Final answer to the referee 1

First of all, we would like to thank the referee for her/his review on our paper and for giving us the
opportunity to improve our paper.

Now, we organized the answer to the comments as follows. First, we list some changes afford to the
manuscript then detail our answers to the questions raised by the referee.

List of changes for the revision
Major changes

To facilitate the construction of a closure, we introduced the possibility to define an unknown
quantity as a trainable scalar function using TrainableScalar class. This applies when the proposal
for the closure is given by a symbolic expression with partial derivatives. Hence, there are now two
possibilities to introduce a closure and merge the known physics to the design of a NN. The
manuscript has been modified from lines 180 to 191, with a new Fig5 (see snapshot Rev1-Fig. 1)

Minor changes

1) Fig. 1, 2 and 6 has been updated to simplify the import of pdenetgen — this has no impact on the
manuscript nor on the results.

2) The description of the learning was not precise, we modified the lines 205-210 as follows:
“Using an initial learning rate of 0.1, the training converges within 3 outer loops of 30 epochs with
a geometrical decay of the learning rate by a factor of 1/10 after each outer loop.”

Differences between the two version of the manuscript
To facilitate the comparison between the two version of the manuscript, a companion version of the

manuscript lists all the modifications where old (new) statements are in red (blue). Snapshots of the
revised version of manuscript help to illustrate the modifications, they are label as Rev1-Fig. X.



180 The above approach, which consists in constructing an exogenous function given by a NN to be determined, may seem

tedious for an experimenter who would not be accustomed to NNs. Fortunately, we have considered an alternative in PDE-

Intreduction of the closure ine the PKF dynamics

from pdenetgen import TrainableScalar

# Set the closure by using TrainableScalar

a, b, ¢ = [TrainableScalar(l) fer 1 in 'abc']

closure proposal = a*Derivativel(nu,x,2)/nu**Integer{2)+b*1/nu**Integer(2]+\y
c*Derivative (nu,=)**2/nu**Integer{3)

display(closure proposal)

# . . E
o Yy (1.X) . b el 5 Vua (1 X))
Vaxs2 (1, X) Ve (1, X) Vi (1, X)
# Replace the closure(t,x) by the proposed closure

pkf_dynamics[2] = pkf dynani‘csl:].suns(runctmni ‘closure” ) (t,x),closure_propesal)

# Generate the MV code leading to the ClosedPKFBurgers class.
exec [NWModelBuilder (pkf_dynamics, 'ClosedPKFBurgers’ ). code)

Sample of code generated 1o define the ClosedPKFBurgers class

[-.1

pow_21 = keras.layers.multiply{[div 17,div_17,] ,name='PowLayer 21'}

mul_28 = keras.layers.multiply([pow_21,Dnu_u_xx x o2],name='MulLayer 28')

train_scalar_9 = TrainableScalarLayerFactory{input_shape=mul_28.shape, name='TrainableScalar a’,
init value=8, use bias=False mean=0.9,stddev=1.6,seed=None, wl2=None) (mul_28)
#TrainableScalar name: "a

add B = keras.layers.add([train_scalar 7,train_scalar_B,train scalar 2],name='AddLayer 8')

mul_26 = keras.layers.multiply([pow_17,add 8],name='MulLayer 26')

[..]

Figure 5. Implementation of the closure, by defining each unknown quantity as an instance of the class TrainableScalar, and the resulting

generated NN code. This is a part of code avaibale in the Jupyter notebook given as example in the package PDE-NeiGen.

NeiGen that can be used in the particular case where candidates for a closure take the form of an expression with partial
derivatives, as it is the case for Eq. (8). An example of implementation is shown in Fig. 5 where pkf_dynamics stands for
the system of equations Eq. (7). The unkown closure function is replaced by the proposal of closure Eq. (8) where each
185 unknown quantity {a.b,c) is declared as an instance of the class TrainableScalar. Then, the NN is generated producing the
class ClosedPKFBurgers whose an instance is ready for training. In the generated code, each instance of the TrainableScalar
class is translated as a specific layer, TrainableScalarLayerFactory, equivalent to the above mentioned convolution layer, and
whose parameter can be trainable. For instance, the trainable scalar a is implemented by the line train_scalar_9. Note that the
layer TrainableScalarLayerFactory can be used for 1D, 2D or 3D domains. In this example, the proposal for closure has been

190 defined at a symbolic level, without additional exogenous NN.
An example of implementation for the exogenous NN and for the Trainable layers are provided in the package PDE-NetGen

as Jupyter notebooks, for the case of the Burgers equation.

Rev1-Fig 1 : Introduction of the TrainableScalar class that facilitates the design of a NN when the
unknown terms are given as symbolic expressions (lines 180-191).

Answer to the point mentioned by the referee

We copied your commentary in italics below, we reply in normal blue font.

1. One of the advantages of the convolutional layer translation is implementation in modern deep
learning frameworks.



We agree with the referee comment and we exploit convolutional layers to bridge partial
differential equations and neural networks. Introduced in a time-integration scheme, this produces
an efficient implementation of the dynamics for the known part. We may point out that the
connexion between neural networks and differential equations has led to some better
understanding of some neural network architectures (ODE-Net, ResNet, bilinear layers,..) and is an
active area of research. The package we propose, aims to make easier the exploitation of deep
learning frameworks for physics (and vice versa) through a plug-an-play definition of useful NN
architectures for evolution equations as encountered in geophysics.

