in ten minute intervals, which are subsequently quality controlled at ARSO. The tidal part of the sea

level dynamics is independent from the atmospheric forcing and can be approximated by tidal models. We analyzed the tidal

contribution to Koper SSH using the Tidal Analysis Program for Python TAPPY (Cera, 2011). The tidal
:::::
Tidal contribution is

estimated from a 20-year hourly time-series of Koper SSH for the period between January 1995 and September 2014. The tidal

::::
Tidal

:
constituents are then used to estimate past and future tidal values. The residual sea level is defined in this paper as the95

arithmetic difference between the total and the tidal sea level.

2.2 Atmospheric Data

Atmospheric data is obtained from Ensemble Prediction System (EPS) of the European Centre for Medium-Range Weather

Forecasts (ECMWF). The data comes as an ensemble of fifty integrations of global atmospheric models (Leutbecher and

Palmer, 2007). Ensemble forecasts have a 0.125◦ arc degree spatial (zonal and meridional) resolution and a 3-hour temporal100

resolution. In this study, the following forecast fields were subset to the Adriatic basin,
::::::::::

represented
:::
by

:
a
:::::::
73× 57

::::::
spatial

::::
grid

(see Figure 2): (i) 10-meter zonal and meridional winds, (ii) mean sea level pressure and (iii) air temperature at 2 metres. The

forecasts were linearly interpolated to hourly timesteps to match the SSH temporal resolution.
::::::::::
Atmospheric

:::::
fields

::::
over

:::
land

::::
and

4



x wind y wind 

T 2m air pressure

Koper tide gauge
location 

Figure 2. Left: NEMO ocean model domain (orange rectangle) and ECMWF ensemble grid points (white dots). Every second ECMWF grid

point is displayed for clarity. Koper tide gauge location is marked with red-white circle. Right: four ECMWF atmospheric fields are extracted

over the region at each time-step: zonal (x) and meridional (y) windstress, air temperature at 2 meters and surface air pressure.

:::
sea

:::
are

::::::
treated

::
in

:::
the

::::
same

:::::::
manner,

:::
i.e.

::::
while

:::::::
HIDRA

::::
does

:::::::
receive

::
an

::::::
explicit

::::::
spatial

::::::::
encoding

::
of

:::::::::::
atmospheric

:::::
fields

:::::::
(Section

:::::
3.1.1),

::
it

::::
does

:::
not

:::::::
employ

::
a
:::::::
land/sea

:::::
mask.

:
105

Direct wind influence on the ocean is exerted through vertical momentum transfer or wind stress. We thus compute at

each time-step the wind stress from the ECMWF predicted wind velocity, where the
::::::::::::
Configurations

::::
with

::::
both

::::
raw

::::
wind

::::
and

::::
wind

:::::
stress

::::
were

::::::
tested

::
to

:::::
obtain

:::::::
optimal

:::::
neural

:::::::
network

::::::::::::
configuration.

:::::::::
Whenever

::::
wind

:::::
stress

::::
was

::::
used,

:
turbulent momentum

transfer (wind drag) coefficient was computed using the Large and Pond parametrization (Large and Pond, 1981).
::::
Note

::::
that

::
the

:::::::
purpose

::
of

:::::
wind

:::::
stress

:::::::::::::
parametrization

::
in

:::
this

:::::
study

::
is

:::
not

::
to

::::
most

::::::::
concisely

::::::::
represent

:::
the

::::::
vertical

::::::::::
momentum

::::
flux

::
at

:::::
ocean110

::::::
surface

::::::
(which

:::::
would

::::::
require

:::::
more

:::::::
complex

:::::::::
schemes),

:::
but

::::::
merely

::
to

::::::::
introduce

::
to

:::
the

:::::
neural

:::::::
network

:::
the

::::::::
nonlinear

:::::
wind

:::::
stress

:::::::::
dependence

:::
on

:::
the

::::
wind

::
to
:::::
assist

:::
its

:::::::
learning

:::::::
process.

2.3 Evaluation datasets

The atmospheric and the
:::::::::::
Atmospheric

:::
and

:
sea level data described in previous sections were used to create a dataset for years

2006–2016. The first 80% of the dataset is used for training (70%) and validation (10%), while the last 20% (September 2014 -115

December 2016) is used for testing. The data is standardised and global average pooling is used to reduce the dimensionality of

the atmospheric data – spatial dimension of the data in samples is reduced in half
:
,
::::
from

:::::::
73× 57

::::::
points

::
to

::::::
37× 29

::::::
points,

:
and

the temporal dimension
::
of

::::::::::
atmospheric

::::
data

:
is reduced by a factor of 4.

::
Sea

:::::
level

::::
data

:::::
retains

::::::
1-hour

:::::::::
resolution.

:
An additional

5



test-only dataset for the year 2019 was constructed in the same manner and was used for comparison of
::
our

:::::
setup

::
of

:
NEMO

and HIDRA prediction performance.120

Oversampling is applied to the training data to improve the prediction accuracy of the rare storm surge events. The training

dataset is split into two subsets by thresholding the residuals at 40 cm. Storm surges (
::::::
residual

:
> 40 cm) represent approximately

two percent of the data. During training the samples are randomly sampled from each of the two subsets with equal probability.

3 Numerical Models

3.1 HIDRA125

HIDRA (a HIgh-performance Deep tidal Residual estimation method using Atmospheric data) is a deep neural network that

predicts future surface height residual values (relative to the tidal model) from the sea level and atmospheric forcing input

tensors. The atmospheric state at time-step t is represented by an atmospheric tensor It ∈RW×H×4, where W = 29 and

H = 37
::::::::::::
It ∈RH×W×4,

::::::
where

:::::::
W = 37

:::
and

:::::::
H = 29

:
are the numbers of domain cells in longitudinal and latitudinal direction,

respectively. The third dimension of It corresponds to the four atmospheric surface input fields: two components of the wind130

stress, mean sea level pressure and air temperature at 2 m (see Figure 2).

To account for the causal relation between past atmospheric and tidal forcing in the basin and future sea surface heights,

HIDRA considers the forcing data over a range of past and future timesteps. In particular, for prediction starting at time t0,

HIDRA takes as the input atmospheric tensors It for the interval t ∈ [t0−Tmin, t0 +Tmax] ::::::::::::::::::::::
t ∈ [t0−Tmin +1, t0 +Tmax]:and the

tidal and the residual values from the interval t ∈ [t0−Tmin, t0], and predicts residual values for the interval t ∈ [t0+1, t0+Tmax].135

Here, Tmin defines the number of past hours considered in sea level prediction and Tmax denotes the prediction horizon. In

our experiments the predictions are made for 72 hours into the future, thus Tmax = 72 h and we have determined in our

preliminary study
:::
(see

::::::
Section

:::::
4.1.1)

:
that extending the historical horizon beyond 24 hours did not significantly

::::
does

:::
not affect

the prediction accuracy, thus we set Tmin = 23
:::::::::
Tmin = 24 h. Note that the atmospheric tensor contains future forecasts as well,

while the input sea level vectors contain only tides and residuals observed up to the prediction time t0.140

The HIDRA architecture is summarized in Figure 3. Atmospheric tensors from all considered time-steps are individually

encoded by an atmospheric spatial encoder (ASE) module (Section 3.1.1) and fused by the temporal encoder block (Section

3.1.2) based on the temporal attention mechanism into an atmospheric feature vector. The resulting vector is concatenated with

the past tidal and residual measurements. This is followed by a residual regression block (Section 3.1.3) to generate the final

residual predictions r̂t along with their uncertainties σt.145

3.1.1 Atmospheric Spatial Encoder

The atmospheric spatial encoder (ASE) encodes the spatially-represented atmospheric data into features, fine-tuned for the task

of sea level prediction, i.e., the atmospheric tensor It ∈R29×37×4 for time-step t is encoded into a feature vector ft ∈R256×1.

The ASE architecture (shown in Figure 3a) follows design principles of the ResNet20 v2 convolutional neural network (He
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Figure 3. The proposed HIDRA architecture. A convolutional Atmospheric Spatial Encoder (ASE) extracts spatial atmospheric features from

each time-step. Atmospheric and sea level temporal features are encoded by respective Temporal Encoder blocks, fused and passed to the

fully-connected Residual Regression Block to predict the residuals along with their uncertainties.
:::

With
::
n

::
we

::::::
denote

::
the

::::::
number

::
of

:::::
filters

::
or

::::
units

:
of
:::
the

:::::
block. The trainable blocks are denoted by

:::::
colored redcolor.

