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Abstract. Process-based models are powerful tools to simulate the economic impacts of climate change, but they are 

computationally expensive. In order to project climate-change impacts under various scenarios, produce probabilistic 

ensembles, conduct on-line coupled simulations, or explore pathways by numerical optimization, the computational and 

implementation cost of economic impact calculations should be reduced. To do so, in this study, we developed various 20 

emulators that mimic the behaviours of simulation models, namely economic models coupled with bio/physical process-

based impact models, by statistical regression techniques. Their performance was evaluated for multiple sectors and regions. 

Among the tested emulators, those composed of artificial neural networks, which can incorporate nonlinearities and 

interactions between variables, performed better particularly when finer input variables were available. Although simple 

functional forms were effective for approximating general tendencies, complex emulators are necessary if the focus is 25 

regional or sectoral heterogeneity. Since the computational cost of the developed emulators is sufficiently small, they could 

be used to explore future scenarios related to climate-change policies. The findings of this study could also help researchers 

design their own emulators under different situations. 

1 Introduction 

Climate change has diverse impacts on society and a wide range of sectors (IPCC, 2014), and these impacts should be 30 

quantitatively evaluated to manage overall risks. If we can monetize these impacts, a variety of risks across different sectors 
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and regions can be considered on a unified scale. This information helps us to design climate-change related policies. It also 

contributes to estimating the social cost of carbon. 

There are a variety of ways to estimate the economic impacts of climate change (Tol, 2002; Stern, 2006; Ciscar et al., 

2011; Burke et al., 2015; Takakura et al., 2019). Among the existing approaches, process-based bio/physical impact models 35 

coupled with an economic model are widely used and they tend to be elaborate and complex (Weyant, 2017; Diaz and 

Moore, 2017). Since these process-based simulations can represent underlying bio/physical or economic processes explicitly 

based on the governing equations, their applications are not limited to prediction of the outcome variables. Process-based 

simulations can also contribute to deeper understanding of the focal phenomena and they can simulate outcomes under 

purely counterfactual conditions that never occurred in the past. This cannot be achieved by simpler macroscopic methods 40 

(e.g., Burke et al., 2015). Despite these advantages, it is not always easy for researchers to handle these elaborate process-

based models (particularly for model users, rather than model developers) because of the model-specific knowledge, skills, 

and input data that are required. This is especially the case when multiple sectors are targeted because completely different 

impact models are developed for each sector. 

The high computational cost of process-based impact simulations is another problem, and this also makes on-line 45 

coupling with other models difficult. On-line coupling of impact models is required, for example, to represent feedback 

effects of climate-change impacts on climate-change mitigation (Matsumoto, 2019) and many other synergies and trade-offs 

among sectors (Yokohata et al., 2020). The possibility of simulation under various scenarios or probabilistic ensemble 

simulation of impacts also depends on the computational cost of the impact simulations. Mainly due to their high 

computational cost, typically, process-based simulations of the impacts can be conducted under a limited number of 50 

scenarios such as Representative Concentration Pathways (RCPs) (van Vuuren et al., 2011). While these scenarios 

reasonably cover the plausible range of the radiative forcing levels at the end of the 21st century, there are an infinite number 

of emission pathways which are not included in the discrete RCP scenarios (e.g., intermediate pathway between RCP2.6 and 

RCP4.5). Recently, particularly after the Paris Agreement, more attention has been paid to the effect of subtler differences in 

emission pathways (Keywan et al., 2021). When we try to find the optimal pathway by numerical optimization, repetitive 55 

calculations of the objective function which we want to minimize or maximize are needed, and if the impacts of climate 

change are included in the objective function, they also need to be calculated many times until the value of the objective 

function converges. Ensemble simulation of the impacts is also important to manage the risk because of the probabilistic 

characteristics of the climate (Mitchell et al., 2017; Mizuta et al., 2017), but this also requires a large number of simulation 

runs. 60 

Therefore, reducing the implementation and computational costs of impact calculations is useful for many purposes 

even if representation of the underlying processes is omitted when the focus is on the outcome variable, not on these 

underlying processes. 

One possible way to solve these issues is statistically mimicking the behaviours of the process-based impact simulations. 

Such approaches are called emulations (Castelletti et al., 2012). In emulations, emulators try to reproduce the relationships 65 
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between the inputs and outputs of the impact models regarding the underlying processes as a black box. A simple but widely 

used way involves expressing the impact by a simple damage function. Such simplification is adopted in several integrated 

assessment modelling frameworks (Waldhoff et al., 2014; Nordhaus, 2017). The most typical form of such a damage 

function is a quadratic function (Howard and Sterner, 2017). In this case, the impact of climate change is expressed by a 

quadratic function of the mean temperature rise (such simple damage functions are not called emulators in general, but they 70 

act in the same way as the so-called emulators). It is also possible for simple damage functions to incorporate socioeconomic 

conditions. Compared to the simple damage functions, typical climate-change impact emulators adopt relatively complex 

functional forms. These include multivariate regression or statistical machine learning techniques such as an artificial neural 

network (Harrison et al., 2013; Oyebamiji et al., 2015; Schnorbus and Cannon, 2014). By using these techniques, emulators 

can represent more complex input-output relationships, but existing studies using these techniques mainly focus on 75 

bio/physical impacts rather than economic impacts of climate change. In our previous work, it has been demonstrated that 

the simulated economic impacts of climate change are affected by socioeconomic conditions as well as the climate 

conditions and there are complex, non-linear interactions (Takakura et al., 2019). Therefore, using such advanced techniques 

can be beneficial to emulations of the economic impacts of climate change, too. 

Besides the choice of functional form, there are multiple options in the selection of the input variables. By leveraging 80 

all the information used in the simulation and using sufficiently complex models, it is theoretically possible to perfectly 

reproduce the results of the simulation by the emulation (Cybenko, 1989). On the other hand, in practical terms, the number 

of parameters used in the emulation model will increase and it is impossible to identify the parameters based on the limited 

simulation results. Therefore, we use some representative variables as the input to the emulators by summarizing the original 

input data. These input variables should contain information on climate conditions and socioeconomic conditions, and those 85 

jointly determine the magnitude of the economic impacts of climate change. What kind of information is important may 

depend on what kind of impacts we focus on. For example, some impacts can be accurately predicted by changes in 

temperature, but others may depend more on changes in precipitation or socioeconomic conditions. 

To better design emulators, we need to identify important factors which affect performance, i.e., those that determine 

how well the emulators can reproduce the results of simulations. However, there have been no systematic comparisons of the 90 

attained performance of the emulators considering the above-mentioned factors. The purpose of this study was to develop 

and evaluate emulators for the projection of the economic impacts of climate change and identify the relationship between 

the attained performance of emulators and functional forms or input variables. For this purpose, we used the results of 

economic impact simulations covering many sectors (Takakura et al., 2019). In this study, the results of the original 

simulation results were regarded as the ‘ground truth’, and emulators tried to reproduce the ground truth statistically when 95 

corresponding input was given. Various emulators (different functional forms and input variables) were developed and their 

performance, how well they can reproduce the results of simulations, was systematically compared. 

We expect there are two main groups of readers of this article. The first group is those wish to use the emulators 

developed herein. The second group is the readers who wish to develop their own emulators using their simulation results. 
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We provide specific information on our development process. This information could be particularly useful for the second 100 

group. For the first group, the emulators we have developed can be freely downloaded from a repository (details below) and 

explored in conjunction with this article to avoid any potential issues in terms of misuse or misinterpretation. 