2. Although the authors suggest that the function closure may be modeled with deep learning
architectures, no experiments in this direction are shown.

The aim of the manuscript is not to introduce a deep learning architecture for the closure, but to
facilitate the construction of a deep learning architecture taking into account the known physics: the
focus is on the hybridation between physics and machine learning. Though the closure itself may
not result in a deep architecture, the overall generated model leads to a deep architecture.

More precisely, in the reported experiment, the number of layers introduced to train the closure is
6+5+13+25=49 layers for the known part of the dynamics and 2+3+2+4+4=15 layers for the neural
network used in the closure. The ResNet implementation of the RK4 uses 11 layers. Hence, there
are 75 layers used, with several convolutional layers among them. In that sense, the overall model
can be considered as a deep architecture, parameters of which can be learnt from data. The aim of
this example was to focus on the neural network generation of the known part of the dynamics in
order to facilitate the discovery of unknown terms, and we chose a simple problem to illustrate this.
As discussed in Section 3.3 (p10-11), the implementation of an unknown term depends on the
amount of knowledge we have. Here we considered a closure term from partial derivatives. For
other problems, there would be no other choice than considering a deep neural network, for
instance using multiple ResNet blocks, normalization, and so on, or architectures inspired from
recent studies on closure modeling (eg, Bolton et al., 2019). Such architectures can be plugged in
our package as an exogenous neural network. Note that in the revision of the manuscript we also
include an additional way to facilitate the design of the dynamics without plugging an exogenous
model using TrainableScalar class — which we think to be easier for the physicist not used to
handle neural network layers.

We remind/precise the aim of the manuscript in the discussion in Section 3.3 in lines 232-240 (see
Rev1-Fig2), considering the present answer to the referee.



The aim of the illustration proposed for the Burgers’ dynamics is not to introduce a deep leaming architecture for the
closure, but to facilitate the construction of a deep learning architecture taking into account the known physics: the focus is

235 on the hybridation between physics and machine learning. Though the closure itself may not result in a deep architecture, the
overall generated model leads to a deep architecture. For instance, the implementation using the exogenous NN use around 75
layers while the implementation based on the class TrainableScalar use 73 layers (we save the calculation of the derivatives

that appear in Eq. (8), while they are computed twice when using the exogenous NN), with several convolutional layers among
them. For other problems, there would be no other choice than considering a deep neural network, for instance using multiple

240 ResNet blocks, normalization, and so on, or architectures inspired from recent studies on closure modeling (e.g. , Bolton and

Zanna (2019)). Such architectures can be plugged in PDE-NetGen as an exogenous neural network.

Rev1-Fig2 : Additional comment to precise the focus given in the manuscript.
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PDE-NetGen 1.0: from symbolic PDE representations of physical
processes to trainable neural network representations.
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Abstract. Bridging physics and deep learning is a topical challenge. While deep learning frameworks open avenues in physical
science, the design of physically-consistent deep neural network architectures is an open issue. In the spirit of physics-informed
NNs, PDE-NetGen package provides new means to automatically translate physical equations, given as PDEs, into neural
network architectures. PDE-NetGen combines symbolic calculus and a neural network generator. The later exploits NN-based
implementations of PDE solvers using Keras. With some knowledge of a problem, PDE-NetGen is a plug-and-play tool to
generate physics-informed NN architectures. They provide computationally-efficient yet compact representations to address
a variety of issues, including among others adjoint derivation, model calibration, forecasting, data assimilation as well as
uncertainty quantification. As an illustration, the workflow is first presented for the 2D diffusion equation, then applied to the

data-driven and physics-informed identification of uncertainty dynamics for the Burgers equation.

Copyright statement. TEXT

1 Introduction

Machine learning and deep learning receive a fast growing interest in geo-science to address open issues, including for instance
sub-grid parmeterization,

A variety of learning architectures have shown their ability to encode the physics of a problem, especially deep learning
schemes which typically involve millions of unknown parameters, while the theoretical reason of this success remains a key
issue (Mallat, 2016). A recent research trend has involved the design of lighter neural network (NN) architectures, like ResNets
with shared weights (He et al., 2016), while keeping similar learning performance. Interestingly, a ResNet can be understood
as an implementation of a numerical time scheme solving a ODE/PDE (Ruthotto and Haber, 2019; Rousseau et al., 2019).
Applications to learning PDEs from data have also been introduced e.g. PDE-Net (Long et al., 2017, 2018). These previous
works emphasize the connection between the underlying physics and the NN architectures.

Designing or learning a NN representation for a given physical process remains a difficult issue. If the learning fails, it may

be unclear to know how to improve the architecture of the neural network. Besides, it seems irrelevant to run computationally-
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expensive numerical experiments on large-scale dataset to learn well-represented processes. The advection in fluid dynamics
may be a typical example of such processes, which do not require complex non-linear data-driven representations. Overall,
one would expect to accelerate and make more robust the learning process by combining, within the same NN architecture, the
known physical equations with the unknown physics.

