
Final answer to the referee 1

First of all, we would like to thank the referee for her/his review on our paper and for giving us the

opportunity to improve our paper. 

Now, we organized the answer to the comments as follows. First, we list some changes afford to the

manuscript then detail our answers to the questions raised by the referee.

List of changes for the revision

Major changes

To facilitate  the construction  of a closure,  we introduced the possibility  to  define  an unknown

quantity as a trainable scalar function using TrainableScalar class. This applies when the proposal

for the closure is given by a symbolic expression with partial derivatives. Hence, there are now two

possibilities  to  introduce  a  closure  and  merge the  known physics  to  the  design  of  a  NN.  The

manuscript has been modified from lines 180 to 191, with a new Fig5  (see snapshot Rev1-Fig. 1)

Minor changes

1) Fig. 1, 2 and 6 has been updated to simplify the import of pdenetgen – this has no impact on the

manuscript nor on the results.

2) The description of the learning was not precise, we modified the lines 205-210 as follows:

“Using an initial learning rate of 0.1, the training converges within 3 outer loops of 30 epochs with

a geometrical decay of the learning rate by a factor of 1/10 after each outer loop.”

Differences between the two version of the manuscript

To facilitate the comparison between the two version of the manuscript, a companion version of the

manuscript lists all the modifications where old (new) statements are in red (blue). Snapshots of the

revised version of manuscript help to illustrate the modifications, they are label as Rev1-Fig. X. 



Rev1-Fig 1 : Introduction of the TrainableScalar class that facilitates the design of a NN when the

unknown terms are given as symbolic expressions (lines 180-191). 

Answer to the point mentioned by the referee

We copied your commentary in italics below, we reply in normal blue font.

1. One of the advantages of the convolutional layer translation is implementation in modern deep

learning frameworks.



We  agree  with  the  referee  comment  and  we  exploit  convolutional  layers  to  bridge   partial

differential equations and neural networks. Introduced in a time-integration scheme, this produces

an  efficient  implementation  of  the  dynamics  for  the  known  part.  We  may  point  out that  the

connexion  between  neural  networks  and  differential  equations  has  led  to  some  better

understanding of some neural network architectures (ODE-Net, ResNet, bilinear layers,..) and is an

active area of research. The package we propose, aims to make easier the exploitation of deep

learning frameworks for physics (and vice versa) through a plug-an-play definition of useful NN

architectures for evolution equations as encountered in geophysics.

2. Although the authors suggest that the function closure may be modeled with deep learning

architectures, no experiments in this direction are shown.

The aim of the manuscript is not to introduce a deep learning architecture for the closure, but to

facilitate the construction of a deep learning architecture taking into account the known physics: the

focus is on the hybridation between physics and machine learning. Though the closure itself may

not result in a deep architecture, the overall generated model leads to a deep architecture.

More precisely, in the reported experiment, the number of layers introduced to train the closure is

6+5+13+25=49 layers for the known part of the dynamics and 2+3+2+4+4=15 layers for the neural

network used in the closure. The ResNet implementation of the RK4 uses 11 layers. Hence, there

are 75 layers used, with several convolutional layers among them. In that sense, the overall model

can be considered as a deep architecture, parameters of which can be learnt from data. The aim of

this example was to focus on the neural network generation of the known part of the dynamics in

order to facilitate the discovery of unknown terms, and we chose a simple problem to illustrate this.

As discussed in Section 3.3 (p10-11), the implementation of an unknown term depends on the

amount of knowledge we have. Here we  considered a closure  term from partial derivatives. For

other  problems,  there  would  be no  other  choice  than  considering  a  deep neural  network,  for

instance using multiple ResNet blocks, normalization, and so on, or architectures inspired from

recent studies on closure modeling (eg, Bolton et al., 2019). Such architectures can be plugged in

our package as an exogenous neural network. Note that in the revision of the manuscript we also

include an additional way to facilitate the design of the dynamics without plugging an exogenous

model using TrainableScalar  class – which we think to be easier for the physicist  not used to

handle neural network layers.

We remind/precise the aim of the manuscript in the discussion in Section 3.3 in lines 232-240 (see

Rev1-Fig2), considering the present answer to the referee.



Rev1-Fig2 : Additional comment to precise the focus given in the manuscript. 
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Abstract. Bridging physics and deep learning is a topical challenge. While deep learning frameworks open avenues in physical

science, the design of physically-consistent deep neural network architectures is an open issue. In the spirit of physics-informed

NNs, PDE-NetGen package provides new means to automatically translate physical equations, given as PDEs, into neural

network architectures. PDE-NetGen combines symbolic calculus and a neural network generator. The later exploits NN-based

implementations of PDE solvers using Keras. With some knowledge of a problem, PDE-NetGen is a plug-and-play tool to5

generate physics-informed NN architectures. They provide computationally-efficient yet compact representations to address

a variety of issues, including among others adjoint derivation, model calibration, forecasting, data assimilation as well as

uncertainty quantification. As an illustration, the workflow is first presented for the 2D diffusion equation, then applied to the

data-driven and physics-informed identification of uncertainty dynamics for the Burgers equation.

Copyright statement. TEXT10

1 Introduction

Machine learning and deep learning receive a fast growing interest in geo-science to address open issues, including for instance

sub-grid parmeterization,

A variety of learning architectures have shown their ability to encode the physics of a problem, especially deep learning

schemes which typically involve millions of unknown parameters, while the theoretical reason of this success remains a key15

issue (Mallat, 2016). A recent research trend has involved the design of lighter neural network (NN) architectures, like ResNets

with shared weights (He et al., 2016), while keeping similar learning performance. Interestingly, a ResNet can be understood

as an implementation of a numerical time scheme solving a ODE/PDE (Ruthotto and Haber, 2019; Rousseau et al., 2019).

Applications to learning PDEs from data have also been introduced e.g. PDE-Net (Long et al., 2017, 2018). These previous

works emphasize the connection between the underlying physics and the NN architectures.20

Designing or learning a NN representation for a given physical process remains a difficult issue. If the learning fails, it may

be unclear to know how to improve the architecture of the neural network. Besides, it seems irrelevant to run computationally-
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expensive numerical experiments on large-scale dataset to learn well-represented processes. The advection in fluid dynamics

may be a typical example of such processes, which do not require complex non-linear data-driven representations. Overall,

one would expect to accelerate and make more robust the learning process by combining, within the same NN architecture, the25

known physical equations with the unknown physics.

From the geoscience point of view, a key question is to bridge physical representations and neural network ones so that we

can decompose both known and unknown equations according to the elementary computational units made available by state-

of-the-art frameworks (e.g., keras, tensorflow). In other words, we aim to translate physical equations into the computational

vocabulary available to neural networks. PDE-NetGen addresses this issue for PDE representations, for which we regard30

convolutional layers as being similar to the stencil approach, which results from a finite difference implementation of PDEs
✿✿✿

the

✿✿✿✿✿✿✿✿✿✿✿

discretization
✿✿

of
✿✿✿

the
✿✿✿✿✿

PDEs
✿✿✿

by
✿✿✿✿✿

using
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

finite-difference
✿✿✿✿✿✿

method
✿✿✿✿

(see
✿

e.g.
✿✿✿✿✿✿✿✿✿✿✿✿

Thomas (1995)
✿

). PDE-NetGen relies on two main

components: (i) a computer algebra system, here Sympy (Meurer et al., 2017), used to handle the physical equations and

discretize the associated spatial derivatives, (ii) a Keras network generator which automaticaly translate PDEs into neural

network layers from these discretized forms. Note that code generator based on symbolic computation receives new interests35

to facilitate the design of numerical experiments see e.g. Louboutin et al. (2019). As an illustration, we consider in this paper

the application of PDE-NetGen to the identification of closure terms.

