
gmd-2020-350: responses to reviewer comments

Sebastian Springer, Heikki Haario, Jouni Susiluoto,
Aleksandr Bibov, Andrew Davis, and Youssef Marzouk

We thank the anonymous reviewers and the editor for carefully reading the manuscript and for
providing the very valuable comments. We address the comments one by one below. The reviewer
comments are pasted verbatim below in italics, and the author responses to these comments can
be found immediately under the comments, starting “A:”. These are followed by “Changes to
manuscript:” sections, where the line numbers refer to the diff file unless stated otherwise. Line
numbers in these “A:” sections generally refer to the old version of the manuscript.

Anonymous Referee #1

This paper combines and applies two other previously published methods to enable robust Bayesian
inference of parameters for chaotic dynamical systems via Markov chain Monte Carlo (MCMC):
the correlation integral likelihood (CIL) makes probabilistic inference on chaotic systems reliable,
while local approximation MCMC (LA-MCMC) makes it efficient. This opens up MCMC sampling
methods to work on numerically expensive chaotic models such as climate models, for which they
would otherwise remain intractable.

The use of emulators as stand-ins for computationally expensive models under MCMC is a
well-established area. The use of Bayesian techniques on chaotic systems seems to be less well
trod, but potentially very high impact as our understanding of these systems is pivotal to our
understanding of the environment and to decision making for resource management and envi-
ronmental stewardship. The correlation integral likelihood has received relatively little attention
compared to synthetic likelihood approaches such as Wood 2010, but the computational efficiency
gains for this type of system are clearly demonstrated. The value of the paper thus lies in a proof
of principle for applying these techniques together to solve more challenging problems. The CIL
might be enough on its own to handle the Lorentz attractor and simple population dynamics mod-
els, and LA-MCMC has been demonstrated on inversions involving partial differential equations.
For complex nonlinear PDEs such as those describing weather systems, both are probably needed.

Since this paper presents applications rather than all-new methods, it makes sense to submit
to an earth science journal rather than an applied statistics journal. Chaotic systems such as
weather and climate models are within scope for GMD, and Bayesian inference could be viewed
as a means for comparing models to data. The results are general and don’t focus on any single
geoscientific forward model, though the CIL is a likelihood and thus is an important part of a
*statistical* model for the data. If all the forward models were coded with a specific library or
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package, or if the complete method were coded in a single forward-model-agnostic library, it would
be natural to include the code name and version number in the title, but that doesn’t seem to be
the case; I’ll defer to the editor’s judgment in this matter.

The paper is overall well-structured and clearly and concisely demonstrates the practical ap-
plication of the methodology. Model setups are clearly described. The first two experiments are
useful to demonstrate that LA-MCMC recovers the true posterior for chaotic systems using CIL,
and the reduction of two years’ worth of conventional MCMC to three hours’ walltime with the
quasi-geostrophic weather model is impressive. The description of CIL is detailed and would enable
anyone to code the metric for themselves, and the authors cite a good representative sample of
competing methods for CIL, and convincingly demonstrate that their method gives sensible results.

I found the paper interesting and informative and believe it merits publication. The main
class of clarifications I would like to see concern how various choices were made for the setup and
parameters of the CIL and LA-MCMC algorithms used to attack these problems, which will be of
interest to any practitioners who want to adopt this method for their problems.

A: We thank the reviewer for this sincere assessment.

1. The discussion of LA-MCMC is shorter and more schematic than the discussion of CIL in
the preceding subsection, and relies heavily on citations of Davis et al 2020. Repeating the entire
algorithm setup may be overkill, but this level of description is probably not enough for the user
to understand and reproduce how the algorithm works, in contrast to the CIL section. There is
some discussion about the benefits of using emulators in general, where I think it’s appropriate
to cite some key papers (e.g. Sacks et al 1989; Kennedy & O’Hagan 2001) introducing the idea
of emulators for model calibration and efficiency in Bayesian inference. The specific advantage of
LA-MCMC as a meta-method – not the fact of being an emulator method, nor its functional form,
but the theoretical guarantee of optimal convergence as the number of samples and forward model
evaluations increases – is reasonably well made here. Some discussion about the local support of
the approximation and refinement criteria, as in Conrad et al 2016, would also be welcome in this
subsection.