From the geoscience point of view, a key question is to bridge physical representations and neural network ones so that we
can decompose both known and unknown equations according to the elementary computational units made available by state-
of-the-art frameworks (e.g., keras, tensorflow). In other words, we aim to translate physical equations into the computational

vocabulary available to neural networks. PDE-NetGen addresses this issue for PDE representations, for which we regard
convolutional layers as being similar to the stencil approach, which results from a-finite-difference-implementation-of PDEsthe
discretization of the PDEs by using the finite-difference method (see e.g. Thomas (1995)). PDE-NetGen relies on two main

components: (i) a computer algebra system, here Sympy (Meurer et al., 2017), used to handle the physical equations and
discretize the associated spatial derivatives, (ii) a Keras network generator which automaticaly translate PDEs into neural
network layers from these discretized forms. Note that code generator based on symbolic computation receives new interests
to facilitate the design of numerical experiments see e.g. Louboutin et al. (2019). As an illustration, we consider in this paper
the application of PDE-NetGen to the identification of closure terms.

The paper is organized as follows. In the next section, we detail the proposed neural network generator, with an illustration of
the workflow on a diffusion equation. In section 3, we present the numerical integration of the neural network implementation
of the diffusion equation then an application to the data-driven identification of the closure of Burgers equation. Conclusion

and perspective are given in section 4

2 Neural Network Generatation from symbolic PDEs

Introducing physics in the design of neural network topology is challenging since physical processes can rely on very different
partial derivative equations, e.g. eigenvalue problems for waves or constrained evolution equations in fluid dynamics under iso-
volumetric assumption. The neural network code generator presented here focuses on physical processes given as evolution

equations which writes
atu:EM(uvaau)? (1)

where u denotes either a scalar field or multivariate fields, 9w denotes partial derivatives with respect to spatial coordinates,
and #-M is the generator of the dynamics. At first glance, this situation excludes diagnostic equation as encountered in
geophysics, like balance equations: each equation has to be the evolution equation of a prognostic variable. PDE-NetGen
incorporates a way to solve diagnostic equation, this will be shown in the example detailed in Section 3.2.

We first explain how the derivatives are embedded into NN layers, then we detail the workflow of PDE-NetGen for a simple

example.
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2.1 Introducing physical knowledge in the design of a NN topology

Since the NN generator is designed for evolution equations, the core of the generator is the automatic translation of partial
derivatives with respect to spatial coordinates into layers. The correspondence between the finite-difference discretization and
the convolutional layer give a practical way to translate a PDE into a NN (Cai et al., 2012; Dong et al., 2017; Long et al., 2017).
the function (see e.g. Thomas (1995)). For instance, the finite-difference-of finite-difference method applied on a second order
partial derivative §2u, for u(t,z) a-one-dimensional-funetionis-given-by-on a 1D domain, leads to approximate the derivative
by

PPu(tz) ~ u(t,x +ox) +u(t,r — dx) — 2u(t,x) Flu(t,z), )

ox2 PPV

with.

w(t,x +o0x) +u(t,x —dx) — 2u(t,x
Fru(t.r) =2 ) (W )2t (3)

where dx stands for the discretization space step. Here the spatial derivative is replaced by a fraction that only depends on the

values of v at the time ¢ and points 2 — 0z, z, # + §x. This makes appear a kernel stencil k = [1/622, —2/52%,1/52?] that can
be used in a 1D convolution layer with a linear activation function and without bias. A similar routine applies for 2D and 3D

geometries. PDE-NetGen relies on the computer algebra system sympy (Meurer et al., 2017) to compute the stencil as well as
to handle symbolic expressions. Adternatives-
In PDE-NetGen, the finite-difference implementation appears as a linear operator / which approximates any partial derivative

from the values on a regular grid. In particular, the finite difference F<u(¢,x) of any partial derivative 90%u(¢,x) of order «

when o = 2p+1is odd and {x +idx}. when o = 2p is even.

is computed from the grid points {x &+ (2¢ + 1)dx}.

roximation is consistent at the second order i.e. F&u = 9%u + O(5z2), where O is the Landau’s big O notation:

for any f, the notation f(dz) = O(dz2) means that lim £092) s finite. The operator JF behaves partially as the partial

derivative operator 0: F is commutative with respect to independent coordinates i.e. in a 2D domain for coordinates (x

we have ;o = J 0 Fu, Where o denotes the operator composition, and this applies at any order e.g. F7,, = F7 oy
(but 72 # F o Fy). Hence, the finite difference of a derivative with respect to multiple coordinate, is computed sequentially
from the iterative discretization along each coordinate, and this approximation is consistent at the second order. Note that we
chose to design PDE-NetGen considering the finite-difference method, but alternatives using automatic differentiation can be

considered as introduced by Raissi (2018) who used TensorFlow for the computation of derivative.

