
JlBox v1.0: A Julia based multi-phase atmospheric chemistry
box-model
Langwen Huang1,2 and David Topping2

1Department of Mathematics, ETH Zurich, Switzerland
2Department of Earth and Environmental Science,The University of Manchester, UK

Correspondence: Langwen Huang (langwen.huang@math.ethz.ch)

Abstract.

As our knowledge and understanding of atmospheric aerosol particle evolution and impact grows, designing community

mechanistic models requires an ability to capture increasing chemical, physical and therefore numerical complexity. As the

landscape of computing software and hardware evolves, it is important to profile the usefulness of emerging platforms in

tackling this complexity. Julia is a relatively new programming language that promises computational performance close to5

that of Fortran, for example, without sacrificing flexibility offered by languages such as Python. With this in mind, in this

paper we present and demonstrate the initial development of a high-performance community mixed phase atmospheric 0D

box-model, JlBox, written in Julia.

In JlBox v1.0 we provide the option to simulate the chemical kinetics of a gas phase whilst also providing a fully coupled gas-

particle model with dynamic partitioning to a fully moving sectional size distribution, in the first instance. JlBox is built around10

chemical mechanism files, using existing informatics software to provide parameters required for mixed phase simulations. In

this study we use mechanisms from a subset and the complete Master Chemical Mechanism (MCM). Exploiting the ability

to perform automatic differentiation of Jacobian matrices within Julia, we profile the use of sparse linear solvers and pre-

conditioners, whilst also using a range of stiff solvers included within the expanding ODE solver suite the Julia environment

provides, including the development of an adjoint model. Case studies range from a single volatile organic compound [VOC]15

with 305 equations to a ’full’ complexity MCM mixed phase simulation with 47544 variables. Comparison with an existing

mixed phase model shows significant improvements in performance for multi-phase and mixed VOC simulations and potential

for developments in a number of areas.

1 Introduction

Mechanistic models of atmospheric aerosol particles are designed, primarily, as a facility for quantifying the impact of pro-20

cesses and chemical complexity on their physical and chemical evolution. Depending on how aligned these models are with the

state-of-the-science, they have been used for validating or generating reduced complexity schemes for use in regional to global

models (Zaveri et al., 2008; Riemer et al., 2009; Amundson et al., 2006; Korhonen et al., 2004; Roldin et al., 2014; Hallquist

et al., 2009; Kokkola et al., 2018). This is based on the evaluation that ’full’ complexity schemes are too computationally ex-

1

pensive for use in large scale models. With this in mind, the community has developed a spectrum of box-models that focus on25

a particular process or experimental facility (e.g., Riemer and Ault, 2019), or use a combination of hybrid numerical methods

to capture process descriptions for use in regional to global models (e.g., Zaveri et al., 2008; Kokkola et al., 2018). Recent

studies are also exploring coupling the latter with numerical techniques for reducing systematic errors through assimilation of

ambient measurements (e.g., Sherwen et al., 2019).

With ongoing investments in atmospheric aerosol monitoring technologies, the research community continue to hypothe-30

sise and identify new processes and molecular species deemed important to improve our understanding of their impacts. This

continually expanding knowledge base of processes and compounds, however, presents both numerical and computational

challenges on the development of the next generation of mechanistic models. It also raises an important question about appro-

priate design of community driven process models that can not only adapt to increases in complexity, but how we ensure our

platforms exploit emerging computational platforms, if appropriate.35

In this paper we present a new community atmospheric 0D box-model, JlBox, written in Julia. Whilst the first version of

JlBox, v1.0, has the same structure and automatic model generation approach as PyBox (Topping et al., 2018), we present sig-

nificant improvements in a number of areas. Julia is a relatively new programming language, created with the understanding that

Scientific computing has traditionally required the highest performance, yet domain experts have largely moved to slower dy-

namic languages for daily work(-(Julia Documentation: https://julia-doc.readthedocs.io/en/latest/manual/introduction/). Julia40

promises computational performance close to that of Fortran, for example, without sacrificing flexibility offered by languages

such as Python. In JlBox v1.0 we evaluate the performance of a one-language driven simulation that still utilises automated

property predictions provided by UManSysProp and other informatics suites (Topping et al., 2018). The choice of programming

language when building new and sustainable model infrastructures is clearly influenced by multiple factors. These include is-

sues around training, support and computational performance to name a few. Python has seen a persistent increase in use45

across the sciences, in part driven by the large ecosystem and community driven tools that surrounds it. This was the main

factor behind the creation of PyBox. Likewise, in this paper we demonstrate that the growing ecosystem around Julia offers a

number of significant computational and numerical benefits to tackle known challenges in creating aerosol models using a one

language approach. Specifically, we make use of the ability to perform automatic differentiation of Julia code using tools now

available in that ecosystem. In JlBox we demonstrate the usefulness of this capability when coupling particle phase models to50

a gas phase model where deriving an analytical jacobian might be deemed too difficult.

In the following sections we describe the components included within the first version of JlBox, JlBox v1.0. In section 2 we

briefly describe the theory on which JlBox is based, including the equations that define implementation of the adjoint sensitivity

studies. In section 3 we discuss the code structure, including parsing algorithms for chemical mechanisms, and the use of sparse

linear solvers and pre-conditioners, whilst also using a range of stiff solvers included within the expanding ODE solver suite55

DifferentialEquations.jl. In section 4 we then demonstrate the computational performance of JlBox relative to an existing

community gas phase and mixed phase box-models, looking at a range of mechanisms from the Master Chemical Mechanism

(Jenkin et al., 1997, 2002). In section 5 we discuss the relative merits of JlBox in comparison with other models whilst

presenting a narrative on required future developments. We present JlBox as a platform for a range of future developments,

2

including the addition of in/on aerosol processes currently not captured. It is our hope that the demonstration of Julia specific60

functionality in this study will facilitate this process.

2 Model description

The gas phase reaction of chemicals in atmosphere follows the gas kinetics equation:

d

dt
[Ci] =−

∑
j

rjSij , rj = kj
∏

∀i,Sij>0

[Ci]
Sij (1)

where [Ci] is the concentration of compound i, rj is the the reaction rate of reaction j , kj is the corresponding reaction rate65

coefficient and Sij is the value of the stoichiometry matrix for compound i and j. The above Ordinary Differential Equation

(ODE), equation (1), fully determines the concentrations of gas phase chemicals at any time given reaction coefficients kj , a

stoichiometry matrix {Sij} and initial values. All chemical kinetic demonstrations in this study are provided by the Master

Chemical Mechanism (MCM) (Jenkin et al., 1997, 2002), but the parsing scheme allows for any mechanism provided in

the standard Kinetics PreProcessor [KPP] format (Damian et al., 2002). When adding aerosol particles to the system, more70

interactions have to be considered in order to predict the state of the system, including concentrations of components in the gas

and particulate phase. In JlBox v1.0 we only consider the gas-aerosol partitioning to a fully moving sectional size distribution,

recognising the need to use hybrid sectional methods when including coagulation, (e.g., Kokkola et al., 2018). We discuss these

future developments in section 5. We use bulk-absorptive partitioning in v1.0 where gas-to-particle partitioning is dictated by

gas phase abundance and equilibrium vapour pressures above ideal droplet solutions. This process is described by the growth-75

diffusion equation provided by Jacobson (2005) (Pages 543, 549, 557, 560).

d[Ci,k]

dt
= 4πRknkDi,k

eff ([Ci]− [Csi,k]
)

(2)

[Csi,k] = exp

(
2mw,iσ

RkρiR∗T

)
[Ci,k]

[Ccore,k]× core_diss+
∑
i[Ci,k]

psiR∗T

NA
(3)

Di,k
eff =

D∗i

1+Kn,i

(
1.33Kn,i+0.71

Kn,i+1 + 4
3
1−αi

αi

) (4)

where [Ci,k] is the concentration of compound i component in size bin k, [Csi,k] is the effective saturation vapor concentration80

over a curvature surface of size bin k (considering Kelvin effect), Di,k
eff is the effective molecular diffusion coefficient, Rk is

the size of particles in size bin k, nk the respective number concentration of particles, [Ccore,k] is the molar concentration of

an assumed in-volatile core in v1.0 that may dissociate into core_diss components. For example, for an ammonium sulphate

core, core_diss is set to 3.0, mw,i is the molecular weight of condensate i, ρi is liquid phase density, psi is pure component

3

saturation vapor pressure, D∗i is molecular diffusion coefficient, Kn,i is Knudsen number, αi is accommodation coefficient, σ85

is the surface tension of the droplet, R∗is the universal gas constant, NAis Avogadro’s number, and T is temperature.

