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Abstract.

Estimating parameters of chaotic geophysical models is challenging due to these models’ inherent un-

predictability. With temporally sparse long-range observations, these models cannot be calibrated using

standard least squares or filtering methods. Obvious remedies, such as averaging over temporal and spa-

tial data to characterize the mean behavior, do not capture the subtleties of the underlying dynamics. We5

perform Bayesian inference of parameters in high-dimensional and computationally demanding chaotic dy-

namical systems by combining two approaches: (i) measuring model-data mismatch by comparing chaotic

attractors, and (ii) mitigating the computational cost of inference by using surrogate models. Specifically,

we construct a likelihood function suited to chaotic models by evaluating a distribution over distances be-

tween points in the phase space; this distribution defines a summary statistic that depends on the attractor’s10

geometry, rather than on pointwise matching of trajectories. This statistic is computationally expensive to

simulate, compounding the usual challenges of Bayesian computation with physical models. Thus we de-

velop an inexpensive surrogate for the log-likelihood via local approximation Markov chain Monte Carlo,

which in our simulations reduces the time required for accurate inference by orders of magnitude. We
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investigate the behavior of the resulting algorithm on model problems, and then use a quasi-geostrophic15

model to demonstrate its large-scale application.
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1 Introduction

Parameter estimation in chaotic models is an important problem for a range of geophysical applications,

with weather prediction and climate modelling the most typical examples. This paper focuses on Bayesian20

approaches to parameter inference in these settings. Given observational data, the parameters of a dynami-

cal system model are typically inferred by minimizing a cost function that captures model-observation mis-

match. In the Bayesian setting, a statistical characterization of this mismatch yields a likelihood function,

which enables maximum likelihood estimation or fully Bayesian inference. The latter is typically realized

via Markov chain Monte Carlo (MCMC) methods (Robert and Casella, 2004). Yet common mismatch25

functions (for instance, the squared Euclidean distance between model outputs and data) are inadequate for

chaotic models where small changes in parameters, or even in the tolerances used for numerical solvers,

can lead to arbitrarily large differences in model outputs at a given time (Rougier, 2013). We therefore

adapt the mismatch function proposed in Haario et al. (2015) to define a likelihood that can be used in

point estimation or Bayesian inference. Our focus here is on the Bayesian approach, which offers a natural30

means of uncertainty quantification in the parameters. Characterizing the posterior distribution associated

with the proposed Bayesian formulation, however, can be computationally prohibitive. Thus we combine

our new likelihood with the local approximation MCMC methodology introduced in Conrad et al. (2016,

2018); Davis (2018); Davis et al. (2020), which constructs and iteratively refines a surrogate model for the

posterior density during MCMC sampling.35

Now we provide some background relevant to our proposed approach. Traditional methods for estimat-

ing parameters in chaotic models constrain the problem to shorter time intervals, avoiding the eventual

divergence of nearby orbits due to the intrinsic dynamics of the system. A classical example is variational
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data assimilation for weather prediction, where the initial states of the model are estimated using observa-

tional data and algorithms such as 4DVar, after which a short-time forecast can be simulated (Asch et al.,40

2016).

Sequential data assimilation methods, such as the Kalman filter (Law et al., 2015), allow us to recursively

update both the model state and the model parameters by conditioning them on observational data obtained

over sufficiently short time scales. Here, ensemble filtering methods provide a useful alternative to the

extended Kalman filter or variational methods; see Houtekamer and Zhang (2016) for a recent review of45

various ensemble variants. With methods such as state augmentation, model parameters can be updated

as part of the filtering problem (Liu and West, 2001). Alternatively, the state values can be “integrated

out” to obtain the marginal likelihood over the model parameters; see Durbin and Koopman (2012). In

Hakkarainen et al. (2012), this so-called filter likelihood approach was used to estimate parameters of

chaotic systems. Yet essentially all filtering-based approaches introduce additional tuning parameters, such50

as the length of the assimilation time window, the model error covariance matrix, and covariance inflation

parameters. These choices have an impact on model parameter estimation and may introduce bias. Indeed,

as discussed in Hakkarainen et al. (2013), changing the filtering method requires updating the parameters

of the dynamical model. Operational ensemble prediction systems (EPS) can be used even in the absence of

ensemble filtering. Parameter calibration methods such as those in Jarvinen et al. (2011); Laine et al. (2011)55

have been applied to the Integrated Forecast System (IFS) weather models (Ollinaho et al., 2012, 2013,

2014) at European Centre for Medium-Range Weather Forecasts (ECMWF). However, these approaches

are heuristic and again limited to relatively short predictive windows.

Previous work (for example, Roeckner et al. (2003); ECMWF (2013); Stevens et al. (2013)) calibrates

parameters of climate models by matching summary statistics of quantities of interest, such as top-of-60

atmosphere radiation, with the corresponding summary statistics from re-analysis data or output from

competing models. 8

The vast majority of these approaches produce only point estimates. Järvinen et al. (2010) infers the

closure parameters of a large-scale computationally intensive climate model, ECHAM5, using a Bayesian

approach based on several summary statistics and realized via MCMC. 865
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However, computational limitations make applying algorithms such as MCMC challenging. Even short

MCMC chains of roughly 2000 iterations require methods such as parallel sampling and early rejection

for tractability (Solonen et al., 2012). Moreover, even if these computational challenges can be overcome,

finding statistics that actually constrain the parameters is difficult, and inference results can be thus be

inconclusive. The failure of the summary statistic approach in Järvinen et al. (2010) can be explained70

intuitively: the chosen statistics average out too much information, and therefore fail to characterize the

geometry of the underlying chaotic attractor in a meaningful way.

