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Abstract. Several sensitivity experiments with the Weather Research and Forecasting (WRF) model version 3.8.1 have been

performed to find the optimal parameterization setup for precipitation amounts and patterns around Mount Kenya at a convection-

permitting scale of 1 km. Hereby, the focus is on the cumulus scheme, with tests of the Kain-Fritsch, the Grell-Freitas and no

cumulus parameterization for the parent and all nested domains. Besides, two long wave radiation schemes and two plan-

etary boundary layer parameterizations are evaluated. Additionally, different nesting ratios and numbers of nests are tested.5

The precipitation amounts and patterns are compared against a large number of weather station data and three gridded obser-

vational data sets. The temporal correlation of monthly precipitation sums show that fewer nests lead to a more constrained

simulation and hence, the correlation is higher. The pattern correlation with weather station data confirms this result, but when

comparing it to the most recent gridded observational data set the difference between the number of nests and nesting ratios

are marginal. The precipitation patterns further reveal that the Grell-Freitas cumulus parameterization provides the best results,10

when it comes to precipitation patterns and amounts. If no cumulus parameterization is used, the temporal correlation between

gridded and in-situ observations and simulated precipitation is especially poor with more nests. Moreover, even if the patterns

are captured quite well, a clear overestimation in the precipitation amounts is observed around Mount Kenya when using no

cumulus scheme at all. The Grell-Freitas cumulus parameterization also provides reasonable results for 2-metre temperature

with respect to gridded observational and weather station data.15

1 Introduction

East Africa, including Kenya, has anomalously dry climate conditions compared to many other equatorial regions around the

globe (e.g., Trewartha, 1981; Nicholson, 2017). The precipitation patterns in East Africa are very heterogeneous, which can

be attributed to the variety and complexity of large-scale controls, i.e., topography, influence from the ocean, the dynamics of20
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the tropical circulation and lakes (Nicholson, 2017). The topography, in particular the Turkana channel between the Ethiopian

and East African highlands in Kenya, exerts a strong steering effect on the low-level flow on time scales from seasons to

days (Paegle and Geisler, 1986; Slingo et al., 2005). The Turkana jet has an influence on the local climate and especially on

precipitation, and a study by Nicholson (2016a) suggests that it might even be responsible for the suppression of the summer

rainy season in northwestern Kenya. The zonal circulation over the Indian Ocean further influences precipitation in Kenya, as25

it is located under subsiding air masses, leading to the aforementioned aridity over an equatorial region (Pohl and Camberlin,

2011; Nicholson, 2017). This circulation and thus, the intensity and the vertical extent of the subsidence account for variations

in the inter-annual rainfall variability over Kenya (Pohl and Camberlin, 2011; Nicholson, 2017). The second largest freshwater

lake in the world, Lake Victoria, also contributes to rainfall in this area. It generates its own mesoscale atmospheric circulation

system that leads to high rainfall amounts over the lake, where lake surface temperatures are strongly related to the rainfall30

amounts (Sun et al., 2014). Furthermore, local thunderstorms with heavy precipitation can be triggered over Lake Victoria,

rendering the lake-land breeze but also large-scale moisture availability as the main control (Thiery et al., 2015; Woodhams

et al., 2019).

All these large-scale controls lead to the fact that the climate in Kenya is characterized by two rainy seasons. The March-

April-May (MAM) season is often termed as ‘long rains’, as this season is associated with the longest lasting and heaviest35

precipitation events. The other rainy season is called ‘short rains’ and occurs in October-November (ON). It plays a less im-

portant role in the total amount of precipitation, but accounts for most of the inter-annual variability (Camberlin and Philippon,

2002; Hastenrath et al., 2010). Thus, it is not surprising that the ‘short rains’ are responsible for both floodings and droughts.

The occurrence of floods in Kenya is not unusual, and often floods set in after very dry years (Parry et al., 2012). Droughts

are found to be related to El Niño Southern Oscillation (ENSO) events on inter-annual timescales, as it affects the atmospheric40

circulation over the Indian Ocean. This circulation has also an impact on the ‘short rains’ in East Africa (Pohl and Camberlin,

2011; Nicholson, 2016b). Additionally, the Madden-Julian-Oscillation can impact precipitation on inter-seasonal timescales

and it is able to strengthen or weaken the climatological convective and dynamic zonal gradients between Southeast Asia and

East Africa (Pohl and Camberlin, 2011). The low-level jet stream in the Turkana channel is also suggested to be able to enhance

extremes in precipitation over East Africa (Nicholson, 2016b). Nevertheless, in the recent past, droughts instead of floods are45

of major concern in Kenya. The more frequent occurrence of droughts seems to be related to an ongoing downward trend in the

‘long rains’ in MAM that has commenced in the 1980s and lasted up to the late 2000s (Williams and Funk, 2011; Liebmann

et al., 2014; Ayugi et al., 2016).

The rather sparse observation network in East Africa and also Kenya in combination with the aforementioned complexity

of the climate, conspire against obtaining a better understanding of all the involved processes that dominate the climate, but50

also its changes. To overcome this issue, climate models, and in particular regional climate models, could help understanding

those processes in more detail. Nevertheless, capturing the convective precipitation in the tropics correctly is also a challenge

for regional climate models, and that is why several studies focus on the evaluation of their performance in different regions

(e.g., Rauscher et al., 2010; Kendon et al., 2017; Brune et al., 2020; Wu et al., 2020).
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Only in the past few years the number of simulations over Africa or over Eastern Africa has increased. At the same time,55

the resolution of these simulations has become much finer. Cook and Vizy (2013) performed a simulation over entire Africa

using the Weather Research and Forecasting (WRF) Model (Skamarock et al., 2008) at a 90 km horizontal resolution. They

concluded that the model is able to capture the distribution of the precipitation and the corresponding circulation quite well over

Eastern Africa, but a wet bias in the model simulation remains. Williams et al. (2015) found an overestimation of precipitation

and a well captured spatial pattern over the Lake Victoria basin, which is inline with the results found in Cook and Vizy (2013).60

Williams et al. (2015) used the UK Met Office Hadley Centre Regional Climate Model at 50 km horizontal resolution over

Africa. Two simulations, one with 50 and the other with 25 km resolution over Eastern Africa were also performed by Kerandi

et al. (2017). They examined the representation of temperature and precipitation over the Tana river basin in Kenya, finding that

temperature and precipitation patterns are well captured, but with a cold temperature bias. The increase in the resolution from 50

to 25 km resulted in a much better representation of precipitation (Kerandi et al., 2017). Otieno et al. (2019) performed different65

sensitivity studies with WRF to test the effect of four cumulus parameterizations (Kain-Fritsch, Kain–Fritsch with a moisture

advection-based trigger function, Gréll-Dévényi, and Betts–Miller–Janjicon schemes) to the representation of precipitation

over East Africa during wet years. The authors still used a rather coarse resolution of 36 km covering East Africa including

parts of the Indian Ocean and the rain forest in Congo, i.e., two important moisture sources.

