
Inishell 2.0: Semantically driven automatic GUI generation for
scientific models
Mathias Bavay1, Michael Reisecker1,3, Thomas Egger2, and Daniela Korhammer1

1WSL Institute for Snow and Avalanche Research SLF, Flüelastrasse 11, CH-7260 Davos Dorf, Switzerland
2Egger Consulting GmbH, Hohenstaufengasse 7, 1010 Wien, Austria
3Alpine Software Michael Reisecker, Schiliftstraße 504, 5753 Saalbach, Austria

Correspondence: M. Bavay (bavay@slf.ch)

Abstract. As numerical model developers, we have experienced first hand how most users struggle with the configuration of

the models, leading to numerous support requests. Such issues are usually mitigated by offering a Graphical User Interface

(GUI) that flattens the learning curve. Developing a GUI, however, requires a significant investment for the model developers

as well as a specific skill set. Moreover, this does not fit with the daily duties of model developers. As a consequence, when a

GUI has been created – usually within a specific project and often relying on an intern – the maintenance either constitutes a5

major burden or is not performed. This also tends to limit the evolution of the numerical models themselves, since the model

developers try to avoid having to change the GUI.

In this paper we describe an approach based on an XML description of the required numerical model configuration elements

(that is, the data model of the configuration data) and a C++/Qt tool (Inishell) that populates a GUI based on this description on

the fly. This makes the maintenance of the GUI very simple and enables users to easily get an up-to-date GUI for configuring10

the numerical model. The first version of this tool was written almost ten years ago and showed that the concept works very

well for our own surface process models. A full rewrite offering a more modern interface and extended capabilities is presented

in this paper.

Copyright statement. The works published in this journal are distributed under the Creative Commons Attribution 4.0 License.

1 Introduction15

1.1 Numerical models

Numerical models can be defined as computational models designed to simulate and predict the behavior of real-world or phys-

ical systems. As illustrated in Fig. 1, given a set of input data (for example meteorological measurements) and configuration

parameters (for example the simulation timestep and spatial resolutions), the numerical model will produce a set of outputs, for

example snow cover and hydrological response of a catchment after simulating the physical processes leading to snow cover20

development and runoff generation. Numerical models are very powerful tools widely used in diverse fields, such as medicine,

1

Model user

CFG

Numerical
Model

Configuration

Writes

Model results

DATA
Input Data

Provides

Produces

Controls

Figure 1. Numerical models from the user point of view

energy and environment, materials, industrial and defense as well as homeland security (Oden et al., 2006). Naturally they also

see widespread use in research.

1.2 Configuring numerical models

When using numerical models, one of the major issues for new users is the configuration of the model (Jamieson et al., 2010;25

Schlögl et al., 2016; Mortezapour et al., 2020). Often the numerical models are configured by ways of multiple configuration

files filled with obscure configuration parameters, making
:::
for a steep learning curve. Moreover, users tend to overlook even the

best written documentation (Mendoza and Novick, 2005; Ceaparu et al., 2004) and resort to copying and tweaking example

files. This is not satisfactory as it leads to under-performing simulations as well as large numbers of questions directed to the

model developers. The intrinsic complexity of configuring a numerical model may also make its end users highly dependent30

on direct support from the models’ developers (Havens et al., 2020).

As the WSL Institute for Snow and Avalanche Research (WSL/SLF) develops and maintains the Open Source
::::
open

::::::
source

Snowpack model (Lehning et al., 2002) and its pre-processor MeteoIO (Bavay and Egger, 2014; Bavay et al., 2018) – two of

the numerical models Inishell was originally developed for – it has first hand experience in supporting a relatively large number

of end users. A small fraction of the end users could be described as "power users" who are able to autonomously run the most35

2

complex simulation set ups (including fully autonomous model toolchains for operational applications (Sato et al., 2004; Côté

et al., 2014; Bair et al., 2020)), implement their own ideas in the model and support other users they work with. The bulk of the

user base is made of researchers who want to use these models to expand their research field (Rasmus et al., 2016; Haberkorn

et al., 2017; Grünewald et al., 2018; Köhler et al., 2018) and possess some varying
::::::
varying

:::::::
degrees

::
of computer fluency. Finally

there are practitioners who mostly don’t
::
do

:::
not

:
run the models themselves but rely on outputs from model toolchains set up40

by somebody else (Morin et al., 2020). The first category of users usually rely on the provided online documentation and only

contact the model developers for strategic questions regarding future developments or collaborations. The third category of

users usually rely on their internal model experts when they have questions while the second category of users gets back to

:::::::
requests

::::::
support

:::::
from the WSL/SLFfor support. An internal survey conducted in the Fall of 2019 at the WSL/SLF showed

that user support represented around 75% of a Full Time Equivalent (FTE) when the development team represents at most45

3 FTE. The requested user support would have almost been fully covered in the provided online documentation if the end

users would have read it. Another short survey conducted after completion of a two weeks doctoral school snow physics and

modeling course (Stockholm, Sweden) brought forth the major criticism: the user-unfriendliness of the command line and text

configuration of the numerical model.