The present works develops two recent methods to tackle such problems. The correlation integral like-

lihood (CIL) (Haario et al., 2015) is able to constrain the parameters of chaotic dynamical systems, and

the local approximation MCMC (LA-MCMC) method for posterior sampling (Conrad et al., 2016) makes75

asymptotically exact posterior characterization feasible for computationally expensive models. We show

how a combination of these methods enable a Bayesian approach to inference and uncertainty quantifica-

tion for the parameters of chaotic high-dimensional models, in situations previously discussed as intractable

(Rougier, 2013). Moreover, several computational improvements are introduced to further enhance the ap-

plicability of the approach.80

The CIL method is based on the concept of fractal dimension from mathematical physics, which, broadly

speaking, characterizes the space-filling properties of the trajectory of a dynamical system. Earlier work

(e.g., Cencini et al. (2010)) describes a number of different approaches for estimating the fractal dimension.

Our previous work extends this concept: instead of computing the fractal dimension of a single trajectory,

a similar computation measures the distance between different model trajectories (Haario et al., 2015). The85

modification provides a normally distributed summary statistic of the data, which is sensitive to changes

in the underlying attractor from which the data was sampled. Statistics that better describe the attractor

yield likelihood functions that can better constrain the model parameters and, therefore, more meaningful

parameter posterior distributions.

A related approach, discussed in the context of intractable likelihoods, is Bayesian inference using syn-90

thetic likelihoods, proposed as an alternative to approximate Bayesian computation (ABC); see Wood

(2010) and Price et al. (2018). The method we present here uses a different summary statistic. Moreover,

the synthetic likelihood approach involves re-creating the likelihood for every new model parameter value,
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which would require excessive CPU times in our setting. Recent work by Morzfeld et al. (2018) describes

another feature-vector approach for data assimilation. For more details and comparisons among these ap-95

proaches, see the discussion below in Section 2.1.

The LA-MCMC method (Conrad et al., 2016, 2018) approximates the computationally expensive log-

likelihood function using local polynomial regression. In this method, the MCMC sampler directly uses

the approximation of the log-likelihood to construct proposals and evaluate the Metropolis acceptance

probability. Infrequently but regularly adding “full” likelihood evaluations to the point set used to con-100

struct the local polynomial regression continually improves the approximation, however. Expensive full

likelihood evaluations are thus used only to construct the approximation or “surrogate” model. Conrad

et al. (2016) show that, given an appropriate mechanism for triggering likelihood evaluations, the resulting

Markov chain converges to the true posterior distribution while reducing the number of expensive likeli-

hood evaluations (and hence forward model simulations) by orders of magnitude. Davis et al. (2020) show105

that LA-MCMC converges with approximately the expected 1/
√
T error decay rate after a finite number

of steps T , and Davis (2018) introduces a numerical parameter that ensures convergence even if only noisy

estimates of the target density are available. This modification is useful for the chaotic systems studied

here.

The rest of this paper is organized as follows. Section 2 describes the methodologies used in this work,110

including the CIL, the stochastic LA-MCMC algorithm, and the merging of these two approaches. Section 3

is dedicated to numerical experiments. The approach is first verified by comparing results in cases where the

parameter posteriors can also be obtained with standard sampling methods. Further modifications to reduce

computational demand of evalutating the CIL are presented. A fine-grid version of the quasi-geostrophic

(QG) model is then used to demonstrate that model identification is possible in long-range simulations,115

beyond reach of standard methods. These examples are followed by a concluding discussion in Section 4.
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2 Methods

2.1 Correlation Integral Likelihood

We first construct a likelihood function that models the observations by comparing certain summary statis-

tics of the observations to the corresponding statistics of a trajectory simulated from the chaotic model. As120

a source of statistics, we will choose the correlation integral, which depends on the fractal dimension of

the chaotic attractor. Unlike other statistics—such as the ergodic averages of a trajectory —the correlation

integral is able to constrain the parameters of a chaotic model (Haario et al., 2015).

Let us denote by

du

dt
= f(u,θ), u(t= 0) = u0, (1)125

a dynamical system with state u(t) ∈ Rn, initial state u0 ∈ Rn, and parameters θ ∈ Rq . The time-discretized

system, with time steps ti ∈ {t1, . . . , tτ} denoting selected observation points, can be written as

ui ≡ u(ti) = F (ti;u0,θ). (2)

Either the full state ui ∈ Rn or a subset si ∈ Rd≤n of the state components are observed. We will use

S = {s1, . . . ,sτ} to denote a collection of these observables at successive times.130

Using the model–observation mismatch at a collection of times ti to constrain the value of the parameters

θ is not suitable when the system (1) has chaotic dynamics, since the state vector values si are unpredictable

after a finite time interval. Though long-time trajectories s(t) of chaotic systems are not predictable in the

time domain, they do, however, represent samples from an underlying attractor in the phase space. The

states are generated deterministically, but the model’s chaotic nature allows us to interpret the states as135

samples from a particular θ-dependent distribution. Yet obvious choices for summary statistics T that

depend on the observed states S, such as ergodic averages, ignore important aspects of the dynamics and

are thus unable to constrain the model parameters. For example, the statistic T (S) = 1
τ

∑τ
i=1 si is easy to

compute and is normally distributed in the limit τ →∞ (under appropriate conditions), but this ergodic

mean says very little about the shape of the chaotic attractor.140

Instead, we need a summary statistic that retains information relevant for parameter estimation, but still

defines a computationally tractable likelihood. To this end, Haario et al. (2015) devised the correlation
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integral likelihood (CIL), which retains enough information about the attractor to constrain the model

parameters. We first review the CIL and then discuss how to make evaluation of the likelihood tractable.

We will use the CIL to evaluate the “difference” between two chaotic attractors. For this purpose, we will145

first describe how to statistically characterize the geometry of a given attractor, given suitable observations

S. In particular, constructing the CIL likelihood will require three steps: (i) computing distances between

observables sampled from a given attractor; (ii) evaluating the empirical cumulative distribution function

(ECDF) of these distances and deriving certain summary statistics T from the ECDF; and (iii) estimating

the mean and covariance of T by repeating steps (i) and (ii). Intuitively, the CIL thus interprets observations150

of a chaotic trajectory as samples from a fixed distribution over phase space. It allows the time between

observations to be arbitrarily large—importantly, much longer than the system’s non-chaotic prediction

window.