:::
The

:::::::
structure

::
of

:::
the

:::::::
bottleneck

::::::
blocks

:::
used

::
in
:::
the

::::
ASE

:
is
::::::::
presented

:
in
::::::
Figure

:
4.

1×1 Conv, n=Fin

3×3 Conv, n=Fin

1×1 Conv, n=Fout

H × W × Fin

H × W × Fout H/2 × W/2 × Fout

1×1 Conv, n=Fin , s=2

1×1 Conv, n=Fout , s=23×3 Conv, n=Fin

1×1 Conv, n=Fout

H × W × Fin

Bottleneck + DS, n=FoutBottleneck, n=Fout

Figure 4.
:::::::
Structure

::
of

:::
the

::::::::
bottleneck

:::::
blocks

::::
used

::
in

::
the

::::::::::
Atmospheric

::::::
Spatial

::::::
Encoder

::::::
(Figure

::
3).

::::
The

::::::::
bottleneck

::::
block

::::
takes

::
a
:::::
feature

::::
map

:::
with

:::::
depth

::
Fin::

as
:::
the

::::
input

:::
and

::::::
outputs

:
a
::::::
feature

:::
map

::::
with

:::::
depth

:::
Fout.::

A
::::::
regular

::::::::
bottleneck

::::
block

::::
(left)

::::::
retains

::
the

:::::
spatial

:::::::::
dimensions

::
of

:::
the

:::::
feature

:::::
maps,

::::
while

:::
the

:::::::::::
downsampling

::::
(DS)

::::::::
bottleneck

:::::
block

:::::
(right)

:::
uses

::::::
strided

:::::::::
convolutions

::
to
::::::
reduce

::
the

:::::
spatial

:::::::::
dimensions

::
in

::::
half.

:::
We

:::::
denote

::
the

::::::
number

::
of
:::::::::::
convolutional

::::
filters

::
by

::
n
:::
and

:::
the

::::
stride

::::::::
parameter

::
by

::
s.
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et al., 2016), which has already demonstrated remarkable performance in image processing tasks. ASE is composed of 22150

convolutional layers. Spatial dependence in feature extraction in enforced by concatenating the atmospheric tensor It with a

spatial encoding tensor sxy ∈R29×37×2, which contains the x and y coordinates (scaled between 0 and 1) of each pixel in

the tensor. The augmented tensor is then processed by a convolutional layer with 16 filters of 3× 3 size, followed by three

ResNet20 v2 stages, a spatial pooling layer and a time-dependent spatial attention layer (Figure 3b).

Each ResNet stage consists of two residual (bottleneck) blocks, where each block contains three convolutional layers (i.e.,155

1× 1, 3× 3 and 1× 1) and a residual connection, which sums the block input with its output. To match the number of output

features in the residual connection, the first residual block in each stage uses an additional 1× 1 convolutional projection.

Spatial feature reduction
:::::::::::
downsampling

:::::
(DS) is applied by a stride of length 2 in the first convolutional layer of the second

and third stage to increase the effective receptive field of neurons. A ReLU activation layer is appended to each convolutional

layer, except from the first one, are pre-pended by a batch-normalization layer to stabilize the learning.160

The output of the last residual block is spatially reduced by half with an average pooling layer, resulting in a feature tensor

Ft of size 5×4×256. Finally, a time-dependent spatial attention layer produces the final feature vector ft ∈R1×256, which is

a weighted sum of spatial positions

ft =ReLU

 20∑
i=1

F
(i)
t w

(i)
t

4∑
i=1

5∑
j=1

F
(i,j)
t w

(i,j)
t

:::::::::::::::

 , (1)

where F
(i)
t :::::

F
(i,j)
t :

is a slice of the feature tensor at time t at spatial position i, w(i)
t ::::::::::

coordinates
:::::
(i, j),

:::::
w

(i,j)
t :

is the respective165

spatial weight and ReLU(·) is the ReLU activation function. Note that the weight matrices are temporally dependent, which

allows them to focus on different parts of the atmospheric feature maps over time. With the exception of the spatial attention

layer, all weights of the ASE network are temporally-independent and are thus shared between all atmospheric input tensors.

3.1.2 Temporal Encoders

The ASE encodes input sequence of atmospheric tensors into a sequence of atmospheric features. These are stacked into170

an atmospheric feature matrix F ∈R256×T∆ , where T∆ is the number of time-steps in the atmospheric input tensor It, and

compressed into a single feature vector f ∈R256×1 by a weighted summation

f = FwT , (2)

where w is a temporal weights vector which serves as a temporal attention mechanism (Figure 3c) and adjusts the contributions

of different past time-steps to maximize the prediction performance.175

The input tidal and residual sequences, each a Tmin×1 vector, are concatenated with the encoded atmospheric feature vector

(2) into the combined temporally-encoded atmospheric and surface height feature vector. This vector is passed to the residual

regression block (Section 3.1.3) for the final prediction.
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3.1.3 Residual Regression Block

Probabilistic regression is employed to enable predicting the most likely residual values along with their uncertainties. For180

each time-step, the mean and variance of a Gaussian probability density function are predicted. The residual regression block

output are thus two sequences r̂ and σ̂, each a 1×Tmax vector, where Tmax is the prediction horizon. The residual regression

block (Figure 3) is composed of three dense fully-connected layers, each consisting of 256 units, followed by a fully-connected

layer that maps into two 1×Tmax vectors for the means r̂ and standard deviations σ̂. A soft-plus function (Glorot et al., 2011)

is applied to the standard deviation vector to ensure positive values.185

3.1.4 Network Training

A loss function that takes into account the probabilistic outputs is designed for training HIDRA end-to-end. In particular, a

log-likelihood of the ground-truth data (i.e., the residuals series rt0 = {rt0+δ}δ=0:Tmax
), is computed under the sequence of

predicted Gaussians (Figure 3, r̂t0 and σ̂t0 ) for all training sequences starting at different times t0 ∈ T . The loss is thus defined

as190

L(r, r̂, σ̂) =−
∑
t0∈T

Tmax∑
δ=0

log

(
1

σ̂t0+δ

√
2π

exp
(
(rt0+δ − r̂t0+δ)

2/σ̂2
t0+δ

))
, (3)

where r are the sets of training samples, while r̂ and σ̂ are the corresponding HIDRA predictions and their error estimates,

respectively.

The network and experiments are implemented using Google’s machine learning library TensorFlow (Abadi et al., 2015).

We use the ADAM optimizer with learning rate of 0.001, β1 = 0.9 and β2 = 0.999 to train the model. The training batch size195

is set to 64 data samples. The models are trained for 30 epochs, each epoch consisting of 1000 training steps (batches). A

computer with a NVIDIA GeForce GTX 980 graphics card was used for model training and evaluation.

3.2 NEMO Ocean Model

A state-of-the-art sea surface level prediction method,
::::::
General

:::::::::
circulation

::::::
model NEMO v3.6 ocean model (Madec, 2008) ,

::::::::::::
(Madec, 2008) is used as a strong baseline for comparison with HIDRA. The NEMO model

:::::::
Detailed

:::::::::::
configuration

::::::::
namelist

::
of200

:::
our

::::::::
particular

:::::
setup

::::::::
described

:::::
below

::
is

::::::::
available

::
in

:::
the

::::::::::::
supplementary

:::::::
material

::
in

:::
the

:::::
paper.

:

:::::::
Adriatic

::::::
NEMO

::::::
model

::::
used

::
in

::::
this

:::::
study is set up over the Adriatic basin on a regular

::::::::::::::
longitude-latitude

::::
grid

:
(648×504

longitude-latitude
::::
cells)

:
with a 1◦/72 arc-degree horizontal resolution and 31 vertical

:::::
partial

::::
step z∗-levelswith partial step .

The model domain spans 12–21◦ E and 39–46◦ N (see Figure 2). In all regions shallower than 2 m, a 2 m depth is enforced.

Baroclinic timestep was set to 120 s. Explicit time-splitting is enforced and barotropic timestep is automatically
:::::::::
Barotropic205

:::::::
timestep

::
is adjusted to meet Courant-Friedrichs-Lewy stability criterion. The model runs daily

::::::::
condition.