2 Materials & Methods 

2.1 Simulation of the economic impacts of climate change 

We used previously published results of simulations, in which up to nine different sectoral economic impacts of climate 105 

change were simulated by bio/physical impact models coupled with economic models (Takakura et al., 2019). Here, 

‘economic models’ refers to the methodologies by which bio/physical impacts are monetized regardless of their ways of 

monetization. We used the simulated economic impacts caused by changes in agricultural productivity (Iizumi et al., 2017; 

Fujimori et al., 2018), undernourishment (Hasegawa et al., 2016a), heat-related excess mortality (Honda et al., 2014), 

cooling/heating demand (Hasegawa et al., 2016b; Park et al., 2018), occupational-health cost (Takakura et al., 2017), 110 

hydropower generation capacity (Zhou et al., 2018b), thermal power generation capacity (Zhou et al., 2018a; Zhou et al., 

2018c), fluvial flooding (Kinoshita et al., 2018), and coastal inundation (Tamura et al., 2019) due to climate change. In each 

sector, bio/physical impacts were modelled by specific process-based impact models, and then the impacts were monetized 

either by multiplying values of statistical life (VSL) (Oecd, 2012) by the damage functions which translate bio/physical 

impacts into economic damages (Kinoshita et al., 2018; Tamura et al., 2019) or by a computational general equilibrium 115 

(CGE) model (Fujimori et al., 2012; Fujimori et al., 2017). Here, the CGE model is the AIM/Hub model (formerly known as 

the AIM/CGE model) (Table 1). While the simulations were conducted under a unified climatic and socioeconomic scenario 

framework and target years, they differ conceptually depending on characteristics of the impacts and the capability of the 

models. For example, some simulations intend to capture year-by-year fluctuations in impacts, while others focus only on 

longer term impacts. Further, sometimes pure process-based models were not used and statistical regression-based methods 120 

were also used in hybrid ways. The simulations were conducted sector by sector, and interactions among sectors were not 

considered. More details on the original process-based economic impact simulations are described in Takakura et al. (2019) 

and in SI.1. 

The simulations were conducted under the Shared Socioeconomic Pathways – Representative Concentration Pathways 

(SSP-RCP) scenario matrix (van Vuuren et al., 2013). We used five SSPs (SSP1, SSP2, SSP3, SSP4, and SSP5) and four 125 

RCPs (RCP2.6, RCP4.5, RCP6.0, and RCP8.5). Moreover, in order to incorporate the uncertainty in climate projections, we 

used five different global climate models (GCMs), namely, HadGEM2-ES, IPSL-CM5A-LR, MIROC-ESM-CHEM, GFDL-

ESM2M, and NorESM1-M (Hempel et al., 2013). Therefore, there are 100 (5x4x5) scenario runs in total. The computational 

general equilibrium model covers 17 regions (AIM’s 17 regions shown in Table S1), and thus we have economic impacts for 

these 17 regions (for sectors whose economic impacts can be simulated for each country, the results were aggregated for the 130 

17 regions). 
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While it is impossible to evaluate how accurate these simulation results are because of inherent uncertainty in the 

simulations, we regard these simulation results as the ground truth. We used the results of these simulations to construct and 

evaluate the emulators. 

2.2 Overall framework of the emulations 135 

Figure 1 shows the framework of the simulation and the emulation of the economic impacts of climate change. By 

using the emulators, we want to get results as similar as possible to the results of process-based simulations when the input 

data or scenario is given. While emulators do not explicitly model the underlying phenomena, they do have parameters, and 

by tuning these parameters, they can statistically mimic the behaviours (input-output relationship) of simulations. 

Here, 𝑦𝑠,𝑟,𝑡|𝑠𝑐  denotes the simulated economic impact (in %GDP) in sector s, in region r, in year t, under a given 140 

scenario sc, and �̂�𝑠,𝑟,𝑡|𝑠𝑐 is the corresponding emulated economic impact. A scenario sc comprises the combination of SSP, 

RCP, and GCM. The emulated economic impact �̂�𝑠,𝑟,𝑡|𝑠𝑐 is calculated by the function  𝑓𝑠,𝑟(∙) receiving the input 𝐱𝑟,𝑡|𝑠𝑐  as 

expressed in equation (1). 

�̂�𝑠,𝑟,𝑡|𝑠𝑐 = 𝑓𝑠,𝑟(𝐱𝑟,𝑡|𝑠𝑐) (1) 

  145 

The emulator (function  𝑓𝑠,𝑟(∙)) is constructed for each sector and region. The input 𝐱𝑟,𝑡|𝑠𝑐 is the (vector of) variable(s) which 

is used to emulate the economic impact in region r, year t, under a given scenario sc. One important characteristic of the 

input  𝐱𝑟,𝑡|𝑠𝑐 is that there is no suffix s. This means that the input variable is not sector-specific and common input data can 

be used across sectors.  

2.3 Tested emulators 150 

2.3.1 Functional forms 

We tested a variety of emulators (different functional forms and input variables) ranging from very parsimonious to 

complex alternatives. For the functional forms, we used ordinary least squares regression (OLS1), ordinary least squares 

regression with square terms (OLS2), ordinary least squares regression with square and product terms (OLS2i), multi-layer 

perceptron (MLP), and a recurrent neural network composed of long short-term memory units (LSTM). For the sake of 155 

simplicity, we omit the suffixes s, r, and sc in this section, and the i-th variable in vector 𝐱𝑡 is denoted as 𝑥𝑡,𝑖 . 

OLS1 is the simplest form of the emulator, expressed as (2). 

�̂�𝑡 = 𝑎0 + ∑ 𝑎𝑖𝑥𝑡,𝑖

𝑖

(2) 

OLS2 includes squared terms, and thus can express some curvature in the response. 

�̂�𝑡 = 𝑎0 + ∑ 𝑎1𝑖𝑥𝑡,𝑖

𝑖

+ ∑ 𝑎2𝑖𝑥𝑡,𝑖
2

𝑖

(3) 160 
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OLS2i has product terms as well as squared terms and it can represent some types of interactions among variables. 

�̂�𝑡 = 𝑎0 + ∑ 𝑎1𝑖𝑥𝑡,𝑖

𝑖

+ ∑ 𝑎2𝑖𝑥𝑡,𝑖
2

𝑖

+ ∑ 𝑎𝑖𝑗

𝑖≠𝑗

𝑥𝑡,𝑖𝑥𝑡,𝑗 (4) 

Simple regressions such as these are widely used, but their capability to express complex phenomena is limited. 

Currently, more elaborate methods based on statistical machine learning techniques such as artificial neural networks 

(ANNs) are available. Thus, to represent more complex non-linearities and interactions among variables, we also applied 165 

ANN-based techniques to the emulations. MLP is a traditional, but effective and widely used, ANN-based technique that can 

be applied to the purpose of regression, and thus to the emulation. LSTM is also an ANN-based technique designed to handle 

time-series data and can represent time-dependent characteristics of the data (e.g., cumulative effects in the economic 

impacts) as well as non-linearities and interactions among variables. Thus, it may better act as the emulator if time-series 

data are available as the input. While their strict mathematical formulations are lengthy, MLP can be expressed as 170 

�̂�𝑡 = 𝑓(𝐱𝑡, 𝐖) (5) 

where W is the weights (parameters) of the model. LSTM has time-dependent internal state st, and the output and the internal 

state at time t can be expressed as 

�̂�𝑡 = 𝑓(𝐬𝑡−1, 𝐱𝑡 , 𝐖) (6) 

𝐬𝑡 = 𝑔(𝐬𝑡−1, 𝐱𝑡 , 𝐖) (7) 175 

See, for example, (Goodfellow et al., 2016) for details on MLP and LSTM. Hyperparameters in the ANN-based models were 

determined based on preliminary examinations. The number of hidden layers and the number of units in each layer were set 

to 2 and 32, respectively, and the early-stopping technique was used to avoid overfitting of the models. 