Now we describe the CIL construction in detail. Suppose that we have collected a data set S comprising

observations of the dynamical system of interest. Let S be split into nepo different subsets called epochs.155

The epochs can, in principle, be any subsets of length N from the reference data set S. In this paper,

however, we restrict the epochs to be time-consecutive intervals of N evenly spaced observations. Let

sk = {ski }Ni=1 and sl = {slj}Nj=1, with 1≤ k, l ≤ nepo and k 6= l, be two such disjoint epochs. The individual

observable vectors ski ∈ Rd and slj ∈ Rd comprising each epoch come from time intervals [tkN+1, t(k+1)N ]

and [tlN+1, t(l+1)N ], respectively. In other words, superscripts refer to different epochs and subscripts refer160

to the time points within those epochs. Haario et al. (2015) then define the modified correlation integral

sum C(R,N,sk,sl) by counting all pairs of observations that are less than a distance R> 0 from each

other:

C(R,N,sk,sl) =
1

N2

∑
i,j≤N

1[0,R]

(∥∥ski − slj
∥∥) , (3)

where 1 denotes the indicator function and ‖ · ‖ is the Euclidean norm on Rd. In the physics literature,165

evaluating Eq. (3) in the limitR→ 0, with k = l and i 6= j, numerically approximates the fractal dimension

of the attractor that produced sk = sl (Grassberger and Procaccia, 1983a, b). Here, we instead use Eq. (3)

to characterize the distribution of distances between sk and sl at all relevant scales. We assume that the

state space is bounded; therefore, an R0 covering all pairwise distances in Eq. (3) exists. For a prescribed
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set of radii Rm =R0b
−m, with b > 1 and m= 0, . . . ,M , Eq. (3) defines a discretization of the empirical170

CDF of the distances ‖ski − slj‖, with discretization boundaries given by the numbers Rm.

Now we define yk,lm = C(Rm,N,s
k,sl) as components of a statistic T (sk,sl) = yk,l := (yk,l0 , . . . ,yk,lM ).

This statistic is also called the feature vector. According to Borovkova et al. (2001); Neumeyer (2004), the

vectors yk,l are normally distributed, A9 and the estimates of the mean and covariance converge at the

rate √nepo to their limit points. This is a generalization of the classical result of Donsker (1951), which175

applies to i.i.d. samples from a scalar-valued distribution. We characterize this normal distribution by sub-

sampling the full data set S. Specifically, we approximate the mean µ and covariance Σ of T by the sample

mean and sample covariance of the set {yk,l : 1≤ k, l ≤ nepo,k 6= l}, evaluated for all 1
2nepo(nepo− 1)

pairs of epochs (sk,sl) using fixed values of R0, b, M , and N .

The Gaussian distribution of T effectively characterizes the geometry of the attractor represented in the180

data set S. Now we wish to use this distribution to infer the parameters θ. Given a candidate parameter

value θ̃, we use the model to generate states s∗(θ̃) = {s∗i(θ̃)}Ni=1 for the length of a single epoch. We

then evaluate the statistics yk,∗m = C(Rm,N,s
k,s∗(θ̃)) as in Eq. (3), by computing the distances between

elements of s∗(θ̃) and the states of an epoch sk selected from the data S. Combining these statistics into a

feature vector yk,∗(θ̃) = (yk,∗m )Mm=0, we can write a noisy estimate of the log-likelihood function:185

logp(θ̃|sk) =−1

2

(
yk,∗(θ̃)−µ

)>
Σ−1

(
yk,∗(θ̃)−µ

)
+ constant (4)

Comparing s∗(θ̃) with other epochs drawn from the data set S, however, will produce different realizations

of the feature vector. We thus average the resulting log-likelihoods over all epochs,

logp(θ̃|S) =
1

nepo

nepo∑
k=1

logp(θ̃|sk). (5)

This averaging, which involves evaluating Eq. (4) nepo times, involves only new distance computations and190

is thus relatively cheap relative to time integration of the dynamical model.

Because the feature vectors yk,∗ are random for any finite N , and because the number of epochs nepo is

also finite, the log-likelihood in Eq. (5) is necessarily random. It is then useful to view Eq. (5) as estimate

of an underlying true log-likelihood. We are therefore in a setting where cannot evaluate the unnormalized

posterior density exactly; we only have access to a noisy approximation of it. Previous work (Springer et al.,195
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2019) has demonstrated that derivative-free optimizers such as the differential evolution (DE) algorithm can

successfully identify the posterior mode in this setting, yielding a point estimate of θ. In the fully Bayesian

setting, one could characterize the posterior p(θ|S) using pseudo-marginal MCMC methods (Andrieu and

Roberts, 2009), but at significant computational expense. Below, we will use a surrogate model constructed

adaptively during MCMC sampling to reduce this computational burden.200

Note that the CIL approach described above already reduces the computational cost of inference by

only requiring simulation of the (potentially expensive) chaotic model for a single epoch. We compare

each epoch of the data to the same single-epoch model output. Each of these comparisons results in an

estimate of the log-likelihood, which we then average over data epochs. A larger data set S can reduce

the variance of this average, but does not require additional simulations of the dynamical model. Also, we205

do not require any knowledge about the initial conditions of the model; we omit an initial time interval

before extracting s∗(θ̃), to ensure that the observed trajectory is on the chaotic attractor. Moreover, the

initial values are randomized for all simulations and sampling is started only after the model has integrated

beyond the initial, predictable, time window. The independence of the sampled parameter posteriors from

the initial values was verified both here and in earlier works by repeated experiments.210

Our approach is broadly similar to the synthetic likelihood method (e.g., Wood (2010); Price et al.

