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Abstract.  5 

Aggregation of particles occurs in a large variety of settings, and, therefore, it is the focus of many disciplines, e.g. earth and 

environmental sciences, astronomy, meteorology, pharmacy, food industry. In particular, in volcanology, ash aggregation 

deeply influences the sedimentation of volcanic particles in the atmosphere during and after a volcanic eruption, affecting the 

accuracy of model predictions and the evaluation of hazard and risk assessments. It is thus very important to provide an 

exhaustive description of the outcome of an aggregation process, starting from its basic geometrical features such as the 10 

position in space of its components and the overall porosity of the final object. Here we present SCARLET-1.0, a MATLAB 

package specifically created to provide a 3D virtual reconstruction for volcanic ash aggregates generated in central collisions 

processes. In central oriented collisions, aggregates build up their own structure around the first particle (the core) acting as a 

seed. This is appropriate for aggregates generated in turbulent flows in which particles show different degrees of coupling with 

respect to the turbulent eddies. SCARLET-1.0 belongs to the class of sphere-composite algorithms, a family of algorithms that 15 

approximate 3D complex shapes in terms of a set of sphere-composite not-overlapping spheres. The conversion of a 3D surface 

in its equivalent sphere-composite structure then allows for an analytical detection of the intersections between different objects 

that aggregate together. Thus, provided a list of colliding sizes and shapes, SCARLET-1.0 places each element in the vector 

around the core, minimizing the distances between their centers of mass. The user can play with different parameters that 

control the minimization process. Among them the most important ones are the cone of investigation (𝛺), the number of rays 20 

per cone (𝑁%), and the number of orientations of the object (𝑁&). All the 3D shapes are described using the STL format, the 

nowadays standard for 3D printing. This is one of the key features of SCARLET-1.0, which results in an unlimited range of 

application of the package. The main outcome of the code is the virtual representation of the object, its size, porosity, density 

and the associated STL file. In addition, the object can be potentially 3D printed. As an example, SCARLET-1.0 has been 

applied here to the investigation of ellipsoid-ellipsoid collisions and to a more specific analysis of volcanic ash aggregation. 25 

In the first application we show that the final porosity of two colliding ellipsoids is less than 20% if flatness and elongation 

are greater than or equal to 0.5. Higher values of porosities (up to 40-50%) can be, instead, found for ellipsoids with needle-

like or extremely flat shapes. In the second application, we reconstruct the evolution in time of the porosity of two different 

aggregates characterized by different inner structures. We find that aggregates whose population of particles is characterized 

by a narrow distribution of sizes tend to rapidly reach a plateau in the porosity. In addition, to reproduce the observed densities, 30 
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almost no compaction is necessary in SCARLET-1.0; a result that suggests how ash aggregates are not well described in terms 

of the maximum packing condition.  

 

1 Introduction 

The formation of aggregates from an initial set of individual monomers is a common topic in science, such as in planetary 35 

formation, granulation processes, food industry, meteorology, pollution, and Earth sciences (Brauer et al., 2001; Dominik et 

al., 2006; Poon et al., 2008; Brown et al., 2012; Cuq et al., 2013; Shi, 2015; Dacanal et al., 2016; Pumir and Wilkinson, 2016; 

Imaeda and Ebisuzaki, 2017; Ohno et al., 2020;). In volcanology, aggregation plays a key role in affecting the sedimentation 

processes of ash in the atmosphere during and after a volcanic eruption with deep consequences on the accuracy of the dispersal 

forecasting and hazard assessment (Durant, 2015). 40 

The study of aggregation with experimental setups or direct observations in natural environments is often a challenging - if 

not impossible – task (Karrer et al., 2020). For this reason, the use of virtual reality has been considered a valuable alternative 

to the direct investigation (Lumme and Rahola, 1994; Filippov, 2000; Min et al., 2007).  

Several algorithms have been dedicated to the numerical solution of theoretical problems concerning aggregation phenomena, 

such as the study of the maximum packing of geometrical shapes within fixed boundary condition (Conway  and Sloane, 1998; 45 

Weaire and Aste, 2000; Williams and Jia, 2003; Donev et al., 2004; Hales, 2005; Man et al., 2005); other codes have been 

specifically written for the investigation of aggregation in natural contexts; among them, we only mention those algorithms 

aimed at studying aggregates in protoplanetary disks (Ormel et al, 2007; Yurkin and Hoekstra, 2011), ice formation and 

snowflakes aggregation (Kessler et al., 1984; Westbrook et al., 2004; Maruyama and Fujiyoshi, 2005; Reiter, 2005; Ning and 

Reiter, 2007; Tyynela and von Lerber, 2019; Ori et a Karrer et al., 2020) and in other environmental applications, such as 50 

water treatment (Chopard et al., 2006). Several codes treat aggregation as a fractal process such as in the Diffusion Limited 

Aggregation (DLA), in which the characteristic length of the aggregate, 𝑅, can be related to the number of monomers involved, 

𝑁( and the fractal dimension 𝐷* by means of the power law 𝑁( ∝ 𝑅,-  (Nguyen et al., 2003; 2004; Jacobson, 2005).  

Another important aspect concerning aggregation algorithms is the capability of accurately describing the shapes of the 

particles involved. In some circumstances the morphology of the colliding objects is sufficiently well described in terms of 55 

equivalent spheres. In other cases, a more accurate description is needed, as for example in the study of particle packing (Man 

et al., 2005) or in all those cases where particle interlocking plays a key role, such as in snowflakes formation. 

In volcanology, despite the importance attributed to ash aggregation, no specific code has been designed so far for the study 

of particle packing geometries or, in general, the dependency of aggregate densities with respect to their structural 

configuration. Several types of different aggregate geometries have been described in literature, from Particle Clusters (PC) to 60 

Accretionary Pellets (AP) (see Brown et al., (2012) for a complete review). In particular, recent field observations have 

revealed how PC3 objects have a key role in ash sedimentation (Bagheri et al., 2016; Gabellini et al., 2020). PC3 are roughly 
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spherically symmetrical in shape and they are composed of a big particle of about 200-1000 µm (the core) at the center of the 

structure, and many smaller particles (typically < 100 µm) around it (the coating).  

The physical explanation of the formation of PC type aggregates involves the theoretical description of a polydisperse particle 65 

population within a highly turbulent flow, such as it is the case for a volcanic plume or cloud (Kieffer and Sturtevant, 1984). 

In presence of a cascade of turbulent eddies and grains of different sizes, particles will show different degrees of coupling with 

the turbulent flow (Volk et al., 1980). This will produce a wide spectrum of relative velocities (Ormel and Cuzzi, 2007). In the 

limiting case of particles with a negligible velocity correlation with respect to the others (i.e. the kinetic theory limit), the 

object will aggregate following an inertial aggregation mechanism (Textor and Ernst, 2004). This is typical of large particles 70 

that will cross from one eddy to another with a poor correlation with the dynamics of the eddies. In their path across the 

turbulent flow these objects will encounter smaller particles that, on the contrary, do show a high correlation with the eddies. 

This process can be modelled as a central collisional process in which the big particle is the target of random collisions coming 

from random directions. 

All these aspects motivated us to create SCARLET-1.0 (SpheriCal Approximation for viRtuaL aggrEgaTes), a MATLAB 75 

package designed for the study of volcanic ash aggregation generated by central collisional processes of particles with arbitrary 

3D shapes. SCARLET-1.0 simulates the binary and sequential collision between the core and a vector of N/ particles. The 

algorithm follows a Monte Carlo approach to investigate the final positions of the i-th particle and the already placed aggregate, 

minimizing the distance between the center of mass of the two bodies. Once that the i-th particle has been placed, it is 

considered fixed within the aggregate.  80 

One of the main problems related to the aggregation of objects with complex surfaces is the detection of the intersections 

between them. SCARLET-1.0 belongs to the so-called sphere-composite algorithms (Evans and Ferrar, 1989; Nolan and 

Kavanagh, 1995), in which each single shape is seen as the superposition of N0/ not-overlapping spheres. Describing a given 

shape in terms of a set of spheres leads to a pure analytical solution when searching for intersections between multiple shapes. 

On the other hand, a large number of spheres is required for those collisions where a high degree of accuracy is needed (Jia 85 

and Williams, 2001).  