Then, the time integration can be implemented either by a solver or by a ResNet architecture of a given time scheme e.g. an
Euler scheme or a fourth order Runge-Kutta (RK4) scheme (Fablet et al., 2017).
These two components, namely the translation of partial derivatives into NN layers and a ResNet implementation of the time

integration, are the building blocks of the proposed NN topology generator as examptfied-examplified in the next Section.
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from sympy import Function, symbeols, Derivative
from pdenetgen import Eq, NNModelBuilder

# Defines the diffusion equation using sympy
t, X, ¥ = symbols('t x y"}

u = Function('u')(t,x,y}

kappall = Function({'\\kappa {11}'){x,y)
kappal2 = Function({'\\kappa {12}')(x,y)
kappa22 = Function{'\\kappa {22}'){x,y)

diffusion 2D = Eq(Derivative(u,t),
Derivative(kappall*Derivative(u,x}+
kappal2*Derivative(u,y),x)+
Derivative(kappal2*Derivative(u,x)+
kappa22*Derivativel(u,y),y)).doit()

# Defines the neural network code generator
diffusion nn builder = NMModelBuilder(diffusion 2D,
class name="NNDiffusionZDHeterogeneous")

# Renders the neural network code

exec{diffusion nn builder.code)

# Create a 2D Diffusion model
diffusion model = NNDiffusion2DHetercgeneous()

Figure 1. Neural Network generator for a heterogeneous 2D diffusion equation

2.2 Workflow of the NN representation generator

We now present the workflow for the NN generator given a symbolic PDE using the heterogeneous 2D diffusion equation as a

testbed:
Ou=V-(kVu), )

where #tz-K(2,y) = [Ki(2,y)](5)e.21x 01,213 18 a field of 2 x 2 tensors ((x,y) are the spatial coordinates) and whose

python implementation is detailed in Fig. 1.

Starting from a list of coupled evolution equations given as a PDE, a first preprocessing of the system determines the
prognostic functions, the constant functions, the exogenous functions and the constants. The exogenous functions are the
functions which depends on time and space, but whose evolution is not described by the system of evolution equations. For
instance, a forcing term in a dynamics is an exogenous function.

For the diffusion equation Eq. (4), the dynamics is represented in sympy using Function, Symbol and Derivative classes.
The dynamics is defined as an equation using the Eq class of PDE-NetGen, which inherits from the Eq class of sympy with
additional facilities (see the implementation in Fig. 1 for additional details).

The core of the NN generator is given by the NNModelBuilder class. This class first preprocesses the system of evolution

equations and translates the system into a python NN model.



100

105

110

115

120

# Example of computation of a derivative

kernel Du x ol = np.asarray([[0.8,-1/(2*self.dx[self.coordinates.index('x")1),0.081,
[0.0,0.0,0.08],
[0.8,1/(2*self.dx[self.coordinates.index('x')]),0.0611).reshape((3, 3)+(1,1))

Du_x ol = DerivativeFactory((3, 3),kernel=kernel Du x ol,name='Du x ol')}(u)

o
mul 8

itation of trend u

= keras.layers.multiply([Dkappa_ 11 x 0l,Du x 0l],name='MulLayer 0'}
mul_1 = keras.layers.multiply([Dkappa 12 x o1,Du_y o0l],name='MulLayer 1')
mul_2 = keras.layers.multiply([Dkappa_12 y 0l,Du_x ol],name='MulLayer 2')
mul 3 = keras.layers.multiply([Dkappa 22 y 0l1,Du_y oll,name='MulLayer 3')
mul_4 = keras.layers.multiply{[Du_x o2, kappa_11],name="'MulLayer 4'}
mul 5 = keras.layers.multiply([Du_y o02,kappa_22],name="MulLayer 5')
mul 6 = keras.layers.multiply([Du_x ol y ol,kappa_12],name='MulLayer &')

sc_ mul @ = keras.layers.Lambda({lambda x: 2.8*x,name='ScalarMulLayer 8'){mul_6)
trend u = keras.layers.add([mul_8,mul_1,mul 2,mul 3,mul _4,mul 5,sc_mul 8],name='AddLayer 6')

Figure 2. Part of the python code of the NNDiffusion2DHeterogeneous class which implements the diffusion equation Eq. (4) as a neural-

network by using Keras (only one derivative is explicitly given, for the sake of simplicity)

The preprocessing of the diffusion equation Eq. (4) presents a single prognostic function, u, and three constant functions
K11,k12 and koso. There is no exogenous function for this example. During the preprocessing, the coordinate system of each
function is diagnosed such that we may determine the dimension of the problem. For the diffusion equation Eq. (4), since
the function u(t,z,y) is a function of (x,y) the geometry is two-dimensional. In the current version of PDE-NetGen, only
periodic boundaries are considered. The specific DerivativeFactory class ensures the periodic extension of the domain, then
the computation of the derivative by using CNN and finally the crop of the extended domain to return to the initial domain.
Other boundaries could also be implemented and might be investigated in future developments.

All partial derivatives with respect to spatial coordinates are detected and then replaced by an intermediate variable in the
system of evolution equations. The resulting system is assumed to be algebraic, which means that it only contains addition,
subtraction, multiplication and exponentiation (with at most a real). For each evolution equation, the abstract syntax tree is
translated into a sequence of layers which can be automatically converted into NN layers in a given NN framework. For the
current version of PDE-NetGen, we consider Keras (Chollet, 2018). An example of the implementation in Keras is shown in
Fig. 2: a first part of the code is used to compute all the derivatives using Conv layers of Keras, then Keras layers are used to
implement the algebraic equation which represents the trend 0,u of the diffusion equation Eq. (4).