The most recent simulations over (Eastern) Africa access the convection-permitting scales (resolution finer than 5 km)70

(Stratton et al., 2018). This scale can have a fundamental impact on model variables, in particular on precipitation (Ban et al.,

2014; Giorgi et al., 2016; Gómez-Navarro et al., 2018). This is especially true for regions with high and complex topography

such as East Africa. The simulation published in Stratton et al. (2018) is performed with the Met Office Unified Model at 4.5 km

horizontal resolution. Due to its high spatial resolution, it is convection-permitting and hence, a cumulus parameterization is

not needed. This simulation is investigated in more detail in Finney et al. (2019) with respect to East African climate and75

compared to a parameterized 25 km spatial resolution simulation. They find that especially the diurnal cycle in rainfall benefits

from the convection-permitting resolution, but also precipitation intensities and patterns improve. Additionally, Woodhams

et al. (2018) confirmed that a convection-permitting simulation is able to better represent the sub-daily precipitation intensities

over Lake Victoria and the occurrence of storms over land.

The studies presented above already indicate that there are several regional climate models (RCMs) available. Each of these80

models have different sets of parameterizations that can be chosen, and the ability to simulate the climate over a certain region

depends to a large part on the selection of the different parameterization options. Several studies have evaluated the transferable

skills of RCMs to different regions (e.g., Takle et al., 2007; Jacob et al., 2007; Rockel and Geyer, 2008; Jacob et al., 2012;

Bellprat et al., 2016; Russo et al., 2019). However, a clear answer to the transferability has not been found yet. This is why

RCMs still need to be retuned for different regions, as every region has its particular climate with specific drivers, which are not85

equally well captured by different parameterization options. Hence, this study presents a set of sensitivity studies performed by

WRF, initiated and driven by ERA5, to find an optimal setting for the representation of precipitation in convection-permitting

simulations over Mount Kenya.
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In this paper, the focus on Mount Kenya is chosen, as it plays a crucial role in the supply of freshwater both in the highlands

and in the surrounding lowlands (Liniger et al., 2005). The availability of fresh water decreases drastically with longer distances90

from Mount Kenya, and is further reduced by evapotranspiration from the vegetation in the drier savannas of the lowlands

(Ngigi et al., 2007). Population growth through migration puts further pressure on water availability (Ngigi et al., 2007) which

may result in disputes, marginalization and conflicts (Wiesmann et al., 2000). This situation is exacerbated by progressive

climate change that will affect water availability through changes in precipitation amounts and patterns, induced by either local

or large scale changes. To understand the behaviour of precipitation in this complex topographical area and to obtain possible95

adaptation strategies, it is vital to create reliable regional climate simulations that can also be used for climate projections in a

next step.

The paper gives a detailed description of the sensitivity simulations performed with WRF, but also its initial and boundary

conditions provided by the reanalysis data ERA5. Furthermore, the different observation based gridded data for precipitation

and temperature and the weather station data are presented in Section 2. Section 3 provides an analysis of the temporal and100

spatial representation of precipitation patterns over the area around Mount Kenya. Also, the sensitivity of the different param-

eterization options to precipitation amounts and patterns are investigated. The analysis is topped off with a brief description

of the 2-metre temperature around Mount Kenya. Finally, the paper is wrapped up by summarizing and concluding remarks in

Section 4.

2 Model configuration and Data105

2.1 WRF Model

We adopt the regional climate model WRF (version 3.8.1; Skamarock et al., 2008) to obtain fine scale and local precipitation

patterns. This model allows us to dynamically downscale initial and boundary conditions, which in this study are provided

by ERA5 reanalysis. To determine an optimal setup for Kenya, and particularly the Mount Kenya area, we test different

parameterization schemes, focusing on cumulus parameterizations, with two different model setups and nesting ratios. The110

experiments are described in more detail in the following and are summarized in Table 1. The experiments are all run for the

same period of time, i.e., the year 2008. To permit the soil and the atmosphere to adjust to the initial conditions, we allow for

two month of spin-up. Since the soil variables are well equilibrated in the ERA5 data, the used spin-up time of two month in

our simulations should be enough to bring the soil and the atmosphere into an equilibrium. Previous studies (Angevine et al.,

2014; Jerez et al., 2020; Velasquez et al.) back-up the idea that rather short spin-up periods are enough for variables such as115

temperature or precipitation to reach the equilibrium in WRF, but longer periods are recommended (a few months). This means

that the simulations start on the 1st of November 2007 and end on the 31st of December 2008.

Two different nesting ratios, i.e., 1:3 and 1:5, have been used in different model domain settings, to estimate the effect of

the nesting ratio on the modelled precipitation and temperature. For the nesting ratio of 1:3, a four domain (i.e., 27, 9, 3, 1 km

horizontal resolution) and a three domain (i.e., 9, 3, 1 km horizontal resolution) setup have been tested. Also the 1:5 nesting120

ratio is run with two different setups, i.e., a three nested (25, 5, 1 km horizontal resolution) and a two nested domain setup (5,
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1 km horizontal resolution). To test if the coarser setups affect the representation of precipitation and temperature over the study

area, simulations with a coarser and finer parent grid are performed. This is because for the coarser setups the downscaling

resolution is very similar to the one of ERA5, which provides the initial and boundary conditions. Note that in the simulations

with a reduced number of nests (3 domains instead of 4 for the 1:3 ratio, and 2 instead of 3 for the 1:5 ratio), the parent domain125

always corresponds to the second domain of the experiment with one nest more (Table 1). All simulations have 49 vertical eta

levels up to 50 hPa and an innermost domain located over Mount Kenya with 1 km horizontal resolution. When comparing the

different sensitivity experiments in the results (section 3), the focus is always on the innermost domain of all the simulations.

This is, because all the simulations resolve this domain with 1 km horizontal grid spacing. To save some computational costs,

an adaptive time step is used, which is between 54 and 810 seconds in the outermost domain for the 1:3 ratio experiments (50130

and 750 seconds for the 1:5 ratio). For the smaller domains, the time steps are reduced by the factor of the nesting ratio.

Different physical parameterization schemes have been tested, in order to improve the representation of precipitation over

Kenya. Tests have been done, by varying the cumulus, the long-wave (LW) radiation and the planetary boundary layer (PBL)

parameterization schemes. For cumulus parameterization the Kain-Fritsch (Kain, 2004) and the scale-aware Grell-Freitas en-

semble (Grell and Freitas, 2014) schemes have been used, and one experiment is performed without using any cumulus param-135

eterization at all. The LW radiation scheme has been varied between Rapid Radiation Transfer Model (RRTM; Mlawer et al.,

1997) and Community Atmosphere Model (CAM; Collins et al., 2004). The two first-order non-local closure PBL schemes of

Yonsei University (Hong et al., 2006) and the second version of the Asymmetric Convection Model (Pleim, 2007) have been

tested. Table 1 provides the exact details of each experiment and the used parameterization options. The rest of the parame-

terization options are kept constant throughout the different experiments, i.e., WRF Single-moment 6-class scheme (Hong and140

Lim, 2006) for microphysics, Dudhia short-wave (SW) scheme for the SW radiation (Dudhia, 1988) and the Noah–MP land

surface model (Niu et al., 2011; Yang et al., 2011) to describe surface processes. In all the simulations the lake model is turned

on. The 1-D physically based lake model (Subin et al., 2012) helps to simulate lake internal processes and interactions at the

surface of the lake with the atmosphere (Gu et al., 2015). It increases the eddy diffusivity and thus, it strengthens also the heat

transfer in the lake column (Gu et al., 2015). This is considered to be beneficial for the description of the lake surface tempera-145

ture, which again helps to better represent evaporative effects and thus precipitation over the lake and in the surrounding areas.