The paper is organized as follows. In the next section, we detail the proposed neural network generator, with an illustration of

the workflow on a diffusion equation. In section 3, we present the numerical integration of the neural network implementation

of the diffusion equation then an application to the data-driven identification of the closure of Burgers equation. Conclusion40

and perspective are given in section 4

2 Neural Network Generatation from symbolic PDEs

Introducing physics in the design of neural network topology is challenging since physical processes can rely on very different

partial derivative equations, e.g. eigenvalue problems for waves or constrained evolution equations in fluid dynamics under iso-

volumetric assumption. The neural network code generator presented here focuses on physical processes given as evolution45

equations which writes

∂tu= FM
✿✿

(u,∂αu), (1)

where u denotes either a scalar field or multivariate fields, ∂αu denotes partial derivatives with respect to spatial coordinates,

and F
✿✿

M
✿

is the generator of the dynamics. At first glance, this situation excludes diagnostic equation as encountered in

geophysics, like balance equations: each equation has to be the evolution equation of a prognostic variable. PDE-NetGen50

incorporates a way to solve diagnostic equation, this will be shown in the example detailed in Section 3.2.

We first explain how the derivatives are embedded into NN layers, then we detail the workflow of PDE-NetGen for a simple

example.
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2.1 Introducing physical knowledge in the design of a NN topology

Since the NN generator is designed for evolution equations, the core of the generator is the automatic translation of partial55

derivatives with respect to spatial coordinates into layers. The correspondence between the finite-difference discretization and

the convolutional layer give a practical way to translate a PDE into a NN (Cai et al., 2012; Dong et al., 2017; Long et al., 2017).

✿✿✿

The
✿✿✿✿✿✿✿✿✿✿✿✿✿

finite-difference
✿✿✿✿✿✿✿

method
✿✿✿✿✿✿✿

remains
✿✿

to
✿✿✿✿✿✿

replace
✿✿✿

the
✿✿✿✿✿✿✿✿✿

derivative
✿✿

of
✿

a
✿✿✿✿✿✿✿✿

function
✿✿

by
✿✿

a
✿✿✿✿✿✿

fraction
✿✿✿✿

that
✿✿✿✿

only
✿✿✿✿✿✿✿

depends
✿✿✿

on
✿✿✿

the
✿✿✿✿✿

value
✿✿

of

✿✿

the
✿✿✿✿✿✿✿✿

function
✿✿✿

(see
✿

e.g.
✿✿✿✿✿✿✿✿✿✿✿✿

Thomas (1995)
✿✿

). For instance, the finite difference of
✿✿✿✿✿✿✿✿✿✿✿✿✿

finite-difference
✿✿✿✿✿✿✿

method
✿✿✿✿✿✿

applied
✿✿✿

on a second order

partial derivative ∂2
xu, for u(t,x) a one dimensional function, is given by

✿✿

on
✿

a
✿✿✿

1D
✿✿✿✿✿✿✿

domain,
✿✿✿✿✿

leads
✿✿

to
✿✿✿✿✿✿✿✿✿✿

approximate
✿✿✿

the
✿✿✿✿✿✿✿✿✿

derivative60

✿✿

by
✿

∂2
xu(t,x)≈

u(t,x+ δx)+u(t,x− δx)− 2u(t,x)

δx2
F2

xu(t,x)
✿✿✿✿✿✿✿

, (2)

✿✿✿✿

with

F2
xu(t,x) =

u(t,x+ δx)+u(t,x− δx)− 2u(t,x)

δx2
,

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(3)

where δx stands for the discretization space step.
✿✿✿✿

Here
✿✿✿

the
✿✿✿✿✿

spatial
✿✿✿✿✿✿✿✿✿

derivative
✿✿

is
✿✿✿✿✿✿✿

replaced
✿✿

by
✿✿

a
✿✿✿✿✿✿✿

fraction
✿✿✿

that
✿✿✿✿

only
✿✿✿✿✿✿✿

depends
✿✿✿

on
✿✿✿

the65

✿✿✿✿✿

values
✿✿

of
✿✿

u
✿✿

at
✿✿✿

the
✿✿✿✿

time
✿

t
✿✿✿

and
✿✿✿✿✿✿

points
✿✿✿✿✿✿

x− δx,
✿✿

x,
✿✿✿✿✿✿✿

x+ δx. This makes appear a kernel stencil k = [1/δx2,−2/δx2,1/δx2] that can

be used in a 1D convolution layer with a linear activation function and without bias. A similar routine applies for 2D and 3D

geometries. PDE-NetGen relies on the computer algebra system sympy (Meurer et al., 2017) to compute the stencil as well as

to handle symbolic expressions. Alternatives

✿✿

In PDE-NetGen,
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿

finite-difference
✿✿✿✿✿✿✿✿✿✿✿✿✿

implementation
✿✿✿✿✿✿✿

appears
✿✿

as
✿

a
✿✿✿✿✿

linear
✿✿✿✿✿✿✿

operator
✿✿

F
✿✿✿✿✿

which
✿✿✿✿✿✿✿✿✿✿✿

approximates
✿✿✿✿

any
✿✿✿✿✿

partial
✿✿✿✿✿✿✿✿

derivative70

✿✿✿✿

from
✿✿✿

the
✿✿✿✿✿✿

values
✿✿

on
✿✿

a
✿✿✿✿✿✿

regular
✿✿✿✿

grid.
✿✿

In
✿✿✿✿✿✿✿✿✿

particular,
✿✿✿

the
✿✿✿✿✿

finite
✿✿✿✿✿✿✿✿✿

difference
✿✿✿✿✿✿✿✿

Fα
x u(t,x)✿✿

of
✿✿✿✿

any
✿✿✿✿✿✿

partial
✿✿✿✿✿✿✿✿

derivative
✿✿✿✿✿✿✿✿

∂α
x u(t,x)✿✿✿

of
✿✿✿✿

order
✿✿✿

α,

✿

is
✿✿✿✿✿✿✿✿✿

computed
✿✿✿✿

from
✿✿✿

the
✿✿✿✿

grid
✿✿✿✿✿✿

points
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

{x± (2i+1)δx}i∈[0,p]✿✿✿✿✿

when
✿✿✿✿✿✿✿✿✿

α= 2p+1
✿✿

is
✿✿✿✿

odd
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

{x± iδx}i∈[0,p] ✿✿✿✿✿

when
✿✿✿✿✿✿

α= 2p
✿✿

is
✿✿✿✿✿

even.