At the end, a python code is rendered from templates by using the jinja2 package. The reason why templates are used is to
facilitate the saving of the code in python modules and the modification of the code by the experimenter. Runtime computation
of the class could be considered, but this is not implemented in the current version of PDE-NetGen. For the diffusion equation
Eq. (4), when run, the code rendered from the NNModelBuilder class creates the NNDiffusion2DHeterognous class. Following
the class diagram Fig. 3, the NNDiffusion2DHeterogeneous class inherits from a Model class which implements the time
evolution of an evolution dynamics by incorporating a time-scheme. Here several time-schemes are implemented, namely an

explicit Euler scheme, a second and a fourth order Runge-Kutta scheme.
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Model

time_scheme NNDiffusion2DHeterogeneous
_euler(trend, t, state, dt) prognostic_functions=('u’)
_rké(trend, t, state, dt) coordinates=('x",'y')
_rk2(trend, t, state, dt) constant_functions=('kappa_11',
trend(t, state) 'kappa_12','kappa_22')
forecast(window, state, saved_times) shape
predict(window, state, saved_times) lengths

dx

X

X

kappa_11

kappa_12

kappa_22

_trend_model

//7 _make_trend_model()
«instang6Of~| trend(t.state)
-

-
-
-
z

diffusion_model
time_scheme = _rk4
shape = 2*(100,)
lengths= 2%(1.0,)
dx = 2*(1./100)
x = 2*(np.linspace(0,1,100),)
X = np.meshgrid(*x)
kappa_11 = np.nan
kappa_12 = np.nan
kappa_22 = np.nan

Figure 3. UML class diagram showing the interaction between the Model and the NNDiffusion2DHeterogeneous classes, and the resulting

instance diffusion_model corresponding to the numerical computation of the diffusion equation Eq. (4).

3 Applications of PDE-NetGen

Two applications are now considered. First we validate the NN generator on a known physical problem: the diffusion equation
Eq. (4) detailed in the previous section. Then, we tackle a situation where a part of the physics remains unknown, showing the

benefit of merging the known physics in the learning of the unknown processes.
3.1 Application to the diffusion equation

In the python implementation Fig. 1, diffusion_model is an instance of the NNDiffusion2DHeterogeneous class, which numeri-
cally solves the diffusion equation Eq. (4) over a 2D domain, defined by default as the periodic domain [0,1) x [0, 1) discretized
by 100 points along each directions, so that dz = dy = 1.0/100.

The time integration of the diffusion equation is shown in Fig. 4. For this numerical experiment, the heterogeneous tensor
field of diffusion tensors & (x, ) is set as rotations of the diagonal tensor (12 /7,12 /7) defined from the length-scales I, = 10 dx,
l,, = 5dy and the time-scale 7 = 1.0, and with the rotation angles f(x,y) = % cos(k,x + kyy) where (k;,k,) = 27(2,3). The

dt = T Min(dx? /122, dy/ly?) /6 ~ 1.66  10~3. The numerical

integration is computed by using a fourth-order Runge-Kutta scheme. The initial condition of the simulation is given by a Dirac

time step for the simulation is

Fig. 4 (a). In order to validate the solution obtained from the generated neural network, we compare the integration with the
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150 Opu = Fpi(kij)Fos (u) + ki Foi s (),
where F is the operator described in Section 2.1, and whose numerical result is shown in Fig. 4 (b).
The heterogeneity of the diffusion tensors makes appear an anisotropic diffusion of the Dirac (see Fig. 4 (b)), which is
perfectly reproduced by the result obtained from the integration of the generated neural network, shown in Fig. 4 (c). At a
quantitative level, the /2 distance between the both solutions is 1075 (with dt = 1.6 _10~?). This validates the ability of the

155 NN generator PDE-NetGen to compute the dynamics of a given physical evolution equation.
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(@) (c)
RK4 Integration of the
Neural Network scheme at time 1.0

(b)
RK4 Integration of the
Finite Difference scheme at time 1.0

Initial condition at time 0

Figure 4. Starting from a Dirac (panel a), the diffusion equation Eq. (4) is integrated from O to 1 by using a fourth-order Runge-Kutta time
scheme. The results obtained from the time integration of the finite-differenee-finite-difference implementation Eq. (5) (panel b) and of the

generated NN representation (panel c) are similar.

The next section illustrates the situation where only a part of the dynamics is known, while the remaining physics is learned

from the data.
3.2 Application to the data-driven identification of stochastic representations

As an illustration of the PDE-NetGen package, we consider a problem encountered in uncertainty prediction: the parametric
Kalman filter (PKF) (Pannekoucke et al., 2016, 2018). For a detailed presentation and discussion of uncertainty prediction
issues in geophysical dynamics, we may refer the reader to Le Maitre and Knio (2010). Here, we briefly introduce basic
elements for the self-consistency of the example.