A1: A more detailed description has been added (p.12, l. 280-281 and 288-289) to help the
user to reproduce the LA-MCMC method. In addition, a commented Matlab code is available for
the user, that contains the main steps and, naturally, all the constants and other details in the sub-
routines. References to the mentioned key emulator papers have been added in the text (p.10, l.
223-224). As for the local support and refinement criteria, we note the at a given point, we locally
compute a polynomial approximation using the nearest neighbors in the evaluated set as data for
regression. However, we emphasize that the approximation itself is not locally supported—it is a
piecewise polynomial that is defined over all of parameter space. This is an important distinction
because the piecewise polynomial approximation to the posterior density function (equivalently,
the likelihood density function) is not necessarily itself a probability density function. In fact, the
surrogate function may not even be integrable. Despite this challenge, Davis et al. 2020 devise
a refinement strategy that ensures convergence and bounds the error after a finite number of
samples. This strategy uses an estimate of the local bound on the surrogate error to trigger local
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refinement. We employ a similar strategy in this paper. Discussion on this has been added in the
text.

Changes to manuscript: As given in the reply.

2. Why were the particular parameters to LA-MCMC chosen here? Were there any problem-
specific considerations, or are these reasonable default settings? For example, was the quadratic
approximation chosen for any particular reason over either linear or Gaussian-Process-based local
approximations? How would different choices impact the performance?

A2: At the end of section 2.2 we include some specific parameter choices. The same values are
used in all the examples, so they may be regarded as reasonable default settings here. However,
in principle the parameters can be problem specific. Davis et al. provides some intuition for
parameter choices. The primary tuning parameter is the initial error threshold—the decay rate
is then set by LA-MCMC to ensure the rates are optimal. We specifically choose a quadratic
model because in the Gaussian case this leads to an exact approximation (the approximation is
the log-target, which is a quadratic in the Gaussian case). All the specific parameter choices are
also available in the supplementary Matlab code, and may be freely tuned by the user.

Changes to manuscript: The parameter choices have been further discussed at the end of
Sect. 2.2, together with a note pointing to the MATLAB code in the code availability section.

3. What Metropolis-Hastings proposal density is actually used for these problems and how
was it tuned? The algorithm as outlined in Davis et al 2020 is a meta-method that specifies only
that the proposal density should be constant in time, which seems on its face to rule out many
adaptive and gradient-based proposals. The number of parameters being inferred is always small
in this paper, so a Gaussian random walk might work fine, but if so please state that.

A3: The theory in Davis et al. 2020 indeed assumes a constant-in-time proposal density. How-
ever, this does not necessarily imply that adaptive or gradient-based methods will not converge.
In particular, Conrad et al. 2018 show that the Metropolis adjusted Langevin algorithm, which
is a gradient based MCMC method, is asymptotically exact when using a continually refined lo-
cal polynomial approximation. This proof requires some additional assumptions about the target
density’s tail behavior, and the stronger rate-optimal result from Davis et al. has not yet been
established for such algorithms. In practice, however, we see that adaptive methods still work well
in our applications. Exploring the theoretical implications of this is interesting and merits further
discussion but is beyond the scope of this paper. A standard random walk Metropolis sampler
with a fixed Gaussian proposal works fine, in case a good proposal has been found.