As we have to keep track of the concentration of every compound in every size bin, this significantly increases the complexity

of the ODE relative to the gas phase model:

dy

dt
= f(y;p),y = (C1,C2, . . . ,Cn;C1,1,C2,1, . . . ,Cn,m) (5)

where y represents the states of the ODE, n is number of chemicals, m is number of size bins, p is a vector of parameters of90

the ODE, and f(y) is the RHS function implicitly defined by equations (1) and (2). We extend the original ODE state y with

concentrations of each chemicals on each size bins. A simple schematic is provided in Figure 2. Imagine there are n= 800

components in the gas phase. In the configuration displayed in figure 2, the first 800 cells hold the concentration of each

component in the gas phase. If our simulation has 1 size bin, the proceeding cells hold the concentration of each component

in the condensed phase. If our simulation has 2 size bins, the proceeding 800 cells hold the concentration of each component95

in the second size bin and so on. The gas phase simulation of a mechanism with n= 800 chemicals has to solve an ODE with

800 states, while the mixed phase simulation with m= 16 size bins will have 13600 (= 800+800×16) states. Meanwhile, the

size of Jacobian matrix (required by implicit ODE solvers) will increase in a quadratic way from 800×800 to 13600×13600.

Sensitivity analysis is useful when we need to investigate how the model behaves when we perturb the model parameters and

initial values. One approach is to see how all the outputs change due to one perturbed value by simply subtracting the original100

outputs from the perturbed outputs, or, in a local sense, solving an ODE whose RHS is the partial derivative of the respective

parameter. However, this approach would be very expensive when we want the sensitivity of a scalar output with respect to

all the parameters. This is often the case when doing data assimilation. The adjoint method can efficiently solve thie problem.

Imagine there is some scalar function g(y) and we would like to compute its sensitivity against some parameters p. Introducing

the adjoint vector λ(t) with the shape of g(y)’s gradient, the adjoint method could compute this in two steps (Damian et al.,105

2002):

1. Solve the ODE (6) in a backward order

2. Numerically integrate formula (7)

dλ

dt
=−∂f(y;p)

∂y
λ,λ(tF) =

∂g

∂y
(tF) (6)

∂g

∂p
=

ˆ tF

t0

∂f(y;p)

∂p
λ(t)dt (7)110

JlBox implements the adjoint sensitivity algorithm with the help of an auto-generated Jacobian matrix ∂f(y;p)/∂y. Users

only need to supply the gradient function of the scalar function with respect to ODE states ∂g/∂y as well as the Jacobian

4

function ∂f(y;p)/∂p of RHS function with respect to parameters so as to get the sensitivity of the scalar function with respect

to parameters ∂g/∂p at time tF . Both are provided automatically through the automatic differentiation provided by Julia.

3 Implementation115

JlBox written in pure Julia and is presently only dependent on the UManSysProp Python package for parsing chemical struc-

tures into objects for use with fundamental property calculations during a pre-processing stage. The pre-processing stage also

includes extracting the rate function, stoichiometry matrix and other parameters from a file that defines the chemical mechanism

using the common KPP format, followed by a solution to the self-generated ODEs using implicit ODE solvers. Specifically,

the model consists of 6 parts:120

1. Run a chemical mechanism parser

2. Perform rate expression formulation and optimization

3. Perform RHS function formulation

4. Create a Jacobian of RHS function

5. Preparation and calculation for partitioning process125

6. Adjoint sensitivity analysis where required.

Figure 3 highlights the workflow of an implementation of JlBox, used as either a forward or adjoint model. As detailed in the

section on Code Availability, JlBox was designed with both performance and ease of use in mind, where users can download,

install and test it as a package from the Julia package manager in the command-line interface. To use the model, one has to con-

struct a configuration object containing all the parameters and initial conditions that the model requires and then supply it to Jl-130

Box’s run_simulation_* function. The results are provided as an solution object from DifferentialEquation.jl

providing a state vector at any time through interpolation (≥ 2 order), along with the respective name vector. Examples can be

found in the example/ subfolder in the project repository which we refer to in section B.

3.1 Mechanism parsing and property predictions

Listing 1. Example of the MCM Mechanism file
{1.} O = O3 : 5.6D-34*N2*(TEMP/300)**-2.6*O2+6.0D-34*O2*(TEMP/300)**-2.6*O2 ;135

{2.} O + O3 = : 8.0D-12*EXP(-2060/TEMP) ;

{3.} O + NO = NO2 : KMT01 ;

{4.} O + NO2 = NO : 5.5D-12*EXP(188/TEMP) ;

{5.} O + NO2 = NO3 : KMT02 ;

{6.} O1D = O : 3.2D-11*EXP(67/TEMP)*O2+2.0D-11*EXP(130/TEMP)*N2 ;140

{7.} NO + O3 = NO2 : 1.4D-12*EXP(-1310/TEMP) ;

{8.} NO2 + O3 = NO3 : 1.4D-13*EXP(-2470/TEMP) ;

{9.} NO + NO = NO2 + NO2 : 3.3D-39*EXP(530/TEMP)*O2 ;

{10.} NO + NO3 = NO2 + NO2 : 1.8D-11*EXP(110/TEMP) ;

5

Like PyBox, JlBox builds the required equations to be solved by reading a chemical mechanism file. In the examples145

provided here, we use mechanisms extracted from the Master Chemical Mechanism [MCM] to build the intended model for

simulation. A preview of a mechanism file is given in listing 1. There are two sections in each line of the mechanism file

separated by the : symbol: the first represents a single gas-phase chemical reaction where reactants before the =" symbol will

react with each other with a fixed ratio and produce the products after the = symbol. For example, a A + b B = c C +

d D represents a units of A and b units of B will react and produce c units of C and d units of D.150

Upon reading each set of equations, JlBox will assign unique numbers for reactants and products if encountered for the first

time; then it will fill in the stoichiometry matrix Sij with stoichiometry coefficients where i is the number of the equation

(depicted at the beginning of each line) and j is the number of the reactants/products. The stoichiometry matrix is firstly built

as a list of triplet (i, j,Sij) for fast insertion of elements and then it is transformed into the compressed sparse column (CSC)

format which is more memory efficient for calculating the RHS of gas-kinetics.155

The latter part of a line of the chemical mechanism file, after the symbol :, represents the expression of reaction rate coef-

ficient kj(y;p). The expression consists of prescribed combinations of basic arithmetic operators + - * / **, basic math

functions, photolysis coefficients J(1)... J(61), ambient parameter and intermediate variables which have explicit ex-

pressions determined by the chemical mechanism. The drawback of this approach is that pre-processing is separated from

simulation, and automatic code generation could, in theory, introduce errors that are hard to debug. However, such a drawback160

is avoided in JlBox with the help of Julia’s meta-programming which assembles the function for calculating reaction rate coef-

ficients ’on the fly’. Since the abstract representation of the function is in the tree format, JlBox also does constant folding opti-

mization to the function where expressions are replaced by their evaluated values if all of the values inside the expressions are

found to be constants. For example, the expression 1.2*EXP(1000/TEMP) will be replaced by 34.340931863060504

given a constant temperature at 298.15K. To further reduce computation, when a reaction rate coefficient is constant, the related165

expression is deleted from the function which is called at every time step to update the coefficients and the respective initial

value of the coefficient is set to be the constant.

The gas-aerosol partitioning process requires additional pre-processing of several parameters of each compound required

by the growth equation. These are listed in equations 2 to 4. Python packages UManSysProp (Topping et al., 2018) and

OpenBabel (O’Boyle et al., 2011) are called during the pre-processing stage to calculate thermodynamic properties required170

by those parameters.

3.2 Gas kinetics and gas-aerosol partitioning process

When solving the ODE, the RHS function of the gas phase kinetics firstly updates the non-constant rate coefficients kj(y;p),

then constructs the reaction rate rj from concentrations of compounds [Ci], their stoichiometry matrix (Sij), and rate coeffi-

cients kj .175

rj = kj
∏

∀i,Sij>0

[Ci]
Sij (8)

6

Following this, the model calculates the rate of change (loss/gain) of reactants and products in each equation and sums the

loss/gain of the same species across different equations using:

d

dt
[Ci] =−

∑
j

rjSij (9)

There are two ways to implement this. The first projects the structure to program instructions executed by the RHS function.180

The second stores it as data and the RHS function loops through the data to calculate the result.

