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*** General comments ***

This paper combines and applies two other previously published methods to enable
robust Bayesian inference of parameters for chaotic dynamical systems via Markov
chain Monte Carlo (MCMC): the correlation integral likelihood (CIL) makes probabilistic
inference on chaotic systems reliable, while local approximation MCMC (LA-MCMC)
makes it efficient. This opens up MCMC sampling methods to work on numerically
expensive chaotic models such as climate models, for which they would otherwise
remain intractable.

The use of emulators as stand-ins for computationally expensive models under MCMC
is a well-established area. The use of Bayesian techniques on chaotic systems seems
to be less well trod, but potentially very high impact as our understanding of these
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systems is pivotal to our understanding of the environment and to decision making for
resource management and environmental stewardship. The correlation integral likeli-
hood has received relatively little attention compared to synthetic likelihood approaches
such as Wood 2010, but the computational efficiency gains for this type of system are
clearly demonstrated. The value of the paper thus lies in a proof of principle for ap-
plying these techniques together to solve more challenging problems. The CIL might
be enough on its own to handle the Lorentz attractor and simple population dynamics
models, and LA-MCMC has been demonstrated on inversions involving partial differen-
tial equations. For complex nonlinear PDEs such as those describing weather systems,
both are probably needed.

Since this paper presents applications rather than all-new methods, it makes sense to
submit to an earth science journal rather than an applied statistics journal. Chaotic
systems such as weather and climate models are within scope for GMD, and Bayesian
inference could be viewed as a means for comparing models to data. The results are
general and don’t focus on any single geoscientific forward model, though the CIL is
a likelihood and thus is an important part of a *statistical* model for the data. If all
the forward models were coded with a specific library or package, or if the complete
method were coded in a single forward-model-agnostic library, it would be natural to
include the code name and version number in the title, but that doesn’t seem to be the
case; I’ll defer to the editor’s judgment in this matter.

The paper is overall well-structured and clearly and concisely demonstrates the prac-
tical application of the methodology. Model setups are clearly described. The first
two experiments are useful to demonstrate that LA-MCMC recovers the true posterior
for chaotic systems using CIL, and the reduction of two years’ worth of conventional
MCMC to three hours’ walltime with the quasi-geostrophic weather model is impres-
sive. The description of CIL is detailed and would enable anyone to code the metric for
themselves, and the authors cite a good representative sample of competing methods
for CIL, and convincingly demonstrate that their method gives sensible results.
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I found the paper interesting and informative and believe it merits publication. The main
class of clarifications I would like to see concern how various choices were made for
the setup and parameters of the CIL and LA-MCMC algorithms used to attack these
problems, which will be of interest to any practitioners who want to adopt this method
for their problems.

*** Specific comments ***

– Section 2.2 (Local Approximation MCMC)

The discussion of LA-MCMC is shorter and more schematic than the discussion of CIL
in the preceding subsection, and relies heavily on citations of Davis et al 2020. Repeat-
ing the entire algorithm setup may be overkill, but this level of description is probably not
enough for the user to understand and reproduce how the algorithm works, in contrast
to the CIL section. There is some discussion about the benefits of using emulators
in general, where I think it’s appropriate to cite some key papers (e.g. Sacks et al
1989; Kennedy & O’Hagan 2001) introducing the idea of emulators for model calibra-
tion and efficiency in Bayesian inference. The specific advantage of LA-MCMC as a
meta-method – not the fact of being an emulator method, nor its functional form, but the
theoretical guarantee of optimal convergence as the number of samples and forward
model evaluations increases – is reasonably well made here. Some discussion about
the local support of the approximation and refinement criteria, as in Conrad et al 2016,
would also be welcome in this subsection.

Why were the particular parameters to LA-MCMC chosen here? Were there any
problem-specific considerations, or are these reasonable default settings? For exam-
ple, was the quadratic approximation chosen for any particular reason over either linear
or Gaussian-Process-based local approximations? How would different choices impact
the performance?