✿✿✿✿

This
✿✿✿✿✿✿✿✿✿✿✿✿

approximation
✿✿

is
✿✿✿✿✿✿✿✿✿

consistent
✿✿

at
✿✿✿

the
✿✿✿✿✿✿✿

second
✿✿✿✿✿

order
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

i.e. Fα
x u=

0
∂α
x u+O(δx2),

✿✿✿✿✿✿

where
✿✿

O
✿✿

is
✿✿✿

the
✿✿✿✿✿✿✿✿

Landau’s
✿✿✿✿

big
✿✿

O
✿✿✿✿✿✿✿✿

notation:

✿✿

for
✿✿✿✿

any
✿✿

f ,
✿✿✿

the
✿✿✿✿✿✿✿✿

notation
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

f(δx) =
0
O(δx2)

✿✿✿✿✿✿

means
✿✿✿

that
✿✿✿✿✿✿✿✿✿✿✿✿

limδx→0
f(δx)
δx2

✿✿

is
✿✿✿✿✿✿

finite.
✿✿✿

The
✿✿✿✿✿✿✿✿

operator
✿✿

F
✿✿✿✿✿✿✿

behaves
✿✿✿✿✿✿✿

partially
✿✿✿

as
✿✿✿

the
✿✿✿✿✿✿

partial

✿✿✿✿✿✿✿✿

derivative
✿✿✿✿✿✿✿

operator
✿✿✿

∂:
✿✿

F
✿✿

is
✿✿✿✿✿✿✿✿✿✿✿

commutative
✿✿✿✿

with
✿✿✿✿✿✿✿

respect
✿✿

to
✿✿✿✿✿✿✿✿✿✿

independent
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

coordinates i.e. in
✿✿

a
✿✿✿

2D
✿✿✿✿✿✿✿

domain
✿✿✿

for
✿✿✿✿✿✿✿✿✿✿

coordinates
✿✿✿✿✿

(x,y)75

✿✿

we
✿✿✿✿✿

have
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Fx ◦Fy = Fy ◦Fx,
✿✿✿✿✿✿

where
✿✿

◦
✿✿✿✿✿✿

denotes
✿✿✿✿

the
✿✿✿✿✿✿✿

operator
✿✿✿✿✿✿✿✿✿✿✿

composition,
✿✿✿✿

and
✿✿✿

this
✿✿✿✿✿✿✿

applies
✿✿

at
✿✿✿

any
✿✿✿✿✿

order
✿

e.g.
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

F3
xxy = F2

x ◦Fy

✿✿✿

(but
✿✿✿✿✿✿✿✿✿✿✿✿✿

F2
x 6= Fx ◦Fx).

✿✿✿✿✿✿✿

Hence,
✿✿✿

the
✿✿✿✿

finite
✿✿✿✿✿✿✿✿✿

difference
✿✿

of
✿✿

a
✿✿✿✿✿✿✿✿

derivative
✿✿✿✿

with
✿✿✿✿✿✿

respect
✿✿

to
✿✿✿✿✿✿✿✿

multiple
✿✿✿✿✿✿✿✿✿

coordinate,
✿✿

is
✿✿✿✿✿✿✿✿

computed
✿✿✿✿✿✿✿✿✿✿✿

sequentially

✿✿✿✿

from
✿✿✿

the
✿✿✿✿✿✿✿

iterative
✿✿✿✿✿✿✿✿✿✿✿

discretization
✿✿✿✿✿

along
✿✿✿✿

each
✿✿✿✿✿✿✿✿✿✿

coordinate,
✿✿✿

and
✿✿✿✿

this
✿✿✿✿✿✿✿✿✿✿✿✿

approximation
✿✿

is
✿✿✿✿✿✿✿✿✿

consistent
✿✿

at
✿✿✿

the
✿✿✿✿✿✿

second
✿✿✿✿✿

order.
✿✿✿✿

Note
✿✿✿✿

that
✿✿✿

we

✿✿✿✿✿

chose
✿✿

to
✿✿✿✿✿

design
✿

PDE-NetGen
✿✿✿✿✿✿✿✿✿✿

considering
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿

finite-difference
✿✿✿✿✿✿✿

method,
✿✿✿

but
✿✿✿✿✿✿✿✿✿✿

alternatives using automatic differentiation can be

considered as introduced by Raissi (2018) who used TensorFlow for the computation of derivative.80

Then, the time integration can be implemented either by a solver or by a ResNet architecture of a given time scheme e.g. an

Euler scheme or a fourth order Runge-Kutta (RK4) scheme (Fablet et al., 2017).

These two components, namely the translation of partial derivatives into NN layers and a ResNet implementation of the time

integration, are the building blocks of the proposed NN topology generator as examplfied
✿✿✿✿✿✿✿✿✿

examplified
✿

in the next Section.
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Figure 1. Neural Network generator for a heterogeneous 2D diffusion equation

2.2 Workflow of the NN representation generator85

We now present the workflow for the NN generator given a symbolic PDE using the heterogeneous 2D diffusion equation as a

testbed:

∂tu=∇ · (κ∇u) , (4)

where κ(x,y)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

κ(x,y) = [κij(x,y)](i,j)∈[1,2]×[1,2]}
✿

is a field of 2× 2 tensors ((x,y) are the spatial coordinates) and whose

python implementation is detailed in Fig. 1.90

Starting from a list of coupled evolution equations given as a PDE, a first preprocessing of the system determines the

prognostic functions, the constant functions, the exogenous functions and the constants. The exogenous functions are the

functions which depends on time and space, but whose evolution is not described by the system of evolution equations. For

instance, a forcing term in a dynamics is an exogenous function.

For the diffusion equation Eq. (4), the dynamics is represented in sympy using Function, Symbol and Derivative classes.95

The dynamics is defined as an equation using the Eq class of PDE-NetGen, which inherits from the Eq class of sympy with

additional facilities (see the implementation in Fig. 1 for additional details).

The core of the NN generator is given by the NNModelBuilder class. This class first preprocesses the system of evolution

equations and translates the system into a python NN model.
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Figure 2. Part of the python code of the NNDiffusion2DHeterogeneous class which implements the diffusion equation Eq. (4) as a neural-

network by using Keras (only one derivative is explicitly given, for the sake of simplicity)

The preprocessing of the diffusion equation Eq. (4) presents a single prognostic function, u, and three constant functions100

κ11,κ12 and κ22. There is no exogenous function for this example. During the preprocessing, the coordinate system of each

function is diagnosed such that we may determine the dimension of the problem. For the diffusion equation Eq. (4), since

the function u(t,x,y) is a function of (x,y) the geometry is two-dimensional. In the current version of PDE-NetGen, only

periodic boundaries are considered. The specific DerivativeFactory class ensures the periodic extension of the domain, then

the computation of the derivative by using CNN and finally the crop of the extended domain to return to the initial domain.105

Other boundaries could also be implemented and might be investigated in future developments.

All partial derivatives with respect to spatial coordinates are detected and then replaced by an intermediate variable in the

system of evolution equations. The resulting system is assumed to be algebraic, which means that it only contains addition,

subtraction, multiplication and exponentiation (with at most a real). For each evolution equation, the abstract syntax tree is

translated into a sequence of layers which can be automatically converted into NN layers in a given NN framework. For the110

current version of PDE-NetGen, we consider Keras (Chollet, 2018). An example of the implementation in Keras is shown in

Fig. 2: a first part of the code is used to compute all the derivatives using Conv layers of Keras, then Keras layers are used to

implement the algebraic equation which represents the trend ∂tu of the diffusion equation Eq. (4).