The first method is intended to statically figure out the symbolic expressions of the loss and gain for each species as combina-

tions of rate coefficients and gas concentrations, and generate the RHS function line by line from the relevant expressions. This

method is straightforward and fast, especially for small cases. However, it consumes lots of memory and time for compiling

when the mechanism file is large (i.e., > 1000 equations).185

The other approach is to use spare matrix manipulation because of the sparse structure of the stoichiometry matrix in

atmospheric chemical mechanisms. Considering equation numbers as columns, compounds numbers as rows, and signed stoi-

chiometry (positive for products and negative for reactants) as values, most columns of the stoichiometry matrix have limited

(usually ≤ 4) nonzero values because most equations have limited number of reactants and products. Therefore, the accumu-

lated rate of change of each compound can be expressed as a sparse matrix-vector product of the stoichiometry matrix and the190

rates of equations vector while the rates of equations vector can be calculated by loops with cached indices. This method has

comparable speed as the previous one and consumes much less memory when compiling and running.

The gas-aerosol partitioning component of JlBox simulates the condensational growth of aerosols in discrete size bins where

each particle has the same size. Please note that as we use a fully moving distribution in v1.0, when we further refer to a size

bin we retain a discrete representation with no defined limits per bin.195

4

3
πnkρkR

3
k =mk

mk =mcore,k +
∑
i

mi,k

mi,k =
mw.i[Ci,k]

NA

ρk =

(∑
i

mi,k

mkρi
+
mcore,k

mkρcore

)−1
(10)

JlBox computes the rate of loss/gain for gas phase and condensed phase substances through all size bins. Firstly, for each

size bin k, the corresponding concentrations of each compound in the condensed phase {[Ci,k]|∀i} are summed. Then the

model calculates all the values required by the RHS of (2). As we adopted the moving bin scheme in v1.0, it keeps track of the

bin sizes Rk as they grow during the process following formulas (10) where for each size bin k, mk denotes mass of all the200

particles, mi,k denotes condensed mass of compound i, mcore,k denotes the mass of inorganic core of the particles, and ρcore

7

denotes the density of inorganic core. Finally, the rate of change of a given specie d[Ci,k]/dt is summed across all bins to give

the corresponding loss/gain of gas phase concentrations according to conservation law.

d

dt
[Ci] =−

∑
j

rjSij −
∑
k

d

dt
[Ci,k] (11)

The combination of the gas phase (9) and condensed phase (11) rate of change expressions provides the overall RHS function205

(5) of a multi-phase.

Please note we explicitly simulate the partitioning of water between the gaseous and condensed phase following every other

condensate. We appreciate this may significantly reduce the run-time of the box-model. However, in this instance we wish to

retain the explicit nature of the partitioning process before applying any simplifications as we briefly discuss in section 5.2

3.3 Numerical methods and automatic differentiation210

JlBox uses the DifferentialEquations.jl library to solve the ODE, assembling the RHS function in a canonical way:

function dydt!(dydt::Array{<:Real,1}, y::Array{<:Real,1}, p::Dict , t::Real). There is a

variety of solvers (>100) available in the DifferentialEquations.jl package, from which we generally choose semi-

implicit/implicit solvers including Rosenbrock, SDIRK and BDF types of solvers as our problem is numerically stiff. Most of

the available solvers are adaptive meaning that they would choose every time step in an adaptive sense to achieve some absolute215

and relative errors given by the user. Higher error tolerance allows larger time steps, resulting in faster simulation time and vice

versa. The error tolerance could also influence the convergence of fully implicit ODE solvers due to the non-linear nature of the

ODE, so it may fail to converge if the tolerance is too high. Note that native Julia ODE solvers in the OrdinaryDiffEq.jl

sub-package make use of the parallel (dense) linear solver while the CVODE_BDF solver in Sundials.jl sub-package

does not. This could mean that the native TRBDF2 solver could be faster than CVODE_BDF on multiprocessor machines,220

although they adopt similar algorithms. This would need to be profiled across a range of examples.

Since all the states in the ODE (1, 2) represent the atmospheric abundance of compounds in each phase, it is important to

preserve the non-negativeness of those states. This can be ensured by rejecting any states with negative figures and shrinking

the time step. Users can specify whether to enable it in the configure object and it is only available in native Julia solvers in the

OrdinarDiffEq.jl subpackage.225

The Jacobian matrix of the RHS ∂f(y;p)/∂y is needed in implicit ODE solvers as well as in adjoint sensitivity analysis.

The accuracy of the Jacobian matrix, however, has variable requirements in each case. For implicit ODE solvers, when doing

forward simulations, the accuracy of the matrix only affects the rate of convergence instead of the accuracy of the result. Some

methods like BDF and Rosenbrock-W, by-design, could tolerate inaccurate Jacobian matrices (Wanner and Hairer, 1996, p114).

Meanwhile, for adjoint sensitivity analysis, accurate Jacobian matrices are needed as they explicitly appear in the RHS function230

(6).

JlBox implements an analytical Jacobian function for both gas kinetics and partitioning process as well as those generated

using finite differentiation and automatic differentiation. Theoretically, an analytical Jacobian is the most accurate and efficient

8

approach, but can be laborious to implement due to the nature of the equations involved and therefore error-prone due to manual

imputation. The finite difference approximation can have low numerical accuracy and high performance costs due to multiple235

evaluations of the RHS function, although it is the simplest to implement and is applicable to most functions. Automatic

differentiation shares the advantages of both methods mentioned previously; it has the convenience of automatically generating

a Jacobian matrix from the Julia based model, much like the finite difference method, whilst retaining the accuracy of the

analytical solution. Based on the fact that all programs are combination of primitive instructions, an auto-differentiation library

could generate the derivative of a program according to the chain rule and predefined derivatives of primitive instructions.240

The only limitation is that the RHS function must be fully written in the Julia language and this dictates any additional work

that might be required. JlBox uses the ForwardDiff.jl library to perform auto-differentiation. The library introduces the

dual-number trick with the help of Julia’s multiple dispatch mechanism.

To improve performance and reduce memory consumption, JlBox has special treatments for computing the Jacobian of

mixed phase RHS. Firstly, the gas kinetic part ∂fi/∂yj |1≤i,j≤n is produced analytically because it is sparse and has simple245

analytical form, while auto-differentiation tools will waste lots of memory and time as they treat it as a dense martix. Secondly,

according to (11), one part of the Jacobian could be expressed as the sum of another part:

∂fi
∂yj
|1≤i≤n,n+1≤j≤n+nm|=

∂

∂yj

− ∑
ni+1≤k≤(n+1)i

d

dt
yk

=−
∑

ni+1≤k≤(n+1)i

∂fk
∂yj

(12)

which could also reduce computation. We only have to compute the Jacobian of (2) using methods mentioned previously.

For comparison of performance and accuracy, JlBox implements two auto-differentiated Jacobians for aerosol processes called250

"coarse_seeding" and "fine_seeding" with and without the optimizations mentioned above. According to benchmark results

presented in Appendix table B1, it was found those optimizations could significantly reduce memory usage without effecting

the performance.

3.4 Sparse linear solvers and pre-conditioners

As the size of the Jacobian matrices grow quickly (O(n2)) following the growth of number of states n, it becomes increasingly255

slow when simulating a multi-phase model on the full MCM mechanism which has 47544 states when using 16 size bins. The

majority of time is spent in solving the dense linear equation Mx= b where M = I − γJ , J is the Jacobian matrix, γ is a

scalar set by ODE solver, x and b are some vectors.

Following the Kinetic PreProcessor (KPP) and AtChem model approach (Sommariva et al., 2020; Damian et al., 2002), as the

Jacobian is quite sparse JlBox introduces the option to use sparse linear solvers provided by DifferentialEquations.jl.260

Specifically JlBox is optimized for the iterative sparse linear solver GMRES in CVODE_BDF by providing pre-conditioners

which could drastically reduce the number of iterations of iterative sparse linear solvers like GMRES. Theoretically, a pre-

conditioner P is a rough approximation of the matrix M so that P−1M has less condition number than M . It is ’rough’ in a

way that the pre-condition process of solving P−1x= b is easier. In practice, the pre-conditioner P is stored in LU factored

9

form so that solving P−1x= b is a simple back substitution that sometimes needs to be updated to retain proximity with the265

changing Jacobian.