Please note that the aforementioned parameterization options are selected from an even larger set of experiments not included

in this paper, tested with one nesting ratio and with four nested domains only.

As already shown in Table 1, each experiment obtained a name, chosen based on the area used in the literature or on the

main parameterizations that it employs. The “Europe” experiment is based on the parameterization options used with WRF150

over Europe in previous studies by the authors (Messmer et al., 2017), but including some updated schemes such as the Noah-

MP land surface model. “South America” is based on the parameterizations used for the optimal simulation of storms over

the central Andes (Zamuriano et al., 2019). The remaining “Cumulus” experiments are similar to the configurations applied

over East Africa in previous studies (Pohl et al., 2011; Otieno et al., 2019), but they include the updated Noah-MP land

surface model, and changes in the cumulus scheme option (option 3 in WRF - “Cumulus3” experiment) or no use of cumulus155

parameterizations at all (“No Cumulus”).
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2.2 ERA5

ERA5 is the latest reanalysis provided by the European Centre for Medium-Range Weather Forecasts (ECMWF). At the

moment, it is available from January 1979 until three months before present (Copernicus Climate Change Service (C3S),

2017). ERA5 provides different variables on the surface and various pressure levels with an hourly output. Nevertheless, we160

use 6-hourly data for our boundary conditions. The data are available globally on a 0.25◦ horizontal grid spacing and it is using

137 vertical model levels. A vast number of observations and satellite data are assimilated to the ERA5 gridded data using the

integrated forecasting system cycle 41r2.

For the initial conditions, the surface variables surface and mean sea level pressure, 10 metre U and V wind components,

2-metre, dew point, skin and sea surface temperature (SST), and the volumetric soil water and soil temperature in four different165

levels are used. Additionally, some three-dimensional variables are used for initial and boundary conditions, such as the relative

humidity, the U and V components of wind, the temperature and the geopotential. Only 24 out of the 137 vertical levels available

in ERA5 were fed to WRF (1000, 925, 900, 850, 800, 775, 750, 700, 650, 600, 550, 500, 450, 400, 350, 300, 250, 200, 150,

100, 50, 30, 20, 10 hPa).

As stated before, our analysis will focus only on the year 2008. Compared to the climatology of Kenya for the year 1981–170

2010, the selected year is one of the warmer years, but when considering the constant warming since the beginning of the

current millennium, it can be considered as a new normal (Fig. 2a). In terms of precipitation, 2008 is on the dry side compared

to the climatology (Fig. 2b), but it is a year with two clear rainy seasons, the ‘long rains’ and the ‘short rains’ (Fig. 2c).

2.3 Observational data sets

To analyse the output of the WRF simulations and to identify the best parameterization options, the downscaled product must175

be compared to some independent observational data sets. Hence, the precipitation results are compared to ERA5, three satellite

based data sets and individual weather station measurements. For temperature, the results are not only compared to ERA5, but

also to the CRU data. Please note that the gridded data sets are interpolated to the grid of the WRF domain that it is compared

to, and the nearest point to the station is considered afterwards. Consequently, small differences can appear in the values related

to the gridded observational data sets. In the following, the different products are described in more detail.180

2.3.1 Tropical Rainfall Measurement Mission (TRMM)

The Tropical Rainfall Measurement Mission (TRMM) comprises several data sets based on satellite data, and it is provided by

NASA and the Japanese Aerospace Exploration Agency (JAXA). In this study we use the gridded data product TRMM 3B42

for precipitation estimates. Note that we use here the research-grade TRMM 3B42 and not the near real time version, as the first

is considered to be more suitable for research (Liu, 2015). Version 7 of TRMM 3B42 is a combined product and merges satellite185

rainfall estimates with gauge data. To obtain the 3-hourly precipitation estimates, radars are calibrated to the microwave imager

precipitation, which should result in a 3-hour microwave-only best estimate. In a next step, infrared precipitation is calibrated

to the microwave product to fill regional gaps. Finally, the 3-hourly estimate is summed up to monthly values and re-calibrated
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using a rain gauge analysis (Huffman et al., 2007, 2010). This monthly surface precipitation gauge analysis is obtained from

the Global Precipitation Climatology Centre (GPCC). The result is a Level 3 product with 3-hourly temporal and 0.25◦ × 0.25◦190

spatial resolution on a quasi-global (50◦ N – 50◦ S) grid. With this resolution the TRMM 3B42 data is very similar to ERA5.

TRMM 3B42 is available for the period 2000-02-29 to 2020-01-02, but for this study we only employ the year 2008.

2.3.2 IMERG

The Integrated Multi-satellitE Retrievals from GPM (IMERG) provides a multi-satellite product, currently available in the

6th version. It is the successor of the TRMM data set. Several products with different latency periods are available, but for195

this study we make use of the final product, which is suitable for scientific purposes. Similar to TRMM, several microwave

measurements are used to estimate precipitation, and it is further calibrated against instrument products. The half hourly

precipitation estimates are further recalibrated with a CMORPH Kalman filter and the PERSIANN Cloud Classification System

artificial neural network. The product is finally adjusted to the monthly GPCC rain gauge measurements and is available in

half-hourly time steps and on a spatial resolution of 0.1◦ × 0.1◦ (approximately 10 km × 10 km). The available time period is200

from June 2000 until present, but with a time lag of approximately 3.5 months. Here, we again only use the year 2008.

2.3.3 CHIRPS

The Climate Hazards group Infrared Precipitation with Stations (CHIRPS V2.0) provides a high-resolution data set with daily

rainfall amounts (Funk et al., 2015). The 0.05◦ spatial resolved data are available for parts of the mid-latitudes and the trop-

ics (50◦ S – 50◦ N). The data set is generated using thermal infrared precipitation products from different institutions. To205

calibrate global cold cloud duration rainfall estimates, the Tropical Rainfall Measuring Mission Multi-satellite Precipitation

Analysis version 7 (TMPA 3B42 v7) is used (Funk et al., 2015). In a first step, the World Meteorological Organization’s Global

Telecommunications System (GTS) rain gauge data, which are relatively sparsely available, are combined with cold cloud

duration derived precipitation estimates. In a second step, the best available weather station data are combined with cold cloud

duration based precipitation to get a product that on a monthly mean is similar to those produced by the GPCC or the Climate210

Research Unit from the University of East Anglia (Funk et al., 2015). Note that also IMERG and TRMM recalibrate their

monthly output to results obtained from GPCC, and hence, the three data sets used for the model verification are not fully

independent of each other, especially not when monthly sums are investigated.