The most innovative aspect of SCARLET-1.0 is the use of the Standard Triangulation Language (STL) to describe the 3D 

shapes involved in the collisions. STL is nowadays one of the most common formats for 3D printing, 3D scanning and design 

(Szilvasi-Nagy and Matyasi, 2003). This guarantees a great flexibility to create virtual aggregates with SCARLET-1.0 starting 

from a set of completely arbitrary shapes. As a demonstration of this, in the main body of the paper and in the appendix we 90 

show virtual aggregates made of a great variety of shapes: from scientific ones, such as volcanic particles, snowflakes, cones, 

ellipsoids and spheres, to the most creative ones. It is important to evidence that SCARLET-1.0 also produces as output the 

STL file of the final aggregate: this means that the virtual aggregate can be potentially 3D printed. This makes an innovative 

link between simulations in the virtual reality and experiences in the real world, such as laboratory investigations of the drag 

force exerted on complex aggregates (McCorquodale and Westbrook, 2021).  95 
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The manuscript is structured as follows: in section 2 we described the model, with a focus on the functions fromStlToSpheres 

and mainSCARLET; in section 3.1 the algorithm is tested for what concerns the calculation of porosity problems; in section 

3.2 we present an application of SCARLET-1.0 to both the study of generic ellipsoids and to the study of the evolution in time 

of volcanic ash aggregates; in section 4 a short discussion of the pros and cons of the package is presented. 

2 Model description 100 

2.1 Physical description of the aggregation process and model design 

SCARLET-1.0 is written in MATLAB (tested for MATLAB R2015b) and it has been motivated by the need of a better 

understanding of the geometrical packing of volcanic ash aggregates observed during volcanic eruptions (Taddeucci et al., 

2011; Brown et al., 2012; Bagheri et al., 2016; Gabellini et al., 2020). It simulates the random collisions encountered by the 

core in its path across an environment where 𝑁( particles of arbitrary sizes and shapes are present. This happens in nature 105 

when particles with different dynamical properties are released in a turbulent flow. In this case the complex interaction of a 

cascade of turbulent eddies and the presence of particles with different sizes and masses produce a wide spectrum of particle 

Stokes numbers and thus a complete set of different degrees of coupling with the flow (Ormel and Cuzzi, 2007). The limiting 

cases for the situation under analysis are described in literature as the Saffman-Turner limit (Saffman and Turner, 1956), for 

particles fully coupled with the fluid and with a size smaller than the Kolmogorov scale, and the kinetic theory limit 110 

(Abrahamson, 1975; Textor and Ernst, 2004), in which large particles are poorly coupled with smaller eddies. The final result 

of the process is a population of large particles with uncorrelated relative velocities, that are higher as the decoupling with the 

flow is more pronounced (Volk et al., 1980). This is for example what happens in the case of coarse ash within a turbulent 

volcanic plume or cloud (Textor and Ernst, 2004), and also for dust grains in protoplanetary disks (Ormel et al., 2007; Okuzumi 

et al., 2009). The presence of a relative velocity between the core (or the aggregate) and the colliding particle creates a relative 115 

kinetic energy that must be dissipated in order to have a successful sticking. In SCARLET-1.0 we do not focus on the 

dissipation mechanisms, which require a full understanding and constraint on non-trivial quantities such as the presence of 

viscoelastic forces, water layers, electrostatic charges, plastic deformations, etc. Since we are mostly interested in the final 

geometrical packing, we simply assume that after the collision the i-th particle will dissipate the relative kinetic energy 

available and it will stick to the central structure.  120 

In summary, within the limit of the kinetic theory limit the large core shows a negligible correlation with the velocity of the 

surrounding particles and it acts a central pole of accretion for the colliding particles in its path across the turbulent eddies if a 

Lagrangian perspective is assumed. Moreover, considering that the core can indeed rotate, and that the turbulence is usually 

assumed isotropic in the theoretical descriptions (Volks et al., 1980), the angles of collisions respect to the central body are 

assumed to occur at random orientations.    125 

In SCARLET-1.0 we fix the System Of Reference (SOR) at the Center of Mass (CM) of the core in a purely Lagrangian 

description of the motion. The core, of arbitrary shape, is the target for the collisions and the population of particles encountered 

as the aggregation process evolves is defined as a vector of particles with different sizes and arbitrary shapes. According to the 
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physical process that we want to describe, collisions happen at random angles around the central structure and the collision 

cone is centered in the CM of the core. This is the main mode of operation of the code and the motivation that lead us to create 130 

it according to what has been recently observed in volcanic eruptions (Bagheri et., 2016; Gabellini et al., 2020). However, it 

is worth anticipating here that SCARLET-1.0 allows relaxing some of these constraints, if needed by the user. For example, 

collisions can occur following a fixed direction of collision and the collision cone can be centered in alternative locations with 

respect to the CM of the core.  

The main steps in which the aggregation process is modelled in SCARLET-1.0 are summarized here:  135 

1. Definition of the shapes involved in the aggregation process: every different shape used in the simulation must be 

already present in the folder as an STL file. STL files can be generated by means of specific CAD software, they can 

be downloaded from the internet or simply obtained by 3D scanners. The use of binary STL files is preferred with 

respect to the ASCII format. 

2. The sphere-composite representation of each STL file: SCARLET-1.0 uses a dedicated script named 140 

“fromStlToSpheres” to construct the sphere composite representation of the original shape (see section 2.1). STL files 

are defined by a set of points and facets. The script takes advantage of the MATLAB function inpolyhedron (Sven, 

2021) to generate random points within the surface. Once the point is created within the STL shape and outside an 

already existing sphere, it generates a new sphere (see sec 2.2). Each single shape that the user wants to involve in 

the simulation must be pre-processed by “fromStlToSpheres”. 145 

3. Generation of the monomer’s distribution: the grain-size distribution of the coating is defined a priori by the user who 

defines a vector of particle sizes with a length equal to the number of particles involved (N(). Each element of the 

vector indicates the maximum length 𝑑2345  of the i-th particle (in arbitrary units). The shape attributed to the i-th 

particle is randomly selected within those available for the coating (see sec.2.1). The core size 𝑑2346&%7  is defined by the 

user and it corresponds to its maximum length (in arbitrary units a.u.). The shape attributed to the core is by definition 150 

the first element of the structure generated by the pre-processing function “fromStlToSpheres”. 

4. Selection of the particles that will collide: particles are selected sequentially from the previously defined vector of 

sizes. Therefore, the contemporary deposition of two particles is forbidden (i.e. only binary collisions are treated).  

5. Collision trajectory: in order to place the i-th particle, a cone is generated with its center in the CM of the core (or, 

alternatively, in one of the spheres that form the sphere-composite representation of the aggregate). 𝑁% random rays 155 

are uniformly generated within the cone and the shape associated with the i-th particle – scaled to its actual size – is 

randomly rotated N& times along each ray, following the ZXZ convention on the Euler’s angles. Each rotated object 

is by default placed outside the aggregate. Then a coarse inward movement along the ray is performed until the 

overlapping of the sphere-composite representations of the aggregate and the i-th particle happens. At this stage a 

finer outward movement along the ray is done until there is overlapping between the spheres. The two steps process 160 

guarantees faster movements when the objects are far away and a fine tuning when they overlap. 
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6. Contact dynamics: the contact dynamic assumes an instantaneous sticking when the intersection of the spheres is no 

longer present (see step 5). This means to assume that the relative kinetic energy is completely dissipated at the 

moment of the impact, with no rearrangement of the already existing structure. For each i-th particle a total of N% × N& 

configurations are tested but we only take the one that minimizes the distances between the CM of the aggregate and 165 

the particle. This is equivalent to assume that among the N% × N& configurations the inward force and the torque 

oriented the particle in such a way to minimize this distance.  

2.2 General overview of the code 

 In the following we present a general description of the two main functions fromStlToSpheres and mainSCARLET which are 

respectively responsible of creating the sphere-composite representation of the single shapes and to build the virtual aggregate. 170 

For further details on how to use the code we wish to direct the interested reader to the dedicated user guide that is present at 

the Github link https://github.com/EduardoRossiScience/SCARLET (and also at the Zenodo repository 

https://doi.org/10.5281/zenodo.4675770). In Table 3 we summarized the main parameters used in the code. 

 

2.2.1 The preprocessing code fromStlToSpheres 175 

The preprocessing code fromStlToSpheres translates a given 3D STL volume into a random set of non-overlapping spheres. 