In JlBox, the functions for solving P−1x= b and updating P are specified by ‘prec‘ and ‘psetup‘ arguments inside the

CVODE_BDF solver. JlBox provides default prec and psetup as a tri-diagonal pre-conditioner following the approach

used in AtChem (Sommariva et al., 2020). In psetup, a full Jacobian is calculated in sparse format followed by taking its

tridiagonal values forming the approximated tridiagonal M . A LU factorization is then calculated using the Thomas algorithm270

and stored in cache so that prec can solve the linear equation quickly.

3.5 Adjoint sensitivity analysis

In this section we demonstrate the ability to build and deploy an adjoint model. Using it to quantify sensitivity typically relies

on experimental data and processes that will be incorporated in future versions. Nonetheless, the example given in section 4.2

demonstrates the ability to evaluate the sensitivity of predicted secondary organic aerosol to all gas phase kinetic coefficients.275

An adjoint sensitivity analysis computes the derivatives of a scalar function g(y) of the ODE states with respect to some

parameters p of the RHS function f(y;p). The actual computation reformulates solving the ODE (6) in a backward order and

numerically integrating formula (7). It is worth noting that the equation is in the linear form, so using an implicit method that

linearizes the RHS function like the Rosenbrock method may give a good result. The Rosenbrock method explicitly includes

the Jacobian function as an estimation of the RHS function. In this case, such estimation is an exact representation which280

enables longer time-steps. The backward differentiation formula (BDF) may also benefit from this for the same reason, with

the number of Newton steps reduced to one or two. As the Jacobian matrix is frequently called, a fast and accurate Jacobian

function is needed. With this in mind, the special treatment of AD mentioned in section 3.3 delivered a 10x improvement

in performance compared with the one that simply wrap the RHS with the AD function. For the second step, we adopt the

adaptive Gauss-Kronrod quadrature to calculate the formula accurately.285

Solving the ODE (6) in a backward manner poses a significant problem as we need to evaluate (an accurate) Jacobian matrix

in a backward order (from tF to t0) which requires accessing the states y(t) at given time-points in backward order. The only

way to achieve that is to store a series of states yi at some checkpoints ti. The stored states alone are sufficient for using ODE

solvers with fixed time step, but an adaptive ODE solver is needed for better error control which requires accessing y(t) at an

arbitrary time t. Thus we need to interpolate those states into dense outputs. Since the time derivative of y is easily accessible290

in the form of dy/dt= f(y), we can use Hermite interpolation or higher order interpolation to enhance the accuracy of the

interpolation. JlBox utilises the solution object of DifferentialEquations.jl (which internally implements Hermite

interpolation) to provide y(t) at any given point t0 ≤ t≤ tF .

4 Model Output

The goal of JlBox is to provide a high performance mechanistic atmospheric aerosol box model that also retains the flexibility295

and usability of Python implementations, for example. Not only should it have comparable performance, if not run faster, than

10

other models for a given scenario, but have the capacity for integrating benchmark chemical mechanisms with coupled aerosol

process descriptions. In this section we validate the output of JlBox against PyBox since the model process representations are

identical, whilst also investigating the relative performance as the ’size’ of the problem scales.

4.1 Verification against existing box-models300

To test the numerical correctness of JlBox, we ran our model together with existing box-model including PyBox and KPP with

identical scenarios. JlBox is designed as a more efficient version of PyBox, so it is expected to have identical results in both gas

and mixed phase scenarios. Meanwhile, gas phase models constructed from the widely used KPP software could provide some

guarantee that the results from JlBox is useful. However, aerosol processes are not available in KPP, as a result we could only

compare outputs of gas kinetics. We prepared two test scenarios with gas phase simulation only and multi-phase simulation.305

The settings of the simulations are listed in Table 1. Additionally, in the multi phase simulation, we set the initial aerosol to

be an ideal representation of ammonium sulphate solution satisfying a lognormal size distribution with an average geometric

mean diameter of 0.2 microns and a standard deviation of 2.2 , discretized into 16 bins. The bins are linearly separated in

log-space where a fixed volume ratio between bins defines the centre of the bin and bin width. The upper and lower size range

and required number of bins define the centre (radius) of each bin accordingly. The saturation vapour pressure threshold of310

whether to include the gas-to-particle partitioning of a specific chemical is chosen to be 10−6 atm based on an extremely low

absorptive partitioning coefficient for a wide range of pre-existing mass loadings. For all simulations presented in this paper

we use the vapour pressure technique of Joback and Reid (1987). Whilst known to systematically under predict saturation

vapour pressures for species of atmospheric interest (Bilde et al., 2015), we use it for illustrative purposes here and any of the

methods included within UManSysProp can be called within JlBox. For gas phase only simulations, we use alpha-pinene as315

an indicative VOC degradation scheme. The simulations to compare JlBox with PyBox and KPP are performed on a PC with

a CPU of 8-core AMD Ryzen 1700X at 3.6GHz and 16 Gb RAM.

Figure 4 clearly shows that JlBox and PyBox produced identical results, as designed. Although very close, there is around

1% deviation between the KPP generated model and the other two models. Possible explanation includes differences between

ODE solvers as JlBox & PyBox used CVODE while KPP used LSODEs. For mixed phase simulations, JlBox and PyBox again320

generate identical values for secondary organic aerosol mass, as expected.

4.2 Evaluation of adjoint sensitivity analysis

A demonstration of an adjoint sensitivity analysis is conducted to calculate the partial derivative of secondary oraganic aerosol

mass (SOA) at the end of simulation with respect to the rate coefficients of each equation in the mechanism. The configurations

of the simulation is the same as the mixed phase alpha-pinene scenario (Table 1) presented in the previous section.325

The results presented in Table 2 highlighted the top 10 (in terms of absolute magnitude) estimated deviations of SOA

mass dSOA under a 1% change of rate coefficients because the derivate itself (dSOA/dratecoeff) is not comparable due

to different units involved. The reactions between alpha-pinene and ozone have the most substantial effect. The order of

the equations simply highlights the flow of alpha-pinene to its subsequent products. This might attribute to the fact that the

11

system hasn’t reached the equilibrium state (also illustrated in the growth of SOA mass in Figure 4). Another interesting330

point is that competing reactions have similar sensitivities but opposite signs like reactions of APINOOB, APINOOA, and

APINENE+OH. The competing reactions between alpha-pinene and ozone is an outlier with a ratio of 5 between the two. A

plausible explanation is that for those reactions with opposite sensitivities, the products of one leads to little or no SOA while

the other contributes more, so when the former reaction is accelerated due to its perturbed rate coefficient, it reduces the ability

of the latter reaction to produce SOA. As a result, the two reactions have opposite sensitivities. For the reactions of APINENE335

and O3, it is possible that the APINOOA and APINOOB pathways both produce SOA, and the first produces more than the

second one. When the rate coefficient of the second reaction is increased, the decrease of SOA due to less APINOOA does not

offset the increase of SOA due to more APINOOB, which leads to a smaller but still positive sensitivity of SOA. As we state

earlier, a deeper analysis with alternative options for saturation vapour pressures and process inclusion may reveal important

dependencies.340

4.3 Performance on large scale problems

In this section we demonstrate the performance of JlBox on ’large scale’ problems where both KPP and Pybox fail to solve

due to constraints imposed by the model workflow and language dependencies as shown in Appendix B. We define ’large

scale’ problems as those beyond single VOCs or gas phase only simulations. Equipped with a sparse linear solver and auto-

generated tridiagonal preconditioner, JlBox is ideal for simulating larger mechanisms than we present above. With this in345

mind, the largest possible mechanism accessible from the MCM suite is selected, which contains 16701 chemical equations,

5832 species. Moreover, we performed 72-hour mixed phase simulations with 16 moving bins. This means that JlBox has to

solve a system of stiff ODEs of 47544 variables that requires solving matrices of 47544× 47544 at each time step. The initial

conditions are taken from an existing representative chamber study on mixed VOC systems (Couvidat et al., 2018, Table 1

& 2) (see Appendix A) with 16 experiments in two sets. We use average values of temperature where ranges are provided.350

In addition, instead of using the relative humidity selected in those studies, we performed perturbed simulations with low

RH scenario of 10% and high RH scenario of 80% respectively to investigate possible dependence on stiffness according to

variable partitioning from the gas to the condensed phase. All the simulations were executed on the ETH Zurich Euler cluster,

requesting 4 cores and 7GB memory each to exploit parallelism between different initial conditions. This was chosen as a PC

would have to run them in sequential order making it too time consuming.355

The elapsed time taken by JlBox is plotted in Figure 5. The average time is around 7 hours which is approximately 1/10

of simulation time. In addition, the maximum memory consumption is 8216 MB and average consumption is 4273 MB. This

represents a significant reduction when compared to the memory required to store a Jacobian matrix in a dense double precision

format. Note that the Euler cluser provides 3 types of CPU nodes equipped with Intel XeonE3 1585Lv5, XeonGold 6150 and

AMD EPYC 7742 and the simulation jobs are distributed to all three kinds of node. Although XeonE3 has better single core360

performance compared to the other two, the time variations between different scenarios far exceeds the variations due to the

difference in processors.