::::
This

::::::::::
operational

::::
suite

:::
runs

:::::
every

::::
day

:
at Slovenian Environment Agency (ARSO) High Performance Computing Center and is initialized from the

previous operational run
::::::::
hotstarted

::::
from

:::
the

::::
run

::
of

:::
the

:::::::
previous

:::
day. Hourly lateral boundary conditions in the Ionian Sea are

taken from the hourly Copernicus CMEMS Mediterranean Sea Analysis and Forecast product. Turbulent heat and momentum

9



:::::::::
momentum

::::
and

::::
heat fluxes across the ocean surface are computed with

:::::
air-sea

::::::::
interface

:::
are

:::::::::::
parametrized

:::::
using CORE bulk210

flux formulation (Large and Yeager, 2004) using ECMWF ensemble atmospheric fields: longwave and shortwave radiation

fluxes, 10-meter winds, mean sea level pressure, 2 temperature, relative humidity and precipitation. Rivers are implemented as

freshwater release over the entire water column at the discharge location , with runoff values
:
.

:::::
Rivers

:::
are

::::::::
modeled

::
as

:::::::::
discharge

::
of

:::::
fresh

:::::
water

::
at
::::

the
::::::::
respective

:::::
river

:::::::
location

:
as described in Ličer et al. (2016). The

model employs Flather boundary condition for barotropic dynamics and
:::::::::
determines

:::::::::
barotropic

::::::::
dynamics

::
at
::::

the
:::::
lateral

:::::
open215

::::::::
boundary,

:::::
while Flow Relaxation Scheme (Engedahl, 1995)

:
is

::::::
applied

:
for baroclinic dynamics and tracersat the open boundary.

Lateral momentum boundary condition at the coast is free-slip. Bottom friction is nonlinear with a logarithmic boundary layer

::::::::
boundary

::::
layer

::
is

::::::::::
logarithmic

::::
with

::::::::
nonlinear

::::::
bottom

:::::::
friction. Lateral diffusion

:
is

::::::::
governed

:::
by

::::::::
Laplacian

:
operators for tracers

and dynamicsare both bilaplacian, acting along ,
::::
both

::::::::
operating

::::
over geopotential surfaces. Vertical diffusion is computed using

Generic Length Scale k-ε turbulence closure.
::::::
scheme

::
is
::::
used

:::
for

:::::::
vertical

::::::::
diffusion.

::::::
Surface

:::::
wave

::::::
mixing

::
is

:::::::::::
parametrized

:::::
using220

Craig and Banner formulation (Craig and Banner, 1994)of surface mixing due to wave breaking is applied as well
:
.
:::
The

::::
full

::::::
NEMO

:::::::::::
configuration

:::::::
namelist

::
is
::::::::
provided

::
as

::::::::::::
supplementary

:::::::
material

:::::::::::::::
(Žust et al., 2021).

NEMO was run in this study without tidal forcing and predicts the residual sea level for the entire Adriatic basin with the

forecast period set to 72 h (as in HIDRA). In the ensemble simulations, only eight out of fifty ECMWF ensemble members

were used as forcing to the
:::
our NEMO circulation model due to computational constraints. These eight ensemble members225

were selected from ECMWF ensemble based on the wind strength each member exhibits in the central Adriatic: ECMWF

ensemble members were ordered by wind strength in the central Adriatic and then a subset of members was made from the

strongest to the weakest member in steps of 6 (i.e. integer part of 50/8). This generates eight possible forcing scenarios in the

Adriatic basin while conserving the wind forecast spread of the reduced ensemble. For the i-th (i= 1, . . . ,8) NEMO ensemble

member run, residual sea level forecast for Koper is extracted from the NEMO basin prediction as a single time-series. This is230

then added to the tidal time series, obtained via tidal analysis from observations, to obtain the total modeled sea level, which

we denote as ynemo(i, t).

Each member of the NEMO ensemble sea level forecast for Koper is further corrected for bias. This is necessary to compen-

sate for the fact that NEMO sea level reflects departures from a local geoid and does not represent the absolute local depth of

the water, which is also driven by low-frequency processes (like planetary waves in air pressure), which cannot be reflected in235

the 72 hour run in a regional basin. To obtain the absolute sea level needed by port and civil rescue authorities, the NEMO sea

level predictions have to be adjusted to the Koper tide gauge observations.

On the n-th hour of the forecast day, the model bias with respect to Koper tide gauge observations ykp(t) can is estimated

as

εn(i) = n−1
n∑
k=1

[
ynemo(i, tk)− ykp(tk)

]
. (4)240

The i-th ensemble NEMO prediction time-series ynemo(i, t) is then shifted by εn(i) so that the bias of the first n-hours of the

ynemo(i,1< t < n) with respect to observations is zero. Complete forecast time-series ynemo(i, t) will of course still exhibit a

non-zero bias. This procedure is applied every hour as new observations from Koper tide gauge arrive. Note that, unlike NEMO
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ensemble, HIDRA ensemble does not need any such bias correction, because it already contains local tide gauge information

through its sea level input in the day prior to the forecast and learns to adjust for the possible bias.245

For operational reasons, first daily NEMO sea level ensemble run usually becomes available between 11 00 and 12 00

UTC at the earliest. This means that the earliest bias correction of each day generally takes into account the first 12 hours of

tide gauge observations of that day. Raw NEMO time-series from i-th ensemble member ynemo(i, t) therefore gets shifted by

ε12h(i) to produce the first bias-corrected forecast of that day, i.e.,

ynemo
bc12h(i, t) = ynemo(i, t)− ε12h(i), (5)250

with ε12h(i) defined in (4). The bias-corrected NEMO ensemble mean, ensemble maximum and ensemble minimum time-

series is then constructed from 12-hour bias-corrected ensemble members at each forecast timestep in an identical fashion as

with HIDRA – see (6)-(8). The corresponding time-series are denoted as ybc12h(t), y
max
bc12h(t) and ymin

bc12h(t).

3.3 Ensemble Statistics

As mentioned in Section 2.2, a total of fifty ECMWF atmospheric ensemble members are available daily. This results in an255

ensemble of nens = 50 sea level forecasts by HIDRA and an ensemble of nens = 8 sea level forecasts by NEMO. The ensemble

mean time-series is defined as the average over all ensemble members predictions

y(t) = n−1
ens

nens∑
i=1

y(i, t), (6)

where y(i, t) is the i-th member. Similarly, the ensemble prediction envelope, i.e., the per-time-step minimum and maximum

sequence, is defined as260

ymax(t) = max
i

[y(i, t)] , (7)

ymin(t) = min
i
[y(i, t)]. (8)

In the interest of clarity, only ensemble means, maximums and minimums, as defined above, are analyzed in the following

(rather than individual ensemble members).

4 Results and Discussion265

Predictions from HIDRA and NEMO are discussed in two sections. Section 4.1 analyzes the influence of atmospheric and sea

level input on HIDRA forecasting skill
:::::::
forecasts

:
and concludes with a brief analysis of HIDRA atmospheric encoder design.

Statistical and spectral analyses of HIDRA and NEMO predictions are then presented in Section 4.2.

4.1 HIDRA Architecture Analysis

The HIDRA architecture design choices and their impact on forecast accuracy is analyzed in this section. Forecast accuracy is270

tested (i) with regard to the prediction lead time, i.e., the number of hours in the future we are forecasting, and (ii) with regard
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Table 1.
::::::
HIDRA

:::::::::
performance

:::
for

:::::::
different

::::::
historic

:::::::
horizons

::
in

::::
terms

:::
of

::::
mean

:::::::
absolute

::::
error

::::::
(MAE),

::::
root

::::
mean

::::::
squared

:::::
error

:::::::
(RMSE),

:::::
model

::::
bias

:::
and

::::::::
likelihood

:::::
shown

:::::::
separately

:::
on

::
all

:::
data

:::
and

::
on

:::::
storm

::::
surge

::::::
events.

::::
CPU

:::::::
execution

::::
time

::
(on

::
a
::::
single

:::::
core)

::
per

:::::::
example

:
is
::::
also

::::::
reported.