The idea of the PKF is to mimic the dynamics of the covariance-error matrices all along the analysis and the forecast cycle
of the data assimilation in a Kalman setting (Kalman filter equations for the uncertainty). It relies on the approximation of the
true covariance matrices by some parametric covariance model. When considering a covariance model based on a diffusion
equation, the parameters are the variance V' and the local diffusion tensor v. Therefore, the dynamics of the covariance-error
matrices along the data assimilation cycles is deduced from the dynamics of the variance and of the diffusion tensors. In place
of the full covariance evolution this dramatically reduces the dynamics to the one of few parameters.

For the non-linear advection-diffusion equation, known as the Burgers equation,

O+ ud,u = m‘?iu, (6)
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the dynamics of the variance V,, and the diffusion tensor v, = [y xx] (Which is featured by a single field vy, xx), Writes

(Pannekoucke et al., 2018)
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where E[-] denotes the expectation operator. For the sake of simplicity, in this system of PDEs, u denotes the expectation of
the random field and not the random field itself as in (Eq. (6)).

In this system of PDEs, the term E [511 88—:45“} can not be determined from the known quantities «,V, and v «. This
makes-appear-a-closure-problem-brings up a problem of closure, i.e. determinining the unknown term as a function of the
known quantities. A naive assumption would be to consider a zero closure (closure(t,z) = 0). However, while the tangent-
linear evolution of the perturbations along the Burgers dynamics is stable, the dynamics of the diffusion coefficient v x
would lead to unstable dynamics as the coefficient of the second order term 73/988722 Vu,xx 1s negative. This stresses further the
importance of the unknown term to successfully predict the uncertainty.

Within a data-driven framework, one would typically explore a direct identification of the dynamics of diffusion coefficient
Vy,xx- Here, we exploit PDE-NetGen to fully exploit the known physics and focus on the data-driven identification of the
unknown term E [su ;—;Eu} in the system of equations Eq. (7). It comes to replace term E [su g—;su} in Eq. (7) by an
exogenous function closure(t,x) and then to follow the workflow detailed in Section 2.2.

The unknown closure function is represented by a neural network (a Keras model) which implements the expansion

2 2
%Vu,xx (t,.’t) 1 (% Vu,xx (t,l‘))
Vu,xx2 (t,l‘) Vu,xx2 (tax) Vu,xx3 (t7x)

®)

closure(t,x) ~ a

where (a,b,c) are unknown and where the partial derivatives are computed from convolution layers, as described in Sec-
tion 2. This expression is similar to a dictionary of possible terms as in Rudy et al. (2017) and it is inspired from an arbitrary
theoretically-designed closure for this problem ~where (a,b,c) = (1,2,-2) 5 see Appendix A for
details). In the NN implementation of the exogenous function modeled as Eq. (8), each of the unknown coefficients (a, b, ¢) are
implemented as a 1D convolutional layer, with a linear activation function and without bias. Note that the estimated parameters
(a,b,c) could be different from the one of the theoretical closure: while the theoretical closure can give some clues for the

design of the unknown term, this closure is not the truth which is unknown (see Appendix A).

The above approach, which consists in constructing an exogenous function given by a NN to be determined, may seem
tedious for an experimenter who would not be accustomed to NNs. Fortunately, we have considered an alternative in PDE-
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Introduction of the closure ine the PKF dynamics

from pdenetgen import TrainableScalar

# Set the closure by using nableScalar

a, b, ¢ = [TrainableScalar{1} for 1 in 'abc’']

closure _propesal = a*Derivative(nu,x,2)/nu**Integer(2)+b*1/nu**Integer(2)+\
c*Derivative(nu,x)**2/nu**Integer(3)

display(closure_proposal)

& , ra 2
a5 Vi (£, X) b {'(BT Vixx (I.X})
Vs (h X) Vo (t;:%) Vs (8 %)

# Replace the closure(t,x) by the propesed closure
pkf _dynamics[2] = pkf dynamics[Z].subs{Function(’closure'}(t,x},closure proposal)

# Generate the NN code leading to the ClosedPKFBurgers class.
exec (NNModelBuilder (pkf_dynamics, 'ClosedPKFBurgers').code)

Sample of code generated to define the ClosedPKFBurgers class

[..]

pow 21 = keras.layers.multiply([div 17,div 17,] ,name='PowLayer 21')

mul_28 = keras.layers.multiply([pow_21,Dnu_u_xx_x_02],name='Mullayer 28")

train_scalar_9 = TrainableScalarLayerFactory({input_shape=mul_28.shape, name='TrainableScalar a',
init value=6,use bias=False,mean=0.0,stddev=1.0,seed=None,wl2=None) (mul 28)
#TrainableScalar name: 'a

add 8 = keras.layers.add([train_scalar_7,train_scalar_8,train_scalar_9],name='AddLayer 8')

mul 26 = keras.layers.multiply([pow 17,add 8],name='MulLayer 26')

[..]

Figure 5. Implementation of the closure, by defining each unknown quantity as an instance of the class TrainableScalar, and the resultin
enerated NN code. This is a part of code avaibale in the Jupyter notebook given as example in the package PDE-NetGen.