Changes to manuscript: We now mention that a range of MCMC methods, including
standard Gaussian random walk, can be used with LA-MCMC. The discussion has been added in
Sect. 2.2, last paragraph on p. 11

4. What considerations are used to pick the number M of correlation scale bins? Clear
criteria are given for R0 and RM , and b is fixed once these parameters and M are known. The
specific choices of M for each problem are given in the text, but not why they are optimal or
even appropriate. How will performance of the CIL vary if M is suboptimal? Similarly, how is the
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observation interval ∆t chosen? It seems in all application cases to be deliberately longer than the
”predictable” interval, presumably to ensure that adjacent observations yield new information and
have settled into the attractor geometry. This becomes important specifically when simulating
many short chaotic trajectories rather than one long one (to parallelize the problem and achieve
desired efficiency gains). These points are alluded to in the subsequent subsections for individual
experiments, but they are central enough points to bring up or reiterate alongside other general
information in the opening part of the section. This would also be a good place to talk about the
computing architecture used for these experiments, since it’s hard to see what level of computa-
tional effort this wall time signifies otherwise. (Mention of a NVIDIA 1070 GPU is made once,
and only for the K-S model, though comments about the degree of parallelization are mentioned
for each problem.) This is more for completeness given that the choice of processor won’t make
a factor of 100 difference to the results, but practitioners may want to know this. If any particu-
lar libraries were used e.g. fast solvers or integrators, those dependencies should also be made clear.

A4: As always with histograms, the selection of the number M of bins is a bit problematic.
Too small M loses information, while too large M yields ’noisy’ histograms and CDFs. However,
numerical experiments show that the final result, the parameter posteriors, are not too sensitive to
the specific value of M. For instance, for the 3D Lorenz case the range of M was varied between
5 and 40, and only a minor decrease of the size of the parameter posteriors was noticed for
increasing M. However, the slight increase of accuracy comes with a CPU cost: high values of M
increase the stochasticity of the likelihood evaluations, that leads to small acceptance ratios in
the MCMC sampling: from about 0.36 to 0.17 to 0.03 for M= 5,15,40, respectively, when using
standard AM. The trend is the same with LA-MCMC, but the use of LA-MCMC removes some of
the stochasticity and typically leads to higher acceptance ratios. We admit that the choice of M
needs some hand-tuning but this has not been any major issue in any of the cases studied. The
choice of ∆t was indeed taken large, beyond the threshold of predictability. This was more for
demonstration purposes than necessity; the background theory from U-statistics allows that the
subsequent state vectors are weakly dependent. Numerically, a too high density of observation
points is revealed by a failure of the ffl2 test, that always is recommended to be performed before
starting the parameter estimation.

The KS-model is based on our in-house FFT-based solver, which runs on the GPU-side and is
built around NVIDIA CUDA toolchain and cuFFT library (which is a part of the CUDA ecosystem).
The Quasi-Geostrophic model employs semi-Lagrangian solver and runs entirely on CPU, but the
code has been significantly optimized with performance-critical parts, such as advection operator,
compiled using ISPC with support of AVX2 vectorization.

Changes to manuscript: The M insensitivity comment is copied to the main text. A com-
ment on the choice of ∆t has been added. (p.13-14, l. 305-310 and 326-334), and the computing
architecture at the end of the section.
5. For readers unfamiliar with this model, are H1 and H2 only mean thicknesses, or is this more
of a 2.5-dimensional model where H1 and H2 are spatially constant thicknesses of two interacting
vertical zones? What was the value of f0 used? How do the beta coefficients depend upon it
(dependencies of all other parameters on f0 are given in the text)? Was f0 inferred alongside H1
and H2? If not, would sampling over it be just as straightforward as sampling over H1 and H2,
or would it be likely to create new challenges due to its correlations with several other parameters
of the problem – as for example sampling in hierarchical Bayesian models where a global variance
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scale can induce strong and inconvenient posterior curvature?

A5: H1 and H2 denote the mean thicknesses of the layers and in the quasi-geostrophic model
these layers physically interact.The formula for f 0, now given in the text, shows how f 0 is a
known expression of well-known factors (the latitude and the rotation speed of the earth) so f 0
might not be a natural parameter to be sampled, even for demonstration purposes. Situations
with correlated and higher dimensional parameters are covered in the other examples. A three
dimensional parameter vector is considered in the Lorenz example. The KS example provides a
case with a strongly correlated posterior. We agree that other parameters (than f0, e.g., those
giving the orography) might be sampled here but we do not expect that any major issues would
appear in the QG case. Models with higher dimensional unknowns are considered in the references
given in Section 2.2 line 240.