At the end, a python code is rendered from templates by using the jinja2 package. The reason why templates are used is to

facilitate the saving of the code in python modules and the modification of the code by the experimenter. Runtime computation115

of the class could be considered, but this is not implemented in the current version of PDE-NetGen. For the diffusion equation

Eq. (4), when run, the code rendered from the NNModelBuilder class creates the NNDiffusion2DHeterognous class. Following

the class diagram Fig. 3, the NNDiffusion2DHeterogeneous class inherits from a Model class which implements the time

evolution of an evolution dynamics by incorporating a time-scheme. Here several time-schemes are implemented, namely an

explicit Euler scheme, a second and a fourth order Runge-Kutta scheme.120
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diffusion_model

time_scheme = _rk4
shape = 2*(100,)
lengths= 2*(1.0,)
dx = 2*(1./100)
x = 2*(np.linspace(0,1,100),)
X = np.meshgrid(*x)
kappa_11 = np.nan
kappa_12 = np.nan
kappa_22 = np.nan

NNDiffusion2DHeterogeneous

prognostic_functions=('u')
coordinates=('x', 'y')
constant_functions=('kappa_11',
                    'kappa_12','kappa_22')
shape
lengths
d x
x
X
kappa_11
kappa_12
kappa_22
_trend_model

_make_trend_model()
trend(t,state)

Model

time_scheme

_euler(trend, t, state, dt)
_rk4(trend, t, state, dt)
_rk2(trend, t, state, dt)
trend(t, state)
forecast(window, state, saved_times)
predict(window, state, saved_times)

«instanceOf»

Figure 3. UML class diagram showing the interaction between the Model and the NNDiffusion2DHeterogeneous classes, and the resulting

instance diffusion_model corresponding to the numerical computation of the diffusion equation Eq. (4).

3 Applications of PDE-NetGen

Two applications are now considered. First we validate the NN generator on a known physical problem: the diffusion equation

Eq. (4) detailed in the previous section. Then, we tackle a situation where a part of the physics remains unknown, showing the

benefit of merging the known physics in the learning of the unknown processes.

3.1 Application to the diffusion equation125

In the python implementation Fig. 1, diffusion_model is an instance of the NNDiffusion2DHeterogeneous class, which numeri-

cally solves the diffusion equation Eq. (4) over a 2D domain, defined by default as the periodic domain [0,1)×[0,1) discretized

by 100 points along each directions, so that dx= dy = 1.0/100.

The time integration of the diffusion equation is shown in Fig. 4. For this numerical experiment, the heterogeneous tensor

field of diffusion tensors κ(x,y) is set as rotations of the diagonal tensor (l2x/τ, l
2
y/τ) defined from the length-scales lx = 10dx,130

ly = 5dy and the time-scale τ = 1.0, and with the rotation angles θ(x,y) = π
3 cos(kxx+ kyy) where (kx,ky) = 2π(2,3). The

time step for the simulation is dt= τMin(dx2/lx2,dy/ly2)/6
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

dt= τMin(dx2/lx2,dy/ly2)/6≈ 1.66 10−3. The numerical

integration is computed by using a fourth-order Runge-Kutta scheme. The initial condition of the simulation is given by a Dirac

Fig. 4 (a). In order to validate the solution obtained from the generated neural network, we compare the integration with the
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finite difference
✿✿✿

one
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿

finite-difference
✿

discretization of Eq. (4):135

∂

∂t
u(t,x,y)=−

2κ22(x,y)u(t,x,y)

dy2
+

κ22(x,y)u(t,x,−dy+ y)

dy2
+

κ22(x,y)u(t,x,dy+ y)

dy2
+

κ22(x,−dy+ y)u(t,x,−dy+ y)

4dy2
−

κ22(x,−dy+ y)u(t,x,dy+ y)

4dy2
−

κ22(x,dy+ y)u(t,x,−dy+ y)

4dy2
+

κ22(x,dy+ y)u(t,x,dy+ y)

4dy2
+

κ12(x,y)u(t,−dx+x,−dy+ y)

2dxdy
−

κ12(x,y)u(t,−dx+x,dy+ y)

2dxdy
−

κ12(x,y)u(t,dx+x,−dy+ y)

2dxdy
+140

κ12(x,y)u(t,dx+x,dy+ y)

2dxdy
+

κ12(x,−dy+ y)u(t,−dx+x,y)

4dxdy
−

κ12(x,−dy+ y)u(t,dx+x,y)

4dxdy
−

κ12(x,dy+ y)u(t,−dx+x,y)

4dxdy
+

κ12(x,dy+ y)u(t,dx+x,y)

4dxdy
+

κ12(−dx+x,y)u(t,x,−dy+ y)

4dxdy
−

κ12(−dx+x,y)u(t,x,dy+ y)

4dxdy
−

κ12(dx+x,y)u(t,x,−dy+ y)

4dxdy
+

κ12(dx+x,y)u(t,x,dy+ y)

4dxdy
−

2κ11(x,y)u(t,x,y)

dx2
+145

κ11(x,y)u(t,−dx+x,y)

dx2
+

κ11(x,y)u(t,dx+x,y)

dx2
+

κ11(−dx+x,y)u(t,−dx+x,y)

4dx2
−

κ11(−dx+x,y)u(t,dx+x,y)

4dx2
−

κ11(dx+x,y)u(t,−dx+x,y)

4dx2
+

κ11(dx+x,y)u(t,dx+x,y)

4dx2

which
✿

,

∂tu= Fxi(κij)Fxj (u)+κijF
2
xixj (u),

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(5)150

✿✿✿✿✿

where
✿✿

F
✿✿

is
✿✿✿

the
✿✿✿✿✿✿✿

operator
✿✿✿✿✿✿✿✿

described
✿✿

in
✿✿✿✿✿✿✿

Section
✿✿✿

2.1,
✿✿✿✿

and
✿✿✿✿✿

whose
✿✿✿✿✿✿✿✿✿

numerical
✿✿✿✿✿

result is shown in Fig. 4 (b).

The heterogeneity of the diffusion tensors makes appear an anisotropic diffusion of the Dirac
✿✿✿

(see
✿✿✿✿

Fig.
✿✿

4
✿✿✿✿

(b)), which is

perfectly reproduced by the result obtained from the integration of the generated neural network, shown in Fig. 4 (c). At a

quantitative level, the l2 distance between the both solutions is 10−5
✿✿✿✿

(with
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

dt= 1.6 10−3). This validates the ability of the

NN generator PDE-NetGen to compute the dynamics of a given physical evolution equation.155
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(a)

Initial condition at time 0

0.0 0.2 0.4 0.6 0.8
0.0

0.2

0.4

0.6

0.8

(b)
RK4 Integration of the

Finite Difference scheme at time 1.0

0.0 0.2 0.4 0.6 0.8
0.0

0.2

0.4

0.6

0.8

(c)
RK4 Integration of the

Neural Network scheme at time 1.0

Figure 4. Starting from a Dirac (panel a), the diffusion equation Eq. (4) is integrated from 0 to 1 by using a fourth-order Runge-Kutta time

scheme. The results obtained from the time integration of the finite difference
✿✿✿✿✿✿✿✿✿✿✿✿

finite-difference implementation Eq. (5) (panel b) and of the

generated NN representation (panel c) are similar.

The next section illustrates the situation where only a part of the dynamics is known, while the remaining physics is learned

from the data.