(2018)), but differs in two key respects: (i) we use a novel summary statistic that is able to characterize

chaotic attractors, and (ii) we only need to evaluate the forward model for a single epoch. Comparatively,

synthetic likelihoods typically use summary statistics such as auto-covariances at a given lag or regression

coefficients. These methods also require long-time integration of the forward model for each candidate215

parameter value θ, rather than integration for only one epoch. Morzfeld et al. (2018) also discuss several

ways of using feature vectors for inference in geophysics. A distinction of the present work is that we use

an ECDF-based summary statistic that is provably Gaussian, and we perform extensive Bayesian analysis

of the parameter posteriors via novel MCMC methods. These methods are described next.

2.2 Local Approximation MCMC220

Even with the developments described above, estimating the correlation integral likelihood (CIL) at each

candidate parameter value θ̃ is computationally intensive. We thus use local approximation MCMC (LA-
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MCMC) (Conrad et al., 2016, 2018; Davis et al., 2020)—a surrogate modeling method that replaces many

of these CIL evaluations with an inexpensive approximation. Replacing expensive density evaluations with

a surrogate was first intoruduced by Sacks, Kennedy, and O’Hagan. LA-MCMC extends these ideas by225

continually refining the surrogate during sampling, which guarantees convergence.

First introduced in Conrad et al. (2016), LA-MCMC builds local surrogate models for the log-likelihood

while simultaneously sampling the posterior. The surrogate is incrementally and infinitely refined during

sampling and thus tailored to the problem—i.e., made more accurate in regions of high posterior probabil-

ity. Specifically, the surrogate model is a local polynomial computed by fitting nearby evaluations of the230

“true” log-likelihood. We emphasize that the approximation itself is not locally supported. At each point θ̃,

we locally construct a polynomial approximation, which globally defines a piecewise polynomial surrogate

model. This is an important distinction because the piecewise polynomial approximation is not necessar-

ily a probability density function. In fact, the surrogate function may not even be integrable. Despite this

challenge, Davis et al. (2020) devise a refinement strategy that ensures convergence and bounds the error235

after a finite number of samples. In particular, Davis et al. (2020) shows that the error in the approximate

Markov chain computed with the local surrogate model decays at approximately the expected 1/
√
T rate,

where T is the number of MCMC steps. Davis (2018) demonstrated that noisy estimates of the likelihood

are sufficient to construct the surrogate model and still retain asymptotic convergence. Empirical studies

(Conrad et al., 2016, 2018; Davis et al., 2020) on problems of moderate parameter dimension showed that240

the number of expensive likelihood evaluations per MCMC step can be reduced by orders of magnitude,

with no discernable loss of accuracy in posterior expectations.

Here we briefly summarize one step of the LA-MCMC construction, and refer to Davis et al. (2020) for

details. Each LA-MCMC step consists of four stages: (i) possibly refine the local polynomial approximation

of the log-likelihood, (ii) propose a new candidate MCMC state, (iii) compute the acceptance probability,245

and (iv) accept or reject the proposed state. The major distinction between this algorithm and standard

Metropolis-Hastings MCMC is that the acceptance probability in stage (iii) is computed only using the

approximation or surrogate model of the log-likelihood, at both the current and proposed states. This intro-

duces an error, relative to computation of the acceptance probability with exact likelihood evaluations, but

stage (i) of the algorithm is designed to control and incrementally reduce this error at the appropriate rate.250
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“Refinement” in stage (i) consists of adding a computationally intensive log-likelihood evaluation at

some parameter value θi, denoted by L(θi), to the evaluated set {(θi,L(θi))}Ki=1. These K pairs are used

to construct the local approximation via a kernel-weighted local polynomial regression (Kohler, 2002). The

values {θi}Ki=1 are called “support points” in this paper. Details on the regression formulation are in Davis

et al. (2020); Conrad et al. (2016). As the support points cover the regions of high posterior probability255

more densely, the accuracy of the local polynomial surrogate will increase. This error is well understood

(Kohler, 2002; Conn et al., 2009) and, crucially, takes advantage of smoothness in the underlying true

log-likelihood function. This smoothness ultimately allows the cardinality of the evaluated set to be much

smaller than the number of MCMC steps.

Intuitively, if the surrogate converges to the true log-likelihood, then the samples generated with LA-260

MCMC will (asymptotically) be drawn from the true posterior distribution. After any finite number of

steps, however, the surrogate error introduces a bias into the sampling algorithm. The refinement strategy

must therefore ensure that this bias is not the dominant source of error. At the same time, refinements

must occur infrequently, to ensure that LA-MCMC is computationally cheaper than using the true log-

likelihood. Davis et al. (2020) analyzes the trade-off between surrogate-induced bias and MCMC variance265

and proposes a rate-optimal refinement strategy. We use essentially the same algorithm here, but add an

isotropic `2 penalty on the polynomial coefficients of the kernel-weighted local regression problem solved

to evaluate the surrogate at any parameter value θ; in other words, we perform local ridge regression rather

than ordinary least squares, which improves performance with noisy likelihoods.

Our examples use an adaptive proposal density Haario et al. (2006). This choice deviates slightly from270

the theory in Davis et al. (2020), which assumes a constant-in-time proposal density. However, this does

not necessarily imply that adaptive or gradient-based methods will not converge. In particular, Conrad

et al. (2016) show asymptotic convergence using an adaptive proposal density and Conrad et al. (2018)

strengthen this result by showing that the Metropolis adjusted Langevin algorithm, which is a gradient

based MCMC method, is asymptotically exact when using a continually refined local polynomial approx-275

imation. These results require some additional assumptions about the target density’s tail behavior and

the stronger rate optimal result from Davis et al. (2020) has not been shown for such algorithms. How-
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ever, in practice we see that adaptive methods still work well in our applications. Exploring the theoretical

implications of this is interesting and merits further discussion but is beyond the scope of this paper.