The STL standard describes any closed surface with a triangulation of vertices and faces. Vertices are expressed as a matrix 

with three columns and a number of rows equal to the number of vertices 𝑁9. The 𝑁9 vertices are points distributed along the 

surface of the STL shape (Fig.3a, 3d).  Faces are instead described by a matrix of three columns and :;
<
	rows, where each row 

contains three integers reporting the corresponding vertices involved in the creation of the face. 180 

fromStlToSpheres generates a random point 𝑃%  inside the 3D surface using the function inpolyhedron. This operation is 

repeated until 𝑃%  is generated outside an existing sphere. Then we find the closest point 𝑃?  among all the vertices of the 

triangles (see Fig.3a, 3d) and the centers of already placed spheres. If 𝑃? ∈ 𝑁9, the radius of the new sphere is 𝑃%𝑃?AAAAAA; on the 

contrary if 𝑃? is one of the already placed spheres, the radius is 𝑃%𝑃?AAAAAA minus the radius of the sphere whose center is 𝑃?. In 

conclusion, the new placed sphere will be tangent or to the STL surface or to another sphere. 185 

In Fig.3 fromStlToSpheres is applied to to two different volcanic particles: Figures 3a and 3d illustrate the vertices of the 

triangles of the STL volume. In Figures 3b and 3e, both volcanic particles have been filled with 𝑁B(C = 300 spheres. In Figures 

3c and 3f the reduction of the spheres obtained by setting Oext = 1, a Boolean variable that allows eliminating the internal 

spheres. 

Fig. 4 shows some applications of the pre-processing routine to different shapes, each of them characterized by a different 190 

degree of complexity, such as convexity of the shape/volume. The scaling of the object produced by fromStlToSpheres is the 
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same as the one contained in the original STL file (expressed in a.u.). No modification is done at this stage. The function 

mainSCARLET will rescale the core and the coating according to vector defined by the user (i.e.𝑑2346&%7  and 𝑑2345 ). 

As an example, let’s assume that we want to create a virtual aggregate made of three different shapes: a T-Rex shape for the 

core, a cone and an ellipse for the coating (see Fig.2). The preprocessing code must be executed three times, one for each STL 195 

file. In the MATLAB command window we type: 

[core_spheres, core_fv] = fromStlToSpheres('volcanic_particle.stl', 300, 3, 0, 1); 

[coating1_spheres, coating1_fv] = fromStlToSpheres(ellipse.stl', 300, 3, 0, 1); 

[coating2_spheres, coating2_fv] = fromStlToSpheres('cone.stl', 300, 3, 0,1); 

 200 

Each time that fromStlToSpheres is executed two distinct structures are produced as output in the workspace. In 

“core_spheres”, “coating1_spheres”, “coating2_spheres”, it is stored the information relative to the spheres. In “core_fv”, 

“coating1_fv”, “coating2_fv”, the information relative to the triangulation of the STL surface (i.e. faces and the vertices). This 

operation needs to be done only once for each shape: all the structures can be saved for further simulations.  

The input structure for mainSCARLET (“input_struct” in the example), must be assembled at this stage, simply typing in the 205 

command window:  

input_struct (1).fv = core_fv; 

input_struct (1).sphere_struct = core_spheres; 

input_struct (2).fv = coating1_fv; 

input_struct (2).sphere_struct = coating1_spheres; 210 

input_struct (3).fv = coating2_fv; 

input_struct (3).sphere_struct = coating2_spheres; 

 

The first element of input_struct will be assigned to the central core. The other shapes will be assigned randomly to the coating 

particles. The structure input_struct is the unique external input required by mainSCARLET that is now ready to be used.  215 

2.2.2 mainSCARLET 

mainSCARLET is the function that creates virtual aggregates from the available set of shapes contained in the input structure 

described in sec. 2.2.1. It is composed of two distinct blocks (Fig.5): the first one assigns a 3D shape to the i-th object of the 

vector of 𝑁( coating particles; then it scales the shape and the inner spheres in order to make the maximum size of the STL of 

the i-th object to be equivalent to 𝑑2345 . The second block places the i-th object around the inner core, whose Center of Mass 220 

(CM) is  coincident with the origin of the axes. The first shape of the input structure is assigned by default to the core and it is 

scaled to have the maximum length of the STL equivalent to 𝑑2346&%7 . 

 

The algorithm for particle placing is based on five main loops:  
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- Loop 1 (for i=1 to 𝑁(): for each coating particle the code generates a cone of aperture Ω respect to the unit vector 𝑣I, 225 

which is randomly and uniformly oriented on the surface of a unitary sphere. The center of the cone can be placed at 

the CM of the core or at the center of one of the spheres of the sphere-composite representation of the aggregate, 

according to the user specifications.  In case of a central core whose CM is outside the STL file, the second option is 

activated by default. The angle Ω is measured in degrees with respect to the central axis of the cone (i.e. Ω = 0° 

coincides with 𝑣I). Large values produce a wider exploration of the surface of the aggregate before placing the coating 230 

particle; on the contrary, small values of Ω generally produce loose aggregates. The user can also fix a preferred 

direction for the cone for all the cases in which collisions occur along a preferential direction. We will not make this 

assumption in the rest of the paper, assuming that the collisions described comes from a fully isotropic turbulence 

with random angles of collisions. 

- Loop 2 (for j=1 to 𝑁%): 𝑁% rays are generated within the i-th cone. The code computes the most external intersection 235 

point 𝑃7 of each ray with the spheres already placed in the aggregate. 

- Loop 3 (parallelized, for k=1 to 𝑁&): the shape is randomly rotated No times in the space along three angles [𝜑, 𝜃, 𝜓], 

according to the Euler rotation matrix (Z-X-Z convention). This loop is parallelized using parfor. 

- Loop 4: while loop that moves inwards the i-th particle starting from the position 𝑃7 + 1.1 ∙ 𝐷5 along the direction of 

the j-th ray. It stops when at least one intersection is counted between the spheres of the coating particle and the 240 

aggregate. The inward motion is a coarse and fast displacement of the particle. The step-size of this movement is 

defined as a fraction 𝑓6V of the particle size (suggested values 𝑓6V = [0.01 − 0.001]).  

- Loop 5: while loop that moves outwards the particle from the last location reached in loop 4. It stops when it is empty 

the intersection of the spheres belonging to the aggregate and the coating particle. The step-size 𝑓6X  of the outward 

movement is finer than 𝑓6V  (suggested values 𝑓6X = [0.01 − 0.0005]).  245 

For a given ray within the cone, SCARLET-1.0 determines the rotated particle that has the minimum distance between the CM 

of the coating particle and the aggregate (Fig.8). Finally, it selects the coating particle that among all the rays has the minimum 

distance respect to the CM of the aggregate. Therefore, the i-th coating particle will be placed after two minimization processes: 

the first one over all the rotations per each ray; the second one over all the rays.  

 250 

mainSCARLET produces two types of outputs: i) three figures showing respectively the 3D image of the final aggregate, the 

external volume 𝑉74[  used for the calculation of the porosity and the points used to determine the external volume itself; ii) 

output structures that contain the of mass, density, porosity, size, the external volume and the sum of the inner volumes of its 

components 𝑉5?[5 . Finally, mainSCARLET generates in the root folder the STL file of the aggregate structure.  

The calculation of the aggregate porosity requires some additional clarification here because it can vary according to the 255 

definition of 𝑉74[ . In SCARLET-1.0 the determination the aggregate porosity is done under the assumption that the 𝑉74[  is  the 

convex hull formed by the most outer points of its sphere-composite representation. This choice is a compromise between 
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what has been observed in nature for PC3 aggregates (Bagheri et al., 2016; Gabellini et al., 2020) and the aim for a reduced 

complexity in the algorithm. All the 𝑉5?[5  are directly calculated from the surface of the scaled STL shape, using the divergence 

theorem (Suresh, 2021). A unique density 𝜌( is assigned to the monomers. The particle packing 𝜏 is evaluated according to 260 

Eq.1: 

𝜏 =
∑ 𝑉5?[5
:_`V
5aV
𝑉74[

 
(Eq. 1) 

The aggregate porosity 𝜙3cc and density 𝜌3cc can then be easily quantified as: 

𝜙3cc = 1 − 𝜏 (Eq. 2) 
 

𝜌3cc = 𝜌( ∙ (1 − 𝜙3cc) (Eq. 3) 
 

Finally, the characteristic size 𝐷3cc assigned to the aggregate is th e sphere-equivalent diameter, calculated as the diameter of 265 

a sphere with the same external volume of the aggregate (Eq.4).  

𝐷3cc = (
6
𝜋 ∙ 𝑉74[)

V/< (Eq. 4) 

 

The algorithm takes advantage of the MATLAB built-in function convexHull, which is applied to the set of most external 

points among those describing the sphere-composition representation of the aggregate. Using points that belong to the sphere 

composite representation, instead of the STL file, is a consequence of the need of increasing the number of points generally 270 

used to define the external surface of objects involved in the aggregate. For a single STL characterized by a large number of 

facets and points, the use of a sphere-composite representation can lead to larger approximations in the determination of the 

porosity (or density). However, the code has not been designed for single particles and the error gets relatively less important 

for aggregates. In fact, in these cases, what matters is how well the convex surface assumption describes the actual overall 

bulk volume of the object, more than the error on the single component. In any case, a proper use of fromStlToSpheres is 275 

always preferred to obtain the desired sphere-composite representation of the irregular shape.  