:

MAE
[cm]

RMSE
[cm]

Bias
[cm] ::::::::

Likelihood
:

CPU time
[s]

Overall
::::::::
Tmin = 12

:::
5.3

:::
7.0

::
-0.2

:::::
0.0440

: :::
0.17

::::::::
Tmin = 24

:::
4.9

::
6.4

:::
-0.4

:::::
0.0470

:::
0.19

::::::::
Tmin = 36

::
4.8

::
6.4

:::
-0.9

:::::
0.0455

: :::
0.21

::::::::
Tmin = 48

::
4.8

::
6.4

:::
-0.6

:::::
0.0438

: :::
0.23

Storm surge events
::::::::
Tmin = 12

:::
11.7

:::
13.9

::::
-11.2

:::::
0.0220

: :::
0.17

::::::::
Tmin = 24

:::
10.3

:::
12.9

:::
-9.3

:::::
0.0253

:::
0.19

::::::::
Tmin = 36

:::
10.7

:::
13.2

:::
-9.8

:::::
0.0245

: :::
0.21

::::::::
Tmin = 48

:::
10.4

:::
12.8

::
-9.1

:::::
0.0251

: :::
0.23

to the sea level residual value, i.e., how far away from astronomical tide lies the sea level. All experiments regarding network

design are performed on the Koper test sea level dataset, which spans November 2014 to December 2016.

:::::::
Influence

:::
of

:::
the

::::::
historic

:::::::
horizon

:
is
:::::::::
examined

::
in

::::::
Section

:::::
4.1.1.

:
Contribution of individual data sources (i.e. atmospheric data

and sea level history data) is analyzed in Section 4.1.2. The influence of the residual forecasting approach is evaluated in Sec-275

tion 4.1.3. The influence of the proposed atmospheric data encoder in comparison to reconstruction-based empirical orthogonal

functions (EOF) is examined in Section 4.1.4, while the influence of the temporal encoder is analyzed in Section 4.1.5.

4.1.1 Contribution
::::::::
Influence of Atmospheric and Sea Level Inputs

::
the

::::::::
Historic

:::::::
Horizon

We first analyze the individual contributions of
:::::::
influence

::
of

:::
the

:::::::
HIDRA

:::::::
historic

:::::::
horizon

::::::
defined

:::
by

:::
the

::::::::
parameter

:::::
Tmin::::

(see

::::::
Section

::::
3.1).

:::::
Table

:
1
::::::::::
summarizes

:::
the

:::::::::::
performance

::
of

::::::
HIDRA

::::
with

::::::::::::::::::::
Tmin ∈ {12,24,36,48},:::::

which
::::::::
translates

::
to

::::::
historic

::::::::
horizons280

::
of

:::
12,

:::
24,

::
36

::::
and

::
48

:::::
hours

:::::
prior

::
to

:::
the

::::::::
beginning

::
of

::::::::
forecast.

:::::::::
Increasing

:::
the

::::::
historic

:::::::
horizon

::::
from

:::
12

::
to

::
24

:::::
hours

:::::::::::
significantly

:::::::
improves

:::
the

:::::::::
prediction

::::::::
accuracy

:::
(9%

:::::::::
reduction

::
in

::::::
RMSE

:::::
error),

::::::::
however,

::::::
further

::::::::
increases

::
of

:::
the

::::::
historic

:::::::
horizon

::::
(i.e.,

::
to

:::
36

::
or

::
48

::::::
hours)

::
do

:::
not

:::::
show

:::::::::
measurable

:::::::
benefits.

:::::
Note

:::
that

:::
the

::::::::
execution

::::
time

::::::::
increases

::::
with

:::
the

:::::
length

:::
of

::
the

:::::::
historic

::::::
horizon

::::
due

::
to

:
a
:::::::::
substantial

:::::::
increase

::
of

:::::::::
parameters

:::
on

:::
the

:::::
input

::::
layer.

::::
For

:::
this

::::::
reason,

:::
we

:::
use

::
a

::::::
historic

:::::::
horizon

::
of

::
24

:::::
hours

:::::::::::
(Tmin = 24)

::
as

::
the

::::
best

::::::::
trade-off

::
in

:::
the

::::::::
remaining

:::::::
analysis

::::
and

:::::
denote

::::
this

::::::
version

::
as

:::::::::
HIDRA0.285

4.1.2
:::::::::::
Contribution

::
of

::::::::::::
Atmospheric

::::
and

:::
Sea

:::::
Level

::::::
Inputs

::::::
HIDRA

::::
uses

:
two input sources: the atmospheric data and the sea level history. Full

::
In

:::
this

:::::
study

:::
we

:::::::
analyze

:::
the

:::::::::
individual

:::::::::::
contributions

::
of

::::
both

:::::
input

::::::::
sources.

:::
The

::::
full

:
HIDRA model (using both atmosphere and sea level data input,

:::::::
denoted

:::
as

:::::::
HIDRA0) is compared with two single-input-source models: (i) HIDRAAi, using only atmospheric inputs, and (ii) HIDRASLi,

12



Table 2. HIDRA performance for individual input data source
:::::
sources

:
in terms of mean absolute error (MAE), root mean squared error

(RMSE) and model bias. Full HIDRA
:0:

with both input sources is compared with alternatives that use only atmospheric (HIDRAAi) or tidal

forcing (HIDRASLi) as the input. Performance for the atmospheric tide is provided as reference. Performance is reported on all data as well

as on storm surge events only.

MAE
[cm]

RMSE
[cm]

Bias
[cm] Likelihood

Overall
HIDRA

:0
4.9 6.4 -0.4 0.0470

HIDRAAi 8.8 11.3 -0.5 0.0315
HIDRASLi 8.6 11.7 3.3 0.0279
Reference (tide) 12.1 15.7 -2.4 –

Storm surge events
HIDRA

:0
10.3 12.9 -9.3 0.0253

HIDRAAi 20.1 22.5 -19.5 0.0093
HIDRASLi 21.1 25.5 -20.2 0.0134
Reference (tide) 49.6 50.4 -49.6 –

using only sea level inputs. In both setups, the network branch responsible for processing the ignored input source is removed.290

Results are presented in Table 2 and Figure 5.
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Figure 5. Performance of single-input-source models. Root Mean Squared Error (RMSE) with respect to (a) prediction lead time and

(b) residual value bins for different input sources is visualized. The full HIDRA model is compared with single-input-source variants –

atmospheric data only HIDRAAi model and tidal data only HIDRASLi model. The RMSE of the astronomic tide is shown for reference.

Table 2 indicates that HIDRA exhibits best performance when using both atmospheric and sea level input and outperforms

both single-source variants by a large margin. This holds overall and also within limited time windows during storm surge

events (defined as the timestamps where the residual is larger than 40 cm). Removing each source individually leads to a
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significant performance drop. The RMSE increases by 77% when using only the atmospheric input data (HIDRAAi), while a295

83% RMSE increase is observed when using only sea level data (HIDRASLi). This confirms that both input data sources are

essential for accurate prediction. Note also that both input data sources have a similar overall contribution to the prediction

accuracy.

Performance analysis over prediction lead time (Figure 5a) reveals further insights. HIDRAAi is very consistent across the

entire prediction interval. In fact, the error slightly decreases over time (8% decrease in RMSE over the interval of 72 h).300

HIDRASLi, on the other hand, is a much better sea level predictor in the short-term, but the error increases rapidly over the

prediction interval (by 400% over the interval of 72h). Thus, while the sea level data is important for short-term predictions,

the atmospheric data is more informative for predictions further into the future.

Grey dashed line in Figure 5 depicts forecast errors of using the astronomical tide values as the surface height predictor.

Since tidal forecast is done independently of prediction lead time, its RMSE over prediction time window is simply a root305

mean square error of the tidal model, plotted as a horizontal line. Bias of the reference tidal model with regard to specific

residual bin is, by definition, the negated value of the residual itself, while its RMSE is, again by definition, simply the absolute

value of the residual itself. Whenever HIDRA exhibits lower biases or RMSEs than tidal reference model, they are essentially

predicting more accurately than a tidal model would. Note that this is the case for all prediction lead times and practically all

residual values.310

On large residual values that correspond to storm surges (Figure 5b), HIDRAAi outperforms HIDRASLi, confirming that

atmospheric data is essential for accurate storm surge prediction. Both models achieve similar performance on small residual

values, and both perform worse than the full model.