The default settings the parameters of the algorithm are fixed as follows, for all the examples discussed280

here: (i) initial error threshold γ0 = 1; (ii) error threshold decay rate γ1 = 1; (iii) maximum poisedness

constant Λ̄ = 100; (iv) tail-correction parameter η = 0 (no tail correction); (v) local polynomial degree

p= 2. The number of nearest neighbors k used to construct each local polynomial surrogate is chosen to be

k = k0 +(K−k0)1/3 where k0 =
√
qD, q is the dimension of the parameters θ ∈ Rq , and D is the number

of coefficients in the local polynomial approximation of total degree p= 2, i.e., D = (q+ 2)(q+ 1)/2. If285

we had k =D, the approximation would be an interpolant. Instead we over-sample by a factor
√
q, as

suggested in Conrad et al. (2016), and allow k to grow slowly with the size K of the evaluated set as in

Davis (2018). All these details together with example runs can be found in the Matlab implementation

available in the supporting material.

3 Numerical experiments290

This section contains numerical experiments to illustrate the methods introduced in the previous sections.

As a large-scale example, we characterize the posterior distribution of parameters in the two-layer quasi-

geostrophic (QG) model. The computations needed to characterize the posterior distribution with standard

MCMC methods in this example would be prohibitive without massive computational resources and are

therefore omitted. In contrast, we will show that the LA-MCMC method is able to simulate from the295

parameter posterior distribution.

Before presenting this example, we first demonstrate that the posteriors produced by LA-MCMC agree

with those obtained via exact MCMC sampling methods in cases where the latter are computationally

tractable, using two examples: the classical Lorenz-63 system and the higher-dimensional Kuramoto–

Shivashinsky (KS) model. In both of these examples, we quantify the computational savings due to LA-300

MCMC, and in the second we introduce additional ways to enhance computation using parallel (GPU)

integration.
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Let ∆t denote the time difference between consecutive observations; one epoch thus contains the times

in the interval [iN∆t,(i+ 1)N∆t). The number of data points in one epoch N varies between 1000 and

2000, depending on the example. The training set S consists of a collection of nepo such intervals. In all305

the examples we choose ∆t to be relatively large, beyond the threshold of predictability. This is more for

demonstration purposes than a necessity; the background theory from U-statistics allows that the subse-

quent state vectors are weakly dependent. Numerically, a set of observations that is chosen too densely

results in the χ2 test failing, and for this reason we recommended to always check for normality before

starting the parameter estimation.310

For numerical tests one can either use one long time series or integrate a shorter time interval several

times using different initial values to create the training set for the likelihood. For these experiments the

latter method was used with nepo = 64, yielding
(
nepo

2

)
= 2016 different pairs (sk,sl), each of which re-

sulted in an ECDF constructed fromN2 pairwise distances. According to tests performed while calibrating

the algorithm, these values of N and nepo are sufficient to obtain robust posterior estimates. With less data,315

the parameter posteriors will naturally be less precise.

The range of the bin radii Rm, m= 0, . . . ,M is selected by examining the distances within the training

set, keeping in mind that a positive variance is needed for every bin to avoid a singular covariance matrix.

So the largest radius R0 can be obtained from

R0 = min
k 6=l

{
max
i,j

∥∥ski − slj∥∥} (6)320

over the disjoint subsets of the samples sk and sl of length N . The smallest radius is selected by requiring

that for all the possible pairs (sk,sl), it holds that BRM
(ski )∩ sl 6= ∅, where BRM

(ski ) is the ball of radius

RM centered at ski . That is,

RM = max
k 6=l

{
min
i,j

∥∥ski − slj∥∥} (7)

The base value b is obtained by RM =R0b
−M and via this value, we fix all the other radii Rm.325

As always with histograms, the number of bins M must be selected first. Too small an M loses infor-

mation, while too large values yield noisy histograms, and this noisiness can be seen also in the empirical

CDFs. However, numerical experiments show that the final results—the parameter posteriors—are not too
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sensitive to the specific value of M . For instance, for the 3D Lorenz case below, the range of M was varied

between 5 and 40, and only a minor decrease of the size of the parameter posteriors was noticed for increas-330

ing M . Any slight increase of accuracy comes with a computational cost: higher values of M increase the

stochasticity of the likelihood evaluations, which leads to smaller acceptance rates in the MCMC sampling,

e.g., from 0.36 to 0.17 to 0.03 forM = 5,15,40, respectively, when using the standard adaptive Metropolis

sampler.In the examples presented in this section, the length M of the feature vector is fixed to 14 for the

Lorenz-63 model and 32 for the higher-dimensional KS and QG models.335

To balance the possibly different magnitudes of the components of the state vector, each component is

scaled and shifted to the range [−1,1] before computing the distances. While this scaling could also be

performed in other ways, this method worked well in practice for the models considered. The normality

of the ensemble of feature vectors is ascertained by comparing the histograms of the quadratic forms in

Eq. (4) visually to the appropriate χ2 distribution.340

In all the three experiments we create MCMC chains of length 105. However, due to the use of the LA-

MCMC approach, the number of full forward model evaluations is much lower, around 1000 or less; we

will report these values more specifically below.

The Lorenz 63 model was integrated with a standard Runge-Kutta solver. The numerical solution of the

KS-model is based on our in-house FFT-based solver, which runs on the GPU-side and is built around345

NVIDIA CUDA toolchain and cuFFT library (which is a part of the CUDA ecosystem). The Quasi-

Geostrophic model employs semi-Lagrangian solver and runs entirely on CPU, but the code has been

significantly optimized with performance-critical parts, such as advection operator, compiled using ISPC

with support of AVX2 vectorization.