 

 

3 Results 

3.1 Testing the model 280 

3.1.1 Porosity evaluation using the convex hull approximation: a comparison with analytical results 

As outlined in section 2, the porosity of an aggregate is always dependent on the surface that is used to define the external 

volume of the object. In SCARLET-1.0 the use of the convex-hull approximation is suitable for central collisional processes 

that result in roughly spherical aggregates, such as the PC1 and PC3 recently observed in the field (Bagheri et al., 2016; 
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Gabellini et al., 2020). However, it can lead to an overestimation of the porosity for structures that are poorly approximated 285 

by a convex geometry, such as fractal-like aggregates. In all these cases the porosity should be considered as an upper-bound 

limit.  

In order to investigate the accuracy, we compared the porosity computed by the algorithm with those belonging to particular 

aggregate configurations or single objects for which analytical results are given in literature. In Fig.9a and Fig.9b the 

comparison is made with respect to a classical configuration of sphere packing (e.g. the cannonball problem (Lucas, 1883)). 290 

For these convex shapes the porosity difference is about 7%-12%, with a dependency on the number of inner spheres used to 

describe the shapes. In general, the higher the number of spheres, the higher the evaluated porosity. This is a consequence of 

a more accurate representation of the original structure. However, for a fixed number of spheres, the approximation is also 

dependent on how many points define the STL triangulation and from Niter (i.e. how large are the spheres). In Fig.9c and Fig9d 

we calculate the porosity of the fractal shape known as “Menger’s sponge”, respectively obtained with n=2 and n=3 recursive 295 

iterations with Openscad (Hellweg et al., 2013), for which the porosity can be calculated as a function of the recursive step n 

(Sergeyev, 2009): 𝜙? = 1 − (Xg
Xh
)? . For n=2 and n=3 the theoretical value are 𝜙X = 45.1% and 𝜙< = 59.4%. In our test we 

overestimated 𝜙X and 𝜙< respectively of about 14% and 4% . 

Lastly, Fig.9e shows a non-convex L-shaped aggregate made of 8 spheres. If the user-defined external volume is the one 

related to the void filling the space between two close spheres, this is equal to Fig.9a (i.e. 48%). In this case SCARLET-1.0 300 

considers the convex surface that contains the spheres, which is close to the one defined by the triangular surface as base and 

one sphere diameter as height. 

 

3.1.2 Porosity for aggregates made of spheres and ellipsoids and comparison with the maximum packing 

The research of the maximum packing has always played an interest in mathematics and other practical applications (Hales, 305 

2005; Man et al., 2005; Farr and Groot, 2009). As it is evident from Eq.1, porosity and packing are oppositely related: a larger 

packing will reduce the porosity of the aggregate, and vice versa. Even if SCARLET-1.0 has not been specifically designed 

for the research of maximum packing, it is somehow interesting to test the algorithm with respect to this branch of investigation, 

for which analytical limits are provided according to the shape of the single components under analysis. In this paragraph we 

will evaluate the packing τ of spheres and ellipsoids with principal axes ratios of (𝑎V= 1.25: 𝑎X= 1: 𝑎<= 0.8), for which the 310 

theoretical values of the maximum packing τ are available in literature (see Fig.2 of Man et al., 2005). This particular choice 

of the principal axes constrains the value of flatness 𝑓 = 3m
3n
= 0.8 and elongation 𝑒 = 3n

3q
= 0.8. In our simulations we fix 𝑎V =

10 a.u. (arbitrary units) and we derive 𝑎X and 𝑎< from 𝑓 and 𝑒 (e.g. 𝑎X = 8 a.u. and 𝑎< = 6.4 a.u.). The average radius of the 

ellipsoid is defined as 𝑎A = (𝑎V ∙ 𝑎X ∙ 𝑎<)V/< and with R we indicate the radius of a sphere with same external volume of the 

overall aggregate. The goal of the test is to relate the computed values of 𝜏 with the initial setup adopted in each simulation 315 

for solid angles, number of rays and number of rotations respectively, i.e. (Ω, N%,	N&). Virtual aggregates created in this test 

are made of identical particles with the same size. Packing is displayed in Fig.10 as a function of the dimensionless parameter 



 
 

11 

𝛾 = 3A
s
.		A variable number of particles, comprised between a minimum of 10 and a maximum of 1000, has been used in all the 

simulations in order to achieve different values of 𝛾.The results presented in Fig.10 show that the condition of maximum 

packing for ellipsoids can be easily reached only for values of 𝛾 > 0.3. For values of 𝛾 < 0.3 a larger number of rays must be 320 

adopted to reach the same degree of packing. For spheres and for the conditions analyzed in this example, the maximum 

packing is reached for 𝛾 > 0.1. As expected and it is clearly shown for spheres, the increase in number of rays is not linearly 

related neither to the decrease of 𝛾 no the increase of 𝜏. In the search of the maximum packing, it seems that a large number 

of rays can have larger benefits with respect to the increase of the number of rotations, at least for the shape analyzed in this 

example.  In addition, we notice that for spheres the minimum value for packing 𝜏 is about 20%; a value that correspond to a 325 

maximum porosity of 80% (see Eq.1). This threshold can be considered as a good estimation of the maximum value for porosity 

reachable by means of the SCARLET-1.0 algorithm.  

3.2 Application of SCARLET-1.0 to packing problems 

In this section two examples of possible applications of SCARLET-1.0 to different scientific problems are discussed. In the 

first example the attention is focused on the study of binary collisions of generic ellipsoids, i.e. aggregates made of just two 330 

particles. In particular, the goal here is to derive how the porosity of the final product depends on the flatness and elongation 

of the ellipsoids and their relative sizes. Ellipsoids are often used to approximate complex shapes; this application is, thus, of 

general interest for different scientific topics, such as particle sedimentation, particulate transport, etc. In the second example, 

SCARLET-1.0 is instead applied to the investigation of how the porosity evolves in time for volcanic ash aggregates. In this 

application, parameters of real volcanic aggregates are used to constrain the free parameters of the algorithm (Ω, N%,	N&) and 335 

to draw important conclusions on the evolution of these objects. 

3.2.1 Porosity for particle-particle collision of two generic ellipsoids 

A collision of two distinct bodies is always the initial seed for binary aggregation processes (Jacobson, 2005). The aggregate 

will then evolve in time building up its own structure collision after collision, particle by particle. It is thus worth understanding 

the details of this initial stage, especially for what concerns how the 3D space is filled respectively by matter and voids. 340 

SCARLET-1.0 can be easily adapted to this problem and an arbitrary number of colliding shapes can be investigated in theory. 

However, in this section we limit our attention to particle-particle collisions of ellipsoids, due to their vast application in 

science as an approximation of much more irregular shapes (Bagheri et al., 2015). In this application we are interested in 

studying how the porosity 𝜙3cc changes as a function of particle size ratios and their orientation in space. Here, as in the rest 

of the paper, the external volume for the calculation of 𝜙3cc  is defined by the convex-hull surface that bounds the two 345 

ellipsoids involved in the collision (Fig. 11b, 11c). This is equivalent to study the maximum porosity that can exist between 

two single and not-vesiculated ellipsoids. 
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An ellipsoid is fully characterized by the knowledge of its three principal axes 𝐿, 𝐼, 𝑆 (where 𝐿 ≥ 𝐼 ≥ 𝑆). Here we describe 

the intermediate and smallest axes, 𝐼 and 𝑆 respectively, in terms of flatness 𝑓 and elongation 𝑒 (𝐼 = 𝐿 ∙ 𝑒 and 𝑆 = 𝐿 ∙ 𝑒 ∙ 𝑓). 

This formalism allows describing the shape of any given ellipsoid as a single point in the “flatness-elongation plane” (FE-350 

plane), as shown in Fig. 11, where 16 different ellipsoids have been created with OpenSCAD (https://www.openscad.org/) to 

map the FE-plane. When two ellipsoids collide, the resulting porosity 𝜙3cc is also affected by the relative dimensions of the 

two objects, i.e. the size ratio 𝑟{ , here described in terms of the ratio between the major principal axes |𝑟{ =
{}
{_
~, where the 

subscript letters c and p indicate the central object and the colliding particle respectively. It is worth noticing that in general 𝑟{  

is related to the ratio of the equivalent diameters 𝑑7� = (𝐿	𝐼	𝑆)V/< as follows: 𝑟� =
�},��
�_,��

= 𝑟{ ∙ |
7}n	*}
7_n*_

~
V/<

, that simplifies to 355 

𝑟� = 𝑟{  in case of particles with the same flatness and elongation. 