2.3.2 Input variables 

When inputting climate conditions into the emulators, the dimension of the data should be reduced. One typical way to 180 

do this is to spatially and temporally aggregate the high-resolution original data. For climate data, the most parsimonious 

choice involves using the global mean temperature, but this method cannot represent regional and seasonal characteristics of 

climate conditions. Precipitation also plays an important role for some specific sectors (e.g., hydropower generation capacity, 

fluvial flooding). We prepared several kinds of input data with different spatial and temporal resolutions by aggregating 

daily gridded near surface temperature and precipitation data generated by GCMs in the Coupled Model Intercomparison 185 

Project phase 5 (CMIP5) (Taylor et al., 2011). First, the spatial resolution of the gridded GCM output data was downscaled 

to 0.5 x 0.5 degrees by bilinear interpolation. We denote this downscaled gridded temperature as 𝑡𝑡|𝑠𝑐(𝑔, 𝑑) and precipitation 

as 𝑝𝑡|𝑠𝑐(𝑔, 𝑑), where g denotes grid and d denotes day of the year. We calculate annual global mean temperature, annual 

regional mean temperature and precipitation, and quarterly regional mean temperature and precipitation as follows. 

𝑎𝑔𝑡𝑡|𝑠𝑐 =
∑ 𝑤𝑔𝑡𝑡|𝑠𝑐(𝑔, 𝑑)𝑔,𝑑

|𝐷𝑡| ∑ 𝑤𝑔𝑔

(8) 190 
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𝑎𝑟𝑡𝑟𝑠,𝑡|𝑠𝑐 =
∑ 𝑤𝑔𝑡𝑡|𝑠𝑐(𝑔, 𝑑)𝑔∈𝑟𝑠,𝑑

|𝐷𝑡| ∑ 𝑤𝑔𝑔∈𝑟𝑠

(9) 

𝑎𝑟𝑝𝑟𝑠,𝑡|𝑠𝑐 =
∑ 𝑤𝑔𝑝𝑡|𝑠𝑐(𝑔, 𝑑)𝑔∈𝑟𝑠,𝑑

|𝐷𝑡| ∑ 𝑤𝑔𝑔∈𝑟𝑠

(10) 

𝑞𝑟𝑡𝑞,𝑟𝑠,𝑡|𝑠𝑐 =
∑ 𝑤𝑔𝑡𝑡|𝑠𝑐(𝑔, 𝑑)𝑔∈𝑟𝑠,𝑑∈𝑞

|𝐷𝑞,𝑡| ∑ 𝑤𝑔𝑔∈𝑟𝑠

(11) 

𝑞𝑟𝑝𝑞,𝑟𝑠,𝑡|𝑠𝑐 =
∑ 𝑤𝑔𝑝𝑡|𝑠𝑐(𝑔, 𝑑)𝑔∈𝑟𝑠,𝑑∈𝑞

|𝐷𝑞,𝑡| ∑ 𝑤𝑔𝑔∈𝑟𝑠

(12) 

Here, |𝐷𝑡| is the number of days in year t and |𝐷𝑞,𝑡| is the number of days belonging to quarter of a year q. Quarters are 195 

grouped following the calendar year, namely, January-February-March, April-May-June, July-August-September, and 

October-November-December. Coefficient 𝑤𝑔  is a weight which is proportional to the area of the grid g. Regions are 

indicated by the subscript rs. Note that rs is based on the classification of SREX’s 26 regions defined in (IPCC, 2012) and 

different from r (Table S2). While our interest is estimating the economic impacts in each of AIM’s 17 regions represented 

by r, each such region contains different climate zones because r is classified from the viewpoint of economic modelling 200 

rather than climatic and geographic conditions. Thus, to incorporate heterogeneity in climate conditions within an AIM 

region, we use rs instead of r to define climate variables. 

For socioeconomic variables, values are based on the SSP scenarios (Kc and Lutz, 2017; Dellink et al., 2017). Based on 

the population (𝑝𝑜𝑝𝑡|𝑠𝑐(𝑐)) and GDP ( 𝑔𝑑𝑝𝑡|𝑠𝑐(𝑐)) in country c in year t under a given scenario sc, regional population, GDP, 

and GDP per capita are calculated as follows. GDP is measured in USD (2005) based on the market exchange rate. 205 

𝑝𝑜𝑝𝑟,𝑡|𝑠𝑐 = ∑ 𝑝𝑜𝑝𝑡|𝑠𝑐(𝑐)

𝑐∈𝑟

(13) 

𝑔𝑑𝑝𝑟,𝑡|𝑠𝑐 = ∑ 𝑔𝑑𝑝𝑡|𝑠𝑐(𝑐)

𝑐∈𝑟

(14) 

𝑔𝑝𝑐𝑟,𝑡|𝑠𝑐 = 𝑔𝑑𝑝𝑟,𝑡|𝑠𝑐 𝑝𝑜𝑝𝑟,𝑡|𝑠𝑐⁄ (15) 

When inputting variables to the emulators, it is desirable that their values be within a limited range to ensure the stability of 

numerical computation. Effects of biases in GCMs should also be alleviated. For this purpose, we used the relative changes 210 

of these variables as inputs to the emulators. For temperature, changes were defined by the difference from the base-period 

(1991-2010) values. For the other variables, changes were defined by a log ratio to the base-period or base-year (2005) 

values (Table 2). 

2.4 Comparison 

As explained in section 2.3, we have various types of emulators (functional forms) and candidate input variables. 215 

Among the possible combinations, we conducted comparisons under selected practically relevant conditions. 
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2.4.1 Comparison 1 

We quantified the performance of the very simple damage functions (OLS1 and OLS2), which only consider the global 

mean temperature, and compared the performance when regional climate conditions were considered (Table 3). Here, rs(r) 

represents a set of SREX regions corresponding to an AIM region r (Table S3). 220 

2.4.2 Comparison 2 

We investigated the effects of considering socioeconomic conditions. It is also expected that there are interactions 

between climate conditions and socioeconomic conditions. To identify whether such interactions can be expressed by a 

simple method, we included product terms in OLS2i (Table 4). 

2.4.3 Comparison 3 225 

In Comparisons 1 and 2, relatively simple functional forms and temporally coarsely aggregated (annual) climate 

variables are used. Such an aggregation possibly causes loss of information. For example, crop models consider crop 

calendars and thus the temperature changes in growing and non-growing seasons have different effects on their original 

simulation results. Regarding the economic impacts, climatic and socioeconomic conditions of the non-target regions can 

also affect the target region through, for example, trade in the international market, which is simulated by the AIM/Hub 230 

model. To investigate these possibilities, seasonal climate variables, climate variables of non-target regions, and 

socioeconomic variables of non-target regions were included as input variables. Moreover, when the number of input 

variables becomes large, more complex functional forms may be more suitable. Thus, we tested OLS2 and MLP using these 

variables (Table 5). 

2.4.4 Comparison 4 235 

In the previous comparisons, only simultaneous data were used; that is, when emulating the economic impacts in year t, 

climate and socioeconomic conditions in year t are used. Cumulative or carry-over effects can also exist in the simulated 

impacts. Therefore, including climate and socioeconomic conditions in past years as the input to the emulator can also 

contribute to better reproduce the results of the economic simulation. To evaluate the effects of inclusion of information in 

past years, we tested the performance of artificial neural networks which can consider time-series information (LSTM) with 240 

time-series data of different length (10-year data to capture relatively short-period effects and 95-year data which can capture 

the entire simulation period). 
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2.5 Evaluation 

2.5.1 Evaluation procedure metrics 

Parameters in the emulators are optimized based on the simulation results. If, however, we simply optimized these 245 

parameters based on the existing data (simulation results) and evaluated them by the same data, the performance of the 

emulators might be overestimated compared to the situation in which new data are input to the emulators. This phenomenon 

is known as overfitting or overlearning. To avoid the effects of overfitting, we use the cross-validation strategy. We have 

simulation results for 100 scenarios (5 SSPs × 4 RCPs × 5 GCMs), and each scenario has 95 (2006-2100) data points. We 

divide the 100 scenario results into 4 groups randomly. Three quarters of the data were used to optimize parameters in the 250 

emulators (training), and prediction values were obtained for the remaining one quarter of the data (test). This procedure was 

repeated four times by changing the training and test data, and then we get the results of emulation for all scenarios. That is, 

four-fold cross-validation is performed. 