3.1 Lorenz 63350

We use the classical three-dimensional Lorenz 63 system (Lorenz, 1963) as a simple first example to

demonstrate how LA-MCMC can be successfully paired with the CIL and the Adaptive Metropolis (AM)

algorithm (Haario et al., 2001, 2006) to obtain the posterior distribution for chaotic systems at a greatly

reduced computational cost, compared to AM without the local approximation. The time evolution of the
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state vector s = (X,Y,Z) is given by355

Ẋ = σ(Y −X),

Ẏ =X(ρ−Z)−Y, (8)

Ż =XY −βZ.

This system of equations is often said to describe an extreme simplification of a weather model.

The reference data were generated with parameter values σ = 10, ρ= 28, and β = 8
3 by performing360

nepo = 64 distinct model simulations, with observations made at 2000 evenly distributed times between

[10,20000]. These observations were perturbed with 5% multiplicative Gaussian noise. The length of the

predictable time window is roughly 7, which is less than the time between consecutive observations. The

parameters of the CIL method were obtained as described at the start of Section 3, with values M = 14,

R0 = 2.85, and b= 1.51.365

The set of vectors {yk,l|k, l ≤ nepo} is shown in Fig. 1 in the log-log scale. The figure shows how the

variability of these vectors is quite small. Figure 1 validates the normality assumption for feature vectors.

Pairwise two-dimensional marginals of the parameter posterior are shown in Fig. 2, both from sampling

the posterior with full forward model simulations (AM) and with using the surrogate sampling approach

for generating the chain. These two posteriors are almost perfectly superimposed. Indeed, the difference is370

at the same level as that between repetitions of the standard AM sampling alone.

To get an idea of the computational savings achieved with LA-MCMC, the computation of the MCMC

chains of length 105 was repeated 10 times. The cumulative number of full likelihood evaluations is pre-

sented in Fig. 3. At the end of the chains, the number of full likelihood evaluations varied between 955 and

1016. Thus by using LA-MCMC in this setting, remarkable computational savings of up to two orders of375

magnitude are achieved.

3.2 The Kuramoto–Sivashinsky model

The second example is the 256-dimensional Kuramoto–Sivashinsky (KS) PDE system. The purpose of

this example is to introduce ways to improve the computational efficiency by a piecewise parallel integra-

tion over the time interval of given data. Also, we demonstrate how decreasing the number of observed380
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Figure 1. Left. For all combinations of k and l, the feature vectors for the Lorenz-63, the Kuramoto-Sivashinsky

and concatenated feature vectors for the quasi-geostrophic system are shown. Right. Normality check: the χ2 density

function versus the histograms of the respective negative log-likelihood (NLL) values; see Eq. (4).

components impacts the accuracy of parameter estimation. Even though the posterior evaluation proves

to be relatively expensive, direct verification of the results with those obtained by using standard adaptive

MCMC is still possible. The Kuramoto-Sivashinsky model is given by the fourth-order PDE

st =−ssx−
1

η
sxx− γsxxxx, (9)

where s= s(x,t) is a real function of x ∈ R and t ∈ R+. In addition it is assumed that s is spatially385

periodical with period of L, i.e. s(x+L,t) = s(x,t). This experiment uses the parametrization from (Yior-
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Figure 2. Two-dimensional posterior marginal distributions of the parameters of the Lorenz 63 model obtained with

LA-MCMC and AM.

gos Smyrlis, 1996) that maps the spatial domain [−L2 ,
L
2 ] to [−π,π] by setting x̃= 2π

L x and t̃=
(

2π
L

)2
t.

With L= 100, the true value of parameter γ is (π/50)2 ≈ 0.0039, and the true value of η becomes 1
2 .

These two parameters are the ones that are then estimated with the LA-MCMC method. This system was

derived by Kuramoto et al. in (Kuramoto and Yamada, 1976; Kuramoto, 1978) as a model for phase turbu-390

lence in reaction-diffusion systems. (Sivashinsky, 1977) used the same system for describing instabilities

of laminar flames.
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Figure 3. Comparison of the cumulative number of full likelihood evaluations while using AM (black line) and LA-

MCMC (colored lines). Every colored line correspond to a different chain obtained with LA-MCMC by using the same

likelihood.

Assume that the solution for this problem can be represented by a truncation of the Fourier series

s(x,t) =

∞∑
j=0

[
Aj(t)sin

(
2π

L
jx

)
+Bj(t)cos

(
2π

L
jx

)]
. (10)
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Using this form reduces Eq. (9) to a system of ordinary differential equations for the unknown coefficients395

Aj(t) and Bj(t),

Ȧj(t) = α1j
2Aj(t) +α2j

4Aj(t) +F1(A(t)) (11)

Ḃj(t) = β1j
2Bj(t) +β2j

4Bj(t) +F2(B(t)), (12)

where the terms F1(·) and F2(·) are polynomials of the vectors A and B. For details, see (Huttunen et al.,

2018). The solution can be effectively computed on graphics processors in parallel, and if computational400

resources allow, several instances of Eq. (9) can be solved in parallel. Even on fast consumer-level lap-

tops, several thousand simulations can be performed in parallel when the discretization of the x-dimension

contains around 500 points.

A total of 64 epochs of the 256-dimensional KS model are integrated over the time interval [0,150000],

and as in the case of the Lorenz-63 model, the initial predictable time window is discarded and 1024405

equidistant measurements from [500,150000] are selected, with ∆t ≈ 146. The parameters used for the

CIL method were R0 = 1801.7, M = 32, and b= 1.025.