Changes to manuscript: The role of the parameter f0 has been clarified. (p.21-22, l. 455-
459) We expand the description of H1 and H2 above Eq. (13) and (14) to explain that they are
mean thicknesses of interacting layers.

6. Are there any specific inference problems currently faced by the weather and climate modeling
community that might not have been previously feasible, but could perhaps now be attempted
with this method?

A6: The present work gives a solution to the problem discussed in the Introduction concerning
the estimation of climate model parameters. In Järvinen et al. (2010) a study was performed
for the ECHAM6 model parameters. However, the naive summary statistics approach used there
were not able to identify the parameters studied, even if the MCMC sampling was technically
successfully performed. We believe that the CIL is much more sensitive with respect to climate
model parameters and will help to calibrate such models. Also, the discussion in Rougier (2013)
points out the intractable character of problems, which we believe are now coming feasible by our
approach. These points were already discussed in the Introduction, but we now explicitly return
to them in the Conclusion.

Changes to manuscript: This item is underlined in the Conclusion. (p.27, l. 514-517)

7. The authors have expressed their wish to include the code for these examples as supple-
mentary material. Ideally, as a reader I’d prefer to see a Git repository where the code can be
downloaded and installed at will, tagged with a given version, and given an external persistent
DOI, even if it is not meant to be maintained as a general open source package for the community.
If the authors are going to upload the code as a supplement, it becomes much more important to
clearly indicate all environment parameters and code dependencies, and to provide the supplement
in a form that can simply be downloaded into a directory and run by the user to reproduce their
key results.

A7: We appreciate the suggestion to use a public Git and persistent DOI. We will make
the code available on Github in this way, and/or on any other platform that the journal prefers.
Changes to manuscript: Code for the general algorithms as well as each numerical example
(L3, KS, QG) will be made available and links to the relevant repositories will be given in the
code availability section.
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8. Fig 1: The layout of this figure could be expanded to make it more readable. The font
for the labels seems quite small, and the vertical arrangement of the graphs is crowded. All con-
tent is appropriate, though. Figs 2, 4, 6, 8, 9: Similarly expand label fonts a bit for easier reading,
and adjust tick spacing if necessary to prevent overlap. Fig 3: There isn’t much information in this
figure and I believe it could be safely omitted. Using a linear y-axis makes the effort needed for
full MCMC look dramatic compared to LA-MCMC, but this point is adequately made in the text.
The figure would make more sense if the paper were about comparing the efficiencies of different
emulator methods. Fig 7: This is a useful cartoon; I’d like to see some of the other geometric
parameters of the system included on this figure, if possible, given that the actual version solved
becomes non-dimensional.

A8: The labels have been corrected to be larger. Fig 3 is perhaps obvious, given the surround-
ing discussion in the text, but it communicates a central point of the paper.

Changes to manuscript: The figures are corrected.

Anonymous Referee #2

This paper aims to solve the high computational challenge in the statistical inference of chaotic
dynamic models. This is a practical and challenging problem. It has great potential in practice.
This paper combines two methods to solve the intractability of inference of chaotic dynamic
models. CIL was adopted to incorporate more information of the observations into the summary
statistics. LA-MCMC was utilized to reduce computational time and thus make the proposed
method more practical.

The paper was written in a very good manner. First of all, the problem was introduced in
Section 1. Then CIL and LA-MCMC were described in detail in Section 2. Three examples were
demonstrated in Section 3. The authors have put a lot of effort to CIL and LA-MCMC, especially
CIL. This makes the paper self-contained. To improve the readability, the authors should state
clearly in Section 2 which parts are novel. This helps readers to understand the contribution of
this work.

It seems this paper does not match well with the scope of Geoscientific Model Development
(Methods for assessment of models). It should be submitted to an applied statistical journal.
This paper described the state-of-art statistical methods and implemented several experiments to
evaluate the performance of such methods in the applications of geoscience. The paper provided
codes for practitioners to run their own data. The paper itself is rich in information that is very
useful for practitioners, but it may not be appropriate to publish in GMD journal. According
to the scope of GMD journal, the publication should develop new metrics for assessing model
performance and novel ways of comparing model results with observational data. I cannot see
such work in this paper. It also worries me that the authors made many decisions without enough
support either from theory or empirical evidence. For example, in line 201, the authors claim that
their likelihood function does not depend on the initial conditions of the forward model. Is this
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statement true only to your forward model? In general, the paper merits publication given the
following comments can be responded properly.