4.1.3 Influence of Sea Level Input Type

HIDRA considers the total sea level information split into the tide and the residual provided as separate input time series, and315

predicts the residual which is added to the tidal signal to predict the full surface height. To analyze the contribution of different

sea level input types, two additional variants were considered: (i) HIDRAres considered only the residual as the input to predict

the future residuals and (ii) HIDRAsl considered a single total sea level input and predicted the total sea level output.

Results are shown in Table 3. Sea-level-only model (HIDRAsl) performs significantly worse than HIDRA
:::::::
reference

::::::::
HIDRA0

with a 35% increase in RMSE, which speaks in favor of residual prediction over the total sea level. The residuals-only model320

HIDRAres also performs slightly worse than the full model, causing an 8% RMSE increase, indicating that tidal information

as an additional input provides useful context for improved prediction accuracy.

Performance analysis over different prediction lead times (Figure 6a) shows that the sea-level-only model HIDRA
:::::::
HIDRAsl

makes much larger errors (41% increase compared to HIDRA
::::::::
HIDRA0 ) when predicting far into the future (prediction lead

time is high), which suggests that the network has trouble predicting the tidal component that far into the future using only325

the data from the last 24 hours. Comparing predictions over different residual values (Figure 6b) shows a similar situation.

HIDRA
:::::::
HIDRAsl performs substantially worse (40-50% larger RMSE than HIDRA

::::::::
HIDRA0 ) for small residual values. This is

the range at which the tidal model typically is most accurate and thus provides sufficient information for accurate predictions.
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Table 3. Performance evaluation of different HIDRA sea level input variants. Results are reported on the entire test set (2014-2016) and

separately on storm surge events.

MAE
[cm]

RMSE
[cm]

Bias
[cm] Likelihood

Overall
HIDRA

::::::
HIDRA0:

4.9 6.4 -0.4 0.0470
HIDRA

::::::
HIDRAres 5.3 7.0 0.8 0.0443

HIDRA
::::::
HIDRAsl 6.6 8.7 0.2 0.0312

Reference (tide) 12.1 15.7 -2.4 –

Storm surge events
HIDRA

::::::
HIDRA0:

10.3 12.9 -9.3 0.0253
HIDRA

::::::
HIDRAres 11.9 14.4 -11.1 0.0221

HIDRA
::::::
HIDRAsl 11.7 14.4 -9.6 0.0216

Reference (tide) 49.6 50.4 -49.6 –

Note also that although the sea level only model HIDRA
::::::
HIDRAsl does not use tidal information, its prediction errors still

follow a similar pattern of increasing with growing residual values. This is an interesting results
:::::
result and shows that the330

examples belonging to small residual values are inherently easier to predict regardless of whether the tidal estimation is used

or not.
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Figure 6. Performance comparison of HIDRA sea level input variants. HIDRA0:
is compared with residuals only model HIDRAres, which

does not use the estimated tide signal at the input and the sea level only model HIDRAsl, which does not use separate tidal estimation and

predicts the entire sea level signal. The RMSE with respect to (a) prediction lead time and (b) residual value bins is reported. The errors of

the astronomic tide are presented for reference.

15



Table 4. Comparison of the proposed ASE-based (HIDRA)
:0

and the EOF-based (HIDRAEOF ) in terms of overall performance and perfor-

mance on storm surges. The astronomic tide model performance is reported for reference.

MAE
[cm]

RMSE
[cm]

Bias
[cm] Likelihood

Overall
HIDRA

::::::
HIDRA0:

4.9 6.4 -0.4 0.0470
HIDRA

::::::
HIDRAEOF 5.0 6.6 -0.1 0.0431

Reference (tide) 12.1 15.7 -2.4 –

Storm surge events
HIDRA

::::::
HIDRA0:

10.3 12.9 -9.3 0.0253
HIDRA

::::::
HIDRAEOF 11.1 13.6 -10.1 0.0225

Reference (tide) 49.6 50.4 -49.6 –

4.1.4 Influence of the Atmospheric Encoder

The role of trainable discriminative atmospheric encoder ASE is analyzed by replacing it with a reconstructive embedding

proposed in Hieronymus et al. (2019). A principal component analysis is applied to the atmospheric input to compute a low-335

dimensional subspace (empirical orthogonal functions, EOFs) that maximizes the data reconstruction. Following Hieronymus

et al. (2019), the top three EOF are used in the subspace construction. The input is projected into this subspace produc-

ing a low-dimensional signal that is directly used in the HIDRA regression network. The modified HIDRA is denoted by

HIDRA
:::::::
HIDRAEOF in the following.

The HIDRA variants with ASE and with EOF are compared in Table 4. In normal conditions, the EOF-based version340

(HIDRAEOF) performs on par with HIDRA using the proposed ASE. The HIDRA
:::::::
HIDRAEOF RMSE is approximately 3%

larger than that of HIDRA
:::::::
HIDRA0:

. However, the difference increases on the less frequent conditions with high residuals (i.e.

surges) in which the EOF-based version results in a 5% RMSE increase compared to ASE-based version. This supports the

choice of using end-to-end learned feature encoder as opposed to a hand-crafted one.

4.1.5 Influence of Temporal Encoders345

Temporal encoder with temporal attention weights (Section 3.1.2) plays an important part in HIDRA. Two additional variants

are created to study alternative choices of feature encoding. The first HIDRA variant (HIDRATCN) uses temporal convolutional

networks (TCN) (Bai et al., 2018) for encoding the atmospheric and the sea level branch of the network. The atmospheric

branch applies three TCN blocks with 128 units, while the sea level branch applies three TCN blocks with 64 units. The second

HIDRA variant (HIDRALSTM) uses a popular long short-term memory (LSTM) (Hochreiter and Schmidhuber, 1997) networks350

for temporal encoding. Three LSTM layers are used in both the atmospheric and the sea level branch of the model. Each layer

contains 128 units in the atmospheric and 64 in the sea level branch.

Results are reported in Table 5 and Figure 7. Overall, HIDRA
::::::::
HIDRA0 performs on par with the more complex TCN-based

HIDRATCN (RMSE of HIDRATCN is 3% larger), while LSTM-based HIDRALSTM performs worse (RMSE is 14% larger
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Table 5. Performance of HIDRA model variants using different temporal encoders. HIDRA0:
model uses fixed temporal attention for the

atmospheric data. HIDRATCN uses TCNs and HIDRALSTM uses LSTMs to encode temporal features of atmospheric and sea level data.

Performance of the astronomic tide is provided for reference.

MAE
[cm]

RMSE
[cm]

Bias
[cm] Likelihood

Overall
HIDRA

::::::
HIDRA0:

4.9 6.4 -0.4 0.0470
HIDRA

::::::
HIDRATCN 4.9 6.6 -0.2 0.0431

HIDRA
::::::
HIDRALSTM 5.5 7.3 -0.8 0.0461

Reference (tide) 12.1 15.7 -2.4 -

Storm surge events
HIDRA

::::::
HIDRA0:

10.3 12.9 -9.3 0.0253
HIDRA

::::::
HIDRATCN 13.5 15.3 -13.2 0.0180

HIDRA
::::::
HIDRALSTM 13.6 16.2 -12.9 0.0188

Reference (tide) 49.6 50.4 -49.6 -

than HIDRA). HIDRA
::::::::
HIDRA0 :

).
::::::::
HIDRA0:

outperforms both TCN and LSTM-based versions by a solid margin on the storm355

surge events (31% and 32% RMSE increase, respectively). Furthermore, temporal weights of HIDRA
:::::::
HIDRA0 use very few

parameters compared with the other variants (see Table 6) – TCN and LSTM-based variations increase the total model size

(including other network layers) by 50% and 150% respectively.
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Figure 7. Comparison of different temporal encoder variants. HIDRA
:0:

is compared with more complex variants using different temporal

encoders: LSTMs (HIDRALSTM) and TCNs (HIDRATCN). The RMSE with respect to (a) prediction lead time and (b) residual values is

shown. The prediction errors using the astronomic tide are presented for reference.

4.1.6
::::::::
Influence

::
of

:::
the

:::::
Wind

::::::
Input

::::
Type

::::
and

:::::::::::::
Wind-Pressure

::::::::::::
Redundancy
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Table 6. Total number (in millions) of trainable parameters of HIDRA variants with different temporal encoders.