The time needed to integrate the model up to t= 150000 is approximately 103 seconds with the Nvidia

1070 GPU, implying that generating an MCMC chain with 100000 samples with standard MCMC algo-

rithms would take almost four months. The use of LA-MCMC alone again shrinks the time needed by a410

factor of 100, that is, to around 28 hours. However, the calculations can yet be considerably enhanced by

parallel computing. In practice this translates the problem of generating a candidate trajectory of length

150000 into generating observations from several shorter time intervals. In our example, an efficient divi-

sion is to perform 128 parallel calculations each of length 4500, with randomized initial values close to the

values selected from the training set. Discarding the predictable interval [0,500] and taking 8 observations415

at intervals of 500 yields the same number 1024 of observations as in the initial setting.While the total

integration time increases, this reduces the wall clock time needed for computation of a single candidate

simulation from 103 s to 2.5 s. The full MCMC chain can be then be generated in 70 hours without the

surrogate model, and in 42 minutes using LA-MCMC.

Parameter posterior distributions from the KS system, produced with MCMC both with and without420

the local approximation surrogate, are shown in Fig. 4. Repeating the calculations several times yielded
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Table 1. Parameter values of the four parameter vectors used in the forward KS model simulation examples in Fig. 5.

The parameter vector in the first column labeled 1 are the true parameters, and the second one resides inside the pos-

terior. The last two are outside the posterior. These parameters correspond to points shown in the posterior distribution

shown in Fig. 4.

Case 1 Case 2 Case 3 Case 4

η 0.50000 0.47820 0.49500 0.52000

γ 0.00395 0.00467 0.00350 0.00500

no meaningful differences in the results. In this experiment, the number of forward model evaluations

LA-MCMC needed for generating a chain of length 100000 was in the range [1131,1221].

Model trajectories from simulations with four different parameter vectors are shown in Fig. 5. These

parameter values were 1) the “true” value which was used to generate training data, 2) another parameter425

from inside the posterior distribution, and 3-4) two other parameters from outside the posterior distribution.

These parameters are also shown in Fig. 4. Visually inspecting the outputs, Cases 1–3 look similar, while

results using parameter vector 4, furthest away from the posterior, are markedly different. Even though the

third parameter vector is outside the posterior, the resulting trajectory is not easily distinguishable from 1

and 2, indicating that the CIL method differentiates between the trajectories more efficiently.430

Additional experiments were performed to evaluate the stability of the method when not all of the model

states were observed. Keeping the setup otherwise fixed, the number of elements of the state vectors ob-

served was reduced from the full 256 step by step to 128, 64, and 32. The resulting MCMC chains are

presented in Fig. 6, and as expected, when less is observed, the size of the posterior distribution grows.

3.3 The quasi-geostrophic model435

The methodology is here applied to a computationally intensive model, where a brute-force parameter

posterior estimation would be too time-consuming. We employ the well-known quasi-geostrophic model

((Fandry and Leslie, 1984) and (Pedlosky, 1987)) using a dense grid to achieve complex chaotic dynamics

in high dimensions. The wall-clock time for one long-time forward model simulation is roughly 10 minutes,
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Figure 4. Posterior distribution of the parameters of the KS system. The parameter values are shown in Table 1, while

examples of the respective integrated trajectories are given in Fig. 5.

so a naïve calculation of a posterior sample of size 100000 would take around two years. We demonstrate440

how the application of the methods verified in the two previous examples reduces this time to a few hours.

The QG model approximates the behavior on a latitudial “stripe” at two given atmospheric heights, pro-

jected onto a two-layered cylinder. The model geometry implies periodic boundary conditions, seamlessly

stitching together the extreme eastern and western parts of the rectangular spatial domain with coordinates

x and y. For the northern and southern edges, user-specified time-independent Dirichlet boundary condi-445

tions are used. In addition to these conditions and the topographic constraints, the model parameters include

the A5 mean thicknesses of the two interacting atmospheric layers, denoted by H1 and H2. Furthermore,

the QG-model accounts for the Coriolis force. An example of the two-layer geometry is presented in Fig. 7.
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Figure 5. Example model trajectories from the KS system. Figure 1) shows simulation using the true parameters, the

parameters used for figure 4) are inside the posterior distribution, and figures 2) and 3) are generated from simulations

with parameters outside the posterior distribution, shown in Fig. 4. The values of the parameter vectors 1, 2, 3 and 4 are

given in Table 1. The y-axis shows the 256-dimensional state vector, and the x-axis the time evolution of the system.

In a non-dimensional form the QG system can be written as

q1 = ∆ψ1−F1(ψ1−ψ2) +βy, (13)450

q2 = ∆ψ2−F2(ψ2−ψ1) +βy+Rs, (14)

22



0.42 0.44 0.46 0.48 0.5 0.52 0.54
3

3.5

4

4.5

5

5.5

6

6.5

7

7.5
10-3

1/8 of the 256 states measured
1/4 of the 256 states measured
1/2 of the 256 states measured
All the 256 states measured
True parameter values

Figure 6. Comparison between the KS system’s posterior distribution in cases where all or only a part of the states are

observed.

where qi are potential vorticities, and ψi are stream functions with indexes i= 1,2 for the upper and the

lower layers, respectively. Both the qi and ψi are functions of time t and spatial coordinates x, and y. The

coefficientsFi =
f2
0L

2

ǵHi
control how much the model layers interact,and β = β0L/U gives a nondimensional

version of β0, the northward gradient of the Coriolis force that gives rise to faster cyclonic flows closer to455

the poles. The Coriolis parameter is given by f0 = 2W sin(`), where W is the angular speed of Earth and `

is the latitude of interest. L and U give the length and speed scales, respectively, and ǵ is a gravity constant.

Finally, Rs(x,y) = S(x,y)
ηH2

defines the topography for the lower layer where η = U
f0L

is the Rossby number

of the system. For further details, see (Fandry and Leslie, 1984) and (Pedlosky, 1987).
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Figure 7. An example of the layer structure of the two-layer quasi-geostrophic model. The terms U1 and U2 denote

mean zonal flows respectively in the top and the bottom layer.