In this section we limit our attention to collisions of ellipsoids with the same shape but different size ratios 𝑟{ . Two different 

packings have been investigated for five times: a loose packing, setup 1, for which (Ω = 1°, N% = 1,	N& = 1) (Fig.12); a much 

denser packing, setup 2, for which (Ω = 90°, N% = 30,	N& = 10) (Fig.13). In Fig.12 and Fig.13 the pair of numbers in brackets 

refer to the red labels in Fig.11, used to identify the shapes involved in the collisions. 360 

Few comments can be made on the results reported in Fig.12 and Fig.13. Firstly, the loose packing generally shows 

significantly more variability than the dense one (shadow areas in the figures), as it is expected given that setup 1 completely 

depends on the initial random orientations of the bodies and the initial direction of collisions. Increasing the size ratios of the 

two objects or reaching the limiting case of a sphere (𝑓 → 1,	𝑒 → 1), the variability goes to zero. Secondly, we notice that for 

collisions of particles of the same size ratio, where 𝑓 ≥ 0.5 and	𝑒 ≥ 0.5, the final porosity of the aggregate approaches 𝜙3cc ≈365 

20%, which corresponds to the analytical solution of two contacting spheres of the same size (as also confirmed by the 

simulations (16;16)). 

Interestingly, if the shape of the objects is not characterized by extreme low values of elongation or flatness (e.g. less than 0.5) 

the threshold of 20% represents a maximum value for porosities, regardless of the size ratios involved in the collision, as 

clearly shown in Fig. 12 and Fig. 13. Scenarios become more complicated if flatness or elongation (or both) are less than 0.5 370 

(i.e. needle-like or extremely flat objects): in all these cases we notice a dependence from the initial setups used in SCARLET-

1.0 and, in general, higher values of the porosities with respect to the previous cases. As an example, for shapes labelled as 

(1;1) and 𝑟{ = 1, the setup 1 gives a porosity of 𝜙3cc = 0.52 ± 0.13, compared to 𝜙3cc = 0.42 ± 0.09 of setup 2. This last 

value is consistent with 𝜙3cc = 0.44± 0.08  obtained averaging 30 runs with the setup (Ω = 90°, N% = 60,	N& = 30).  

 375 

3.2.2 Porosity of volcanic ash aggregates as a function of the aggregation stage  

The term volcanic ash aggregation refers to the formation in the atmosphere or within a volcanic plume or cloud of 

agglomerates from 10s of µm to a few mm in size due to the collision of smaller particles with a diameter generally less than 
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100 µm (Brown et al., 2012). As recently observed during the 2010 Eyjafjallajökull eruption (Iceland), volcanic ash 

aggregation plays a major role in ash sedimentation, as it affects the particle residence time in the atmosphere and it potentially 380 

leads to an overestimation of ash concentrations in the atmosphere if it is underestimated in the forecast models (e.g. 

Bonadonna et al., 2011, Durant, 2015). Unfortunately, despite its importance, many questions still remain open due to the 

complexity of the processes involved (Durant, 2015). A key factor is, for example, the porosity of volcanic ash aggregates, 

that strongly affects the sedimentation process and the residence time in the atmosphere. This parameter can be derived from 

field observations of the terminal velocity of the object before the impact on the ground. However, field observations are 385 

difficult to obtain, and, in any case, they can only provide the porosity of the final structure of the aggregate, with no 

information about its evolution in time. In this section we apply SCARLET-1.0 to study the porosity evolution of volcanic ash 

aggregates, expressed as a function of time, shapes and the grainsize distributions involved in the process.  

Here we apply our algorithm to the reconstruction of two specific aggregates associated with two different eruptions: the 

sample labelled as 27Sk21 belongs to the eruption occurred on 3rd of August 2013 at Sakurajima volcano, (Japan) (Bagheri et 390 

al, 2016); the sample EJ15 belongs to the eruption occurred on 5th of May 2010 at Eyjafjallajökull volcano (Iceland) 

(Bonadonna et al., 2011). Sample 27Sk21 was observed with a High-Speed camera and was collected on an adhesive tape later 

analyzed with a Scanning Electron Microscope (SEM); as a result, size and density could be derived before the impact on the 

adhesive tape from High-Speed videos, while the grainsize distribution could be derived from image analysis of the material 

collected on the adhesive tape (Bagheri et al, 2016). On the other hand, no High-Speed video is available for aggregate EJ15; 395 

as a result, only the grainsize distribution and a rough estimation of its size (about 200 µm) could be derived from the material 

left on the adhesive tape (Bonadonna et al., 2011). 

The aggregates 27Sk21 and EJ15 were characterized as cored cluster (i.e. Particle Cluster 3 – PC3) and ash cluster (i.e. Particle 

Cluster 1 – PC1), respectively (Bagheri et al., 2016; Bonadonna et al., 2011). PC1 are clusters of ash particles with roughly all 

the same sizes of about 20-50 µm (Brown et al., 2012), whereas PC3 are characterized by the presence of an inner single object 400 

larger than 200 µm that has been coated by hundreds of smaller ash particles (Bagheri et al., 2016).  

SCARLET-1.0 requires a vector of sizes as an input to locate the coating particles around the core, i.e. the detailed grainsize 

distribution forming the aggregate to be reconstructed. However, large uncertainties are expected to affect the measured 

grainsize distribution, due to i) the mass lost in the air after the impact of the aggregate with the adhesive tape; ii) the mass lost 

during the transport of the samples from the field location to the laboratory; iii) the overlapping of particles in the SEM images 405 

of the coating, which lead to a loss of information deriving from the 2D representation of a 3D structure.  

For aggregate 27Sk21, for which a constraint about size and density is available from the High-Speed video, we make the 

assumption that all the losses in material only affect the total mass contained in the original coating population, but not the 

relative proportion of particles in each size-bin. This is equivalent to consider the measured grainsize distribution as fully 

equivalent to the original one, normalized for an unknown constant. The normalization constant is then derived matching the 410 

size and density of the virtual aggregate with those derived from field observations. 
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Volcanic ash particles are characterized by a variety of irregular shapes for which the STL representation of the surfaces is 

usually not available (an example of an aggregate made of real 3D scanned volcanic particles is presented in Fig.A1 of the 

Appendix). Here, in the absence of the actual shape of the single particles in the coating, we decided to approximate particles 

as ellipsoids. This choice is related to the observation that the drag of irregular particles can be sufficiently well described in 415 

terms of equivalent ellipsoids (Bagheri and Bonadonna, 2016)  Moreover, we follow the simplified approach of classifying the 

coating population as two distinct classes, i.e. coarse (between 63 µm and 2000 µm) and fine (≤63 µm) ash, each of them 

characterized by a single specific ellipsoid as displayed in Fig.14.  

The two ellipsoids for coarse and fine ash are defined in terms of the three principal axes, derived averaging the L, I, S values 

of particles with size ≤63 µm and between 63 µm and 2000 µm from ash samples of the 2010 Eyjafjallajökull (Iceland) (Table 420 

2). These ellipsoids are used here to represent coarse and fine ash for both samples EJ15 and 27sk21. The actual size of the i-

th  particle, 𝑑7�5 = (𝐿5𝐼5𝑆5)V/<, is used to scale the STL shape and to calculate the maximum length of the i-th ellipsoid 𝐿 = 

𝛼	𝛽𝑑7�5  (where 𝛼 = 𝐿/𝐼 and 𝛽 = 𝐿/𝑆) as required by SCARLET-1.0 (see section 2.3).  