A: We thank the reviewer for this sincere assessment. We understand the worry about the
suitability of the topic to GMD, but would like to point out that chaotic dynamical systems
appear in nature frequently, and that the models used to test the LA-MCMC+CIL method are
used frequently in geophysical studies. We believe that the comments made by anonymous referee
#1 are spot-on regarding the suitability of this paper to GMD.

Probabilistic model calibration is a very useful ingredient in model development and validation.
Since the original algorithms have been published elsewhere, we don’t believe a statistics journal
would be the correct forum. The novelty of the work is to show how the combination of the
methods – as the reviewer correctly points out above – enables one to solve problems hitherto
considered intractable. The focus of this paper is to showcase geoscientific toy applications to
demonstrate how CIL and MCMC can be combined to tackle such questions. We believe this is
in the interest of practitioners reading GMD.

The CIL approach can be used with both simulated model data and real measurements, and
especially in cases where comparisons between data and model have been difficult or intractable
so far. Therefore the paper directly relates to “assessing model performance and novel ways of
comparing model results with observational data.”

Changes to manuscript: We have tried to make this point with more clarity in the intro-
duction and discussion of the paper.

9. The statistical properties of CIL are crucial to determine the overall performance of the
proposed method. Does CIL converge to the true likelihood function and in what conditions it
converges to the true likelihood? In approximate Bayesian computation, the approximate likeli-
hood will converge to the true likelihood function given that the summary statistics are sufficient
and the threshold approaches to zero. What conditions are essential for CIL to converge?

A9: As for the theoretical background, we actually do refer to literature regarding the normality
of the statistic, see l. 170. We would like to point out that the CIL is a Gaussian likelihood, and
that the results have been shown to follow Gaussian statistics. Convergence in the Bayesian
context to the appropriate posterior follows from this observation. What is approximate here,
however, is the estimation of the mean and covariance of the Gaussian likelihood. The estimates
do converge with more data (with more epochs), the rate of convergence is 1=

√
nepo , as shown

in the U-statistics literature (references listed in Section 2.1, line 173). LA-MCMC estimates
become exact when chain lengths go to infinity.

Changes to manuscript: We add a comment about the convergence at (p.8, l. 174-175).

10. It is not clear what novelty of this paper is. Both CIL and LA-MCMC are well developed
methods. What is the contribution of this paper? In section 2, the authors basically reviewed two
methods: CIL and LA-MCMC. This paper does not propose new geoscience models either. It is
not clear which parts are proposed by the authors and what novelty is. Please state in the paper
clearly which parts are new to the literature, either in methodological or domain area.
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A10: The main novelty for readers with geosciences backgrounds is demonstrating how model
parameters can be identified in large and computationally heavy chaotic systems. This has not
been done before (see Järvinen et al. (2010), Rougier, (2013) ). This requires both the CIL and
LA-MCMC methods, that together enable, for instance, to reduce the computational time of 2
years to 4 houres in the QG example. Additionally, ’technical’ novelties are employed in the paper
that are not published before: parallel calculations by splitting the time-integration in parts, and
the use of multiple likelihood evaluations together with ridge regression to reduce the noise in the
surrogate regression surface construction in the LA-MCMC calculations.

Changes to manuscript: The novelty for the GMD readers is more clearly underlined in the
Introduction and Conclusion. (p.4, l. 73-80 and p.27 l. 514-517)

11. Line 201: the authors claim that their likelihood function does not depend on the initial
conditions of the forward model. This is a very ambitious declaration. From my understanding,
the initial conditions of the forward model will impact the synthetic data and thus impact the
summary statistics significantly. Please explain why your statement is true and show some evi-
dence.