Method # of parameters

HIDRA
::::::
HIDRA0:

0.8 M
HIDRA

::::::
HIDRATCN 1.2 M

HIDRA
::::::
HIDRALSTM 2.1 M

Table 7.
:::::::::
Performance

::
of

::::::
HIDRA

::::::
variants

::::
with

::::::
different

::::
wind

::::
and

::::::
pressure

::::
input

:::::::::::
configurations.

:::::::
HIDRA0::::

uses
:::
the

::::
wind

:::::
stress,

:::::::::
HIDRAwnd

:::
uses

:::
the

:::
raw

::::
wind,

::::::::::::
HIDRAno_wnd :::

does
:::
not

:::
use

::::
wind

:::::
inputs

:::
and

::::::::::
HIDRAno_prs::::

uses
:::
the

::::
wind

:::::
stress,

::
but

:::
not

:::
the

::
air

:::::::
pressure.

::::::::::
Performance

::
of

::
the

:::::::::
astronomic

:::
tide

:
is
:::::::
provided

:::
for

:::::::
reference.

MAE
[cm]

RMSE
[cm]

Bias
[cm] ::::::::

Likelihood
:

Overall
:::::::
HIDRA0 ::

4.9
::
6.4

:::
-0.4

:::::
0.0470

:::::::::
HIDRAwnd ::

4.9
::
6.4

::
0.2

:::::
0.0465

:

:::::::::::
HIDRAno_wnd :::

5.3
:::
7.1

:::
-0.3

:::::
0.0434

:

::::::::::
HIDRAno_prs: :::

5.3
:::
7.0

:::
-0.1

:::::
0.0451

:

:::::::
Reference

:::::
(tide)

:::
12.1

:::
15.7

:::
-2.4

:
-
:

Storm surge events
:::::::
HIDRA0 :::

10.3
:::

12.9
:::
-9.3

:::::
0.0253

:

:::::::::
HIDRAwnd ::

9.3
:::
11.6

::
-7.8

:::::
0.0274

:::::::::::
HIDRAno_wnd :::

13.7
:::

16.5
::::
-12.9

:::::
0.0192

:

::::::::::
HIDRAno_prs: :::

11.6
:::

14.0
::::
-10.8

:::::
0.0225

:

:::::::
Reference

:::::
(tide)

:::
49.6

:::
50.4

::::
-49.6

:
-
:

::::
Bora

:::
and

::::::::
Scirocco

::::::::::::
characteristics

::
in

:::
the

:::::::
Adriatic

:::::
basin

:::
are

:::::
often

::::::::::
determined

:::::::
through

::
an

::::::::
interplay

::
of

::::::::::
geostrophic,

::::::::::
orographic360

:::
and

::::
other

:::::::::
influences

:::::::::::::::::::::::::::::::::::::::::
(Pasarić et al., 2007; Grisogono and Belušić, 2009)

:
.
::
At

:::::
other

:::::
times

::::::::
however,

:::::::::::::
non-geostrophic

::::::
effects

::::
may

:::
play

::
a
:::::
lesser

:::
role

::::
and

:::
the

::::
wind

::::
field

::
is

::::::
largely

:::::::::
determined

:::
by

:::
the

:::::::
pressure

::::
field.

:::
To

:::::::::
investigate

:::::::
potential

::::::::::
information

::::::::::
redundancy

:::::::
between

:::
the

::::
wind

::::
and

:::::::
pressure

::::::
inputs,

::::
two

:::::::
HIDRA

::::::
variants

:::::
were

:::::::
trained:

:::
one

::::::
which

:::
did

:::
not

:::
use

:::
the

:::::
wind

:::::
input

:::
and

:::::::
another

:::::
which

::::
used

:::
the

:::::
wind,

:::
but

:::
not

:::
the

::::::::
pressure.

::::::
Results

::
in
:::::
Table

::
7
:::::
show

:::
that

::::::::
removing

:::::
either

:::::
wind

::
or

:::
air

:::::::
pressure

:::::
input

::::
leads

::
to

:::
an

::::::::::::
approximately

:::
9%

:::::::
increase

::
of

:::::::
RMSE.

::::::
HIDRA

::::::
seems

::
to

::::::::::
compensate

:::
for

:::::::
potential

::::::::::
redundancy

::
in

:::
the

::::::
inputs

:::
and

:::::::::
capitalizes

:::
on365

::
the

::::
fact

:::
that

:::::
wind

::
in

:::
the

:::::
basin

::
is,

::
in

:::
the

:::
last

::::::::
instance,

:::
not

::::::
entirely

::::::::
pressure

::::::
driven.

::
In

:::
any

::::
case

:::::
using

::::
both

:::::
inputs

::
is
:::::::::
preferred.

:::
We

::::::
proceed

:::
to

::::::
inspect

:::
the

::::::
impact

::
of

:::::
Large

:::
and

:::::
Pond

:::::::::::::
parametrization

::::::::::::::::::::
(Large and Pond, 1981)

:::::
which

:::::
might

:::::::::::
oversimplify

:::
the

::::
wind

:::::
stress

::::::::::
dependence

:::
on

:::
the

:::::
wind.

:::
To

::::
this

:::
end

:::
we

::::::::
consider

:::::::
another

::::::
variant

::
of

::::::::
HIDRA,

:::::
which

:::::
uses

:::
raw

:::::
wind

::::::
instead

:::
of

::::
wind

::::::
stress.

::::::
Results

::
in

:::::
Table

::
7

:::::
show

::::
that,

::::::
overall,

:::
the

:::::::::::
performance

:::::::
between

:::
the

::::
two

:::::::::
wind-input

:::::::
variants

::
is

:::::::::::::::
indistinguishable.

::::::::
However,

::
on

:::::
storm

::::::
surges,

:::::
using

::::
raw

:::::
wind

:::::::
reduces

:::
the

:::::
RMSE

:::
by

::::::::::::
approximately

:
1
:
cm

::::
when

:::::::::
compared

::
to

:::
the

::::
setup

::::::
which

::::
uses370

::::
wind

::::::
stress.

:
It
:::::::

appears
::::
that

:::::::
HIDRA

::
is

:::::::
capable

::
of

:::::::::
extracting

:::
the

::::::::::
information

::::::::
important

:::
for

:::
sea

:::::
level

:::::::::
prediction

::::::
during

:::::
storm

:::::
surges

::::
also

::::::
directly

:::::
from

:::
the

:::
raw

:::::
wind.

:
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4.2 Comparisons between HIDRA and NEMO

In the usual
:::::::
regional ocean modeling setups, tides are mostly treated strictly separately from the residuals. But in HIDRA ,

the tide enters the prediction model , and
::::
often

:::::::::::
implemented

::
as

:::::
open

::::::::
boundary

:::::::::
conditions

:::
and

:::
are

::::::
treated

:::
as

::
an

:::::::
external

::::
part375

::
of

:::::::
model’s

:::
sea

::::
level

::::::::
response.

::
In

:::::::
HIDRA

:::
on

:::
the

::::
other

:::::
hand,

:::::
tides

::::
enter

:::
the

::::::
model

::
as

::::::::::
information

:::
that

::::
gets

::::::::::
inextricably

::::::
linked

:::
into

:::
its

::::::
residual

::
(
::
i.e.

:::::::
non-tidal

::::
part

::
of)

::::::::::
prediction: results of Section 4.1.3 show that it

::::::::
including

::::
tides

:
improves the prediction

of the residual
::::
itself. Thus in HIDRA, the quantity we refer to as the residual, is in fact composed of two

::::::::
entangled parts: the

atmospheric part of the residual and the error correction of the tidal model. Given a perfect tide model, the latter term would

have been zero, and HIDRA’s residual would have been solely due to the atmosphere – this is not the case.
::
We

:::::::::::
nevertheless

:::
use380

::
the

:::::
term

::::::
residual

::
to

::::::::::
differentiate

::
it
:::
not

::::
from

:::
the

::::
tide,

:::
but

:::::
rather

:::::
from

::::
total

:::
sea

::::
level.

:
For these reasons we cannot, as is otherwise

customary in sea level modeling, focus on the verification of the residual part of the
::::
total sea level signal. We thus compare

HIDRA and NEMO in this section
:
In

::::
this

::::::
section,

:::
we

::::
thus

::::::::
compare

:::
the

:::::::::::::
best-performing

::::::
variant

::
of

:::::::
HIDRA

:::::
from

:::
the

:::::::
ablation

::::
study

:::::::
(Section

::::::
4.1.6)

:::
and

::::::
NEMO

:
on the total sea levels, which,

:::
in

::::::
HIDRA

::::
and

::
in

:::::::
NEMO, contain both residuals and tides.