12

Figure 6 shows the generation of SOA mass in the 72-hour period. JlBox captures a diurnal change of photolysis rate as

is depicted in experiment A. We remind the reader that we have no despositional loss, or variable emissions, and that we are

using the boiling point method of Joback and Reid (1987) for estimating saturation vapour pressures. We also present a time365

series plot (Figure 7) for experiment A1 with high RH scenario. Small size bins went through condensational growths within

this first few hours as expected from the gas-aerosol partitioning process.

5 Discussion

5.1 Comparison with other models

JlBox is developed based on the PyBox model (Topping et al., 2018): they have similar structures, rely on the same methods370

for calculating pure component properties and provide almost identical results. Despite these similarities, we feel JlBox has

made significant improvements over PyBox in terms of readability, functionality, scale-ability, and efficiency from both a

programming and algorithmic sense (Table 3). The Julia programming language makes the most significant contribution to

those improvements in that it promises a high performance environment, close to Fortran, without sacrificing flexibility of

Python. For example, the directly translated partitioning code in JlBox can run at a comparable speed as the individual Fortran375

routines in PyBox, and the multiple dispatching mechanism makes it trivial for implementing the automatic differentiation. As

a result, JlBox elegantly solves the "two-language problem" without compromising anything by writing everything in Julia. It

spares users from editing "code in code" like PyBox that makes it easier to maintain the code base and to extend the model. The

homogeneous code base of JlBox also enables a convenient migration to other devices like GPUs considering there is already

a GPU backend for Julia.380

As for algorithmic advances, the automatic differentiation method for generating Jacobian matrices is not only the most

effective addition but also a fundamental one. It is an accurate and convenient way to calculate the Jacobian matrix which

only requires an RHS function fully written in Julia. With Jacobian matrices available, the number of RHS evaluations is

dramatically reduced since the implicit ODE solver no longer needs to estimate the Jacobian matrix using finite differences.

Also, without automatic differentiation, it will not be so easy to build the adjoint model of a fully coupled process model which385

explicitly requires the Jacobian matrix for the entire model, let alone to extend the model with more processes. Besides, the

adaptation of sparse matrices for gas kinetics reduced the compilation cost to a small constant value enabling the JlBox to

simulate large scale mechanisms such as the entire MCM mechanism, which for PyBox typically remains limited by memory.

Compared to other models like KPP (Damian et al., 2002) and AtChem (Sommariva et al., 2020), JlBox is unique due to its

ability to perform coupled mixed phase simulation efficiently especially on large mechanisms such as the full MCM mechanism390

where the vanilla KPP variant often fails to compile. JlBox is written in pure standard Julia without any string manipulation to

codes as against KPP and AtChem, which enables full IDE support making it more developer friendly.

13

5.2 Future development

There are a number of processes and algorithmic implementations not included in this version of JlBox that would be useful for

further use in a scientific capacity. These include coagulation, hybrid sectional methods and auto-oxidation products schemes395

to name a few (Ehn et al., 2014; Hallquist et al., 2009; Riemer et al., 2009). As we state earlier, the purpose of this development

stage was to create and profile the first Julia implementation of an aerosol box-model for the scientific community that would

demonstrably exploit the exciting potential this emerging language has to offer. In version 1.0 we provide a fully coupled model.

We could, and will, provide options for implementing simplified approaches to aerosol process, such as operator splitting

and assume instantaneous equilibration for water in a range of sub-saturated humid conditions. Indeed, these methods have400

proven to provide robust mechanisms for mitigating computational efficiency barriers if implemented correctly. However our

ethos with JlBox is to build and develop a platform for a benchmark community box-model that exploits the benefits that

aforementioned benefits that Julia provides. This includes the ability to exploit existing and emerging hardware and software

platforms as we try to tackle the growing chemical and process complexity associated with aerosol evolution. We hope that,

with version 1.0, the community can help develop and expand this new framework.405

Quantifying the importance, or not, of process and chemical complexity requires a multifaceted approach. With the prolif-

eration of data science driven approaches across most scientific domains, Reichstein et al. (2019) note that the next generation

of earth system models are likely going to merge machine learning and traditional process driven models to attempt to solve

aforementioned challenges in complexity whilst exploiting the rich and growing data-sets of global observations. Julia is being

used in development of machine learning (ML) frameworks, with libraries such as Flux-ML enabling researchers to embed410

process driven models within the back propagation pipeline (Innes, 2018). This opens up the possibility to develop observa-

tion driven parameterisations in hybrid mechanistic-ML frameworks, which helps with the issue around provenance in ML

parameterisation developments.

JlBox will continually grow and we encourage uptake and further developments.

Appendix A: Initial condition of section 4.3415

Appendix B: Performance benchmarking

In table B1, we measured the elapsed time and total allocated memory of simulations using varying ODE solvers and tech-

niques of computing the Jacobian matrix mentioned in section 3.3. We chose two ODE solvers: CVODE_BDF and TRBDF2.420

CVODE_BDF is part of the Sundials suite developed by Lawrence Livermore National Laboratory. It is a widely used

high performance ODE solver suitable for large scale stiff ODE problems. TRBDF2 is a Julia-native library implemented

14

Table A1. Initial condition for anthropogenic VOC experiments from Couvidat et al. (2018). Concentrations in ppb, temperature (T) in

Kelvin and relative humidity in %

Experiment Toluene o-Xylene TMB Octane NO NO2 HONO T RH

A1 102 22 153 85 19 0 99 299–305 10–16

A2 200 49 300 155 23 0 75 302–305 9–18

A3 48 11 106 42 23 0 71 302–307 6–14

A4 98 24 160 79 37 0 156 297–307 6–13

A5 97 21 146 81 4 8 52 297–308 7–14

A6 93 22 146 78 21 0 94 300–308 0.4

A7 107 26 160 89 21 0 89 306–309 7–10

A8 116 29 19 10 57 0 119 302–305 15–18

A9 81 21 118 65 31 0 90 299–303 28–37

Table A2. Initial condition for biogenic VOC experiments from Couvidat et al. (2018). Concentrations in ppb, temperature (T) in Kelvin and

relative humidity in %

Experiment Isoprene α-Pinene Limonene NO NO2 HONO SO2 T RH

B1 107 66 58 34 128 99 0 302–307 0.5–3

B2 92 50 50 48 0 87 0 298–300 30–26

B3 122 71 40 41 0 53 0 297–300 19–22

B4 0 63 65 32 0 101 0 294–298 8–13

B5 99 59 53 150 0 307 0 295–297 8–11

B6 87 50 51 244 89 40 513 295–300 15–19

B7 55 79 76 198 0 165 461 302–305 20–30

in OrdinaryDiffEq.jl. It uses the classical TRBDF2 scheme (Hosea and Shampine, 1996) while benefiting from a high-

performance linear solver provided by the Julia community.