NetGen that can be used in the particular case where candidates for a closure take the form of an expression with partial
derivatives, as it is the case for Eq. (8). An example of implementation is shown in Fig. 5 where pkf_dynamics stands for
the system of equations Eq. (7). The unkown closure function is replaced by the proposal of closure Eq. (8) where each
unknown quantity (a.b,c) is declared as an instance of the class TrainableScalar. Then, the NN is generated producing the
class ClosedPKFBurgers whose an instance is ready for training, In the generated code, each instance of the TrainableScalar
class is translated as a specific layer, TrainableScalarLayerFactory, equivalent to the above mentioned convolution layer, and
whose parameter can be trainable. For instance, the trainable scalar a is implemented by the line rain_scalar_9. Note that the
layer TrainableScalarLayerFactory can be used for 1D, 2D or 3D domains. In this example, the proposal for closure has been
defined at a symbolic level, without additional exogenous NN.

An example of implementation for the exogenous NN and for the Trainable layers are provided in the package PDE-NetGen
as Jupyter notebooks, for the case of the Burgers equation.

For the numerical experiment, the Burgers equation is solved on a one-dimensional periodic domain of length 1, discretized
in 241 points. The time step is dt = 0.002, and the dynamics is computed over 500 time steps so to integrate from ¢t =0 to
t = 1.0. The coefficient of the physical diffusion is set to x = 0.0025. The numerical setting considered for the learning is the
tangent-linear regime described in Pannekoucke et al. (2018) where the initial uncertainty is small and whose results are shown

in their Fig. 4(a), Fig. 5(a) and Fig. 6(a).

10
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def make time scheme(dt, trend):
" Implementation of an RK4 with Keras """
import keras

state = keras.layers.Input(shape = trend.input_shape[1:])}

k
1
k
_tmp_1 = keras.layers.Lambda(lambda x : @.5%dt*x)(kl)
input k2 = keras.layers.add([state, tmp 11)

k2 = trend({input_k2)

# k3

_tmp_2 = keras.layers.Lambda(lambda x : @.5*dt*x)(k2)
input_k3 = keras.layers.add([state, tmp_21)

k3 = trend(input_k3)

# k4

_tmp 3 = keras.layers.Lambda(lambda x : dt*x)(k3)
input_k4 = keras.layers.add([state, tmp_31)

k4 = trend(input_k4)

trend(state)

H X B

banl =

# output

# k2+k3

add_k2_k3 = keras.layers.add([k2,k3])

add k2 k3 mul2 = keras.layers.Lambda(lambda x:2.*x) (add k2 k3)
# Add k1, k4

_sum = keras.layers.add({[kl,add k2 k3 mul2,k4])

# *dt
_sc_mul = keras.layers.Lambda{lambda x:dt/6.*x){_sum)
output = keras.layers.add{[state, _sc_mull)

time scheme = keras.models.Model(inputs =[statel,
outputs=[outputl)
return time_scheme

Figure 6. Example of a Keras implementation for a RK4 time-scheme: given time-step dt and a Keras model frend of the dynamics, the

function make_time_scheme retarareturns a KeraKeras model implementing a RK4.

To train the parameters (a,b,c) in Eq. (8), we build a training dataset from an ensemble prediction method where each
member is a numerical solution of the Burgers equation. The numerical code for the Burgers equation derives from PDE-
NetGen applied on the symbolic dynamics Eq. (6). Using this numerical code, we generate a training dataset composed of 400
ensemble simulations of 501 time steps, where each each ensemble contains 400 members. For each ensemble forecast, we
estimate the mean, variance V,, and diffusion tensor v,,. Here, we focus on the development of the front where we expect the
unknown term to be of key importance and keep for training purposes the last 100 time-steps of each ensemble forecast. For
the training only, the RK4 time-scheme is computed as the ResNet implementation given in Fig. 6, so to provide the end-to-end
NN implementation of the dynamics.

The resulting dataset involves 40000 samples. To train the learnable parameters (a,b,c), we minimize the one-step ahead
prediction loss for the diffusion tensor v,,. We use ADAM optimizer (Kingma and Ba, 2014) and a batch size of 32. Using an
initial learning rate of 0.1, the training converges within 3 outer loops of 30 epochs with a geometrical decay of the learning
rate by a factor of 1/10 after each epoch-—outer loop. The coefficients resulting from the training over 10 runs are (a,b,c) =
(0.93,0.75,—1.80) £ (5.1 107°,3.6 107%,2.7 107%).

Figure 7 compares the estimation from a large ensemble of 1000 members (top panels) with the results of the trained closed
PKF dynamics (bottom panels). Both the ensemble and PKF means (al) and (bl) clearly show a front which emerges from

the smooth initial condition and located near x = 0.75 at time 1.. The variance fields (a2) and (b2) illustrate the vanishing