What Metropolis-Hastings proposal density is actually used for these problems and
how was it tuned? The algorithm as outlined in Davis et al 2020 is a meta-method
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that specifies only that the proposal density should be constant in time, which seems
on its face to rule out many adaptive and gradient-based proposals. The number of
parameters being inferred is always small in this paper, so a Gaussian random walk
might work fine, but if so please state that.

– Section 3 (Numerical Experiments)

What considerations are used to pick the number M of correlation scale bins? Clear
criteria are given for R_0 and R_M, and b is fixed once these parameters and M are
known. The specific choices of M for each problem are given in the text, but not why
they are optimal or even appropriate. How will performance of the CIL vary if M is
suboptimal?

Similarly, how is the observation interval Delta_t chosen? It seems in all application
cases to be deliberately longer than the "predictable" interval, presumably to ensure
that adjacent observations yield new information and have settled into the attractor
geometry. This becomes important specifically when simulating many short chaotic
trajectories rather than one long one (to parallelize the problem and achieve desired
efficiency gains). These points are alluded to in the subsequent subsections for individ-
ual experiments, but they are central enough points to bring up or reiterate alongside
other general information in the opening part of the section.

This would also be a good place to talk about the computing architecture used for
these experiments, since it’s hard to see what level of computational effort this wall
time signifies otherwise. (Mention of a NVIDIA 1070 GPU is made once, and only for
the K-S model, though comments about the degree of parallelization are mentioned for
each problem.) This is more for completeness given that the choice of processor won’t
make a factor of 100 difference to the results, but practitioners may want to know this. If
any particular libraries were used e.g. fast solvers or integrators, those dependencies
should also be made clear.

– Section 3.2 (Quasi-geostrophic model)
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For readers unfamiliar with this model, are H1 and H2 only mean thicknesses, or is this
more of a 2.5-dimensional model where H1 and H2 are spatially constant thicknesses
of two interacting vertical zones?

What was the value of f0 used? How do the beta coefficients depend upon it (depen-
dencies of all other parameters on f0 are given in the text)? Was f0 inferred alongside
H1 and H2? If not, would sampling over it be just as straightforward as sampling over
H1 and H2, or would it be likely to create new challenges due to its correlations with
several other parameters of the problem – as for example sampling in hierarchical
Bayesian models where a global variance scale can induce strong and inconvenient
posterior curvature?

– Section 4 (Conclusions)

Are there any specific inference problems currently faced by the weather and climate
modeling community that might not have been previously feasible, but could perhaps
now be attempted with this method?

– Supplementary Material

The authors have expressed their wish to include the code for these examples as sup-
plementary material. Ideally, as a reader I’d prefer to see a Git repository where the
code can be downloaded and installed at will, tagged with a given version, and given
an external persistent DOI, even if it is not meant to be maintained as a general open-
source package for the community. If the authors are going to upload the code as a
supplement, it becomes much more important to clearly indicate all environment pa-
rameters and code dependencies, and to provide the supplement in a form that can
simply be downloaded into a directory and run by the user to reproduce their key re-
sults.

*** Technical comments ***

Fig 1: The layout of this figure could be expanded to make it more readable. The font
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for the labels seems quite small, and the vertical arrangement of the graphs is crowded.
All content is appropriate, though.

Figs 2, 4, 6, 8, 9: Similarly expand label fonts a bit for easier reading, and adjust tick
spacing if necessary to prevent overlap.

Fig 3: There isn’t much information in this figure and I believe it could be safely omitted.
Using a linear y-axis makes the effort needed for full MCMC look dramatic compared
to LA-MCMC, but this point is adequately made in the text. The figure would make
more sense if the paper were about comparing the efficiencies of different emulator
methods.

Fig 7: This is a useful cartoon; I’d like to see some of the other geometric parameters
of the system included on this figure, if possible, given that the actual version solved
becomes non-dimensional.
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