1.3 Graphical User Interfaces (GUI)50

As reported by (Fellmann et al., 2007) for configuring Virtual Reality (VR) environments, even technical users require less

support and need to spend less time looking into the documentation when a graphical user interface (GUI) is available to

perform the task. Surprisingly (Voronkov et al., 2019) found that system administrators favor GUIs for configuring firewall

rules (70% of the respondents) as they are perceived as good for occasional use, don’t
::
do

:::
not

:
have the same long learning

curve as Command Line Interfaces (CLI) and are more intuitive and educational
::::
have

:::::
better

::::::::
usability than CLI. Similarly,55

the configuration of numerical models can benefit from a GUI that contains inline help, input validation and also allows to

predominantly show the most common settingswhile keeping expert settings available at deeper levels.

Unfortunately, developing a GUI hardly fits the job description of the modelers and is very time consuming because of

the potentially large number of configuration parameters: for example the Snowpack model and its pre-processor MeteoIO

define more than 350 configuration keys. Developing a traditional GUI for such numerical models, where each input widget60

is manually laid out, would require a significant
::::
time,

::::::
money

:::
and

::::
code

:
investment (Kennard and Leaney, 2010). Although not

specifically aimed at recent scientific software, (Myers and Rosson, 1992) found that on average 48% of the code in graphical

applications was dedicated to the user interface, representing 50% of the development time in the implementation phase and

47% of the maintenance time. Moreover as numerical models might evolve quite fast
::::::
quickly, new configuration options would

frequently be added that would also require a rework of the GUI. This is hardly sustainable for small development teams and65

leads to either out-of-date GUIs or no GUIs at all.

The choice of tools to develop GUIs for numerical models is less than satisfying in the long term. One possibility consists of

using a Rapid Application Development environment (RAD, Spreitzhofer et al. (2004)). This is easy and can appropriately be

assigned to an intern or a short term
::::::::
short-term student. However this is risky in the long term since such RAD implementations

3

are often proprietary and therefore dependent on the goodwill of its editor
:::::::
developer

:
to maintain compatibility or even to keep70

the productrunning
:::
just

::::::::
maintain

::::
their

:::::::
product, potentially forcing the model developers to perform a full rewrite of the GUI.

Another possibility is using standard toolkits and
:::::::::
Ui-toolkits

::::
and

:::::::::::
programming

:
languages to develop such an interface. This

requires more investment and expertise from the developer but increases the long term availability of the product
:::
GUI. However,

maintaining the product also requires some technical knowledge that is usually not found in model developers. At the very least,

it adds a considerable workload which may have to be put off until later. This practically
::::::::
Practically

::::
this means that upgrades75

(such as introducing new configuration options) will only happen
::::::::
(typically

::
in

::
an

::::::::
academic

::::::::
context) when another intern or

student with the proper skill set can be found and funded. Delegating this task to a temporary employee however loses first-

hand knowledge about the new
::::
these

::::::
newly

:::::::::
introduced

:
options. Then the graphical user interface becomes a hindrance for

the model itself since it prevents the fast deployment of new configuration options. Another possibility relies on Declarative

User Interface Model (Da Silva, 2000) or Model-Based UI Development (Paterno, 1999), an approach that has been steadily80

maturing over the last several decades (Meixner et al., 2011). However the downside of this approach is that it can be highly

theoretical and hard to understand and implement by designers and developers (Bogdan, 2017). Data driven GUI generation

might be a middle way to reduce this complexity as it generates GUI elements from templates or from pre-existing components

(Component Based Development, (Brown, 2000)) thus providing the automatic customization of the GUI for the task to be

performed, based on the data that is provided (Gambino et al., 2018).85

Finally, numerical models are getting more and more modular, including through coupling of existing numerical models.