3.2 Application to the data-driven identification of stochastic representations

As an illustration of the PDE-NetGen package, we consider a problem encountered in uncertainty prediction: the parametric

Kalman filter (PKF) (Pannekoucke et al., 2016, 2018). For a detailed presentation and discussion of uncertainty prediction160

issues in geophysical dynamics, we may refer the reader to Le Maître and Knio (2010). Here, we briefly introduce basic

elements for the self-consistency of the example.

The idea of the PKF is to mimic the dynamics of the covariance-error matrices all along the analysis and the forecast cycle

of the data assimilation in a Kalman setting (Kalman filter equations for the uncertainty). It relies on the approximation of the

true covariance matrices by some parametric covariance model. When considering a covariance model based on a diffusion165

equation, the parameters are the variance V and the local diffusion tensor ν. Therefore, the dynamics of the covariance-error

matrices along the data assimilation cycles is deduced from the dynamics of the variance and of the diffusion tensors. In place

of the full covariance evolution this dramatically reduces the dynamics to the one of few parameters.

For the non-linear advection-diffusion equation, known as the Burgers equation,

∂tu+u∂xu= κ∂2
xu, (6)170
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the dynamics of the variance Vu and the diffusion tensor νu = [νu,xx] (which is featured by a single field νu,xx), writes

(Pannekoucke et al., 2018)














































































∂
∂t
u = κ ∂2

∂x2u−u ∂
∂x

u−
∂
∂x

Vu

2

∂
∂t

Vu = − κVu

νu,xx
+κ ∂2

∂x2 Vu−
κ( ∂

∂x
Vu)

2

2Vu

−u ∂
∂x

Vu−2Vu
∂
∂x

u

∂
∂t

νu,xx = 4κνu,xx
2
E

[

εu
∂4

∂x4 εu

]

−3κ ∂2

∂x2 νu,xx−κ+
6κ( ∂

∂x
νu,xx)

2

νu,xx

−
2κνu,xx

∂2

∂x2
Vu

Vu

+
κ ∂

∂x
Vu

∂
∂x

νu,xx

Vu

+

2κνu,xx( ∂
∂x

Vu)
2

Vu
2 −u ∂

∂x
νu,xx+

2νu,xx
∂
∂x

u

(7)

where E [·] denotes the expectation operator. For the sake of simplicity, in this system of PDEs, u denotes the expectation of

the random field and not the random field itself as in (Eq. (6)).175

In this system of PDEs, the term E

[

εu
∂4

∂x4 εu

]

can not be determined from the known quantities u,Vu and νu,xx. This

makes appear a closure problem
✿✿✿✿✿

brings
✿✿✿

up
✿✿

a
✿✿✿✿✿✿✿

problem
✿✿

of
✿✿✿✿✿✿✿

closure, i.e. determinining the unknown term as a function of the

known quantities. A naive assumption would be to consider a zero closure (closure(t,x) = 0). However, while the tangent-

linear evolution of the perturbations along the Burgers dynamics is stable, the dynamics of the diffusion coefficient νu,xx

would lead to unstable dynamics as the coefficient of the second order term −3κ ∂2

∂x2 νu,xx is negative. This stresses further the180

importance of the unknown term to successfully predict the uncertainty.

Within a data-driven framework, one would typically explore a direct identification of the dynamics of diffusion coefficient

νu,xx. Here, we exploit PDE-NetGen to fully exploit the known physics and focus on the data-driven identification of the

unknown term E

[

εu
∂4

∂x4 εu

]

in the system of equations Eq. (7). It comes to replace term E

[

εu
∂4

∂x4 εu

]

in Eq. (7) by an

exogenous function closure(t,x) and then to follow the workflow detailed in Section 2.2.185

The unknown closure function is represented by a neural network (a Keras model) which implements the expansion

closure(t,x)∼ a
∂2

∂x2 νu,xx (t,x)

νu,xx2 (t,x)
+ b

1

νu,xx2 (t,x)
+ c

(

∂
∂x

νu,xx (t,x)
)2

νu,xx3 (t,x)
(8)

where (a,b,c) are unknown and where the partial derivatives are computed from convolution layers, as described in Sec-

tion 2. This expression is similar to a dictionary of possible terms as in Rudy et al. (2017) and it is inspired from an arbitrary

theoretically-designed closure for this problem , where (a,b,c) = (1, 34 ,−2) (Pannekoucke et al., 2018)
✿✿✿

(see
✿✿✿✿✿✿✿✿✿

Appendix
✿✿

A
✿✿✿

for190

✿✿✿✿✿✿

details). In the NN implementation of the exogenous function modeled as Eq. (8), each of the unknown coefficients (a,b,c) are

implemented as a 1D convolutional layer, with a linear activation function and without bias. Note that the estimated parameters

(a,b,c) could be different from the one of the theoretical closure: while the theoretical closure can give some clues for the

design of the unknown term, this closure is not the truth which is unknown
✿✿✿✿

(see
✿✿✿✿✿✿✿✿

Appendix
✿✿✿

A).
✿

✿✿✿

The
✿✿✿✿✿✿

above
✿✿✿✿✿✿✿✿

approach,
✿✿✿✿✿✿

which
✿✿✿✿✿✿✿

consists
✿✿

in
✿✿✿✿✿✿✿✿✿✿✿

constructing
✿✿

an
✿✿✿✿✿✿✿✿✿

exogenous
✿✿✿✿✿✿✿✿

function
✿✿✿✿✿

given
✿✿✿

by
✿

a
✿✿✿✿

NN
✿✿

to
✿✿✿

be
✿✿✿✿✿✿✿✿✿✿

determined,
✿✿✿✿

may
✿✿✿✿✿

seem195

✿✿✿✿✿✿

tedious
✿✿✿

for
✿✿

an
✿✿✿✿✿✿✿✿✿✿✿

experimenter
✿✿✿✿✿

who
✿✿✿✿✿

would
✿✿✿

not
✿✿✿

be
✿✿✿✿✿✿✿✿✿✿

accustomed
✿✿

to
✿✿✿✿✿

NNs.
✿✿✿✿✿✿✿✿✿✿

Fortunately,
✿✿✿

we
✿✿✿✿

have
✿✿✿✿✿✿✿✿✿✿

considered
✿✿

an
✿✿✿✿✿✿✿✿✿

alternative
✿✿✿

in PDE-
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Figure 5.
✿✿✿✿✿✿✿✿✿✿✿✿

Implementation
✿✿

of
✿✿✿

the
✿✿✿✿✿✿

closure,
✿✿

by
✿✿✿✿✿✿✿

defining
✿✿✿

each
✿✿✿✿✿✿✿✿

unknown
✿✿✿✿✿✿

quantity
✿✿

as
✿✿

an
✿✿✿✿✿✿✿

instance
✿✿

of
✿✿

the
✿✿✿✿

class
✿

TrainableScalar,
✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿

resulting

✿✿✿✿✿✿✿

generated
✿✿✿

NN
✿✿✿✿

code.
✿✿✿✿

This
✿✿

is
✿

a
✿✿✿

part
✿✿

of
✿✿✿✿

code
✿✿✿✿✿✿

avaibale
✿✿

in
✿✿✿

the
✿✿✿✿✿✿

Jupyter
✿✿✿✿✿✿✿

notebook
✿✿✿✿

given
✿✿

as
✿✿✿✿✿✿✿

example
✿

in
✿✿✿

the
✿✿✿✿✿✿

package
✿

PDE-NetGen
✿

.