In Table B2 the elapsed time of Pybox, JlBox and KPP are measured, with initial conditions and parameters in section425

4.1 and 4.2. We fine tuned JlBox on its ODE solver options to achieve the best performance. For the APINENE mechanism,

CVODE with dense Jacobian was found to be the fastest on the gas phase only simulation, CVODE with sparse Jacobian was

fastest for the multi-phase simulation, while the Julia-native TRBDF2 solver runs better on the adjoint sensitivity analysis. For

the full MCM mechanism, due to memory restrictions, the only practical option is to use the CVODE ODE solver with the

FGMRES sparse linear solver.430

As shown in Figure 7, we conducted simulations with varying size bins and mechanism complexity to further illustrate

the scaling property of JlBox compared with PyBox. We built simulations around two additional mechanisms that represent

15

Table B1. Elapsed time and total allocated memory of the multi-phase APINENE simulation in section 4.1 with different ODE solvers and

Jacobian matrix evaluation techniques

Elapsed time (seconds)/total allocated memory

Jacobian type TRBDF2 CVODE

fine seeding 38.8/2.82GB 340/1.30GB

coarse seeding 40.3/8.62GB 350/14.8GB

fine analytical 35.8/2.66GB 390/1.43GB

coarse analytical 40.5/2.58GB 357/721MB

finite difference 48.4/13.1GB 393/25.5GB

Beta-Caryophyllene and Limonene [referred to using identifiers BCARY and LIMONENE respectively], which are subsets of

the full MCM mechanism. The configurations of simulations are set to be identical as those provided in Table 1. The results

in Table B2 and Figure 7 shows that the sparse multi-phase JlBox [referred to as ’JlBox sparse’] performs much better than435

PyBox, especially for large simulations, because the performance reliance on using a sparse Jacobian scales roughly linearly

with the number of size bins.The same is not true when using a dense Jacobian within JlBox [referred to as ’JlBox dense’].

For gas phase only simulations, interestingly the simulation overhead of JlBox is larger than PyBox for simulations of a single

VOC, but outperforms PyBox when simulating the entire MCM. Indeed, in this scenario, PyBox ran out of memory in our

simulations.440

Table B2. Performance comparison of Pybox, JlBox and KPP based on elapsed time of forward and adjoint simulation in section 4.1 and 4.2

and simulation of full MCM with the same initial condition

Elapsed time (seconds)

Mechanism, simulation type Pybox JlBox JlBox adjoint KPP

APINENE, gas only 0.3 4.5 N/A 0.5

APINENE, mixed phase 230 37 45 N/A

full MCM, gas only out of memory 60 N/A fail to compile

full MCM, mixed phase out of memory 1199 >10000 N/A

Code availability. The exact code for JlBox v1.0 used in this paper can be found on Zenodo at:https://doi.org/10.5281/zenodo.4519192.

The generated KPP Alpha Pinene model can be found at: https://doi.org/10.5281/zenodo.4075632. The JlBox project GitHub page can

be found at: https://github.com/huanglangwen/JlBox. We also provide scripts for building Docker containers to build and run the exact

versions of PyBox [v1.0.1], KPP [v2.1] and JlBox [v1.0] to reproduce results provided in this paper. This includes the use of UmanSysProp

[v1.01] and OpenBabel [v2.4.1]. Those scripts can be found at: https://github.com/huanglangwen/reproduce_model, with instructions on445

16

https://doi.org/10.5281/zenodo.4519192
https://doi.org/10.5281/zenodo.4075632
https://github.com/huanglangwen/JlBox
https://github.com/huanglangwen/reproduce_model

FULL LIMONENE

APINENE BCARY

Gas 4 8 16 Gas 4 8 16

1

10

100

1000

10000 (cut off)

1

10

100

1000

10000 (cut off)

Number of size bins

El
ap

se
d

ti
m

e
(s

ec
on

d)

Model type
JlBox dense

JlBox sparse

PyBox

Figure B1. Performance comparison between JlBox and PyBox with different number of size bins and mechanisms

how replicate the simulations conducted in this paper. The full specification of dependencies of JlBox used in this paper can be found

in jlbox\manifest_details.txt in that respository. An archived copy of the same repository and information can be found on Zenodo at:

https://doi.org/10.5281/zenodo.4543713. JlBox is open source model, licensed under a GPL v3.0. It is compatible with Julia ≥ 1.5, Sundials.jl

≥ 4.2.5 and OrdinaryDiffEq.jl ≥ 5.36.0. As noted on the project GitHub page, JlBox can also be installed through the Julia package manager

which deals with all required dependencies. The PyBox project page can be found at: https://github.com/loftytopping/PyBox. PyBox is an450

open source model, licensed under GPL v3.0. The KPP project page can be found at: http://people.cs.vt.edu/asandu/Software/Kpp/. KPP is

an open source project, licensed under GPL v2.0. The UmanSysProp project page can be found at:

https://github.com/loftytopping/UmanSysProp_public. UManSysProp is an open source project, licensed under GPL v3.0.

Author contributions. JlBox was written, and evaluated, by Langwen Huang. David Topping provided the PyBox model and helped under-

stand the effective design and sustainability of JlBox.455

Acknowledgements. This work was supported by the EPSRC UKCRIC Manchester Urban Observatory (University of Manchester) (grant

number: EP/P016782/1). The authors would like to acknowledge the assistance given by Research IT at the University of Manchester. The

authors would also like to acknowledge the ETH Zurich Euler cluster for supporting large scale simulations.

17

https://doi.org/10.5281/zenodo.4543713
https://github.com/loftytopping/PyBox
http://people.cs.vt.edu/asandu/Software/Kpp/
https://github.com/loftytopping/UmanSysProp_public

References

Amundson, N. R., Caboussat, A., He, J. W., Martynenko, A. V., Savarin, V. B., Seinfeld, J. H., and Yoo, K. Y.: A new inorganic atmospheric460

aerosol phase equilibrium model (UHAERO), Atmospheric Chemistry and Physics, 6, 975–992, https://doi.org/10.5194/acp-6-975-2006,

2006.

Bilde, M., Barsanti, K., Booth, M., Cappa, C. D., Donahue, N. M., Emanuelsson, E. U., McFiggans, G., Krieger, U. K., Marcolli, C., Topping,

D., Ziemann, P., Barley, M., Clegg, S., Dennis-Smither, B., Hallquist, M., Hallquist, Å. M., Khlystov, A., Kulmala, M., Mogensen, D.,

Percival, C. J., Pope, F., Reid, J. P., Ribeiro Da Silva, M. A., Rosenoern, T., Salo, K., Soonsin, V. P., Yli-Juuti, T., Prisle, N. L., Pagels, J.,465

Rarey, J., Zardini, A. A., and Riipinen, I.: Saturation Vapor Pressures and Transition Enthalpies of Low-Volatility Organic Molecules of

Atmospheric Relevance: From Dicarboxylic Acids to Complex Mixtures, https://doi.org/10.1021/cr5005502, 2015.

Couvidat, F., Vivanco, M. G., and Bessagnet, B.: Simulating secondary organic aerosol from anthropogenic and biogenic precursors: compar-

ison to outdoor chamber experiments, effect of oligomerization on SOA formation and reactive uptake of aldehydes, Atmospheric Chem-

istry and Physics, 18, 15 743–15 766, https://doi.org/10.5194/acp-18-15743-2018, https://acp.copernicus.org/articles/18/15743/2018/,470

2018.

Damian, V., Sandu, A., Damian, M., Potra, F., and Carmichael, G. R.: The kinetic preprocessor KPP - A software environment for solving

chemical kinetics, Computers and Chemical Engineering, 26, 1567–1579, https://doi.org/10.1016/S0098-1354(02)00128-X, 2002.

Ehn, M., Thornton, J. A., Kleist, E., Sipilä, M., Junninen, H., Pullinen, I., Springer, M., Rubach, F., Tillmann, R., Lee, B., Lopez-Hilfiker, F.,

Andres, S., Acir, I. H., Rissanen, M., Jokinen, T., Schobesberger, S., Kangasluoma, J., Kontkanen, J., Nieminen, T., Kurtén, T., Nielsen,475

L. B., Jørgensen, S., Kjaergaard, H. G., Canagaratna, M., Maso, M. D., Berndt, T., Petäjä, T., Wahner, A., Kerminen, V. M., Kulmala,

M., Worsnop, D. R., Wildt, J., and Mentel, T. F.: A large source of low-volatility secondary organic aerosol, Nature, 506, 476–479,

https://doi.org/10.1038/nature13032, 2014.