4.2.1 Overall Performance385

HIDRA and NEMO are compared on the 2019 tide-gauge sea level observations in Koper. While HIDRA enables prediction

starting at each time-step, NEMO does not, since it runs once per day. The models are thus compared only on the prediction

windows matching the NEMO runs. The analysis uses the ensemble mean of NEMO members with a 12 h bias correction, i.e.,

ybc12h(t) defined in (5). The corresponding ensemble mean HIDRA time series are denoted as yH(t) and the Koper tide gauge

time series are denoted by ykp(t).390

Results are reported in Table 8. Overall (top panel of Table 8), HIDRA outperforms NEMO, obtaining a lower MAE, RMSE

and bias. During storm surges (bottom panel of Table 8) HIDRA also outperforms NEMO, but exhibits a larger bias. The

results visualised with respect to the residual sea level bin in Figure 9 confirm this. To track the prediction error growth with

prediction horizon, we show RMSE with respect to the prediciton lead time in Figure 8. Both NEMO and HIDRA exhibit a

similar RMSE growth trend of approximately +4 cm per 72 h. But NEMO exhibits a higher mean error and a higher error395

variance. HIDRA outperforms NEMO over the entire range of prediction lead times with lower and less volatile errors.

To gain further insights, the NEMO, HIDRA and tide gauge 2019 time-series power spectra were analyzed by computing

spectral energy densities of the signals over the frequency domain (2h)−1− (96h)−1 (Figure 10). The power spectra were

computed as absolute values of one-dimensional Fast Fourier Transforms. The tide gauge power spectrum exhibits clear tidal

presence and also a clear peak at the fundamental Adriatic seiche period of 21.5 h. Some higher harmonics are also present in400

the tide gauge spectrum at shorter periods (below 8 h) which are present in NEMO but absent from HIDRA. They are, however,

less important as they contain at least an order of magnitude less energy than tides or the ground state seiche, which may be the

reason HIDRA learned to partially ignore it. Both NEMO and HIDRA contain adequate amount of energy at tidal periods. But

NEMO significantly underestimates the amount of energy contained in the frequency band around the fundamental Adriatic

seiche. HIDRA, on the other hand, contains an adequate, if slightly underestimated, amount of energy in the seiche frequency405
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Figure 8. Performance comparison of HIDRA and NEMO with respect to the prediction lead time. Error of the astronomic tide is presented

for reference as a grey dashed line.
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Figure 9. Comparison of HIDRA and NEMO over the sea level distribution. Bias (a) and RMSE (b) with respect to the residual value are

shown. Error of the astronomic tide is shown for reference.
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Table 8. Comparison of HIDRA and NEMO on the Koper 2019 test dataset. Overall performance is shown separately from performance

during storm surge events. Performance of the astronomic tide is provided for reference.

MAE
[cm]

RMSE
[cm]

Bias
[cm] Likelihood

Overall
HIDRA 8.4 10.9

::::
10.8 -0.8

:::
0.2 0.0324

:::::
0.0323

NEMO 9.5 12.7 -3.0 0.0337
Reference (tide) 16.0 21.0 -4.7 -

Storm surge events
HIDRA 15.2

::::
15.6 19.5

::::
20.2 -12.5

::::
-13.5

:
0.0190

:::::
0.0180

NEMO 17.1 22.4 -9.7 0.0202
Reference (tide) 54.9 56.7 -54.9 -

band. This seems to be a solid argument to claim that the network has learned to mimic the fundamental basin resonant
:::::
seiche

behaviour. However, adequate HIDRA energy content in the (21.5h)−1 frequency band does not in itself mean that Adriatic

seiches are excited at appropriate times during storm surge events. To test whether this is indeed the case, inspection of specific

storm surge cases is required.
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Figure 10. Power spectrum of NEMO ybc12h(t) ensemble forecast mean time-series (blue line), HIDRA ensemble forecast mean time-series

yH(t) (orange line) and tide gauge observations time-series ykp(t) (black line) for year 2019. Turquoise symbols denote spectral peaks due

to respective tidal constituent. E0 denotes the spectral peak due to fundamental Adriatic seiche with a period of 21.5 h, also marked with the

vertical turquoise dotted line.
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4.2.2 Specific Storm Surge Events410

We now proceed to investigate the total sea level time-series predicted by NEMO and HIDRA during specific storm surges

by analyzing the total sea level ensemble envelopes from a 12-hour bias corrected NEMO ybc12h(t) and HIDRA yH(t). In

addition, continuous wavelet transforms (CWT, see e.g. Mallat (2009)) over time windows containing the specific storm surges

are computed. This allows comparison of the excitation level of specific harmonic contributions to the total sea level during

each particular storm surge event. The analysis is focused on the semi-diurnal tidal signal (with periods around 12 h) and on415

the fundamental seiche period (with a period of 21.5 h). A Morlet wavelet was used for the CWT convolution computation.

We first discuss the historic storm surge flooding event from mid-November 2019. Atmospheric conditions during November

2019 were not remarkable in themselves. Mean sea level pressures were moving between 990-1000 mbar, while Scirocco

speeds in Northern Adriatic were measured to be around 10 ms−1. However, an unfortunate coinciding of a general low

pressure, high neap tide and seiche-inducing high-frequency forcing due to a local pressure low caused one of the worst420

Northern Adriatic floods in history (Cavaleri et al., 2020). These multifaceted circumstances made forecasting of these floods,

using a lower resolution forcing such as ECMWF ensemble, challenging (Cavaleri et al., 2020). This problem is at least partly

reflected in the November 2019 forecasts, presented in Figure 11.

Panel A in Figure 11 depicts NEMO ybc12h(t) mean time-series, together with the ymin
bc12h(t)−ymax

bc12h(t) ensemble envelope,

while panel B depicts HIDRA predictions. Both NEMO and HIDRA mean time-series seem to underestimate the storm surge425

peak values. Both ensembles, however, exhibit high forecast spread, with maximums often adequately representing the ob-

served peaks. The first peak on 12th November 2019 is missed by HIDRA, but the subsequent dynamics is better represented

in HIDRA than in NEMO. In particular, HIDRA does not exhibit a substantial false positive on 15th November and also over-

shoots less during the surge of 17th November 2019. Judging from CWT signals of mean ensembles from both HIDRA and

NEMO (in panels D and E), HIDRA missing the first peak can be at least partly attributed to underestimation of semi-diurnal430

tidal signal in the HIDRA forecast. Semi-diurnal tides are better represented in NEMO (panel D) while resonant
:::::::
similarly

:::::::::
represented

::
in
:::::

both
::::::
models

:::
and

:::::
both

:::::::::::
underestimate

::::
the

:::::
signal

::
in

::::
this

:::::
band.

:::
On

:::
the

::::
other

:::::
hand

:::
the

:
seiche signal seems better

represented in HIDRA (panel E) during the storm surge. Note that HIDRA excites the seiche immediately after the sea level

peak on 12th November. NEMO, of course, cannot do this since the seiche period is 21.5 h. Panel D of Figure 11 show that,

like NEMO, HIDRA resolves well the low frequency tidal variability between spring and neap tides.435

We now move to an event from late January and early February 2015, which turned out to be quite problematic for NEMO

to forecast, while HIDRA behaved much better. During this period, Adriatic was impacted by several days of low pressures

(990-1000 mbar) and moderate Scirocco (with speeds 8-12 ms−1). These conditions led to a series of moderate storm surges

in the Northern Adriatic, as shown in Figure 12.

NEMO ensemble, depicted in Panel A of Figure 12, performs particularly poorly during this time window. While it did440

predict the first surge on 30th January, the following peaks were underestimated and the crest-to-trough sea level range of

NEMO is overall unsatisfactory throughout the time-window. Since the tidal part of the NEMO signal is appropriate (Figure

12, Panel D), the reason for poor forecast seems to lie in insufficient excitation of the fundamental basin seiche, which is
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Figure 11. Comparison between NEMO (with a 12-hour bias correction) and HIDRA ensembles during a historic surge of November 2019.