A11: Chaotic models need to be integrated long enough so that the initial state becomes
irrelevant. It is a common practice used in, e.g., atmospheric climate modelling to drop away
a few initial months for this purpose, and also to ensure that the computed state values are on
the underlying attractor of the system. In our approach the initial values are randomized for all
simulations, and samples are taken only after the predictable initial time interval. Moreover, the
independency of the sampled parameter posteriors from the initial values has been extensively
verified both here and in earlier works by repeated numerical experiments. We agree with the
reviewer that one has to be careful here, however. With chaotic models it’s possible that there are
rare events or regions of the attractor that are not represented in the data at all. With models with
very slow dynamics multiple random initializations may be used to make sure that the sampling
takes place as widely as possible in the attractor. For the models presented in this work, we
believe that the way the integration is performed is sufficiently long so that we can claim that the
model "forgets" the initial value and covers the relevant parts of the attractor.

Changes to manuscript: We have added a note about these points in the text. (p.9, l.
207-210).

12. Line 206: the authors stated their approach can save computational time by reducing the
length of simulated forward model. They only require one single epoch to compute the CIL for the
later inference. The idea is beneficial to save computational resources. However, this may lead to
skewed posterior distributions. The reason is that the mean vector and covariance matrix in Equa-
tion (4) are computed based on all the combinations of s and l. Normally, a synthetic data should
be of the same length as the observation and Equation (5) can be computed correspondingly.
The current version of Equation (5) is likely to lead to a skewed posterior distribution, because
only partial comparison between the synthetic data and the observations has been incorporated
into the likelihood function. Intuitively, the Figure 2 and Figure 4 have shown some skewness in
the posterior distributions. Can you explain and justify your reasonings behind the line 206?

A12: In the training stage the likelihood is indeed constructed for one epoch only, by repeatedly
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using data from all available epochs. In the MCMC sampling stage, the very same calculation is
performed, now by computing the distances between the proposed new one-epoch trajectory and
one trajectory from the training data set. But we also can use several trajectories from the training
data. In Eq. 5 we do this by averaging the calculation over several training data trajectories. This
is beneficial as it reduces the stochasticity of the likelihood evaluation. Naturally, the likelihood
construction in the training stage and the evaluations of it in the sampling stage must again be
performed in exactly the same way.

As for Figures 2 and 4, they do not show any systematic skewness. The ’true’ parameter
should (as always in MCMC sampling) lie inside the posterior, but not necessarily close to the
expected value. With new experiments with new data sets the posterior moves around the ’true’
parameter, but without any systematic skewness. Even with the same data and using just the
standard AM sampling the posteriors slightly vary if the sampling is repeated. The difference
between the posteriors obtained by AM and LA-MCMC sampling is approximatively at that level.

Changes to manuscript: A comment concerning the above point has been added in the
text. (p.15, l. 371-372)

13. As the data set in the simulation of Lorenz 63 model, we should expect LA-MCMC to
matches standard MCMC very well. Figure 2 demonstrates the pairwise marginal distribution
of Lorenz 63 model. Does Lorenz 63 model pay more attention to the accuracy of pairwise
marginal distributions? Otherwise, the authors should show the results of each single parameters,
so the readers can evaluate the performance more easily. For the other models, can you show the
marginal distributions of each single parameter as well?

A13: Reporting the pairwise marginal distributions is done in the paper for visualization pur-
poses only, since visualization of higher dimensional target distributions is challenging. The pair-
wise marginal distributions, unlike univariate marginal distributions, still retain information about
correlations of the samples in the posterior, which can be useful for the reader. We point out that
showing agreement of 2-d marginal distributions is a stricter criterion than just demonstrating
agreement of univariate marginal distributions. The results of MCMC posteriors naturally change
for any new simulations and data cases, see above the reply to the previous question.

Figure 2 has been edited as suggested by the reviewer. The single parameter distributions are
added to the other models (Figures 4 and 9 - except left away, for clarity, from Fig 6 that contains
several posteriors corresponding to different amounts of data).

Changes to manuscript: We have changed Figures 2, 4 and 9.
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