NetGen
✿✿✿

that
✿✿✿

can
✿✿✿

be
✿✿✿✿

used
✿✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿

particular
✿✿✿✿

case
✿✿✿✿✿✿

where
✿✿✿✿✿✿✿✿✿

candidates
✿✿✿

for
✿✿

a
✿✿✿✿✿✿

closure
✿✿✿✿

take
✿✿✿✿

the
✿✿✿✿

form
✿✿✿

of
✿✿

an
✿✿✿✿✿✿✿✿✿✿

expression
✿✿✿✿

with
✿✿✿✿✿✿

partial

✿✿✿✿✿✿✿✿✿

derivatives,
✿✿

as
✿✿

it
✿✿

is
✿✿✿

the
✿✿✿✿✿

case
✿✿✿

for Eq. (8)
✿

.
✿✿✿

An
✿✿✿✿✿✿✿

example
✿✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿✿

implementation
✿✿

is
✿✿✿✿✿✿

shown
✿✿

in
✿✿✿✿

Fig.
✿✿

5
✿✿✿✿✿

where
✿

pkf_dynamics
✿✿✿✿✿

stands
✿✿✿

for

✿✿

the
✿✿✿✿✿✿✿

system
✿✿

of
✿✿✿✿✿✿✿✿✿

equations Eq. (7)
✿

.
✿✿✿✿

The
✿✿✿✿✿✿✿

unkown
✿✿✿✿✿✿

closure
✿✿✿✿✿✿✿✿

function
✿✿

is
✿✿✿✿✿✿✿

replaced
✿✿✿

by
✿✿✿

the
✿✿✿✿✿✿✿✿

proposal
✿✿

of
✿✿✿✿✿✿✿

closure
✿

Eq. (8)
✿✿✿✿✿

where
✿✿✿✿✿

each

✿✿✿✿✿✿✿

unknown
✿✿✿✿✿✿✿✿

quantity
✿✿✿✿✿✿

(a,b,c)
✿✿

is
✿✿✿✿✿✿✿✿

declared
✿✿

as
✿✿

an
✿✿✿✿✿✿✿✿

instance
✿✿

of
✿✿✿

the
✿✿✿✿

class
✿

TrainableScalar
✿

.
✿✿✿✿✿

Then,
✿✿✿

the
✿✿✿

NN
✿✿

is
✿✿✿✿✿✿✿✿✿

generated
✿✿✿✿✿✿✿✿✿

producing
✿✿✿

the200

✿✿✿✿

class ClosedPKFBurgers
✿✿✿✿✿

whose
✿✿

an
✿✿✿✿✿✿✿

instance
✿✿

is
✿✿✿✿✿

ready
✿✿✿

for
✿✿✿✿✿✿✿

training.
✿✿✿

In
✿✿✿

the
✿✿✿✿✿✿✿✿

generated
✿✿✿✿✿

code,
✿✿✿✿

each
✿✿✿✿✿✿✿

instance
✿✿

of
✿✿✿

the
✿

TrainableScalar

✿✿✿✿

class
✿✿

is
✿✿✿✿✿✿✿✿

translated
✿✿

as
✿✿

a
✿✿✿✿✿✿

specific
✿✿✿✿✿

layer,
✿

TrainableScalarLayerFactory,
✿✿✿✿✿✿✿✿✿

equivalent
✿✿

to
✿✿✿

the
✿✿✿✿✿

above
✿✿✿✿✿✿✿✿✿

mentioned
✿✿✿✿✿✿✿✿✿✿

convolution
✿✿✿✿✿

layer,
✿✿✿✿

and

✿✿✿✿✿

whose
✿✿✿✿✿✿✿✿✿

parameter
✿✿✿

can
✿✿

be
✿✿✿✿✿✿✿✿

trainable.
✿✿✿✿

For
✿✿✿✿✿✿✿

instance,
✿✿✿

the
✿✿✿✿✿✿✿✿

trainable
✿✿✿✿✿

scalar
✿

a
✿✿

is
✿✿✿✿✿✿✿✿✿✿✿

implemented
✿✿✿

by
✿✿✿

the
✿✿✿

line
✿

train_scalar_9
✿

.
✿✿✿✿

Note
✿✿✿✿

that
✿✿✿

the

✿✿✿✿

layer
✿

TrainableScalarLayerFactory
✿✿✿

can
✿✿

be
✿✿✿✿

used
✿✿✿

for
✿✿✿✿

1D,
✿✿

2D
✿✿✿

or
✿✿✿

3D
✿✿✿✿✿✿✿

domains.
✿✿✿

In
✿✿✿

this
✿✿✿✿✿✿✿✿

example,
✿✿✿

the
✿✿✿✿✿✿✿

proposal
✿✿✿

for
✿✿✿✿✿✿

closure
✿✿✿

has
✿✿✿✿✿

been

✿✿✿✿✿✿

defined
✿✿

at
✿

a
✿✿✿✿✿✿✿✿

symbolic
✿✿✿✿✿

level,
✿✿✿✿✿✿

without
✿✿✿✿✿✿✿✿✿

additional
✿✿✿✿✿✿✿✿✿

exogenous
✿✿✿✿

NN.205

✿✿

An
✿✿✿✿✿✿✿✿

example
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿✿

implementation
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿✿

exogenous
✿✿✿✿

NN
✿✿✿

and
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿✿

Trainable
✿✿✿✿✿

layers
✿✿✿

are
✿✿✿✿✿✿✿✿

provided
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿

package PDE-NetGen

✿✿

as
✿✿✿✿✿✿

Jupyter
✿✿✿✿✿✿✿✿✿

notebooks,
✿✿✿

for
✿✿✿

the
✿✿✿✿

case
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

Burgers
✿✿✿✿✿✿✿

equation.

For the numerical experiment, the Burgers equation is solved on a one-dimensional periodic domain of length 1, discretized

in 241 points. The time step is dt= 0.002, and the dynamics is computed over 500 time steps so to integrate from t= 0 to

t= 1.0. The coefficient of the physical diffusion is set to κ= 0.0025. The numerical setting considered for the learning is the210

tangent-linear regime described in Pannekoucke et al. (2018) where the initial uncertainty is small and whose results are shown

in their Fig. 4(a), Fig. 5(a) and Fig. 6(a).
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Figure 6. Example of a Keras implementation for a RK4 time-scheme: given time-step dt and a Keras model trend of the dynamics, the

function make_time_scheme return
✿✿✿✿✿

returns a Kera
✿✿✿✿

Keras
✿

model implementing a RK4.