In some situations, we want to emulate impacts under scenarios which are drastically different from the scenarios which 

are used to develop (or train) the emulators. In order to evaluate the performance of the emulators under such situations, we 255 

also conducted cross-validation by GCM and RCP. Cross-validation by GCM means that the emulators are trained by the 

simulation results of 4 GCMs (5 SSPs × 4 RCPs × 4 GCMs) and tested by the results of the remaining 1 GCM (5 SSPs × 4 

RCPs × 1 GCMs). Cross-validation by RCP mean that the emulators are trained by the simulation results of 3 RCPs (5 SSPs 

× 3 RCPs × 5 GCMs) and tested by the results of the remaining 1 RCP (5 SSPs × 1 RCPs × 5 GCMs).  

Optimization of the parameters (training) and prediction (test) of OLS-based emulators were conducted using the lm 260 

function in R 3.4.3 (R Core Team, 2017). ANN-based emulators were trained and tested using the Keras library (Chollet, 

2015) in Python 3.7.3. The Windows operating system was used in all cases. 

2.5.2 Evaluation metrics 

The performance of the emulators was evaluated based on the agreement between the results of the simulations and the 

emulations. By a chosen emulator, we obtain the values of emulated economic impacts �̂�𝑠,𝑟,𝑡|𝑠𝑐. We also have the values of 265 

the corresponding original simulated economic impact 𝑦𝑠,𝑟,𝑡|𝑠𝑐. We measured the agreement between �̂�𝑠,𝑟,𝑡|𝑠𝑐  and 𝑦𝑠,𝑟,𝑡|𝑠𝑐 by 

correlation coefficient (r), root mean squared error (RMSE), ratio of RMSE to standard deviation (RSR), and systematic 

error (bias). These metrics were calculated for each sector and region. 

The computational cost of the emulators was assessed by the number of required input data, the number of parameters 

in a model, model object size (memory size required to load a model), prediction time, and training time. This was measured 270 

on a PC (CPU: Intel Core i7-8700K (3.70GHz, 6 cores/12 threads), RAM: 32GB, OS: Windows 10 Pro). While the lm 

function in R was used for OLS-based emulators in the development, they were transplanted to Python for the assessment of 

computational cost. Thus, both OLS-based emulators and ANN-based emulators were assessed under equal conditions. 
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3 Results 

We report results for r in the main text since the three metrics (r, RMSE, and RSR) varied almost parallelly, and 275 

systematic errors (biases) were near-negligible for all conditions. Summarized results beyond r (RMSE, RSR, and bias) are 

available in Tables S4 to S13 of the supplementary material, and individual values for all sectors and regions are available as 

electronic supplementary material. A higher value of r (i.e., r closer to 1) indicates that results of the emulation are similar to 

those of the simulation when the biases are negligible. The value of r also indicates how well the variation in the simulation 

results is reproduced by the emulation (square of r is equal to the coefficient of determination or the proportion of explained 280 

variance).  

Figure 2 is the results of Comparison 1. While there is a large variation in the performance of the emulations for 

individual sectors, the performance for the aggregated economic impacts is relatively good on average even if they only 

consider global mean temperature rise. This implies that using simple damage functions can be useful to grasp the rough 

picture of economic impacts of climate change. On the other hand, when we focus on more minute components, a more 285 

elaborate method is required. The effects of including regional climate conditions are distinct in the economic impacts of 

thermal power generation and fluvial flooding, whose impacts are strongly affected by local precipitation and river flows. 

By incorporating socioeconomic variables as inputs to the emulators, there were significant improvements in the 

performance of the emulations (Fig. 3). The impacts of climate change are determined not only by hazards (climate 

conditions), but also by exposure and vulnerability (socioeconomic conditions) (IPCC, 2014). Most current-generation 290 

simulations of economic impacts, including the simulations used in this study, take socioeconomic aspects into account. 

Thus, it is not surprising that emulators could better reproduce the results of simulations by taking socioeconomic variables 

into account. Note that there is very little improvement in the results with respect to river flooding impacts. This is mainly 

because the same proportion of the population and GDP distribution data were used in the simulation of the impacts of 

fluvial flooding across SSPs due to data availability (Takakura et al., 2019), and the simulated economic impacts (percentage 295 

of GDP) were very similar regardless of the socioeconomic conditions. 

Inputting more detailed information improves the performance of the emulations. These improvements were more 

pronounced when more complex functional forms (MLP) were used. The performance of MLP is comparable or worse 

compared to that of OLS2 when courser input variables were used (leftmost plots in each panel in Fig. 4), whereas MLP 

performs better when finer input variables were used (rightmost plots) in most cases. The relative importance of variables 300 

differs depending on the modelled sectors. For example, for the agricultural productivity and undernourishment sectors, the 

inclusion of socioeconomic variables in non-target regions contributed to the improvement in performance. The performance 

for the fluvial flooding sector jumps when seasonal climate variables and climate variables in non-target regions are used 

with MLPs. This is probably due to the result of ‘leakage’ (discussed later). 

Consideration of time-series input variables had positive effects for almost all sectors, but it had greatest effects in the 305 

hydropower generation sector (the median r improves from 0.48 to 0.78). This was mainly because LSTM could reproduce 
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the pre-processing of bio/physical impacts simulations before inputting to the economic models. For example, in the 

simulation of the hydropower generation sector, calculated physical impacts (theoretical hydropower potential) were 

averaged for every 20 years, and then temporal linear interpolation was applied because this study focused on long-term 

potential changes due to climate change rather than year-by-year variations (Zhou et al., 2018b). Temporal moving 310 

averaging of biological impacts (yields) was also used in the simulations of agricultural productivity and undernourishment. 

If the original simulations were conducted using these temporally rounded input data, year-by-year input data do not 

reproduce the original simulation results well. These effects are more obvious when comparing the time-series results of 

emulation (for example, see Fig. 10), and the results played out just like a low-pass filter was in place. 

In general, the more explanatory variables and the more complex functional forms we use, the better the emulators 315 

reproduce the results of the simulations. While this tendency is common for all sectors, there are substantial differences in 

performance between sectors (Fig. 6). This means some sectors’ economic impacts are relatively easy to emulate, but others 

are more difficult even if the complex techniques are used. There were correlations between impact magnitudes and the 

performance of the emulators (Fig. 7). That means larger impacts tend to be easier to emulate, and consequently, aggregated 

impacts are also relatively easy to emulate. 320 

As illustrative examples, we explore simulated and emulated results for chosen sectors in “Brazil” (Figs. 8, 9, and 10). 

The top row in each figure shows the time series of simulated economic impacts for each scenario, and the remaining rows 

show corresponding emulated economic impacts by different emulators. For aggregated economic impacts, general 

tendencies could be reproduced even by simple emulators while complex emulators considering socioeconomic conditions 

could better represent subtle differences among SSPs (Fig. 8). For occupational-health cost sector and hydropower 325 

generation sector impacts, obvious differences among SSPs in the simulation results could not be reproduced by simple 

emulators, but ANN-based complex emulators could reproduce the general tendencies (Figs. 9 and 10). For the hydropower 

generation sector, even the most complex emulator failed to reproduce some characteristics of the simulation results; that is, 

the emulator erroneously predicted discernible economic impacts under SSP1 and SSP4. 

The performance of emulation can vary depending on how the training and test data are chosen. The results shown 330 

above are based on cross-validation with randomly selected scenarios for training and testing. Figure 11 shows the 

comparison of the performance between different cross-validation procedures for the aggregated impacts as an example. 