In this virtual reconstruction we aim to reproduce the observed diameter of the aggregate (675 µm) and its final density (310 

kg/m3) (Table 1), under the assumption that the measured grainsize of Fig.15b can be replicated 𝑁�  times in order to 425 

compensate for the expected mass loss. Single particles are assumed to have a density of 2500 kg/m3 (Bagheri et al., 2016). In 

our reconstruction particles below 32 µm in size are not taken into account in order to optimize the computational efficiency 

without affecting the final result. As a matter of fact, given that the volume scales as the third power of diameter, smaller 

particles add second order contributions to the final packing. Several combinations of the solid angle Ω, number of rays N% 

and number of Euler rotations N& have been tested. However, only a loose packing (e.g. Ω = 1°, N% = 1,	N& ≤ 5) and 𝑁� = 6 430 

can approximatively reproduce the observed features, characterized by a porosity larger than 80% and an aggregate to core 

ratio of ≈ 3 (see table 1). In Fig.16 the variation of aggregate porosity is displayed as a function of collisions, for four different 

scenarios: ellipsoids whose sizes are randomly picked from the grainsize distribution (i.e. random displacement; blue line); 

ellipsoids sequentially located from the largest size to the smallest one (i.e. sequential displacement; red line); spheres whose 

sizes are randomly picked from the grainsize distribution (black line); spheres sequentially located from the largest size to the 435 

smallest one (i.e. sequential displacement; green line). Each line is the average of 5 repetitions and the final size of the virtual 

aggregate is » 600 µm. 

The second object to be reconstructed is the PC1 aggregate EJ15, that was collected on an adhesive tape during the 2010 

Eyjafjallajökull eruption (Iceland) (Bonadonna et al. 2011). The reconstruction is strongly affected by the lack of High-Speed 

video that does not allow to characterize the aggregate size and density before the impact with the adhesive paper. Therefore, 440 

in this application we simply focus on the time evolution of the porosity for different configurations of Ω,N%,	N&, keeping the 

grainsize distribution equivalent to the one observed by Bonadonna et al., (2011) (i.e. no assumption has been made on the 

mass loss). In addition, the same ellipsoids reported in Table 2 have been used also for this application. The results of different 
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simulations are reported in Fig.17, together with the 3D visualization provided by SCARLET-1.0. In the following we refer to 

the setup (Ω = 50°, N% = 30,	N& = 10) as “tight packing” and to the setup (Ω = 1°, N% = 1,	N& = 1) as “loose packing”. 445 

The range of final porosities spans from a maximum value of about 73-76% for the loosest packing down to 30% for the tight 

packing with Ω = 50°, N% = 30,	N& = 10. If we compare the curves of Fig.17 with values of porosities reported in literature 

for PC1 aggregates, comprised between ≈80-97% (Brown et al., 2012; Gabellini et al., 2020; Table 1), we can deduce that 

only the loose packing can realistically reproduce the observed features, such is the case for PC3 aggregate.  

Finally, it is important to notice how the plateau in porosity for EJ15 is reached roughly after the same number of collisions 450 

(≈50-70 collisions) both for the tight and loose packing. 

 

4. Discussion 

4.1 SCARLET-1.0: general comments on the operational use 

SCARLET-1.0 has been specifically designed for the simulation of aggregation of complex shapes. In order to treat the 455 

intersection problem between colliding objects, the algorithm takes advantage of the sphere composite representation of a 

body. This means that if a given shape is described in terms of NB( spheres and if N( particles collide, the final aggregate will 

be described as NB( × N( spheres. Given that the intersection is evaluated for each step in the inward and outward movement 

before placing each single particle (see Fig.5), the use of a large number of spheres combined with a large number of particles 

can significantly increase the computational time of the package. As a general advice, we recommend an appropriate use of 460 

the preprocessing code fromStlToSpheres and the Boolean variable O74[  to find a good balance between an accurate description 

of the shape and a reduced number of spheres, i.e. faster computational times.  

An important point that the user should always consider is how the parallelization of the algorithm works. The parallelization 

of the code is based on the execution of simultaneous for-loop iterations on the different available threads using parfor. 

However, MATLAB does not allow for nested parallel loops, which results in a parallelization that can only be performed at 465 

one level. As shown in Fig.5 in the present release of SCARLET-1.0 this occurs inside the loop dedicated to describing particle 

rotations along a single ray. This means that if few rotations are set in the simulation the parallelization will not substantially 

speed up the code.  

As outlined in the introduction, SCARLET-1.0 has been created to simulate central collisional processes, in which particles 

collide from random directions and find their final location after spanning a given solid angle Ω. This occurs in different natural 470 

phenomena as the ones discussed in the previous examples and in the introduction. According to the setup imposed by the 

external user, the package can simulate various degrees of packing by simply changing the solid angle of investigation (Ω), 

the number of rays (N%) and the number of rotations (N&). For what concerns the maximum packing, Fig. 10 shows that objects 

characterized by a particle-to-aggregate size smaller than 0.17-0.25 require more computational efforts to match the maximum 

packing condition than aggregates with smaller sizes or larger components (at least for the shapes investigated). In these cases, 475 

the use of multiple processors allows having a large number of rotations tested, which can finally result in a better packing of 
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the object in a lower computational time. However, in several applications of interest, such as the one reported in section 3.2.2, 

the maximum packing is not the final aim of the virtual reconstruction and a much less dense packing is required to correctly 

mimic the phenomenon under analysis. 

 480 

 4.2  SCARLET-1.0 applied to the study of porosity for volcanic ash aggregates 

In section 3.2.2 we presented SCARLET-1.0 applied to the study of porosity in volcanic ash aggregates. This is an interesting 

example of how the algorithm can provide answers not only about the packing of shapes but also on its evolution in time, an 

information that is usually missing in field or lab observations. The study has been focused on the virtual reconstruction of 

two specific aggregate structures: PC3 type (aggregate 27sk21), made of a central object five to ten times larger than the 485 

particle sizes present in the coating; PC1 type (aggregate EJ15), made of particles with roughly the same size. 

The reconstruction of the PC3 aggregate (Fig.16) has shown that the modelled aggregate porosity (≈73%) is almost 10% 

smaller than the observed one, for the same size of the aggregate. This discrepancy can be due to the approximations made in 

the description of particle shapes. An alternative explanation can suggest the presence of liquid bridges in the original structure 

that alter the contact condition between particles and finally creates a looser packing of the coating than (Gilbert and Lane, 490 

1994). The setup used in the simulation that corresponds to loose packing (e.g. Ω = 1°, N% = 1,	N& ≤ 5) describes a particle 

coming from a random direction, randomly oriented, that it is going to be located on the surface of the core immediately after 

the first contact. In this configuration no minimization is done on the packing of the aggregate and it should thus reproduce a 

condition of maximum porosity for the object. However, the fact that the observed porosity is even larger than the simulated 

one could be interpreted as a violation of the contact condition among particles as assumed by SCARLET-1.0. This violation 495 

is theoretically possible if liquid bonds act as a sticking medium between particles.  

The importance of loose packing for the typologies under analysis is also confirmed by the PC1 sample (EJ15), for which the 

computed porosity of 73-76% for the loosest configuration matches with the lower bound of porosity reported in literature 

(e.g. 80%). This work thus suggests that the condition of maximum packing should not be seen as the natural tendency in the 

context of volcanic ash aggregation, at least for PC1 and PC3 types. 500 

A second important observation concerning the virtual reconstruction of sample 27sk21 is the use of 𝑁� = 6 to reproduce the 

observed features of the aggregate. This practically means that the number of particles analyzed at the SEM is underestimated 

of about 1/6 with respect to the original coating. This implies that a realistic quantification of the number of particles stuck 

over the surface of the PC3 aggregate under analysis was probably of the order of a few thousands.  

For what concerns the differences between random or sequential displacement of particles, we notice from Fig. 16 and Fig. 17 505 

that random displacement initially produces lower porosities with respect to a sequential displacement of particles from large 

to small sizes. This can be explained thinking of the large number of voids that is created when particles of similar sizes are 

packed together. On the contrary, smaller particles can easily fill the voids resulting in lower porosities. However, a non-trivial 

observation from Fig. 16 and Fig. 17 is that the final value of the aggregate porosity weakly depends on the “history” of the 
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packing, as long as the number of coating particles is wide enough. In addition, Fig. 16 suggests that the use of ellipsoids does 510 

not produce remarkable differences in the packing with respect to spheres (about ≈5% in the porosity). As expected, in case 

of a loose packing (i.e. Ω = 1°, N% = 1,	N& ≤ 5) the use of ellipsoids produces slightly higher porosities with respect to 

spheres.  

An interesting result emerges when both PC1 and PC3 aggregates are compared on the same plot for the same configuration 

of Ω, N%,	N& (Fig.18). It is evident how the PC1 aggregate reaches the plateau in porosity much faster than the PC3 one. This 515 

can be explained noticing that the presence of a large core inside the PC3 somehow slows down the increase in porosity of the 

object, which takes more time and more collisions to reach comparable levels of densities. The consequence of this observation 

is not only that PC1 objects can reach low densities faster than PC3 aggregates, but that if there are enough time and collisions 

to let a PC3 aggregate grow, its final density can be as low as a PC1. In other words, the contribution to the density of an inner 

large particle (the core) at its center is diluted in time by the increasing coating, that finally drops the overall density down to 520 

much lower values than that of the core. 