2.3.4 CRU

The Climatic Research Unit (CRU) gridded time series of mean 2-metre temperature provides monthly data over land, except215

for Antarctica (version 4.03; Harris et al., 2020). The temperature is gridded on a 0.5×0.5◦ resolution map and is based on a

large number of weather stations. The weather station data are anomalized using their 1961-1990 climatology. These anomalies

are gridded using an angular-distance weighting, and then they are converted back to absolute values. CRU gridded time series

is often used in studies on African climate (e.g., Ongoma and Chen, 2017; Ayugi et al., 2020).
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2.3.5 Weather station data220

Compared to other tropical areas in Africa, Kenya and especially the area around Mount Kenya is covered by a comparably large

number of weather station data with long precipitation measurement series. Many of these measurement series are maintained

by farmers. Thanks to the support and involvement of the University of Nairobi and Bern, these series are still available today

(Gichuki et al., 1998; Liniger et al., 2005; MacMillan and Liniger, 2005). In addition to private stations, there are also some

that are operated by the government of Kenya, i.e., the Kenya Forest Service or the Kenyan Meteorological Department. We225

use data of 28 stations for precipitation which have been quality controlled by Schmocker et al. (2016). Table 2 provides some

information on the stations used in this study, but for more detailed information the reader is referred to Table 1 in Schmocker

et al. (2016). The station ID in both tables are identical to ease comparison. We obtained four stations with temperature records

from the Social Hydrological Information Platform (SHIP), associated with the Water and Land Resources Centre (WLRC)

project of the Centre for Training and Integrated Research In ASAL Development (CETRAD). Three additional stations for230

precipitation and temperature are included in the World Weather Records (WWR) database from the World Meteorological

Organization (WMO). These are the three first lines of Table 2.

3 Results

In the following section we are presenting results of our various sensitivity experiments. The focus is on precipitation, as this

variable is rather complex and still difficult to properly represent by regional climate models. Additionally, we present results235

from the innermost domain, i.e., the 1 km domain, as this is the region of interest. To obtain a complete picture of the best

parameterization setup and nesting option, also the evaluation of temperature is presented and described.

3.1 Sensitivity of Precipitation

To investigate the sensitivity of simulated precipitation due to different parameterization options of the WRF model, we first

show the annual cycle based on monthly means. Thereby, the sensitivity simulations with WRF and the three gridded observa-240

tional data sets are compared to in-situ data from weather stations (see Table 2 for more details). To compare gridded data with

point measurements at weather stations, the grid point that is closest to the corresponding latitude and longitude of the weather

station is considered in the WRF simulation and the gridded observations. Two performance measures for each weather station

are calculated and summarized in box-whisker plots (Fig. 3): the temporal correlation and the root mean squared error (RMSE).

Additionally the standard deviation of each data set is compared to the one extracted from the weather stations (not shown).245

Several different gridded observational data sets are employed here to compare the sensitivity simulations and to classify which

WRF setting performs best. As not only the weather station data but also the gridded observational data sets are subject to a

range of uncertainties, we do not only rely on one product. Note that because the gridded data sets are interpolated to the

respective WRF grid small differences can appear in the values of temporal correlations and RMSEs of each set-up and hence,

also the shape of bars corresponding to these data sets in the box-whisker plots can look slightly different.250
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The temporal correlations show that the observational data sets, ERA5, TRMM and especially IMERG, are well correlated

(Fig. 3a). This is expected as the data are not fully independent from each other. IMERG has the best correlation with the highest

median but also with the smallest spread. This is true for all the different nesting options, but especially the WRF setting with

a parent grid of 27 km and 4 domains shows a correlation of around 0.8 in the median value for all the observational data sets

. The fact that IMERG and the weather station data show such a good agreement further confirms the quality of the latter. The255

temporal correlations of the sensitivity simulations show a strong dependence on the nesting options. The simulations with

fewer nests (right part of Fig. 3a) exhibit a higher correlation and a smaller spread than the two simulations that have one

additional nest (left part of Fig. 3a). In particular, the “No Cumulus” simulation, but also the “Europe” parameterization, show

a poor performance in the temporal correlation. Note that the poor performance of the “No Cumulus” can only be observed in

nesting options with a larger number of domains, i.e., setups with a parent grid of 27 or 25 km. The fact that the nesting option260

is important here suggests that with fewer domains (only 3 instead of 4 nests for the 1:3 ratio, and 2 instead of 3 for the 1:5

ratio), the simulation in the innermost domain is still more strongly influenced by the boundary conditions of the driving data,

i.e., ERA5. Thus, the simulations with fewer nests cannot evolve with the same freedom as the ones with more nests, resulting

in a better temporal agreement of the simulations. This is especially clear in the “No Cumulus” simulation.

While all the gridded observational data sets yield a rather high temporal correlation, the RMSE of ERA5 is rather high265

compared to the ones of TRMM, IMERG and CHIRPS (Fig. 3b). A reason for this is that the precipitation in ERA5 is inde-

pendent of the weather station data, as precipitation is not assimilated into this product. Otherwise the RMSE shows similar

results as the correlations for both the gridded observations as well as the sensitivity simulations. Hence, the parameterization

of the simulation is only of minor importance compared to the nesting options. Similar findings are obtained when using the

standard deviation (not shown). Here, the WRF simulations are generally within the range of the standard deviation observed270

in the weather station data, except for the “Europe” parameterization in the nesting options with fewer nests. In that case, the

standard deviation is strongly underestimated indicating that not the full variability of precipitation is captured. Additionally,

the standard deviations of the gridded observational data sets are smaller than the ones of the weather station data, which is

owed to the coarser resolution of the first.

Since the temporal correlation and the RMSE do not clearly define which parameterization option of WRF delivers the best275

results for precipitation in the region around Mount Kenya, we investigate the pattern correlation of the simulations compared

to weather station data in a first step and to the gridded observational data set CHIRPS in a second step. Figure 4 shows in

the first row the pattern correlation between the WRF-simulations and the weather station data for each month. The different

columns indicate different parameterization options and the symbols within each panel shows the nesting option. The black

vertical line in each panel is equal to a correlation coefficient of 0.5. This value is a moderate correlation and still explains280

roughly 25 % of the variance, but it is a visual support to determine more easily which simulations and nesting options perform

better than others. The number of months that are equal or exceed this limit of 0.5 in correlation are counted and summed up

in the table below each panel (‘# months’ column).

The gridded observational data sets agree quite well in terms of the spatial pattern of precipitation, except for ERA5. The

fact that ERA5 shows a poor correlation with the weather station data is because the domain is located over steep terrain,285

9

https://doi.org/10.5194/gmd-2020-347
Preprint. Discussion started: 12 November 2020
c© Author(s) 2020. CC BY 4.0 License.



where a high resolution is needed to resolve precipitation patterns appropriately. Since ERA5 has the coarsest resolution of the

here used observational data sets, it is not surprising that its correlations are worst. CHIRPS has the highest spatial resolution

and shows a slightly better pattern correlation than IMERG (especially also in June) and hence, we have decided to compare

the WRF-simulations also against the CHIRPS gridded data set (second row of Fig. 4). Similarly to the temporal correlation,

the simulations with fewer nests obtain a better pattern correlation compared to the ones with an additional nest. The “South290

America” and the “No Cumulus” parameterizations show the highest agreement with the weather station data for the nesting

options that have an additional nest, while clearly the “Cumulus3 1-way” option is the best one of the simulations with fewer

nests. Overall, the simulations have a better performance in the rainy seasons MAM and ON, while the dry months (and in

particular June) are not very well captured by the model simulations.