Here, the performance is shown by the RMSE normalized by the pooled standard deviation (RSR), not by the correlation 

coefficient, because the standard deviation of each test data formulation, which affects the value of the correlation coefficient, 

differs across the selected GCMs or RCPs. Summarized results for each sector and indices beyond RSR (r, RMSE, and bias) 335 

are available in Tables S14 to S33. When the emulators were trained excluding the results of RCP8.5 (the highest emission 

pathway), and then tested by the results of RCP8.5 (RCP8.5 left condition), the performance was apparently worse compared 

to the other conditions. Except for RCP8.5 left condition, the performance was reasonably similar across conditions when 

simpler models and input data are used. If complex models and finer input variables were used, the performance was worse 

when cross-validated by GCM or cross-validated by RCP compared to the random cross-validation. 340 
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The computational cost of the developed emulators was sufficiently small in the prediction phase, while training 

requires some time for ANN-based emulators. Table 7 shows the computational cost for selected conditions. Even if the 

most complex emulators are used, they require only 723 (679 to 1347) milliseconds for the calculation of the economic 

impact for a century. From the viewpoint of computation time required for the prediction, both the OLS-based and ANN-

based models can meet the requirement of the emulators. However, it should be noted that the time required to prepare the 345 

input variables is not included in this assessment and it depends on the situations. 

4 Discussion 

In this study, we developed various kinds of emulators and systematically evaluated their performance. We explored 

differences in emulator performance among sectors and the relationship between model complexity and performance. The 

aggregated economic impact was relatively easily emulated even by simple emulators with limited input variables. The 350 

dominant contributors of aggregated impact were the heat-related excess mortality and occupational-health cost sectors 

(Takakura et al., 2019) as also shown in the SI 2, and the economic impacts of these two sectors were also relatively easily 

emulated. There were clear relationships between temperature rise and the simulated impacts in these two sectors (Honda et 

al., 2014; Takakura et al., 2017), and almost all regions were impacted in the same direction. Moreover, where impacts were 

large, emulator performance tended to be better as shown in Fig. 7. Temperature-dependent impacts tend to be large and  355 

easy to emulate, while precipitation-dependent impacts tend to be small and difficult to emulate. Although it is not clear 

whether this correlation reflects a causal relationship or is just a coincidence, these characteristics contributed to the higher 

performance of emulations of aggregated impacts particularly when simple functional forms were used. If we only focus on 

the aggregated economic impacts of climate change, a simple damage function which only leverages global mean 

temperature is worth using provided that we regard the original simulation results as valid. On the other hand, some sectors’ 360 

and regions’ impacts were difficult to emulate by simple emulators and consideration of more input variables and more 

complex functional forms could improve the performance. Therefore, if we focus on sectoral or regional issues (e.g., 

inequality among regions or sectors), conventional simple damage functions may not be adequate tools and ANN-based or 

other complex techniques may be necessary. 

For the agricultural productivity and undernourishment sectors, the performance of the emulations was low unless 365 

socioeconomic conditions of non-target regions were incorporated. Since comparative advantages (or disadvantages) in the 

international food market and global food demands play important roles in simulations of the impacts in these sectors, it is 

reasonable that non-target regional information contributed to improve the performance of the emulations. Such beyond-the-

border effects have not been considered in previous studies using damage functions or emulators, but our results shed light 

on the importance of this factor. It is also noteworthy that these improvements were more distinct when MLPs, which can 370 

represent complex interactions among variables, were used as the emulators. 

In terms of the results for the fluvial flooding sector, inclusion of non-target regions’ quarterly climate variables with 

MLP caused a drastic jump in the performance of the emulators. This is puzzling because in the simulation of the impacts of 
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fluvial flooding, effects of international trading are not considered explicitly (Kinoshita et al., 2018). We suspect this is 

caused by the leakage because of the characteristics of the simulation data used in this study. In the field of statistical 375 

machine learning, the word leakage means that models have access to some information on the characteristics of the test 

dataset even if the test and training datasets are separated (Kaufman et al., 2011). In this study, we separated the dataset into 

training and test datasets depending on the scenarios. When a certain scenario (for example, SSP1-RCP2.6-HadGEM2-ES) is 

used in the test dataset, it is not included in the training dataset. By doing this, we can evaluate how the trained emulators 

will work when a new unknown scenario is given. However, in the case of fluvial flooding, the simulated impacts expressed 380 

by percentage of GDP are very similar among SSPs (Takakura et al., 2019). For example, the simulated impacts (%GDP) in 

SSP1-RCP2.6-HadGEM2-ES are almost identical to those in SSP2-RCP2.6-HadGEM2-ES, SSP3-RCP2.6-HadGEM2-ES, 

SSP4-RCP2.6-HadGEM2-ES, and SSP5-RCP2.6-HadGEM2-ES, and some of these datasets are included in the training 

dataset. In such a situation, overfitting can result in apparently high performance in the cross-validation even if its actual 

ability for a new input dataset is low. Therefore, apparently high performance in the fluvial flood sector should be interpreted 385 

with caution. 

In the sectors of hydropower generation and thermal power generation, even using the complex emulators with finer 

input variables, the attained performance remained relatively low. This implies required information to reproduce the 

simulation results is missing from the input data. In the AIM/Hub model, there are SSP-dependent assumptions other than 

population and GDP, particularly related to energy policies (Fujimori et al., 2017). These policies depend on the narratives of 390 

the SSP storylines, not just quantitative socioeconomic information such as population or GDP. In addition, in the AIM/Hub 

model, adoption of power generation technology is decided by a discrete choice model (Fujimori et al., 2014). Thus, the 

degree of reliance on a certain kind of power generation can also be discrete or non-continuous depending on the SSP-

dependent assumptions in the AIM/Hub model. For example, a certain region does not rely on the hydropower generation at 

all in some situations, but once the hydropower generation technology becomes economically competitive compared to other 395 

power generation technologies, hydropower generation plants will be installed in the model. In the former situation, changes 

in the hydropower generation capacity do not affect the economy at all, but do in the latter situation. This difference cannot 

be predicted by the emulators, since they cannot be represented only by climate conditions, GDP, and population.  

To improve the performance of the economic impact emulations, should we construct more complex emulators and 

consider more information? For example, in power generation sectors, model-specific assumptions regarding the energy 400 

system could be used as additional input variables and this might improve the emulation performance. If a sufficient number 

of simulation results are available, this strategy may work. An alternative approach is refraining from reproducing the 

complex behaviour of the energy system in the simulation model by an emulator, and partly using the original simulation 

model. For example, in simulations of the impacts of hydropower generation and thermal power generation, bio/physical 

impacts (theoretical hydropower potential and river flow) are simulated by a global hydrological model, whose 405 

computational cost is high (around 15 to 20 hours for one scenario), while the economic impacts are simulated by an 

economic model, whose computational cost is relatively low (around 1.5 hours for one scenario) compared to that of the 
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hydrological model. Therefore, if we can only emulate bio/physical impacts, the computational cost of economic impact 

estimation can be reduced even if we use the original simulation model for the economic part. Such kind of model 

separations will become important particularly if we focus, for example, on interactions among different sectors (Harrison et 410 

al., 2016). Another possibility is constructing SSP-specific emulators. In this study, since we aimed to explore new 

socioeconomic pathways (e.g., intermediate pathway between SSP1 and SSP2) one common emulator was constructed for 

different socioeconomic pathways. On the other hand, if we fix the socioeconomic pathways to consider, it is possible to 

incorporate SSP-specific assumptions into the emulators by separating the models by SSPs. This option could be pursued 

depending on the purpose of the studies. 415 

Even without introducing overly complex models or considering excessively specific information, there are several 

techniques which may improve the performance of emulation. For example, variable selection is a widely used technique 

pursuant of developing parsimonious models and avoiding overfitting. We tested the simple step-wise variable selection 

based on Akaike’s information criterion, which can easily be applied to an OLS-based technique and the results are shown in 

SI 3. Optimization of the hyperparameters, e.g., the number of units the number of hidden layers, the batch size for training 420 

in ANN, can also be effective. In addition to optimizing or modifying the models used in this study, other kind of models 

such as support vector regression, random forest regression, k-nearest neighbours regression, etc., may also be effective. If 

we adopt techniques like Gaussian process regression, uncertainty of the predicted value can also be assessed. While we did 

not investigate these techniques in this study, this represents an important direction for future research. 