A final aspect that is worth discussing is that in case of a sequential deposition of the coating, after reaching the plateau, the 

porosity of the aggregate starts decreasing. This can be explained by the fact that adding fine ash after coarse ash will not 

significantly alter the total volume of the aggregate, but this process increases the mass of the aggregate and reduces the voids. 

This leads to the observed decrease in porosity. 525 

 

4.3 Caveats 

4.3.1 Porosity calculation 

The determination of the aggregate porosity is based on the assumption that the external surface that circumscribes the inner 

components is convex. This choice is motivated by the aggregate morphology associated to PC type aggregates in volcanology. 530 

This can be the case also in other applications, but the user must be aware of this a-priori. In fact, this approach may lead to 

an overestimation of the porosity in case, for example, of fractal-like aggregates for which the overall fractal dimension is less 

than three. In those cases, the convex hull approximation can be seen as an upper limit for the maximum porosity, which 

converges to the actual porosity for aggregates that are well described by a convex geometry.  

 535 

4.3.2 Computational efficiency 

The computational efficiency of the package in the release v1 is mostly dependent on four main factors: i) the step-size used 

to detect the single collision; ii) the number of particles in the coating; iii) the number of spheres used in the sphere-composite 

representation; iv) the number of cores available for the parallelization of the rotations. The tests performed using a laptop 

with processor i7-4600U CPU @ 2.10 GHz x4 (2 threads in MATLAB parfor) revealed that among all the above-mentioned 540 

factors the most critical parameter is 𝑓6X , that controls the outward movement of the i-th particle. It shows a non-linear increase 

of the computation time in reducing the iteration step. On the other hand, the computational time increases linearly with respect 
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to the number of spheres used in the sphere-composite representation of the STL, the number of rays in the investigation cone 

and the number of rotations. 

 545 

4.3.3 Warnings related use of STL files 

1. When the center of mass of the core is placed outside the STL file, SCARLET-1.0 automatically places the center of the 

investigation cone at the center of one of the spheres that form its sphere composite representation. 

2. The preprocessing function fromStlToSpheres generates spheres inside the STL starting from the vertexes of the 

triangulation. Some geometrical shapes just need a reduced number of vertexes to be fully described such as cubes, cylinders 550 

or tetrahedrons. In these cases, the user must increase the numbers of points on the surface of the object before running 

fromStlToSpheres. This is not always easy to be done and it requires some skills in programming. 

 3. SCARLET-1.0 generates the STL file of the virtual aggregate. This format can potentially be used for 3D printing. Here 

we say “potentially” because the success of the procedure depends on many conditions: the shape of the aggregate, the degree 

of overlapping of its components, the stability of the structure and the characteristics of the 3D printer. In some cases, the user 555 

should decrease the tolerances used in the calculation of the intersection between spheres in order to have a more solid structure 

suitable for 3D printing. Further tests will be conducted on this and in the GitHub page of the software new releases and notes 

will be posted on this in the future. 

 

5. Conclusions 560 

In this work we presented SCARLET-1.0, a MATLAB package aimed at simulating volcanic ash aggregates that derive from 

central collision processes, starting from an arbitrary population of sizes and shapes. 3D bodies are approximated by a set of 

not-overlapping spheres, resulting in an analytical description of their intersections. The code has been designed to investigate 

the geometric packing of ash aggregates produced in volcanic plumes or clouds. However it can reasonably be applied in all 

those applications where the collision dynamic is the same as in a volcanic plume (i.e. polydisperse population in isotropic 565 

turbulent flow). The main output of the code is the final porosity of the aggregate, calculated as the ratio of the inner voids and 

the external volume of the agglomerate and the STL file of the structure.  

In terms of novelty of the code we can conclude that: 

1) One of the most appealing features of the code is the use of the STL format to import 3D shapes. The STL standard 

is nowadays one of the most widespread formats in the community, due to its strong connection to the world of 3D 570 

printing. This results in a large availability of software to design arbitrary shapes and in the possibility to import 3D 

scanned surfaces from real samples.  

2) An interesting aspect of the package is the production as an output of the STL file on the modelled virtual aggregate. 

This practically means that the final object can be 3D printed and used in real contexts, such as laboratory 

investigations.   575 
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3) The external user can easily control the basic aspects of the algorithm simply playing on few parameters, such as (Ω, 

N%,	N&) for the minimization process or Boolean quantities for the computation of porosity in time.  

4) The algorithm can be easily modified to the study of different problems, such as the study of aggregate-aggregate 

collision. 

 580 

The examples analyzed in the manuscript show the versatility of the code and its potentials. In terms of the two specific 

applications of the code to aggregation processes we can conclude that:  

1) The resulting porosity of an ellipsoid-ellipsoid collision has a maximum of 20% for objects of the same size and with 

flatness and elongation larger or equal to 0.5. Needle-like or flat bodies characterized by flatness and elongation less 

than 0.5 can result in higher porosities.  585 

2) The virtual reconstruction of volcanic ash aggregates shows how PC1 and PC3 types are better represented in terms 

of a loose packing in which particles stop their relative motion after touching. This can be explained by a very efficient 

binding mechanism or a reduced impact velocities of the colliding objects. 

3) PC1 aggregates can reach high porosities faster than PC3, i.e. after a lower number of collisions. However, if a large 

number of particles can stick on the central object to form a thick coating, the final porosity of PC3 type tends to be 590 

similar to the PC1 sample.  

4) Random and sequential packing produce differences of about 10% in the porosity in the analyzed samples.  
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Appendix 595 

Examples of virtual aggregates created with SCARLET-1.0 with different shapes. The goal is to show the potential use of the 

algorithm to a large variety of cases.  

 

 
Figure A1. Virtual aggregates made of different initial STL files. (a) aggregate made from a STL file of a t-rex; (b) aggregate made 600 
from a STL file of snowflakes; (c) aggregate made of real volcanic particles, scanned with a 3D laser scanning machine (loose 
packing); (d) the same shapes and objects of (c) but with a more tight packing; (e) aggregate made using as a STL file the asteroid 
Castalia; (f) aggregate made of toy characters. 
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Figures 
 

 
Figure 1. General scheme of SCARLET-1.0: on the left, the preprocessing code “fromStlToSpheres”. On the right and in the center, 
the main function “mainSCARLET”. The preprocessing code is needed to convert each 3D shape into a set of not-overlapping 805 
spheres. The function fromStlToSpheres produces two output structures for each STL file, out_st and fv, which must be assembled 
into a new structure, input_st, as shown here. input_st represents the unique external input for mainSCARLET. A set of internal 
inputs control the details of each simulation, such as the number of coating particles involved, their sizes and the degree of packing. 
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 810 

 

 
Figure 2. Example showing how SCARLET-1.0 creates a loosely packed aggregate made of 20 ellipsoids and cones of different sizes 
around a central object (a T-rex).  
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Figure 3. Application of the pre-processing routine fromStlToSpheres to two different volcanic particles. Blue points in (a) and (d) 
represent the vertices of the triangles used to define the 3D surfaces, as present in the original STL files. (b) and (e) illustrate the 820 
final process of filling the volumes with 300 spheres, placed randomly inside the objects. (c) and (f) show the most external spheres 
obtained using the built-in MATLAB function boundary. 

 

 

 825 

 
Figure 4. Application of the pre-processing routine fromStlToSpheres to objects characterized by different surfaces (i.e. convex hulls 
or not) that will be used in this paper. In (a) a toy character, in (b) a T-rex, in (c) an ellipsoid, in (d) a snowflake, in (e) and (f) two 
different volcanic particles. No scale has been reported for this image since it is not important for the pre-processing. In fact, all the 
objects will be rescaled by the main SCARLET function. 830 

 

 

 



 
 

29 

 
Figure 5. Scheme followed by SCARLET-1.0 for particle placing. On the left, the first part of the algorithm where shapes are 835 
randomly assigned to each coating particle and scaled to the actual particle size is shown. On the right, the series of five nested loops 
that control the particle placing are presented.  