Besides the comparison to the weather station data, the simulations and gridded observational data are compared to CHIRPS295

(see second row of Fig. 4). The gridded observational data sets perform well compared to CHIRPS (including also ERA5).

Again this is expected as the data are not fully independent. The pattern correlation of the WRF simulations compared to

CHIRPS are rather high in all the simulations. No clear difference between the different nesting options are evident. The “South

America” and the “No Cumulus” options show the best agreement with CHIRPS in precipitation patterns, but also “Cumulus3

1-way” performs well. The “Europe” parameterization is clearly the worst, even if it shows one of the highest correlations in300

the dry months June and July. This is because the “Europe” parameterization setup produces rather dry conditions over Africa

and hence, the dry months are better represented compared to the others that simulate generally wetter conditions.

To further understand how well the different parameterization and nesting options are able to represent precipitation around

Mount Kenya, the annual cycle is plotted as grid point averages of monthly precipitation sums of the innermost domain (1 km;

Fig. 5). Please note that the gridded observational data sets do not obtain exactly the same values for the different nesting ratios305

1:3 (first row) and 1:5 (second row), as the domain sizes are not exactly equal. The innermost domain in the 1:5 nesting ratio

setup is slightly bigger. The three gridded observational data sets TRMM, IMERG and CHIRPS agree well and are considered

as the reference here, as they show a good temporal and pattern correlation with the weather station data. This is true except

for November, when CHIRPS records a much higher value in precipitation amounts than TRMM and IMERG. As CHIRPS

shows one of the weakest pattern correlations in November compared to the weather station data, IMERG and TRMM should310

be considered as the reference in this month. ERA5 does also agree, but the ‘long rains’ (MAM) have the peak intensity a bit

too early, while the intensity in the ‘short rains’ (ON) are too intense on average. For the dry months, ERA5 also overestimates

precipitation compared to the other gridded observational products. Overall the gridded data sets come up with similar annual

precipitation sums (inset of Fig. 5), except for ERA5, which shows a slight overestimation in annual precipitation sums.

Comparing the monthly precipitation sums of the sensitivity simulations with the gridded observational reference, we find315

again that the “Europe” parameterization option is not well suited for this area as it is not able to capture correctly the two rainy

seasons near Mount Kenya. The ‘long rains’ show a clear deficit in precipitation, while the outcome of the ‘short rains’ strongly

depends on the number of nests. With fewer nests the ‘short rains’ are also clearly underestimated, but with an additional

nest precipitation is either almost correct or overestimated. The differences between the “Europe” parameterization and the

others are the long wave radiation and the PBL parameterization, which are both responsible for the reduction in precipitation320
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amounts (not shown). The “No Cumulus” setup performs well in both wet seasons, but it overestimates precipitation during

the dry season. The “Cumulus3” options show a clear sensitivity of the precipitation amounts in the ‘long rains’ to the number

of nests, with a much better representation with fewer nests. In the ‘short rains’, the “Cumulus3” options follow the curve of

CHIRPS and therefore shows an overestimation. The fact that the “Europe” setting is not suited for this regions becomes even

clearer by including the annual precipitation sums. Except for the 25 km parent grid, the “Europe” setting captures only around325

50 % of the annual precipitation, and hence, it clearly underestimates the water availability. All the other settings perform

similarly well on an annual basis. It is further noteworthy that the WRF model with the “Cumulus 3” options is able to correct

the overestimation obtained by ERA5, which is the driving data set of the simulations.

Another measure used to identify the best setup of WRF for this region are the precipitation patterns of the WRF simulations.

While the parameterizations are tested using ERA5 as boundary condition in order to be able to compare it against observations330

of year 2008, the final goal is to apply the WRF setup to climate simulations, which normally have a coarser resolution (around

100 km) than reanalysis data (around 30 km for ERA5). In that case, a climate simulation with a parent domain starting at 9 or

5 km is not possible. Therefore, in the following, the simulation of the innermost domain (D4; 1 km) with the parent domain

of 27 km horizontal grid spacing and a nesting ratio of 1:3 is presented. Note that the simulations with a 25 km parent grid

and a nesting ratio of 1:5 show similar results and hence, are not shown here. As CHIRPS is the data set that shows the best335

agreement with the weather station data (as shown in Fig. 4), and it also shows the highest resolution and detail, the patterns

will be mainly compared to this data set. To better understand how resolution can affect the representation of precipitation we

also show IMERG and ERA5. The latter also helps to see the added value of regional climate models. Three months are picked

to present the results: April (Fig. 6) and November (Fig. 7) as they are within the ‘long rains’ and ‘short rains’, respectively

and June (Fig. 8) because it represents a rather dry month, which is difficult to capture by the WRF simulations.340

In April, CHIRPS is able to simulate correctly the measured amounts of precipitation, with the exception of a small region

located to the north of Mount Kenya where precipitation is overestimated by this gridded dataset. IMERG, but also ERA5 are

too coarsely resolved to capture the fine scale structure in precipitation patterns in this complex topographic area. While IMERG

presents a similar structure to CHIRPS, ERA5 is just highlighting Mount Kenya. Baring in mind that also the observational

data sets are subject to some uncertainties, it is still obvious that the “Europe” parameterization is too dry (as previously345

noted) compared to all the gridded observational data sets in April. It also shows a diagonal band southeast of Mount Kenya,

while CHIRPS indicates that the whole lower right corner receives some similar amount of precipitation. This diagonal band

is also present in the “South America” parameterization. The precipitation amounts are in some areas higher compared to

CHIRPS, but generally more stations agree with the pattern obtained with this parameterization option than the “Europe”

setting. The other three options manage to produce a precipitation pattern as observed in CHIRPS. Nevertheless, the “No350

Cumulus” parameterization is too wet especially in the northwestern part of the domain, and the steep gradient from high

precipitation rates in the vicinity of Mount Kenya to dryer conditions to the northwest of it is not well captured. The two

“Cumulus3” parameterization options capture this pattern the best, including also some finer details along the right and bottom

boundaries of the domain.
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CHIRPS is capturing the precipitation pattern quite well in November, with some deviations compared to the weather station355

data south and northwest of Mount Kenya (Fig. 7). IMERG provides a rather homogeneous precipitation pattern, lacking much

of the finer scale structure. ERA5 obtains a similar precipitation pattern as in April, featuring intense precipitation around

Mount Kenya. This leads to a wrong representation in precipitation amounts along the steep northwestern slopes of Mount

Kenya. In this month, the “Europe” setting is again a bit too dry, capturing only the precipitation patterns around mount Kenya,

and not showing a good performance in the surrounding flatlands. “ South America” captures the precipitation amounts of the360

stations quite well, but the pattern shows some deviations compared to CHIRPS, especially in the northwestern corner of the

domain. The two “Cumulus3” and the “No Cumulus” options are able to capture the patterns well with some overestimation in

the simulations driven by the first options and a slight underestimation in precipitation amounts for the latter parameterization

option. Given the uncertainty range within the observation based data, it cannot be expected that a single sensitivity simulation

can agree with all the stations or with one of the gridded observational data sets.365

June is clearly much drier than April and also CHIRPS receives too much of precipitation compared to the weather station

data (see Fig. 8). Nevertheless, it again captures the pattern of the stations best, as IMERG misses peak precipitation south

of Mount Kenya and ERA5 produces overall too high precipitation amounts. It is obvious that ERA5 generates in all the

months a very similar precipitation pattern, where only the amount of precipitation is changing. Given the uncertainty range of

the observation based data, the “Europe” parameterization option is too dry in some areas and too wet in others. The “South370

America” parameterization option obtains at most of the stations too much precipitation, while also the general pattern is a bit

off, as no dry corridor in the east can be observed. This is also true for the “No Cumulus” parameterization option, but here the

pattern agrees better, with a clear overestimation in precipitation amounts. “Cumulus3” and “Cumulus3 1-way” again result

in the best pattern rendering it difficult to choose between the two, as some stations are better in one and other stations are

better described in the other setting. Since one-way nesting does not overwrite the solution of the corresponding parent grid,375

this option should be preferred over the two-way nesting option. It allows to not only focus on the innermost domain, but also

investigations of a larger scale picture are able without any disturbances within the domain.