While there is substantial room for improvement, the emulators developed in this study can be used as tools to explore 425 

various other future scenarios with limited computational and implementation cost. Technically, applying ANN-based 

techniques to economic impact emulation is one of the novelties of this study, and we demonstrated that these techniques can 

improve the performance of the emulations. However, we do not claim researchers should always use ANN-based (or similar 

statistically complex) techniques in economic impact emulations. There is a non-negligible trade-off between model 

complexity and performance. While computational cost of emulation is small in the calculation (prediction) phase as shown 430 

in Table 7, even by the most complex emulator used in this study, the availability of input variables is context-specific. For 

example, the cost of preparing or generating sub-yearly regional climate variables should also be considered. We disclose the 

source code for the OLS-based and ANN-based emulators developed herein. Sector-specific skills and knowledge are not 

necessarily needed to use this code and thus the implementation cost is much smaller than that of the original simulation 

models, particularly if the pre-trained models are used. Nevertheless, transplanting the ANN-based emulators to other 435 

modelling languages, if necessary, is not always a trivial task, because of the required software libraries. On the other hand, 

it is much easier to transplant OLS-based emulators in any modelling language because they only require arithmetic 

multiplication and addition. 

While sector-specific skills and knowledge are not always necessary to use the developed emulators, users should be 

aware of the statistical context of the emulators and evaluation results. Firstly, cross-validation is a powerful tool to evaluate 440 

the emulators’ performance without the influence of overfitting, and we can rely on the results of cross-validation to choose 
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adequate models in most cases. However, leakage can pass the cross-validation test unlike simple overfitting. While there is 

no perfect solution to detect the existence of leakage, it can be effective to think about the actual situation in which the 

developed emulators will be used. For example, if the emulators will be used to estimate economic impacts under different 

RCPs or substantially different emission pathways, which are not included in the training data, cross-validation by RCPs can 445 

be effective to estimate the actual performance of the emulators in that situation. Suspected leakage shown in Fig. 4 can be 

detected by this strategy (SI 4). Secondly, regression models are not good at extrapolation, as shown in RCP8.5 left 

condition in Fig. 11. Fortunately, RCP8.5 left condition is a hypothetical situation only for the purpose of the evaluation. In 

the actual situations in which the emulators will be used, the simulation results under RCP8.5 are included in the training 

data and emission pathways higher than RCP8.5 are nearly impossible considering the current world situation (Hausfather 450 

and Peters, 2020). Therefore, as for the emission pathway, the problem of extrapolation will not be a serious issue in 

practical terms, but we should be aware whether an emulated scenario is inside or outside the range of the original 

simulations. Thirdly, overfitting should be avoided as a general rule, but some sort of overfitting can be allowed depending 

on the purpose of the studies. For example, constructing SSP-specific emulators is possible as discussed above. These 

emulators overfit to the corresponding SSPs (socioeconomic pathways) and thus will not work well under different 455 

socioeconomic pathways. On the other hand, as long as the purpose of the emulation is to explore future scenarios other than 

socioeconomic pathways, overfitting to the SSPs will not be a problem. Such judgements may be difficult. In general, 

however, unwanted and unexpected characteristics of statistical models tend to emerge when more complex models are used. 

Therefore, it is conservative, but can be safer, to choose a simpler model if it meets the requirement of the studies when the 

users are not confident about the model characteristics. 460 

Both simple and complex emulators have advantages and disadvantages. We cannot conclude which emulator is the 

“best” one, because it depends on the purpose and situation, but we can give a general guideline to choose a suitable 

emulator based on the results of this study. This is that simple emulators are effective for approximating global general 

tendencies, but complex emulators are necessary if the focus is regional or sectoral heterogeneity. Through a systematic 

comparison of different emulators, ranging from very parsimonious through to complex alternatives, the findings of this 465 

study can help researchers choose and implement the most suitable emulators for their purposes and situations. 

5 Limitations and future study 

We used the results of simulations as the ground truth, and the emulators were optimized to reproduce the results of the 

simulations. While we used state-of-the-art simulation results (Takakura et al., 2019), the simulations themselves contain 

uncertainties and inaccuracies. Thus, even if the emulators could reproduce the results of the simulations, this does not 470 

necessarily mean the economic impacts estimated by the emulators are accurate. 

In this study, we assumed that climate data from GCMs were given and representative climate variables could be 

calculated by aggregating (or upscaling) them. On the other hand, particularly when the emulator is used as a component of a 

typical integrated assessment model, climate data are calculated by a simple climate model and only the global mean 
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temperature is available. In such a situation, downscaling is necessary if the emulator requires regional or seasonal climate 475 

variables. This is possible using, for example, a pattern scaling technique (Herger et al., 2015; Osborn et al., 2016). In this 

case, the overall performance of the emulation should be evaluated including this pre-processing. 

We should also consider the division of roles between models. In this study, the emulators played the roles of both 

bio/physical impact models and economic models. As discussed above, it can be difficult to incorporate the assumptions 

used in the economic models into the emulators. To avoid such difficulties, it may be better for emulators to focus on 480 

bio/physical impacts, with the economic impacts being calculated by an appropriate economic model. In general, the 

computational costs of economic models are lower compared to those of bio/physical impact models, and thus, it is prudent 

to consider this option. It may also be desirable from the viewpoint of representing interactions among sectors, but more 

investigations, model developments, and validations are needed to model complex interactions. The optimal configuration of 

the model cascade should be decided considering prediction accuracy, computational cost, and the purpose of studies. 485 
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Table 1: List of modelled sectors. In principle, the results of simulations obtained in Takakura et al. (2019) were used. 

*Definition of the baseline (no-climate change condition) was changed slightly compared to that of the original study. 635 

#Original results imputed by emulation-like technique due to data unavailability. 

Simulated economic impact Way of monetization 

Agricultural productivity* CGE model 

Undernourishment CGE model + VSL 

Heat-related excess mortality VSL 

Cooling/heating demand CGE model 

Occupational-health cost CGE model 

Hydropower generation capacity CGE model 

Thermal power generation capacity CGE model 

Fluvial flooding Economic damage function 

Coastal inundation# Economic damage function 

 

Table 2: Candidate input variables. Socioeconomic variables are defined for AIM’s 17 regions, while climatic 

variables are defined for SREX’s 26 regions. 

Variable name Variable Spatial resolution Temporal resolution 

Δ𝑎𝑔𝑡𝑡|𝑠𝑐 Temperature Global Annual 

Δ𝑎𝑟𝑡𝑟𝑠,𝑡|𝑠𝑐 Temperature SREX 26 regions Annual 

Δ𝑎𝑟𝑝𝑟𝑠,𝑡|𝑠𝑐 Precipitation SREX 26 regions Annual 

Δ𝑞𝑟𝑡𝑞,𝑟𝑠,𝑡|𝑠𝑐 Temperature SREX 26 regions Quarterly 

Δ𝑞𝑟𝑝𝑞,𝑟𝑠,𝑡|𝑠𝑐 Precipitation SREX 26 regions Quarterly 

Δ𝑝𝑜𝑝𝑟,𝑡|𝑠𝑐 Population AIM 17 regions Annual 

Δ𝑔𝑑𝑝𝑟,𝑡|𝑠𝑐 GDP AIM 17 regions Annual 

Δ𝑔𝑝𝑐𝑟,𝑡|𝑠𝑐 GDP per capita AIM 17 regions Annual 

 640 

Table 3: Models and input variables in Comparison 1. Input variables are used to emulate the economic impact in 

year t1 in region r1 for each sector. 

Emulator Input variables  

OLS1/OLS2 𝐱𝑟,𝑡|𝑠𝑐 = 𝑎𝑔𝑡𝑡|𝑠𝑐 𝑡 = 𝑡1 

OLS1/OLS2 𝐱𝑟,𝑡|𝑠𝑐 = ({𝑎𝑟𝑡𝑟𝑠,𝑡|𝑠𝑐}, {𝑎𝑟𝑝𝑟𝑠,𝑡|𝑠𝑐}) 𝑡 = 𝑡1, 𝑟𝑠 ∈ 𝑟𝑠(𝑟1) 
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Table 4: Models and input variables in Comparison 2. Input variables are variables used to emulate the economic 

impact in year t1 in region r1 for each sector. 