To train the parameters (a,b,c) in Eq. (8), we build a training dataset from an ensemble prediction method where each

member is a numerical solution of the Burgers equation. The numerical code for the Burgers equation derives from PDE-

NetGen applied on the symbolic dynamics Eq. (6). Using this numerical code, we generate a training dataset composed of 400215

ensemble simulations of 501 time steps, where each each ensemble contains 400 members. For each ensemble forecast, we

estimate the mean, variance Vu and diffusion tensor νu. Here, we focus on the development of the front where we expect the

unknown term to be of key importance and keep for training purposes the last 100 time-steps of each ensemble forecast. For

the training only, the RK4 time-scheme is computed as the ResNet implementation given in Fig. 6, so to provide the end-to-end

NN implementation of the dynamics.220

The resulting dataset involves 40000 samples. To train the learnable parameters (a,b,c), we minimize the one-step ahead

prediction loss for the diffusion tensor νu. We use ADAM optimizer (Kingma and Ba, 2014) and a batch size of 32. Using an

initial learning rate of 0.1, the training converges within 3
✿✿✿✿✿

outer
✿✿✿✿

loops
✿✿✿

of
✿✿

30
✿

epochs with a geometrical decay of the learning

rate by a factor of 1/10 after each epoch.
✿✿✿✿

outer
✿✿✿✿✿

loop.
✿

The coefficients resulting from the training over 10 runs are (a,b,c) =

(0.93,0.75,−1.80)± (5.1 10−5,3.6 10−4,2.7 10−4).225

Figure 7 compares the estimation from a large ensemble of 1000 members (top panels) with the results of the trained closed

PKF dynamics (bottom panels). Both the ensemble and PKF means (a1) and (b1) clearly show a front which emerges from

the smooth initial condition and located near x= 0.75 at time 1.. The variance fields (a2) and (b2) illustrate the vanishing

11
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Figure 7. Uncertainty estimated from a large ensemble of 1000 members (a) with the expectation E [u] (a1), variance Vu (a2) and the length-

scale (defined from the diffusion coefficient by
√

0.5νu,xx) (a3) ; and the uncertainty predicted from the PKF evolution equations closed

from the data (b), where the same statistics are shown in (b1), (b2) and (b3). The fields are represented only for time t= 0,0.2,0.4,0.6,0.8,1

of the variance due to the physical diffusion (the κ term in Eq. (6)) and the emergence of a pic
✿✿✿

peak
✿

of uncertainty which is

related to the uncertainty of the front position. Instead of the diffusion νu,xx, panels (a3) and (b3) show the evolution of the230

correlation length-scale defined as
√

0.5νu,xx, which has the physical dimension of a length. Both panels show the increase of

the length-scale due to the physical diffusion, except in the vicinity of the front where an oscillation occurs, which is related

to the inflexion point of the front. While the magnitude of the oscillation predicted by the PKF (b3) is slightly larger than the

estimation from the large ensemble reference (a3), the pattern is well predicted by the PKF. Besides, the parametric form of the

PKF does not involve local variabilities due to the finite size of the ensemble, which may be observed in panel (a3). Overall,235

these experiments support the relevance of the closure Eq. (8) learned from the data to capture the uncertainty associated with

Burgers’ dynamics.

3.3 Discussion on the choice of a closure

In the Burgers’ dynamics, an a priori knowledge was introduced to propose a NN implementing the closure Eq. (8).

In the general case, the choice of the terms to be introduced in the closure may be guided by known physical properties240

that need to be verified by the system. For example, conservation or symmetries properties that leave the system invariant

can guide in proposing possible terms For the Burgers’ dynamics, νu,xx has the dimension of a length squared, [L2], and
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E

[

εu
∂4

∂x4 εu

]

is of dimension [L−4]. Thus, the terms considered in Eq. (8) are among the simplest ones which fullfill the

expected dimensionality of [L−4]. Symbolic computation may here help the design of such physical parameterizations in more

general cases.245

When no priors are available, one may consider modeling the closure using state-of-the-art deep neural network architectures

which have shown impressive prediction performance, e.g. CNNs, ResNets (Zagoruyko and Komodakis, 2016; Raissi, 2018).