All the WRF simulations reasonably resemble the precipitation pattern over Mount Kenya in the year 2008. The “No Cu-

mulus” parameterization and the “Cumulus3” options provide throughout the analysis the best performances. The fact that the

“No Cumulus” option is generally too wet allows us to define the “Cumulus3 1-way” option as the best for our purpose. Note380

also that the “No Cumulus” parameterization option produces a patchy picture in the outermost domain with monthly sums,

which is a clear sign of a structural problem, i.e., convection is induced always at the same location (not shown), which is rather

unrealistic. Hence, this simulation is also not suitable for a larger scale analysis of precipitation and precipitation changes in a

warmer climate.

3.2 Sensitivity of Temperature385

Once we have investigated the sensitivity of simulated precipitation due to different parameterization options, we focus on

temperature. To do so, the sensitivity simulations with WRF are compared to the driving reanalysis ERA5, the gridded obser-

vational data set CRU and the in-situ data from weather stations (see Table 2 for more details). To measure how the different
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settings simulate the temperature near Mount Kenya, the 2-metre temperature patterns are evaluated. The same months as for

precipitation are selected for temperature: April (Fig. 9) and November (Fig. 10), within the ‘long’ and ‘short rains’, respec-390

tively, and June (Fig. 11), within the dry season. In order to highlight the differences between the sensitivity experiments, only

the absolute values of the gridded data sets and the “Cumulus3 1-way” experiment are depicted. For the remaining sensitivity

experiments, the anomalies compared to our best setting experiment are presented. Note that the weather station data have not

been adjusted to the height of the model topography as the differences in height are in the range of a few meters. The maximum

difference between the station and model height is around 60 meters and hence the maximum discrepancy between station and395

modelled temperature is around 0.4 ◦C, if we consider the standard environmental lapse rate of 6.5 K/km (Barry, 2008).

ERA5 temperature serves as boundary and initial conditions for the WRF simulation. Given this constraint, we expect a

better representation of the simulated 2-metre temperature than of precipitation. Also, the region of interest is dominated by

steep topography, which is directly related to temperature and consequently, strong gradients of temperature are expected near

Mount Kenya.400

It is not surprising that ERA5 and also CRU represent temperature relatively similarly and independently of the season

(rainy or dry) as Kenya is located at the equator. ERA5 describes the orography of the domain a bit more clearly, because

the resolution is finer. Most of the weather station data agree well with ERA5 and CRU, but the WRF simulation “Cumulus3

1-way” produces a better picture of the temperature profile, which is mainly owed to the better resolution and a more detailed

characterization of the topography.405

In April (Fig. 9), the two “Cumulus3” simulations have a very similar representation of temperature, as the only difference

is the communication between the nests. The differences for the “South America” and “Europe” experiments are mainly in the

range of ±0.5 ◦C, with positive anomalies over Mount Kenya and with negative anomalies in the surrounding plains. In the

case of the “No Cumulus” parameterization, strong negative anomalies are observed over the entire region, but particularly in

the southeastern corner of it where anomalies of 2 ◦C are noticed. This observation of clearly cooler temperature is related410

to the overestimation in precipitation. Hence, most of the domain obtains more precipitation than in the “Cumulus3 1-way”

simulation. This excess in water can be transformed into latent heating through evaporation and can contribute to a cooling

effect over the domain.

In November the “Cumulus3 1-way” option overestimates the precipitation somewhat, which generally results in cooler

temperatures compared to observations in some stations (e.g., station 1 and 4 in Fig. 10). As the other sensitivity experiments415

simulate a drier monthly climate especially in the plains, a positive temperature signal can be observed in these areas as well.

Generally, the temperature difference between the experiments is again rather small and below 1 ◦C.

The two “Cumulus3” options are able to simulate correctly the observed temperature in June (Fig. 11), and their differences

are rather small (below ±0.25 ◦C). The biases for the “South America” and “Europe” experiments are more intense than in

April, but the patterns are similar (positive anomalies over Mount Kenya, but negative ones in the plains). Again, negative420

anomalies are obtained for the “No Cumulus” parameterization. This is also related to an increase in precipitation amounts,

especially in the southeastern corner of the domain.
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As described above, the differences in the patterns in the three months reveal more or less the differences in precipitation,

i.e., where more precipitation is simulated compared to “Cumulus3 1-way”, the temperature is cooler as more energy is trans-

formed into latent heating through evaporative processes. Where precipitation is comparably reduced to the “Cumulus3 1-way”425

parameterization, a warming can be observed as energy is transformed into sensible heating. Additionally, moisture advection

but also small differences in the description of cloud cover can lead to some of the changes in temperature. The “Europe”

simulation is the one experiment that shows the biggest discrepancy between the moisture availability and temperature re-

sponse, which might be related to the fact that also the LW and PBL parameterizations schemes are different compared to the

“Cumulus3 1-way” option.430

4 Summary and Conclusions

The goal of this study was to find a setup for WRF in order to realistically simulate precipitation patterns and amounts over

and around Mount Kenya at a kilometer scale. This task is challenged by the fact that this region has a complex topographic

structure and is influenced by large-scale circulation controls, which lead to heterogeneous precipitation patterns. As this is one

of the first studies to resolve Mount Kenya region at such fine scale, different parameterization options and combinations must435

be tested to obtain an optimal result for this area. We employ the WRF model and experiment with cumulus (Kain-Fritsch,

Grell-Freitas, no cumulus), LW (CAM, RRTM) and PBL (ACM2, YSU) parameterizations, but also with the number of nested

domains and nesting ratios (1:3 and 1:5). The different simulations are not only compared to different gridded observational

data sets, such as IMERG, TRMM and CHIRPS, but also to a large number of weather station data operated by private farms,

CETRAD and the Kenyan government.440

Correlating the annual cycle as monthly sums reveals that the gridded observations and the weather station data agree

very well, indicating that the here presented weather station data are reliable. The temporal correlations further lead to the

conclusion that if ERA5 is used as boundary conditions in a smaller and higher resolved domain (i.e., simulations with one

less nest) the simulation is more constrained and hence, the temporal correlation is better with a reduced number of nests.