 

 

 840 

 
Figure 6. (a) Definition of the cone of exploration. The 𝛀 angle (degrees) is zero along the central axis of the cone. (b) Cone, rays and 
rotations associated with the placing of one single coating particle. In the figure, the cone is coincident with the center of mass of the 
core. However, the user can modify the Boolean variable closet.origin_in_the_CM in order to make the center of the cone coincident 
with one of the spheres of the sphere-composite representation of the STL file.  845 
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Figure 7. Coarse inward movement and fine outward tuning associated with loop 4 and loop 5, respectively.  850 

 

 

 

 

 855 
Figure 8. Example of minimization process over two rotated particles. The selected particle is the one with minimum distance with 
respect to the center of mass of the core. 
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Figure 9 Evaluation of the accuracy in the determination of the porosity using the convex-hull surface of the most external points of 860 
the sphere-composite representation of structures for which the porosity is given. (a) Spheres packed with a theoretical 48% of 
porosity; (b) Spheres packed with a 26% of theoretical porosity; (c) – (d) Examples of Menger’s sponge obtained respectively with 
2 and 3 recursive processes; (e) L-shaped deposition of spheres for which the porosity is the same as in (a). The maximum theoretical 
porosity is evaluated considering the solid whose base is the L-shaped rectangular triangle and the height one sphere diameter. 
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Figure 10. Packing 𝝉  of spheres and ellipsoids for different values of solid angles, number of rays and number of rotations 
respectively, i.e. (𝐍𝒓,𝛀,𝐍𝒐). The red line indicates the maximum packing for ellipsoids with axes with a ratio of (1.25:1:0.8). The 
black line indicates the maximum theoretical packing for spheres. The number of monomers used in the test varied from 10 to 1000. 
Red dots are simulations made for ellipsoids, black dots for spheres. The red brackets show the values of (𝐍𝒓, 𝛀,	𝐍𝒐) used for a single 870 
simulation; the black brackets show the values of (𝐍𝒓, 𝛀), since no rotation of the shape is investigated for spheres. All the values 
are expressed as a function of a/R, where a is the average radius of the ellipsoid/sphere and R is the radius of the sphere with same 
external volume of the aggregate. 
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Figure 11 (a) The flatness-elongation plane (FE-plane) and the associated shape of the investigated ellipsoid. The red labels in the 
figure are introduced to characterize each particle-particle collision univocally.  In (b) and (c) some examples of how the external 
volume is defined in this application (i.e. the convex-hull volume that contains the two objects). 880 

 

 

 

 
Figure 12 Porosity of two colliding ellipsoids of same shape as a function of the size ratio 𝒓𝑳. The setup used in SCARLET-1.0 for 885 
these simulations is (𝛀 = 𝟏°, 𝐍𝒓 = 𝟏,	𝐍𝒐 = 𝟏). The pair of numbers in the brackets refer to the shapes labelled in Fig. 10 The 
shadowed area is the outcome of five simulations. 
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Figure 13 Porosity of two colliding ellipsoids of same shape as a function of the size ratio 𝒓𝑳. The setup used in SCARLET-1.0 for 890 
these simulations is (𝛀 = 𝟗𝟎°, 𝐍𝒓 = 𝟑𝟎,	𝐍𝒐 = 𝟏𝟎). The pair of numbers in the brackets refer to the shapes labelled in Fig. 10 The 
shadowed area is the outcome of five simulations. 

 

 

 895 
Figure 14. Ellipsoids used to characterize coarse (a) and fine (b) ash in the virtual reconstructions. 
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 900 
Figure 15. (a) SEM image of the coating particles relative to the aggregate 27sk21 (the big core escaped from the tape); (b) Grainsize 
distribution derived from the SEM image (Bagheri et al. 2016). In the present work we did not use particles below 32 µm in size: 
these allows optimizing the computational efficiency without affecting the final result (since the volume scales as the third power of 
diameter, smaller particles add second order contributions to the final volume).  

 905 

 
Figure 16. Evolution in time of the porosity for the aggregate 27Sk21, classified as PC3 from field observations and High-Speed 
videos (Bagheri et al. 2016). The final reconstruction of the aggregate is reported in red within the frame of the figure, both for a 
sequential and a random displacement of the coating particles. The core size – not visible in the figure – is 270 µm wide. The final 
size of the object matches the observed one (≈670 µm). The shaded area represents the 68% of confidence around the mean over 910 
five repetitions. The angle 𝛀 is expressed in degrees. 
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Figure 17 Time evolution of the porosity for aggregate EJ15 (PC1), collected during the 2010 Eyjafjallajökull eruption (Iceland) 
(Bonadonna et al. 2011). The virtual reconstructions are based on the same ellipsoids of Fig.13. The shaded areas represent the 68% 
of confidence around the mean over five repetitions. The angle 𝛀 is expressed in degrees. 920 
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Figure 18 Evolution of the porosity for aggregates EJ15 (PC1) and 27sk21 (PC3) for the same configuration of SCARLET-1.0 (𝛀 =925 
𝟏, 𝐍𝒓 = 𝟏,	𝐍𝒐 = 𝟏). The shaded area represents the 68% of confidence around the mean over five repetitions.  
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Tables 
 

Aggregate 
name 

Aggregate 
Type 

Aggregate 
size  

(µm) 

Seed size 

(i.e. the core)  

(µm) 

Aggregate 
density  

(𝐤𝐠/𝐦𝟑) 

Core 
density 

(𝐤𝐠/𝐦𝟑) 

Aggregate 
porosity 

Grainsize 
distribution 

27Sk21 PC3 635 ± 50 270 310 ±	50  2500 0.86 ± 	0.04 Yes 

EJ15 PC1 ≈ 200 ≈ 40 60-500 

(from 

literature) 

 

2528 0.80-0.97  Yes 

Table 1. Observed features for aggregates 27Sk21 (Sakurajima, Japan) and EJ15 (Eyjafjallajökull, Iceland). For the 945 

27Sk21 sample, aggregate and core size are observed from high-speed video, the aggregate density is derived based on 

settling velocity and size from high-speed video, aggregate porosity is estimated based on measured particle density 

and derived aggregate density, core density is measured with a water pycnometer and grainsize distribution is derived 

from analysis of SEM images (Bagheri et al. 2016). For sample EJ15, the aggregate size, core size and grainsize 

distribution are derived from analysis of SEM images (Bonadonna et al. 2011), while the aggregate density and porosity 950 

are assumed based on literature (Brown et al., 2012; Gabellini et al., 2020), and the core density is estimated based on 

a combination of helium pycnometer and a theoretical relation with size (the reported value is the average for sizes less 

than 40 µm; Bonadonna et al. 2011).  

 

 955 

 

 

 L axis (µm) 

 

I axis (µm) 

 

S axis (µm) 

 
𝜶 =

𝑳
𝑰 𝜷 =

𝑳
𝑺 

Coarse ash 

ellipsoid 

158.0 138.7 116.4 1.1 1.4 

Fine ash ellipsoid 28.9 24.0	 11.1 1.2 2.6 

Table 2. Geometrical features of the ellipsoids used to simulate fine and coarse ash. L, I, S are the average of 2010 

Eyjafjallajökull (Iceland) samples for particles with size ≤63 µm (fine ash) and between 63 µm and 2000 µm (coarse 

ash).  960 
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Variable 

name 

Name of the input variable in 

SCARLET-1.0 

Function where 

it is used 

Description 

𝑑2345  closet.vector_coat_sizes_mu mainSCARLET Maximum length of the i-th particle 

𝑑2346&%7  closet.core_size_mu mainSCARLET Maximum length of the core 

𝑁( closet.N_particles mainSCARLET Number of particles in the coating 

𝑁% closet.N_raysXSA mainSCARLET Number of rays within the cone 

𝛺 closet.cone_aperture_degree mainSCARLET Angle of aperture of the cone respect to the 

central axis (in degrees) 

𝑁& closet.N_Euler_triplets mainSCARLET Number of rotations investigated for each ray 

𝑁9 - fromStlToSpheres Number of vertices in the triangulation 

𝑁B( N_spheres fromStlToSpheres Number of spheres used in the sphere-

composite representation of the STL 

𝑃? - fromStlToSpheres Closest point to the random generated one in 

the STL among the centers of the existing 

spheres and the vertices of the STL 

𝑃% - fromStlToSpheres Random generated point in the STL 

𝑃7 - fromStlToSpheres Starting point for the inward movement  

𝑉74[  - mainSCARLET Volume of the external envelope used to 

calculate the aggregate porosity 

𝑉5?[5  - mainSCARLET Volume of the i-th particle 

𝜏 - mainSCARLET Particle packing 

𝐷3cc - mainSCARLET Diameter of a sphere with volume 𝑉74[  

𝜌( closet.core_density mainSCARLET Density of the monomers (a.u) 

𝜌3cc - mainSCARLET Density of the aggregate (a.u.) 

𝜙3cc - mainSCARLET Aggregate porosity 

Table 3. Main parameters used in the paper and their counterparts in the code 
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