Emulator Input variables  

OLS2/OLS2i 𝐱𝑟1,𝑡1|𝑠𝑐 = ({𝑎𝑟𝑡𝑟𝑠,𝑡|𝑠𝑐}, {𝑎𝑟𝑝𝑟𝑠,𝑡|𝑠𝑐})                            𝑡 = 𝑡1, 𝑟𝑠 ∈ 𝑟𝑠(𝑟1) 

OLS2/OLS2i 𝐱𝑟1,𝑡1|𝑠𝑐 = ({𝑎𝑟𝑡𝑟𝑠,𝑡|𝑠𝑐}, {𝑎𝑟𝑝𝑟𝑠,𝑡|𝑠𝑐}, {𝑝𝑜𝑝𝑟,𝑡|𝑠𝑐}, {𝑔𝑑𝑝𝑟,𝑡|𝑠𝑐}, {𝑔𝑝𝑐𝑟,𝑡|𝑠𝑐}) 𝑡 = 𝑡1, 𝑟𝑠 ∈ 𝑟𝑠(𝑟1), 𝑟 = 𝑟1 

 645 

 

Table 5: Models and input variables in Comparison 3. Input variables are variables used to emulate the economic 

impact in year t1 in region r1 for each sector. 

Emulator Input variables  

OLS2/MLP 𝐱𝑟1,𝑡1|𝑠𝑐 = ({𝑎𝑟𝑡𝑟𝑠,𝑡|𝑠𝑐}, {𝑎𝑟𝑝𝑟𝑠,𝑡|𝑠𝑐}, {𝑝𝑜𝑝𝑟,𝑡|𝑠𝑐}, {𝑔𝑑𝑝𝑟,𝑡|𝑠𝑐}, {𝑔𝑝𝑐𝑟,𝑡|𝑠𝑐}) 𝑡 = 𝑡1, 𝑟𝑠 ∈ 𝑟𝑠(𝑟1), 𝑟 = 𝑟1 

OLS2/MLP 𝐱𝑟1,𝑡1|𝑠𝑐 = ({𝑎𝑟𝑡𝑟𝑠,𝑡|𝑠𝑐}, {𝑎𝑟𝑝𝑟𝑠,𝑡|𝑠𝑐}, {𝑝𝑜𝑝𝑟,𝑡|𝑠𝑐}, {𝑔𝑑𝑝𝑟,𝑡|𝑠𝑐}, {𝑔𝑝𝑐𝑟,𝑡|𝑠𝑐}) 𝑡 = 𝑡1, 𝑟𝑠 ∈ 𝑟𝑠(𝑟1), ∀ 𝑟 

OLS2/MLP 𝐱𝑟1,𝑡1|𝑠𝑐 = ({𝑞𝑟𝑡𝑞,𝑟𝑠,𝑡|𝑠𝑐}, {𝑞𝑟𝑝𝑞,𝑟𝑠,𝑡|𝑠𝑐}, {𝑝𝑜𝑝𝑟,𝑡|𝑠𝑐}, {𝑔𝑑𝑝𝑟,𝑡|𝑠𝑐}, {𝑔𝑝𝑐𝑟,𝑡|𝑠𝑐}) 𝑡 = 𝑡1, 𝑟𝑠 ∈ 𝑟𝑠(𝑟1), 𝑟 = 𝑟1, ∀ 𝑞 

OLS2/MLP 𝐱𝑟1,𝑡1|𝑠𝑐 = ({𝑞𝑟𝑡𝑞,𝑟𝑠,𝑡|𝑠𝑐}, {𝑞𝑟𝑝𝑞,𝑟𝑠,𝑡|𝑠𝑐}, {𝑝𝑜𝑝𝑟,𝑡|𝑠𝑐}, {𝑔𝑑𝑝𝑟,𝑡|𝑠𝑐}, {𝑔𝑝𝑐𝑟,𝑡|𝑠𝑐}) 𝑡 = 𝑡1, 𝑟𝑠 ∈ 𝑟𝑠(𝑟1), ∀ 𝑟 , ∀ 𝑞 

OLS2/MLP 𝐱𝑟1,𝑡1|𝑠𝑐 = ({𝑎𝑟𝑡𝑟𝑠,𝑡|𝑠𝑐}, {𝑎𝑟𝑝𝑟𝑠,𝑡|𝑠𝑐}, {𝑝𝑜𝑝𝑟,𝑡|𝑠𝑐}, {𝑔𝑑𝑝𝑟,𝑡|𝑠𝑐}, {𝑔𝑝𝑐𝑟,𝑡|𝑠𝑐}) 𝑡 = 𝑡1, ∀𝑟𝑠, 𝑟 = 𝑟1  

OLS2/MLP 𝐱𝑟1,𝑡1|𝑠𝑐 = ({𝑎𝑟𝑡𝑟𝑠,𝑡|𝑠𝑐}, {𝑎𝑟𝑝𝑟𝑠,𝑡|𝑠𝑐}, {𝑝𝑜𝑝𝑟,𝑡|𝑠𝑐}, {𝑔𝑑𝑝𝑟,𝑡|𝑠𝑐}, {𝑔𝑝𝑐𝑟,𝑡|𝑠𝑐}) 𝑡 = 𝑡1, ∀𝑟𝑠, ∀𝑟 

OLS2/MLP 𝐱𝑟1,𝑡1|𝑠𝑐 = ({𝑞𝑟𝑡𝑞,𝑟𝑠,𝑡|𝑠𝑐}, {𝑞𝑟𝑝𝑞,𝑟𝑠,𝑡|𝑠𝑐}, {𝑝𝑜𝑝𝑟,𝑡|𝑠𝑐}, {𝑔𝑑𝑝𝑟,𝑡|𝑠𝑐}, {𝑔𝑝𝑐𝑟,𝑡|𝑠𝑐}) 𝑡 = 𝑡1, ∀𝑟𝑠, 𝑟 = 𝑟1, ∀𝑞 

OLS2/MLP 𝐱𝑟1,𝑡1|𝑠𝑐 = ({𝑞𝑟𝑡𝑞,𝑟𝑠,𝑡|𝑠𝑐}, {𝑞𝑟𝑝𝑞,𝑟𝑠,𝑡|𝑠𝑐}, {𝑝𝑜𝑝𝑟,𝑡|𝑠𝑐}, {𝑔𝑑𝑝𝑟,𝑡|𝑠𝑐}, {𝑔𝑝𝑐𝑟,𝑡|𝑠𝑐}) 𝑡 = 𝑡1, ∀𝑟𝑠, ∀𝑟, ∀𝑞 

 

 650 

Table 6: Models and input variables in Comparison 4. Input variables are used to emulate the economic impact in 

year t1 in region r1 for each sector. 

Emulator Input variables  

MLP 𝐱𝑟1,𝑡1|𝑠𝑐 = ({𝑞𝑟𝑡𝑞,𝑟𝑠,𝑡|𝑠𝑐}, {𝑞𝑟𝑝𝑞,𝑟𝑠,𝑡|𝑠𝑐}, {𝑝𝑜𝑝𝑟,𝑡|𝑠𝑐}, {𝑔𝑑𝑝𝑟,𝑡|𝑠𝑐}, {𝑔𝑝𝑐𝑟,𝑡|𝑠𝑐}) 𝑡 = 𝑡1, ∀𝑟𝑠, ∀𝑟, ∀𝑞 

LSTM 𝐱𝑟1,𝑡1|𝑠𝑐 = ({𝑞𝑟𝑡𝑞,𝑟𝑠,𝑡|𝑠𝑐}, {𝑞𝑟𝑝𝑞,𝑟𝑠,𝑡|𝑠𝑐}, {𝑝𝑜𝑝𝑟,𝑡|𝑠𝑐}, {𝑔𝑑𝑝𝑟,𝑡|𝑠𝑐}, {𝑔𝑝𝑐𝑟,𝑡|𝑠𝑐}) 𝑡 = 𝑡1, ⋯ , 𝑡1 − 9, ∀𝑟𝑠, ∀𝑟, ∀𝑞 