This result is mainly important for simulations driven with reanalysis data, as they capture most of the atmospheric circulation445

and processes well and therefore are reliable, which is not necessarily true for climate simulations as well. The “No cumulus”

parameterization scheme is especially sensitive to changes in number of nests in terms of temporal correlation. Concerning the

nesting ratio, we were not able to distinguish between the two options, so any of the two are able to produce realistic results.

Also important for water availability in the area around Mount Kenya are the precipitation patterns and amounts. The

objective pattern correlations indicate that also fewer nests result in a better spatial correlation, but when comparing against450

the most accurate gridded data set, CHIRPS, there is not much difference between the number of nests in spatial patterns.

Compared to the temporal correlation, the “No Cumulus” parameterization results in rather accurate pattern correlations. The

pattern correlation is not only a valuable tool to evaluate the sensitivity simulations, but also the gridded observational data sets.

The comparison to the weather station data reveals that CHIRPS yields a pattern closest to the weather stations. One important

14

https://doi.org/10.5194/gmd-2020-347
Preprint. Discussion started: 12 November 2020
c© Author(s) 2020. CC BY 4.0 License.



factor for this result is certainly the nominal resolution of the data, as CHIRPS reveals the finest precipitation structure of all455

the gridded observational data sets.

The “Europe” configuration obtains not only one of the worst temporal, but also pattern correlation. The actual patterns

within the innermost domain reveal that the “Europe” configuration is clearly too dry, both in the rainy and the dry seasons.

The underestimation in precipitation can be attributed to both the LW and PBL parameterizations. But not only the precipitation

amounts are underestimated, also the pattern is not fully captured. The “South America” setting is more accurate when it comes460

to monthly precipitation sums in the rainy season, but it clearly has a wet bias in the dry season, and also the pattern is missing

some details compared to CHIRPS. While the two “Cumulus3” options and the “No Cumulus” option provide rather good

patterns, the latter clearly overestimates the monthly sums. Hence, we conclude that the “Cumulus3 1-way” option is the

best parameterization setting in WRFV3.8.1 for the area around Mount Kenya. The 1-way option is preferred over the 2-way

option, as the latter affects the representation of the domain when cumulus parameterization is turned off. Hence, with the465

1-way option, all domains and scales of the simulation can be integrated into the analysis.

Similar to other studies, we also find an overestimation in precipitation compared to observations (Cook and Vizy, 2013;

Williams et al., 2015). Nevertheless, with our sensitivity studies we were able to find a parameterization option that represents

precipitation amounts rather well in the rainy seasons, while a wet bias remains in the dry season. Certainly, the very high

resolution of our simulations helps to better represent not only the pattern of precipitation, but also of temperature, as also470

mentioned in Kerandi et al. (2017). It is not surprising that a high resolution can add value in the representation of precipitation

and temperature, as this region is located within complex topographic structures.

Having found the optimal setting for the Mount Kenya area, climate change simulations can be performed. These allow to

get a detailed picture of the climate sensitivity in this area and the possible changes in water availability and the actual warming

in the area. Furthermore, sensitivity experiments to land use changes can be created. This will help to understand how future475

changes in agriculture will affect water availability in the flatlands around Mount Kenya.

Data availability. All the observational gridded data sets for precipitation included in this study are freely available online. TRMM and

IMERG can be downloaded from the Earth Observing System Data and Information System (EOSDIS) from NASA (https://doi.org/10.

5067/TRMM/TMPA/3H-E/7 and https://doi.org/10.5067/GPM/IMERG/3B-HH/06 respectively), and CHIRPS can be download from the

Climate Hazards Center of the UC Santa Barbara (https://doi.org/10.15780/G2RP4Q). CRU data set used in the analysis of temperature480

is also available online and can be downloaded from the Climatic Research Unit of the University of East Anglia (https://crudata.uea.ac.

uk/cru/data/temperature/). The weather station data from WMO used in this study can be downloaded from the World Weather Records

website (https://www.wmo.int/pages/prog/wcp/wcdmp/GCDS_2.php). The data from the stations maintained by CETRAD in Kenya can

be downloaded from the Social Hydrological Information Platform (http://www.wlrc-ken.org/admin/dashboard/home). The postprocessed

outputs for precipitation and temperature from our WRF sensitivity experiments can be downloaded from: https://doi.org/10.5281/zenodo.485

4090589.
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Figure 1. The two different nesting settings for the sensitivity experiments are depicted. The domains of the nesting ratio 1:3 are shown in

row a) with the topography of the innermost nest D4 in the right panel. The domains of the nesting ratio 1:5 are shown in row b) with the

topography of the innermost nest D3 in the right panel. D1 = 27/25 km, D2 = 9/5, D3 = 3/1, D4 = 1 km. The grey shading indicates elevation

in meters above sea level using the WRF topography Global Multi-resolution Terrain Elevation Data (GMTED2010) provided by USGS.

22

https://doi.org/10.5194/gmd-2020-347
Preprint. Discussion started: 12 November 2020
c© Author(s) 2020. CC BY 4.0 License.



0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0
7

0
0

Months

P
re

c
ip

ita
tio

n
 (

m
m

)

J F M A M J J A S O N D

2008 1981−2010

atology (1981-2010)

nnual precipitation sum [m]

(b) Kenya

b)

verage annual 2m-temperature [℃]

(a) Kenya

) 4 counties of Kenya

a)

Climatology: 1981-2010

Climatology: 1981-2010

A

A

Accumulated precipitation (Kenya)c)

Figure 2. Annual mean 2m-temperature (a) and precipitation (b) anomalies from ERA5 (Copernicus Climate Change Service (C3S), 2017).

The anomalies are calculated with respect to the climatological mean of the years 1981 to 2010. The stippled (straight) lines illustrate plus

(minus) one standard deviation. Monthly accumulated values of precipitation (in mm) for the selected year 2008 (in blue), compared to the

climatology (1981-2010, in grey, using a Box-Whiskers plot) are shown in (c). All values are means over the territory of Kenya in each

subplot. The whiskers extend to the value that is no more than 1.5 times the inter-quartile range away from the box. The values outside this

range are defined as outliers and are plotted with dots.
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Figure 4. Pattern correlation of monthly precipitation sums between weather station data and the respective WRF simulation (upper row),

and between CHIRPS (interpolated onto the respective WRF domain) and the respective WRF simulation (lower row). The different panels

indicate the different parameterization options (Table 1), and the symbols stand for the different nesting options. The labelling of the symbols

is given in the table below each panel, along with the number of months (# months) in which the nesting option obtain correlation patterns

above the reference value of 0.50 (a moderate correlation used to visually evaluate the performance of nesting options). The last panel on

each row represents the gridded data sets used throughout the paper. Even if the gridded data sets are interpolated onto different domains for

each independent set-up, here only one setting is shown (27 km_D4). The rest was omitted as only marginal changes can be observed.
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Figure 5. Grid point averages of monthly precipitation sums of the innermost domain (1 km) for each of the tested set-ups: 27 km (a),