It is assumed that the motion determined by the model is geostrophic, essentially meaning that potential460

vorticity of the flow is preserved on both layers:

∂qi
∂t

+ui
∂qi
∂x

+ vi
∂qi
∂y

= 0. (15)

Here ui and vi are velocity fields, which are functions of both space and time. They are obtained from the

stream functions ψi via

ui =−∂ψi
∂y

, vi =
∂ψi
∂x

. (16)465

Equations (13)–(16) define the spatio-temporal evolution of the quantities qi,ψi, i= 1,2.

The numerical integration of this system is carried out using the semi-Lagrangian scheme, where the

potential vorticities qi are computed according to Eq. (15) for given velocities ui and vi. With these qi the

stream functions can then be obtained from Eq. (13) and (14) with a two-stage finite difference scheme.

Finally, the velocity field is updated by Eq. (16) for the next iteration round.470

For estimating model parameters from synthetic data, a reference data set is created with 64 epochs each

containing N = 1000 observations. These data are sampled from the model trajectory with ∆t = 8 (where
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Figure 8. An example of the 6050-dimensional state of the quasi-geostrophic model. The contour lines for both the

stream function and potential vorticity are shown for both layers. Note the cylindrical boundary conditions.

a time step of length 1 corresponds to 6h) in the time interval [192,8192], that amounts to a long-range

integration of roughly 5–6 years of a climate model. The spatial domain is discretized into a 55× 55 grid,

which results in consistent chaotic behavior and more complex dynamics than with the often-used 20× 40475

grid. This is reflected in higher variability in the feature vectors, as seen in the Fig. 1. A snapshot of the

6050-dimensional trajectory of the QG system is displayed in Figure 8.

The model state is characterized by two distinct fields, the vorticities and stream functions, that naturally

are dependent on each other. But as shown in (Haario et al., 2015), it is useful to construct separate feature

vectors to characterize the dynamics in such situations. For this reason, two separate feature vectors are480

constructed – one for the potential vorticity on both layers and the other for the stream function.

The Gaussian likelihood of the state is created by stacking these two feature vectors one after another.

The normality of the resulting 2(M + 1)-dimensional vector may again be verified as shown in Fig. 1. The

number of bins was set to 32, leading to parameter values R0 = 55 and b= 1,075 for potential vorticity,

and R0 = 31, and b= 1.046 for the stream function.485
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For parameter estimation, inferring the layer heights from synthetic data is considered. The reference

data set with nepo = 64 integrations is produced using the values H1 = 5500 and H2 = 4500. A single for-

ward model evaluation takes 10 minutes on a fast laptop. So brute force MCMC chains of length 100000

would take around 2 years to run. But again the use of LA-MCMC reduces the computational time with a

factor of 100. In the experiments performed, the number of forward model evaluations needed was rang-490

ing in the interval [682,762], which translates to around one week of computing time. As verified with

Kuramoto-Sivashinsky example, the forward model integration can be split to segments computed in par-

allel, which reduced time required to generate data for computing the likelihood further with a factor around

50, corresponding to around 3 h for generating the MCMC chain. The pairwise distances for generating

the feature vectors were computed on a GPU and therefore the required computation time for doing this495

was negligible compared to the model integration time. The posterior distribution of the two parameters is

presented in Fig. 9.

4 Conclusions and future work

Bayesian parameter estimation with computationally demanding computer models is highly non-trivial.

The associated computational challenges often become insurmountable when the model dynamics are500

chaotic. In this work we showed it is possible to overcome these challenges by combining the correlation

integral likelihood (CIL) with an MCMC method based on local surrogates of the log-likelihood function

(LA-MCMC). The CIL captures changes in the geometry of the underlying attractor of the chaotic system,

while local approximation MCMC makes generating long MCMC chains based on this likelihood tractable,

with computational savings of roughly two orders of magnitude in the experiments shown. Our methods505

were verified by sampling the parameter posteriors of the Lorenz-63 and the Kuramoto–Sivashinsky mod-

els, where an (expensive) comparison to exact MCMC with the CIL was still feasible. Then we applied

our approach to the quasi-geostrophic model with a deliberately extended grid size. Without CIL, param-

eter estimation would not have been possible with chaotic models such as these; without LA-MCMC, the

generation of long MCMC and sufficiently accurate chains for the higher-resolution QG model parameters510

would have been computationally intractable. We note that the computational demands of the QG model
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Figure 9. The clearly non-Gaussian posterior distribution of the H1 and H2-parameters of the quasi-geostrophic sys-

tem shows how these parameters anticorrelate with each other.

already get quite close to those of weather models at coarse resolutions. We believe that the approach de-

veloped here can provide ways to solve problems such as the climate model closure parameter estimation

investigated in Järvinen et al. (2010) or long-time assimilation problems with uncertain model parameters,

discussed in (Rougier, 2013) as unsolved and intractable.515

There are many potential directions for extension of this work. First, it should be feasible to run parallel

LA-MCMC chains that share model evaluations in a single evaluated set; doing so can accelerate the con-

struction of accurate local surrogate models, as demonstrated in Conrad et al. (2018), and is a useful way

of harnessing parallel computational resources within surrogate-based MCMC. Extending this approach
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to higher-dimensional parameters is also of interest. While LA-MCMC has been successfully applied to520

chains of dimension up to q = 12 (Conrad et al., 2018), future work should explore sparsity and other

truncations of the local polynomial approximation to improve scaling with dimension. From the CIL per-

spective, calibrating more complex models, such as weather models, often requires choosing the part of

the state vector from which the feature vectors are computed. While computing the likelihood from the full

high-dimensional state is computationally feasible, Haario et al. (2015) showed that carefully choosing a525

subset of the state for the feature vectors performs better. Also, the epochs may need to be chosen suffi-

ciently long to include potential rare events, so that changes in rare event patterns can be identified. This,

naturally, will increase the computational cost if one wants to be confident of the inclusion of such events.

While answering these questions will require further work, we believe the research presented in this

paper provides a promising and reasonable step towards estimating parameters in the context of expensive530

operational models.
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