Hallquist, M., Wenger, J. C., Baltensperger, U., Rudich, Y., Simpson, D., Claeys, M., Dommen, J., Donahue, N. M., George, C., Goldstein,

A. H., Hamilton, J. F., Herrmann, H., Hoffmann, T., Iinuma, Y., Jang, M., Jenkin, M. E., Jimenez, J. L., Kiendler-Scharr, A., Maenhaut,480

W., McFiggans, G., Mentel, T. F., Monod, A., Prévôt, A. S., Seinfeld, J. H., Surratt, J. D., Szmigielski, R., and Wildt, J.: The formation,

properties and impact of secondary organic aerosol: Current and emerging issues, Atmospheric Chemistry and Physics, 9, 5155–5236,

https://doi.org/10.5194/acp-9-5155-2009, 2009.

Hosea, M. and Shampine, L.: Analysis and implementation of TR-BDF2, Applied Numerical Mathematics, 20, 21 – 37,

https://doi.org/https://doi.org/10.1016/0168-9274(95)00115-8, in: Method of Lines for Time-Dependent Problems, 1996.485

Innes, M.: Flux: Elegant machine learning with Julia, Journal of Open Source Software, 3, 602, https://doi.org/10.21105/joss.00602, 2018.

Jacobson, M. Z.: Fundamentals of atmospheric modeling second edition, Cambridge University Press, second edn.,

https://doi.org/10.1017/CBO9781139165389, 2005.

Jenkin, M. E., Saunders, S. M., and Pilling, M. J.: The tropospheric degradation of volatile organic compounds: A protocol for mechanism

development, Atmospheric Environment, 31, 81–104, https://doi.org/10.1016/S1352-2310(96)00105-7, 1997.490

Jenkin, M. E., Saunders, S. M., Derwent, R. G., and Pilling, M. J.: Development of a reduced speciated VOC degradation mechanism for use

in ozone models, Atmospheric Environment, 36, 4725–4734, https://doi.org/10.1016/S1352-2310(02)00563-0, 2002.

Joback, K. G. and Reid, R. C.: Estimation of Pure-Component Properties from Group-Contributions, Chemical Engineering Communications,

57, 233–243, https://doi.org/10.1080/00986448708960487, 1987.

18

https://doi.org/10.5194/acp-6-975-2006
https://doi.org/10.1021/cr5005502
https://doi.org/10.5194/acp-18-15743-2018
https://acp.copernicus.org/articles/18/15743/2018/
https://doi.org/10.1016/S0098-1354(02)00128-X
https://doi.org/10.1038/nature13032
https://doi.org/10.5194/acp-9-5155-2009
https://doi.org/https://doi.org/10.1016/0168-9274(95)00115-8
https://doi.org/10.21105/joss.00602
https://doi.org/10.1017/CBO9781139165389
https://doi.org/10.1016/S1352-2310(96)00105-7
https://doi.org/10.1016/S1352-2310(02)00563-0
https://doi.org/10.1080/00986448708960487

Kokkola, H., Kühn, T., Laakso, A., Bergman, T., Lehtinen, K. E., Mielonen, T., Arola, A., Stadtler, S., Korhonen, H., Ferrachat, S., Lohmann,495

U., Neubauer, D., Tegen, I., Siegenthaler-Le Drian, C., Schultz, M. G., Bey, I., Stier, P., Daskalakis, N., Heald, C. L., and Romakkaniemi,

S.: SALSA2.0: The sectional aerosol module of the aerosol-chemistry-climate model ECHAM6.3.0-HAM2.3-MOZ1.0, Geoscientific

Model Development, 11, 3833–3863, https://doi.org/10.5194/gmd-11-3833-2018, 2018.

Korhonen, H., Lehtinen, K. E. J., and Kulmala, M.: Multicomponent aerosol dynamics model UHMA: model development and validation,

Atmospheric Chemistry and Physics, 4, 757–771, https://doi.org/10.5194/acp-4-757-2004, 2004.500

O’Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., and Hutchison, G. R.: Open Babel: An Open chemical toolbox,

Journal of Cheminformatics, 3, 33, https://doi.org/10.1186/1758-2946-3-33, 2011.

Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., Carvalhais, N., and Prabhat: Deep learning and process understanding

for data-driven Earth system science, Nature, 566, 195–204, https://doi.org/10.1038/s41586-019-0912-1, 2019.

Riemer, N. and Ault, A.: The Diversity and Complexity of Atmospheric Aerosol, Eos, 100, https://doi.org/10.1029/2019eo124333, 2019.505

Riemer, N., West, M., Zaveri, R. A., and Easter, R. C.: Simulating the evolution of soot mixing state with a particle-resolved aerosol model,

Journal of Geophysical Research Atmospheres, 114, https://doi.org/10.1029/2008JD011073, 2009.

Roldin, P., Eriksson, A. C., Nordin, E. Z., Hermansson, E., Mogensen, D., Rusanen, A., Boy, M., Swietlicki, E., Svenningsson, B.,

Zelenyuk, A., and Pagels, J.: Modelling non-equilibrium secondary organic aerosol formation and evaporation with the aerosol dy-

namics, gas- and particle-phase chemistry kinetic multilayer model ADCHAM, Atmospheric Chemistry and Physics, 14, 7953–7993,510

https://doi.org/10.5194/acp-14-7953-2014, 2014.

Sherwen, T., Chance, R. J., Tinel, L., Ellis, D., Evans, M. J., and Carpenter, L. J.: A machine-learning-based global sea-surface iodide

distribution, Earth System Science Data, 11, 1239–1262, https://doi.org/10.5194/essd-11-1239-2019, 2019.

Sommariva, R., Cox, S., Martin, C., Borońska, K., Young, J., Jimack, P. K., Pilling, M. J., Matthaios, V. N., Nelson, B. S., Newland, M. J.,

Panagi, M., Bloss, W. J., Monks, P. S., and Rickard, A. R.: AtChem (version 1), an open-source box model for the Master Chemical515

Mechanism, Geoscientific Model Development, 13, 169–183, https://doi.org/10.5194/gmd-13-169-2020, 2020.

Topping, D., Connolly, P., and Reid, J.: PyBox: An automated box-model generator for atmospheric chemistry and aerosol simulations.,

Journal of Open Source Software, 3, 755, https://doi.org/10.21105/joss.00755, 2018.

Wanner, G. and Hairer, E.: Solving ordinary differential equations II, Springer Berlin Heidelberg, 1996.

Zaveri, R. A., Easter, R. C., Fast, J. D., and Peters, L. K.: Model for Simulating Aerosol Interactions and Chemistry (MOSAIC), Journal of520

Geophysical Research Atmospheres, 113, https://doi.org/10.1029/2007JD008782, 2008.

Gas
C1, C2, … , Cn

Bin 4
C1,4, C2,4, … , Cn,4

Bin 3
C1,3, C2,3, … , Cn,3

Bin 2
C1,2, C2,2, … , Cn,2

Bin 1
C1,1, C2,1, … , Cn,1

Figure 2. Array layout for ODE states y in Equation 5

19

https://doi.org/10.5194/gmd-11-3833-2018
https://doi.org/10.5194/acp-4-757-2004
https://doi.org/10.1186/1758-2946-3-33
https://doi.org/10.1038/s41586-019-0912-1
https://doi.org/10.1029/2019eo124333
https://doi.org/10.1029/2008JD011073
https://doi.org/10.5194/acp-14-7953-2014
https://doi.org/10.5194/essd-11-1239-2019
https://doi.org/10.5194/gmd-13-169-2020
https://doi.org/10.21105/joss.00755
https://doi.org/10.1029/2007JD008782

FORWARD MODEL

0.01

0.1

1

10

0 1000 2000 3000 4000

S
O

A
 m

as
s

(u
g/

m
3)

Time (s)

JlBox PyBox

JlBox—A fast mixed-phase atmospheric chemistry model with adjoint sensitivity analysis
Langwen Huang 10236233

INTRODUCTION

STRUCTURE

CONCLUSIONADJOINT SENSITIVITY ANALYSIS

Simulation type, Mechanism Simulation Scale

#states #eqns Simulation Period

Gas kinetics, APINENE 305 836 10800s

Gas kinetics, test 1603 4636 10800s

Gas kinetics, mixed_test 5832 16701 10800s

Mixed, APINENE 2801 836 3600s

Adjoint of SOA mass, APINENE 836 N/A 3600s0 200 400 600 800 1000

Gas kinetics, APINENE

Gas kinetics, test

Gas kinetics, mixed_test

Mixed, APINENE

Adjoint of SOA mass, APINENE

Simulation Time (s)JlBox PyBox

dSOA (ug/m3)