LSTM 𝐱𝑟1,𝑡1|𝑠𝑐 = ({𝑞𝑟𝑡𝑞,𝑟𝑠,𝑡|𝑠𝑐}, {𝑞𝑟𝑝𝑞,𝑟𝑠,𝑡|𝑠𝑐}, {𝑝𝑜𝑝𝑟,𝑡|𝑠𝑐}, {𝑔𝑑𝑝𝑟,𝑡|𝑠𝑐}, {𝑔𝑝𝑐𝑟,𝑡|𝑠𝑐}) 𝑡 = 𝑡1, ⋯ , 𝑡1 − 94, ∀𝑟𝑠, ∀𝑟, ∀𝑞 
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Table 7: Computational cost of the developed emulators. Median (minimum, maximum) of 17 regional, 9 sectoral and 

aggregated impacts results are shown. OLS-based models and ANN-based models were implemented by statsmodels 

library and keras library in Python respectively. OLS2 (RMT+P+S): OLS2 with regional mean temperature 

precipitation and socioeconomic variables. MLP (RMT+P+S): MLP with regional mean temperature precipitation 

and socioeconomic variables. MLP (All variables): MLP with all the input variables. LSTM (All variables, 95): 660 

LSTM with all the input variables for 95 years. 

Model 

(input) 

Number of 

input variables 

Number of 

parameters 

Model object size 

(MB) 

Prediction time 

(second/scenario) 

Training time 

(second) 

OLS2 

(GMT) 

1 

(1, 1) 

3 

(3, 3) 

 1.470 

( 1.470, 1.470) 

0.002 

(0.002, 0.004) 

  0.010 

(0.008, 0.018) 

OLS2 

(RMT+P) 

6 

(2, 10) 

13 

(5, 21) 

 5.291 

( 2.234, 8.348) 

0.003 

(0.002, 0.015) 

  0.018 

(0.010, 0.029) 

OLS2 

(RMT+P+S) 

9 

(5, 13) 

19 

(11, 27) 

 7.583 

( 4.527, 10.642) 

0.004 

(0.003, 0.006) 

  0.022 

(0.014, 0.034) 

MLP(RMT+P+S) 
9 

(5, 13) 

1409 

(1281, 1537) 

 7.711 

( 7.710, 7.711) 

0.054 

(0.050, 0.133) 

  3.601 

(1.024, 13.349) 

MLP 

(All variables) 

259 

(259, 259) 

9409 

(9409, 9409) 

 7.711 

( 7.711, 7.711) 

0.134 

(0.129, 0.224) 

  6.552 

(1.375, 15.350) 

LSTM 

(All variables, 95) 

24605 

(24605, 24605) 

45729 

(45729, 45729) 

96.461 

(96.454, 96.461) 

0.723 

(0.679, 1.347) 

689.066 

(153.160, 1761.409) 
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Figure 1: Overall framework of simulation and emulation of economic impacts of climate change. Simulated and 665 

emulated economic impacts in sector s, region r, year t under a scenario sc are denoted as 𝑦𝑠,𝑟,𝑡|𝑠𝑐  and �̂�𝑠,𝑟,𝑡|𝑠𝑐 , 

respectively. The parameters of the emulator are determined based on the simulated economic impact (represented 

by the green dash-dot-dash arrow). 
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 670 

Figure 2: Performance of emulations in Comparison 1. Correlation coefficients between simulation results and 

emulation results are shown. Bars and edges of boxes represent medians and first/third quantile values among 17 

regional results. The ends of the whiskers show the minimum and maximum values, while outliers are denoted by 

dots if they exist. 
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Figure 3: Performance of emulations in Comparison 2. Correlation coefficients between simulation results and 

emulation results are shown. 
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 680 

Figure 4: Performance of emulations in Comparison 3. Correlation coefficients between simulation results and 

emulation results are shown. CA(1) denotes that climate variables for all regions (including non-target region) are 

used. CS(1) denotes that seasonal climate variables are used. SA(1) denotes that socioeconomic variables for all 

regions (including non-target region) are used. 
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Figure 5: Performance of emulations in Comparison 4. Correlation coefficients between simulation results and 

emulation results are shown. MLP(1) denotes that MLPs are used as the emulators and only climatic and 

socioeconomic variables for the target year are used. LSTM(10) and LSTM(95) denote that LSTMs are used as the 

emulators and the climatic and socioeconomic variables for 10 and 95 years are used, respectively. 690 
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Figure 6: Relationship between number of input variables and performance of emulators. Medians of 17 regional 

results are plotted as points. Fitted curves are produced for the frontiers (Pareto optimal corresponding to each 

number of input variables) by beta regression. When time-series input data are used, the number of input variables is 695 

multiplied by the length of the time series. 
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Figure 7: Relationship between range of economic impacts (global) and performance of emulators. Each point 

represents a sector, and the median of 17 regional results is plotted as the y-axis value. Fitted curves are produced by 700 

beta regression. OLS2 uses only the global mean temperature as the input variable, and LSTM uses all the prepared 

input variables for 95 years. 
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Figure 8: Time-series results of the simulation and emulations for aggregated economic impacts in Brazil region. 

OLS2 (GMT): OLS2 with global mean temperature. OLS2 (RMT and P): OLS2 with regional mean temperature and 705 

precipitation. OLS2 (RMT and P +S): OLS2 with regional mean temperature precipitation and socioeconomic 

variables. MLP (All variables): MLP with all the input variables. LSTM (All variables, 95): LSTM with all the input 

variables for 95 years. Thin lines represent individual GCM results and bold lines represent average of 5 GCMs. 
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Figure 9: Time-series results of the simulation and emulations for the occupational-health cost sector in Brazil region. 710 

OLS2 (GMT): OLS2 with global mean temperature. OLS2 (RMT and P): OLS2 with regional mean temperature and 

precipitation. OLS2 (RMT and P +S): OLS2 with regional mean temperature precipitation and socioeconomic 

variables. MLP (All variables): MLP with all the input variables. LSTM (All variables, 95): LSTM with all the input 

variables for 95 years. Thin lines represent individual GCM results and bold lines represent average of 5 GCMs. 
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 715 
Figure 10: Time-series results of the simulation and emulations for the hydropower generation sector in Brazil region. 

OLS2 (GMT): OLS2 with global mean temperature. OLS2 (RMT and P): OLS2 with regional mean temperature and 

precipitation. OLS2 (RMT and P +S): OLS2 with regional mean temperature precipitation and socioeconomic 

variables. MLP (All variables): MLP with all the input variables. LSTM (All variables, 95): LSTM with all the input 

variables for 95 years. Thin lines represent individual GCM results and bold lines represent average of 5 GCMs 720 
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Figure 11: Performance of emulations of the aggregated impacts under different cross-validation procedures. Root 

mean squared errors (normalized by pooled standard deviation) between simulation results and emulation results are 

shown. Unlike the correlation coefficient, a higher value means a larger error. Random means training and test 

scenarios are selected randomly. For example, ‘GFDL-ESM2M left’ denotes that the emulators are trained by the 725 

results of HadGEM2-ES, IPSL-CM5A-LR, MIROC-ESM-CHEM, and NorESM1-M, then tested by the results of 

GFDL-ESM2M. Similarly, for example, ‘RCP2.6 left’ denotes that the emulators are trained by the results of RCP4.5, 

RCP6.0, and RCP8.5, then tested by the results of RCP2.6. OLS2 (GMT): OLS2 with global mean temperature. 

OLS2 (RMT+P): OLS2 with regional mean temperature and precipitation. OLS2 (RMT+P+S): OLS2 with regional 

mean temperature precipitation and socioeconomic variables. MLP (RMT+P+S): MLP with regional mean 730 

temperature precipitation and socioeconomic variables. MLP (All variables): MLP with all the input variables. 

LSTM (All variables, 95): LSTM with all the input variables for 95 years. 

 