11
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Figure 7. Uncertainty estimated from a large ensemble of 1000 members (a) with the expectation E [u] (al), variance V, (a2) and the length-
scale (defined from the diffusion coefficient by /0.5y «x) (a3) ; and the uncertainty predicted from the PKF evolution equations closed
from the data (b), where the same statistics are shown in (b1), (b2) and (b3). The fields are represented only for time ¢ = 0,0.2,0.4,0.6,0.8,1

of the variance due to the physical diffusion (the s term in Eq. (6)) and the emergence of a pie-peak of uncertainty which is
related to the uncertainty of the front position. Instead of the diffusion v, x«, panels (a3) and (b3) show the evolution of the
correlation length-scale defined as \/(m , which has the physical dimension of a length. Both panels show the increase of
the length-scale due to the physical diffusion, except in the vicinity of the front where an oscillation occurs, which is related
to the inflexion point of the front. While the magnitude of the oscillation predicted by the PKF (b3) is slightly larger than the
estimation from the large ensemble reference (a3), the pattern is well predicted by the PKF. Besides, the parametric form of the
PKF does not involve local variabilities due to the finite size of the ensemble, which may be observed in panel (a3). Overall,
these experiments support the relevance of the closure Eq. (8) learned from the data to capture the uncertainty associated with

Burgers’ dynamics.
3.3 Discussion on the choice of a closure

In the Burgers’ dynamics, an a priori knowledge was introduced to propose a NN implementing the closure Eq. (8).
In the general case, the choice of the terms to be introduced in the closure may be guided by known physical properties
that need to be verified by the system. For example, conservation or symmetries properties that leave the system invariant

can guide in proposing possible terms For the Burgers’ dynamics, v, xx has the dimension of a length squared, [L?], and

12
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E [eu a%lgu} is of dimension [L~*]. Thus, the terms considered in Eq. (8) are among the simplest ones which fullfill the
expected dimensionality of [L~%]. Symbolic computation may here help the design of such physical parameterizations in more
general cases.

When no priors are available, one may consider modeling the closure using state-of-the-art deep neural network architectures

which have shown impressive prediction performance, e.g. CNNs, ResNets (Zagoruyko and Komodakis, 2016; Raissi, 2018).

The aim of the illustration proposed for the Burgers’ dynamics is not to introduce a deep learning architecture for the
closure, but to facilitate the construction of a deep learning architecture taking into account the known physics: the focus is
on the hybridation between physics and machine learning. Though the closure itself may not result in a deep architecture, the
overall generated model leads to a deep architecture. For instance, the implementation using the exogenous NN use around 75
layers while the implementation based on the class TrainableScalar use 73 layers (we save the calculation of the derivatives
that appear in Eq. (8), while they are computed twice when using the exogenous NN), with several convolutional layers
among them. For other problems, there would be no other choice than considering a deep neural network, for instance using
multiple ResNet blocks, normalization, and so on, or architectures inspired from recent studies on closure modeling (e.g.
Bolton and Zanna (2019)). Such architectures can be plugged in PDE-NetGen as an exogenous neural network.

4 Conclusions

We have introduced a neural network generator PDE-NetGen, which provides new means to bridge physical priors given as
symbolic PDEs and learning-based NN frameworks. This package derives and implements a finite-difference-finite-difference
version of a system of evolution equations, where the derivative operators are replaced by appropriate convolutional layers
including the boundary conditions. The package has been developed in python using the symbolic mathematics library sympy
and keras.

We have illustrated the usefulness of PDE-NetGen through two applications: a neural-network implementation of a 2D
heterogeneous diffusion equation and the uncertainty prediction in the Burgers equation. The later involves unknown closure
terms, which are learned from data using the proposed neural-network framework. Both illustrations show the potential of such
an approach, which could be useful for improving the training in complex application by taking into account the physics of the
problem.

This work opens new avenues to make the most of existing physical knowledge and of recent advances in data-driven
settings, and more particularly neural networks, for geophysical applications. This includes a wide range of applications, where
such physically-consistent neural network frameworks could either lead to the reduction of the computational cost (e.g., GPU
implementation embedded in deep learning frameworks) or provide new numerical tools to derive key operators (e.g., adjoint
operator using automatic differentiation). Besides, these neural network representations also offer new means to complement
known physics with the data-driven calibration of unknown terms. This is regarded as key to advance the state-of-the-art for

the simulation, forecasting and reconstruction of geophysical dynamics through model-data-coupled frameworks.
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Code availability. Code of PDE-NetGen is available on github in version 1.0: https://github.com/opannekoucke/pdenetgen

Appendix A: Local Gaussian closure

For self-consistency, we detail how the theoretical closure is obtained (Pannekoucke et al., 2018).

It can be shown that I [¢,8%,] = E | (92¢,)°| — 202¢, where g, = = is the so-called metric tensor that is a scalar field

.2
—%01 g

is a homogeneous Gaussian,

in 1D. When the correlation function p(x,z + dx) = E[e(z)e(x + bz

where the metric tensor ¢ is a constant here, then the fourth-order Taylor expansion in dx, of the Gaussian correlation, leads

to the identity E [¢9%¢c] = 3¢2 which is independent of the position . As a possible closure, this suggest to model the unkown

term as E [£,0%,, ] ~ 3¢2 — 202 ¢, that depends on z. Replacin by 1/(2v,) leads to
a7221/11 XX (t,l’) 3 1 (@ Uy xx (t,.’E))Q
E [e,05e0] ~ 22— - — 0z B . (A1)
Vi xx? (t,2) 4 vy 502 (E, ) Uy x> (t, )

It results that Eq. (A1) is not the true analytic expresion of E [¢,,01¢,,] as a function of u, V,, and v, but only a parameterizations.
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