APINENE + O3 = APINOOA 0.15737929

APINENE + O3 = APINOOB 0.03226446

APINOOB = C96O2 + OH + CO 0.00626905

APINOOB = APINBOO -0.0062691

APINOOA = C109O2 + OH 0.00585798

APINOOA = C107O2 + OH -0.005858

C107O2 = C107OH 0.00530192

APINENE + OH = APINBO2 0.00515507

APINAO2 = APINBOH 0.00508222

APINENE + OH = APINCO2 -0.0046075

Parsing Mechanism File

RHS (gas kinetics) Evaluating Rate coeffs

Reaction
Structure

Rate coeff
Expressions

Stoichiometry
Matrix

Partitioning
Properties

Partitioning

RHS (mixed-phase) Calculating Jacobian Matrix

Implicit ODE Solver

Result �⃗�(𝑡)

RHS (mixed-phase)

Calculating Jacobian Matrix RHS (adjoint sensitivity analysis)

Implicit ODE Solver

Adjoint

variable 𝜆(𝑡)

𝜕𝑔(�⃗�(𝑡ி))

𝜕�⃗�

Derivates of RHS
w.r.t. parameters �⃗�

Numerical Integrator

sensitivities
డ ௬ ௧ಷ

డ⃗

: Evaluated recurrently during solving the ODE

: Generated by automatic differentiation

: Processes to be evaluated

: Data

Forward Model

Adjoint Model

Accuracy Performance

Top 10 sensitivities of secondary organic
aerosol (SOA) mass under 1% change of
rate coefficients of each gas reactions
using the mixed-phase simulation of the
MCM APINENE mechanism

• A finite-difference test for the first equation gives a
dSOA of 0.086 ug/m3.

• The order of sensitivities follows the order that
alpha-pinene flows into its oxides.

• Competing reactions generally have the same
magnitude of sensitivities but differ in signs.

• The previous observation could be explained by their
different abilities to produce SOA mass.

• The competing reactions between alpha-pinene and
ozone don’t follow such relationship: they both have
positive sensitivities and have a ratio of 5:1.

• A possible explanation is: APINOOA and APINOOB can
both produce SOA, and the first reaction produces
more SOA than the second one. When the rate
coefficient of the second reaction is increased a bit,
the decrease of SOA due to less APINOOA does not
offset the increase of SOA due to more APINOOB,
which leads to a smaller but still positive sensitivity
of SOA.

• We need a fast mixed-phase atmospheric chemistry model to
resolve more complex mechanisms and processes.

• We need adjoint sensitivity analysis for figuring out importance of
parameters and for data assimilations.

• The new JlBox model can satisfy both needs while having almost
identical outputs as existing model PyBox.

• A test run of adjoint sensitivity analysis is performed on
secondary organic aerosol (SOA) mass w.r.t. rate coefficients of
gas phase reactions.

Out of memory error

Not implemented

Relative differences below 1e-3

• Automatic differentiation provides free Jacobian matrices for
performing (local) sensitivity analysis and accelerating implicit
ODE solvers.

• Sparse matrix operations for gas kinetics enables JlBox to
perform simulations on large scale mechanisms.

• JlBox is 100% faster than PyBox in mixed-phase simulations while
producing results with relative differences below 1e-3.

• JlBox has much less memory consumption and much shorter
compiling time for gas kinetics simulations compared to PyBox.

• The running time of the adjoint sensitivity analysis is generally
around the magnitude of forward model’s simulation time.

• The order of SOA mass sensitivities relates to the propagation
order of turning initial compound into its products.

• The opposite-sign relationship between sensitivities of competing
reactions can be explained by their abilities of producing SOA.

Figure 3. Schematic illustrating the structure of JlBoxv1.0, whether in forward or adjoint configuration

0

5

10

15

20

25

30

35

0 2000 4000 6000 8000 10000

α-
P

in
en

e
C

on
ce

n
tr

at
io

n
 (

p
p

b
)

Time (s)

KPP JlBox Pybox

0.01

0.1

1

10

0 500 1000 1500 2000 2500 3000 3500 4000

S
O

A
 m

as
s

(u
g/

m
3)

Time (s)

JlBox Pybox

Figure 4. Comparison of Gas-only (left) and multi-phase (right) simulation

20

0

2

4

6

8

10

12

A1 A2 A3 A4 A5 A6 A7 A8 A9 B1 B2 B3 B4 B5 B6 B7

E
la

p
se

d
 T

im
e

(h
ou

r)

Initial Condition

Low RH High RH

Figure 5. Elapsed time of 72h mixed phase simulations. The initial conditions used for each case are listed in the appendix

A B

0 20 40 60 0 20 40 60

0

500

1000

1500

Time (hour)

S
O

A
 (

ug
/m

3)

Experiment

A.1

A.2

A.3

A.4

A.5

A.6

A.7

A.8

A.9

B.1

B.2

B.3

B.4

B.5

B.6

B.7

Figure 6. Time series plot of SOA mass from the same case studies used in profiling total simulation time. In this study, as noted in the

text, we use a predictive technique that under-predicts the saturation vapour pressure to create the maximum number of viable condensing

products.

21

0.03

0.10

0.30

1.00

3.00

0.1 1.0 10.0 100.0

Time (hour)

A
er

os
ol

 r
ad

iu
s

(m
ic

ro
n)

Figure 7. Time series plot of size bins for experiment A1 with the high RH scenario.

Table 1. Initial conditions and solver configurations

Mechanism Alpha-Pinene subset of MCM

Initial condition 18ppm Ozone, 30ppm Alpha-Pinene

Start time 12:00 (noon)

Temperature 288.15K

Simulation Gas phase only Mixed phase

Relative humidity Ignored 50%

Simulation period 10800s 3600s

#States 305 2801(305+16× 156)

Absolute tolerance 10−3 10−2

Relative tolerance 10−6 10−4

22

Table 2. Sensitivities of SOA mass with respect to gas phase rate coefficients. The units of the last two columns depend on the number of

reactants

Reaction dSOA (µg/m3) dSOA/dratecoeff Rate coeff

APINENE + O3 = APINOOA 0.157379287 3.003× 1017 5.240× 10−17

APINENE + O3 = APINOOB 0.032264464 9.236× 1016 3.493× 10−17

APINOOB = C96O2 + OH + CO 0.006269052 1.254× 10−6 5.000× 105

APINOOB = APINBOO -0.00626905 −1.254× 10−6 5.000× 105

APINOOA = C109O2 + OH 0.005857979 1.302× 10−6 4.500× 105

APINOOA = C107O2 + OH -0.00585798 −1.065× 10−6 5.500× 105

C107O2 = C107OH 0.005301915 −1.257× 102 4.218× 10−3

APINENE + OH = APINBO2 0.005155068 2.643× 1010 1.950× 10−11

APINAO2 = APINBOH 0.005082219 8.207× 102 6.192× 10−4

APINENE + OH = APINCO2 -0.00460746 −1.112× 1011 4.144× 10−12

23

Table 3. Comparison between JlBox and PyBox

PyBox JlBox Advantage of JlBox

Language Python+Numba or For-

tran

Pure Julia Less code, easier to maintain and

extend

Parallelization OpenMP Parallel Linear Solver N/A

Code generation Printing string Meta-programming: generating the ab-

stract syntax tree (AST)

Free syntax check, less human er-

ror, easier to maintain

Gas kinetics Static code generation Sparse matrix manipulation Much less compiling time, much

less memory consumption

Property calculation Python code calling

UManSysprop

Translated Julia code calling UMan-

Sysprop (Python library)

N/A

Partitioning Fortran code Translated Julia code Simpler automatic differentiation

RHS function Python code calling

Fortran/Numba

Julia code Faster, less memory consumption

ODE solver CVODE_BDF CVODE_BDF or native solvers More selections & faster

Sparse Jacobian N/A Support with GMRES linear solver Enable large scale mixed phase

simulation

Jacobian matrix Handwritten Fortran

code for gas kinetics

Handwritten/automatic differentiat-

ed/finite differentiated Jacobian for gas

kinetics and partitioning, Automatic/fi-

nite differentiation can be applied to

any additional modules

Less human error, much easier to

extend the model, faster mixed

phase simulation, enabling local

sensitivity analysis based on a Jaco-

bian

Sensitivity analysis N/A Adjoint sensitivity analysis Adjoint sensitivity analysis

24