9 km (b), 25 km (c) and 5 km (d). The 5 tested parameterization options are included, along with the driving reanalysis ERA5 and the

three observational gridded data sets (IMERG, TRMM and CHIRPS). All the gridded data sets are plotted with different shades of pink,

while ERA5 is colored in grey. The inset of a bar plot in each panel indicates the grid point average annual precipitation sum for each

parameterization option and gridded data set.
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Figure 6. Monthly precipitation sums for April 2008 (‘long rains’) in mm for the innermost domain (1 km) of the 4 nested domain setup,

with the outermost domain of 27 km resolution and a nesting ratio 1:3 for the different parameterization setups (see Table 1). Weather station

data are described in Table 2. The white star indicates the summit of Mount Kenya.
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Figure 7. Same as Fig. 6 but for November 2008 (‘short rains’).
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Figure 8. Same as Figs. 6 and 7 but for June 2008.
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Figure 9. Monthly 2-metre temperature averages for April 2008 (‘long rains’) in K are shown for the innermost domain (1 km) of the

4 nested domain setup, with the outermost domain of 27 km resolution and a nesting ratio 1:3 for the different parameterization setups

(Table 1). Absolute values are given for ERA5, CRU and the “Cumulus3 1-way” option. The others depict anomalies compared to the

“Cumulus3 1-way” option. Weather station data are described in Table 2. The black star indicates the summit of Mount Kenya.
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Figure 10. Same as Fig. 9 but for November 2008 (‘short rains’).
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Figure 11. Same as Figs. 9 and 10 but for June 2008.
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Table 1. Experimental design of the sensitivity simulations: Name of the experiment, parameterizations used and other parameters important

for each experiment such as nesting option and ratio, number of domains, names of domains as they appear in Fig. 1 and their corresponding

spatial resolution. The last column provides the name of the innermost domain, used in Figures to identify nesting and resolution options.

Parameterizations Other parameters Name

Name Cumulus LW-Rad. PBL Nesting Nest ratio # dom doms in Fig. 1 Resolutions 1km domain

E
ur

op
e

Grell-Freitas CAM ACM21 2-way 1:3 4 (a) D1, D2, D3, D4 27, 9, 3, 1 km 27km_D04

Grell-Freitas CAM ACM2 2-way 1:3 3 (a) D2, D3, D4 9, 3, 1 km 9km_D03

Grell-Freitas CAM ACM2 2-way 1:5 3 (b) D1, D2, D3 25, 5, 1 km 25km_D03

Grell-Freitas CAM ACM2 2-way 1:5 2 (b) D2, D3 5, 1 km 5km_D02

So
ut

h
A

m
er

ic
a Kain-Fritsch RRTM2 YSU3 2-way 1:3 4 (a) D1, D2, D3, D4 27, 9, 3, 1 km 27km_D04

Kain-Fritsch RRTM YSU 2-way 1:3 3 (a) D2, D3, D4 9, 3, 1 km 9km_D03

Kain-Fritsch RRTM YSU 2-way 1:5 3 (b) D1, D2, D3 25, 5, 1 km 25km_D03

Kain-Fritsch RRTM YSU 2-way 1:5 2 (b) D2, D3 5, 1 km 5km_D02

C
um

ul
us

3

Grell-Freitas RRTM YSU 2-way 1:3 4 (a) D1, D2, D3, D4 27, 9, 3, 1 km 27km_D04

Grell-Freitas RRTM YSU 2-way 1:3 3 (a) D2, D3, D4 9, 3, 1 km 9km_D03

Grell-Freitas RRTM YSU 2-way 1:5 3 (b) D1, D2, D3 25, 5, 1 km 25km_D03

Grell-Freitas RRTM YSU 2-way 1:5 2 (b) D2, D3 5, 1 km 5km_D02

C
um

ul
us

3
1-

W
ay Grell-Freitas RRTM YSU 1-way 1:3 4 (a) D1, D2, D3, D4 27, 9, 3, 1 km 27km_D04

Grell-Freitas RRTM YSU 1-way 1:3 3 (a) D2, D3, D4 9, 3, 1 km 9km_D03

Grell-Freitas RRTM YSU 1-way 1:5 3 (b) D1, D2, D3 25, 5, 1 km 25km_D03

Grell-Freitas RRTM YSU 1-way 1:5 2 (b) D2, D3 5, 1 km 5km_D02

N
o

C
um

ul
us - RRTM YSU 1-way 1:3 4 (a) D1, D2, D3, D4 27, 9, 3, 1 km 27km_D04

- RRTM YSU 1-way 1:3 3 (a) D2, D3, D4 9, 3, 1 km 9km_D03

- RRTM YSU 1-way 1:5 3 (b) D1, D2, D3 25, 5, 1 km 25km_D03

1 Asymmetric Convection Model Version2
2 Rapid Radiative Transfer Model
3 Yonsei University
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Table 2. Weather station information: Station number used in our study (labels in Figs. 6-11), station name, location (latitude and longitude),

altitude (in meters above sea level), number of missing values, variables available and station ID from WMO (first three lines) or from Table 1

in Schmocker et al. (2016). RR stands for precipitation and T2 for 2-metre temperature.

Number Station Lat Lon Altitude [m] # missing variable ID

1 Embu WMO -0.5 37.45 1493 0 RR, T2 637200

2 Nyeri WMO -0.5 36.967 1759 0 RR, T2 637170

3 Meru WMO 0.083 37.65 1554 0 RR, T2 636950

4 Archers Post 0.6375 37.6675 839 0 RR, T2 1

5 Ardencaple Farm 0.0852 37.258 2271 0 RR 2

6 Castle Forest Station -0.4083 37.3107 1927 0 RR 5

7 El Karama 0.1952 36.9038 1781 0 RR 95

8 Embori Farm 0.0677 37.3482 2691 0 RR 12

9 Embu Met Station -0.5047 37.4579 1743 0 RR 14

10 Gathiuru Forest Station -0.1018 37.1159 2333 0 RR 17

11 Hombe Forest Station -0.3508 37.1158 2017 0 RR 20

12 Jacobson Farm -0.0432 37.0444 1913 0 RR 23

13 Kabaru Forest Station -0.2814 37.1535 2279 0 RR 25

14 Kisima Farm 0.1118 37.4181 2465 0 RR 35

15 Loldaiga Farm 0.2117 37.1219 2135 0 RR 34

16 Loruku Farm -0.0136 37.0839 1896 0 RR 38

17 Meru Forest Station 0.0557 37.6277 1737 0 RR 45

18 Mogwoni Ranch 0.2284 36.9862 1683 0 RR 47

19 Mpala Farm 0.3227 36.9038 1844 0 RR 48

20 Naro Moru Gate Station -0.1744 37.148 2471 0 RR 61

21 Naro Moru Met Station -0.1704 37.214 3048 0 RR, T2 62

22 Nicholson Farm -0.0886 37.0259 1916 0 RR 66

23 Nyeri Mow -0.4162 36.9489 1854 92 RR 67

24 Ol Donyo Farm 0.0938 37.2929 2375 0 RR 69

25 Ontulili Forest Station 0.0206 37.1723 2056 0 RR 75

26 Satima Farm -0.1475 37.0101 1944 0 RR 82

27 Solio Ranch -0.2493 36.8797 1943 0 RR 87

28 Tharua Farm -0.1046 36.8985 1865 0 RR 92

29 Kalalu 0.0817 37.1638 2027 0 T2 -

30 Munyaka -0.1833 37.0596 2048 0 T2 -
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