Panels A and B depict NEMO and HIDRA ensemble predictions for Koper sea level, together with Koper tide gauge time series. Mean values

and minimum-maximum ensemble spans are depicted, as defined in Section 3.3. Panel C depits a CWT of yH(t) HIDRA mean timeseries.

Panels D and E depict a CWTs of Koper tide gauge, HIDRA and NEMO time-series at semi-diurnal (12 h) and E0 (21.5 h) wavelet width

respectively. Flooding threshold in the historic coastal town of Piran (Slovenia) is marked by a dashed red line in the top two panels.

23



200

250

300

S
S
H

[m
]

A: NEMO ensemble vs Koper tide gauge

Flood threshold ykp [ymin
bc12h, y

max
bc12h]

200

250

300

S
S
H

[m
]

B: HIDRA ensemble vs Koper tide gauge

Flood threshold ykp [ymin
H , ymax

H ]

12

24

36

48

C
W

T
W

id
t
h

[h
]

C: CWT of mean HIDRA time-series

−0.3

0.0

0.3

C
W

T
[m

]
a
t

1
2

h
w

id
t
h

D: CWT of NEMO, HIDRA and KP at 12 h wavelet width

CWT(ykp) CWT(yH ) CWT(ybc12h)

29.
Jan 2015

30.
Jan 2015

31. 01. 02.
Feb 2015

03.

−0.3

0.0

0.3

C
W

T
[m

]
a
t

2
1
.5

h
w

id
t
h

E: CWT of NEMO, HIDRA and KP at 21.5 h wavelet width

CWT(ykp) CWT(yH ) CWT(ybc12h)

Figure 12. Comparison between NEMO (with a 12-hour bias correction) and HIDRA ensembles during surge of January and February 2015.

Panels A and B depict NEMO and HIDRA ensemble predictions for Koper sea level, together with Koper tide gauge time series. Mean values

and minimum-maximum ensemble spans are depicted, as defined in Section 3.3. Panel C depits a CWT of yH(t) HIDRA mean timeseries.

Panels D and E depict a CWTs of Koper tide gauge, HIDRA and NEMO time-series at semi-diurnal (12 h) and E0 (21.5 h) wavelet width

respectively. Flooding
:::::
Severe

:::::::
flooding threshold in the historic coastal town of Piran (Slovenia) is marked by a dashed red line in the top two

panels. 24



drastically underestimated in
:::
our

:::::
setup

::
of

:
NEMO (Figure 12, Panel E). HIDRA yields a more accurate overall forecast in

this case (Figure 12, panel B), and does not underestimate the seiche signal at the (21.5 h)−1 frequency as much as NEMO.445

Semi-diurnal tidal signal is reasonably well represented in both models (panel D of Figure 12). These performances of NEMO

and HIDRA are consistent with the power spectrum in Figure 10.

5 Conclusions

In this study, we presented HIDRA, a novel deep learning network for sea level modeling in complex environments like the

Adriatic. We describe key HIDRA architecture blocks and discuss several aspects of how
:::
both

:
HIDRA architecture and its450

input impact
:::::::
influence its performance. HIDRA outperforms the current operational NEMO setup , running daily at Slovenian

Environment Agency (ARSO), and is therefore an appropriate candidate for
::::::::
Slovenian

:::::::::::
Environment Agency’s operational

pipeline. Furthermore, preliminary tests (not reported in this study) indicate that HIDRA also generalizes well to other geo-

graphical locations.

Last but not least, numerical cost of both setups is vastly different. NEMO ensemble runs require dedicated HPC facilities,455

while the HIDRA ensemble forecast can be executed on a personal computer (even without a dedicated GPU) . Furthermore,

HIDRA exhibits
::
and

:::::::
exhibits

:::
an extremely low energy footprint. A single HIDRA run for our requirements takes less than half

a CPU second per ensemble member, while a full basin NEMO ensemble requires tens of CPU hours per ensemble member –

a speedup in order of 0.5× 106 times.

We believe the presented results are a promising first step. In our future work we plan to focus on improving the performance460

of both HIDRA and NEMO in the tails of the sea level distributions as well as explore other environmental inputs
::::
input

:::::::
streams

and architectural designs to further reduce the prediction errors with increasing forecast horizon. We hope this study builds

a strong case in favor of machine learning capabilities with carefully designed architectures to discern sea level dynamics in

regional basins and will inspire other groups to consider similar solutions.

Code and data availability. HIDRA code and data samples are available in the Git repository: https://github.com/lojzezust/HIDRA (last465

access: 20 October 2020).
:
5
:::::::

January
:::::
2021).

::::::::
Persistent

::::::
version

::
of
:::

the
:::::::

HIDRA
:::
1.0

:::::
source

::::
code

::
is
::::::::

available
::::::
through

:
https://doi.org/10.

5281/zenodo.4274708
::::::::::::::
(Žust et al., 2020a)

:
. ECMWF ensemble data are available through the Meteorological Archive and Retrieval Sys-

tem (MARS), but access is limited to member countries. Sea level datasets employed in this paper are available at https://doi.org/10.5281/

zenodo.4106440(last access: 19 October 2020)
:::::::::::::::
(Žust et al., 2020b)

::
and

::::::
NEMO

::::::::::
configuration

:::::::
namelist

::::
used

::
in

::
the

::::::::::
experiments

:
is
::::::::
published

:
at
:
https://doi.org/10.5281/zenodo.4419333

:::::::::::::
(Žust et al., 2021).470
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Pasarić, Z., Belušić, D., and Klaić, Z. B.: Orographic influences on the Adriatic sirocco wind, Annales Geophysicae, 25, 1263–1267,

https://doi.org/10.5194/angeo-25-1263-2007, https://angeo.copernicus.org/articles/25/1263/2007/, 2007.

28

https://doi.org/https://doi.org/10.1111/j.1600-0870.2008.00369.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1600-0870.2008.00369.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1600-0870.2008.00369.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1600-0870.2008.00369.x
https://doi.org/10.1175/JTECH-D-19-0033.1
https://doi.org/10.1175/JTECH-D-19-0033.1
https://doi.org/10.1175/JTECH-D-19-0033.1
https://doi.org/10.1175/JTECH-D-19-0033.1
https://doi.org/https://doi.org/10.1016/j.gloplacha.2017.12.018
http://www.sciencedirect.com/science/article/pii/S0921818117303715
https://doi.org/https://doi.org/10.1016/j.scitotenv.2020.137613
http://www.sciencedirect.com/science/article/pii/S0048969720311244
https://doi.org/https://doi.org/10.1016/j.cageo.2012.09.015
http://www.sciencedirect.com/science/article/pii/S009830041200324X
http://www.sciencedirect.com/science/article/pii/S009830041200324X
http://www.sciencedirect.com/science/article/pii/S009830041200324X
https://doi.org/10.1175/1520-0485(1981)011%3C0324:OOMFMI%3E2.0.CO;2
https://nomads.gfdl.noaa.gov/nomads/forms/mom4/CORE.html
https://doi.org/10.21957/c0hq4yg78
https://www.ecmwf.int/node/10729
https://doi.org/10.5194/os-12-71-2016
https://www.ocean-sci.net/12/71/2016/
https://www.ocean-sci.net/12/71/2016/
https://www.ocean-sci.net/12/71/2016/
https://www.nemo-ocean.eu/wp\protect \discretionary {\char \hyphenchar \font }{}{}content/uploads/NEMO_book.pdf
https://www.nemo-ocean.eu/wp\protect \discretionary {\char \hyphenchar \font }{}{}content/uploads/NEMO_book.pdf
https://www.nemo-ocean.eu/wp\protect \discretionary {\char \hyphenchar \font }{}{}content/uploads/NEMO_book.pdf
https://doi.org/10.1029/2020JC016168
https://doi.org/10.1175/WAF-D-13-00117.1
https://doi.org/10.1175/WAF-D-13-00117.1
https://doi.org/10.5194/angeo-25-1263-2007
https://angeo.copernicus.org/articles/25/1263/2007/


Pashova, L. and Popova, S.: Daily sea level forecast at tide gauge Burgas, Bulgaria using artificial neural networks, Journal of Sea

Research, 66, 154 – 161, https://doi.org/https://doi.org/10.1016/j.seares.2011.05.012, http://www.sciencedirect.com/science/article/pii/

S1385110111000918, 2011.555
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