✿✿✿

The
✿✿✿✿

aim
✿✿

of
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿

illustration
✿✿✿✿✿✿✿✿

proposed
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿✿

Burgers’
✿✿✿✿✿✿✿✿✿

dynamics
✿✿

is
✿✿✿

not
✿✿

to
✿✿✿✿✿✿✿✿✿

introduce
✿

a
✿✿✿✿✿

deep
✿✿✿✿✿✿✿

learning
✿✿✿✿✿✿✿✿✿✿

architecture
✿✿✿✿

for
✿✿✿

the

✿✿✿✿✿✿

closure,
✿✿✿

but
✿✿✿

to
✿✿✿✿✿✿✿

facilitate
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

construction
✿✿

of
✿✿

a
✿✿✿✿

deep
✿✿✿✿✿✿✿

learning
✿✿✿✿✿✿✿✿✿✿

architecture
✿✿✿✿✿✿

taking
✿✿✿✿

into
✿✿✿✿✿✿

account
✿✿✿✿

the
✿✿✿✿✿✿

known
✿✿✿✿✿✿✿

physics:
✿✿✿

the
✿✿✿✿✿

focus
✿✿

is

✿✿

on
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

hybridation
✿✿✿✿✿✿✿

between
✿✿✿✿✿✿

physics
✿✿✿✿

and
✿✿✿✿✿✿✿

machine
✿✿✿✿✿✿✿✿

learning.
✿✿✿✿✿✿✿

Though
✿✿✿

the
✿✿✿✿✿✿

closure
✿✿✿✿

itself
✿✿✿✿

may
✿✿✿

not
✿✿✿✿✿

result
✿✿✿

in
✿

a
✿✿✿✿

deep
✿✿✿✿✿✿✿✿✿✿✿

architecture,
✿✿✿

the250

✿✿✿✿✿

overall
✿✿✿✿✿✿✿✿✿

generated
✿✿✿✿✿

model
✿✿✿✿✿

leads
✿✿

to
✿

a
✿✿✿✿✿

deep
✿✿✿✿✿✿✿✿✿✿

architecture.
✿✿✿

For
✿✿✿✿✿✿✿✿

instance,
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿

implementation
✿✿✿✿✿

using
✿✿✿

the
✿✿✿✿✿✿✿✿✿

exogenous
✿✿✿

NN
✿✿✿

use
✿✿✿✿✿✿

around
✿✿✿

75

✿✿✿✿✿

layers
✿✿✿✿✿

while
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿

implementation
✿✿✿✿✿

based
✿✿✿

on
✿✿✿

the
✿✿✿✿

class
✿

TrainableScalar
✿✿✿

use
✿✿✿

73
✿✿✿✿✿

layers
✿✿✿✿

(we
✿✿✿✿

save
✿✿✿

the
✿✿✿✿✿✿✿✿✿

calculation
✿✿

of
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿

derivatives

✿✿✿

that
✿✿✿✿✿✿

appear
✿✿

in
✿

Eq. (8)
✿

,
✿✿✿✿✿

while
✿✿✿✿

they
✿✿✿

are
✿✿✿✿✿✿✿✿✿

computed
✿✿✿✿✿

twice
✿✿✿✿✿

when
✿✿✿✿✿

using
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿

exogenous
✿✿✿✿✿

NN),
✿✿✿✿

with
✿✿✿✿✿✿

several
✿✿✿✿✿✿✿✿✿✿✿✿

convolutional
✿✿✿✿✿✿

layers

✿✿✿✿✿

among
✿✿✿✿✿✿

them.
✿✿✿

For
✿✿✿✿✿

other
✿✿✿✿✿✿✿✿

problems,
✿✿✿✿✿

there
✿✿✿✿✿

would
✿✿✿

be
✿✿

no
✿✿✿✿✿

other
✿✿✿✿✿✿

choice
✿✿✿✿

than
✿✿✿✿✿✿✿✿✿✿

considering
✿

a
✿✿✿✿✿

deep
✿✿✿✿✿

neural
✿✿✿✿✿✿✿✿

network,
✿✿✿

for
✿✿✿✿✿✿✿

instance
✿✿✿✿✿

using

✿✿✿✿✿✿✿

multiple
✿✿✿✿✿✿

ResNet
✿✿✿✿✿✿✿

blocks,
✿✿✿✿✿✿✿✿✿✿✿✿

normalization,
✿✿✿✿

and
✿✿

so
✿✿✿

on,
✿✿✿

or
✿✿✿✿✿✿✿✿✿✿

architectures
✿✿✿✿✿✿✿✿

inspired
✿✿✿✿

from
✿✿✿✿✿✿

recent
✿✿✿✿✿✿

studies
✿✿✿

on
✿✿✿✿✿✿

closure
✿✿✿✿✿✿✿✿

modeling
✿✿

(e.g.
✿

,255

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Bolton and Zanna (2019)
✿

).
✿✿✿✿✿

Such
✿✿✿✿✿✿✿✿✿✿✿

architectures
✿✿✿

can
✿✿

be
✿✿✿✿✿✿✿

plugged
✿✿

in
✿

PDE-NetGen
✿✿

as
✿✿

an
✿✿✿✿✿✿✿✿✿

exogenous
✿✿✿✿✿

neural
✿✿✿✿✿✿✿✿

network.

4 Conclusions

We have introduced a neural network generator PDE-NetGen, which provides new means to bridge physical priors given as

symbolic PDEs and learning-based NN frameworks. This package derives and implements a finite difference
✿✿✿✿✿✿✿✿✿✿✿✿✿

finite-difference

version of a system of evolution equations, where the derivative operators are replaced by appropriate convolutional layers260

including the boundary conditions. The package has been developed in python using the symbolic mathematics library sympy

and keras.

We have illustrated the usefulness of PDE-NetGen through two applications: a neural-network implementation of a 2D

heterogeneous diffusion equation and the uncertainty prediction in the Burgers equation. The later involves unknown closure

terms, which are learned from data using the proposed neural-network framework. Both illustrations show the potential of such265

an approach, which could be useful for improving the training in complex application by taking into account the physics of the

problem.

This work opens new avenues to make the most of existing physical knowledge and of recent advances in data-driven

settings, and more particularly neural networks, for geophysical applications. This includes a wide range of applications, where

such physically-consistent neural network frameworks could either lead to the reduction of the computational cost (e.g., GPU270

implementation embedded in deep learning frameworks) or provide new numerical tools to derive key operators (e.g., adjoint

operator using automatic differentiation). Besides, these neural network representations also offer new means to complement

known physics with the data-driven calibration of unknown terms. This is regarded as key to advance the state-of-the-art for

the simulation, forecasting and reconstruction of geophysical dynamics through model-data-coupled frameworks.
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Code availability. Code of PDE-NetGen is available on github in version 1.0: https://github.com/opannekoucke/pdenetgen275

Appendix A:
✿✿✿✿✿

Local
✿✿✿✿✿✿✿✿

Gaussian
✿✿✿✿✿✿✿

closure

✿✿✿

For
✿✿✿✿✿✿✿✿✿✿✿✿✿

self-consistency,
✿✿✿

we
✿✿✿✿✿

detail
✿✿✿✿

how
✿✿✿

the
✿✿✿✿✿✿✿✿✿

theoretical
✿✿✿✿✿✿

closure
✿✿

is
✿✿✿✿✿✿✿✿

obtained
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Pannekoucke et al., 2018)
✿

.

✿

It
✿✿✿✿

can
✿✿

be
✿✿✿✿✿✿

shown
✿✿✿

that
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

E
[

εu∂
4
xεu

]

= E

[

(

∂2
xεu

)2
]

− 2∂2
xgu✿✿✿✿✿

where
✿✿✿✿✿✿✿✿

gu = 1
2νu✿✿

is
✿✿✿

the
✿✿✿✿✿✿✿✿

so-called
✿✿✿✿✿

metric
✿✿✿✿✿✿

tensor
✿✿✿

that
✿✿

is
✿

a
✿✿✿✿✿✿

scalar
✿✿✿✿

field

✿✿

in
✿✿✿

1D.
✿✿✿✿✿

When
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿

correlation
✿✿✿✿✿✿✿

function
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

ρ(x,x+ δx) = E [ε(x)ε(x+ δx)]
✿✿

is
✿✿

a
✿✿✿✿✿✿✿✿✿✿✿✿

homogeneous
✿✿✿✿✿✿✿✿

Gaussian,
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

ρ(x,x+ δx) = e−
1

2
δx2g

✿✿✿✿✿

where
✿✿✿

the
✿✿✿✿✿✿

metric
✿✿✿✿✿

tensor
✿✿

g
✿✿

is
✿

a
✿✿✿✿✿✿✿

constant
✿✿✿✿✿

here,
✿✿✿✿

then
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

fourth-order
✿✿✿✿✿✿

Taylor
✿✿✿✿✿✿✿✿✿

expansion
✿✿

in
✿✿✿

δx,
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

Gaussian
✿✿✿✿✿✿✿✿✿✿

correlation,
✿✿✿✿✿

leads280

✿✿

to
✿✿

the
✿✿✿✿✿✿✿

identity
✿✿✿✿✿✿✿✿✿✿✿✿✿

E
[

ε∂4
xε
]

= 3g2
✿✿✿✿✿

which
✿✿

is
✿✿✿✿✿✿✿✿✿✿✿

independent
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

position
✿✿

x.
✿✿

As
✿✿

a
✿✿✿✿✿✿✿

possible
✿✿✿✿✿✿✿

closure,
✿✿✿

this
✿✿✿✿✿✿

suggest
✿✿

to
✿✿✿✿✿✿

model
✿✿✿

the
✿✿✿✿✿✿✿

unkown

✿✿✿✿

term
✿✿

as
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

E
[

εu∂
4
xεu

]

∼ 3g2u − 2∂2
xgu✿✿✿✿

that
✿✿✿✿✿✿✿

depends
✿✿

on
✿✿✿

x.
✿✿✿✿✿✿✿✿

Replacing
✿✿✿

gu
✿✿

by
✿✿✿✿✿✿✿

1/(2νu)
✿✿✿✿✿

leads
✿✿

to

E
[

εu∂
4
xεu

]

∼
∂2

∂x2 νu,xx (t,x)

νu,xx2 (t,x)
+

3

4

1

νu,xx2 (t,x)
− 2

(

∂
∂x

νu,xx (t,x)
)2

νu,xx3 (t,x)
.

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(A1)

✿

It
✿✿✿✿✿✿

results
✿✿✿

that
✿

Eq. (A1)
✿

is
✿✿✿

not
✿✿✿

the
✿✿✿

true
✿✿✿✿✿✿✿

analytic
✿✿✿✿✿✿✿✿

expresion
✿✿

of
✿✿✿✿✿✿✿✿✿✿

E
[

εu∂
4
xεu

]

✿✿

as
✿

a
✿✿✿✿✿✿✿

function
✿✿

of
✿✿✿✿✿

u,Vu
✿✿✿

and
✿✿✿

νu
✿✿

but
✿✿✿✿

only
✿✿

a
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

parameterizations.
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