This leads to modules that can be used standalone or within a wider numerical model. As such, there is no centralization

of the configuration data that has been provided by the end user and a centralized data model for the configuration data is

not possible: the main module does not have any insight into the data model of its sub-modules. Moreover, there is usually

no explicit data model for the configuration data, it is only implicitly expressed through the source code as assumptions and90

enforced requirements. It might also be explicitly laid out in the documentation (that must properly link to the documentation

of each sub-module) and
::
or in a GUI (that must include the configuration options for all sub-modules) but they must then

be kept synchronized with the implementation in the source code in order to be useful to the end user.
::
As

:::::::::
mentioned

::::::
above,

:::::::
manually

::::::::
designed

:::::
GUIs

::::
tend

::
to

:::
lose

::::
this

:::::::::::::
synchronization

::::
very

::::::
quickly

:::::::
because

::
of

:::
the

::::::::
involved

::::::::
workload.

::::::::
Therefore

::
a
:::::::
solution

::
to

::::::
lighten

:::
this

::::::::
workload

:::::
helps

:::::::
keeping

:::
the

:::
data

::::::
model

::::::::
expressed

::
in

:::
the

::::
GUI

:::
up

::
to

::::
date

:::
and

:::::::
relevant

:::
for

:::
the

:::
end

::::
user.

:
95

1.4
:::::::::::
Reproducible

:::::::
science

::::::::::::
considerations

::::::::
Although

:::
the

::::
topic

::
of

:::::::::::
reproducible

::::::
science

:::::::::::::::::::
(Munafò et al., 2017)

:
is

::::
very

:::::
broad

::::
even

:::::
when

::::::::
restricted

::
to
:::::::::
numerical

::::::::::
simulations

:::::::::::::::
(Fitzpatrick, 2019),

::
a
::::
GUI

::::
that

:
is
:::::

easy
::
to

::::
keep

:::
up

::
to

::::
date

:::
can

::
be

::
a
:::::::
technical

::::::
means

::
to

::::
help

:::::::
address

:::::
some

::
of

:::
the

:::
key

::::::
issues.

:::
As

:
a
::::
side

:::::
effect,

::::::
having

:::
an

::::
easy

::
to
::::::::

maintain
::::
GUI

::
at
:::::
their

:::::::
disposal

:::::
gives

::
an

::::::::
incentive

::
to

::::::
model

:::::::::
developers

::
to

::::::::
explicitly

::::::::
describe

::
the

::::
data

::::::
model

::
of

:::
the

:::::::::::
configuration

::::
data

:::
(as

:
a
::::
GUI

::::::
layout

:::
and

::::::
logic),

::::::::::
encourages

::::
them

::
to

:::::::::
document

::::
new

::::::
features

:::
(as

::::
help

::::
text100

::
in

:::
the

::::
GUI)

::::
and

::
to

:::::
avoid

::::::::::
hard-coded

:::::
values

:::::::::::::::::
(Cuntz et al., 2016)

::::
since

::::::
making

::
a
:::::::
dynamic

::::::
setting

:::
be

::::
read

::::
from

::
a
:::::::::::
user-editable

:::::::::::
configuration

:::
file

:
is
:::::
easy,

::::::
quickly

::::
done

::::
and

:::
can

::
be

::::::
shown

::
in

:::
the

::::
GUI.

::::
This

:::::::::
contributes

::
to

:::::::
making

:::
the

:::::::
research

::::
more

:::::::::::
reproducible

::::::::::::
(Martin, 2009)

:::::::
because

::
as

:::
the

:::::::::
numerical

:::::
model

:::::
code

:::::::
remains

::::::::::
independent

::
of

:::
the

::::::::::
simulations

::::
that

:::
are

:::::::::
performed,

::
it
:::::
does

:::
not

4

::::
need

::
to

::
be

::::::
edited

:::
for

::::
each

:::::::
research

::::::
project.

::
It
::
is

::::
then

:::::::
advised

::
to

:::::::
manage

::
the

::::::
source

:::::
code

::::
with

:
a
::::
code

:::::::::
versioning

::::::
system

::::::
which

:::::
allows

:::::
citing

:::
the

:::::::
specific

::::::
version

::
of

:::
the

::::::
model

:::
that

:::
has

:::::
been

::::
used

:::::::::::::::
(Fitzpatrick, 2019)

:
.105

::
On

:::
the

:::::::::
numerical

:::::
model

::::
side,

::
in

:::::
order

::
to

::::
allow

:::
for

::::
high

:::::::::
modularity

::
of

:::
the

::::::::
numerical

:::::::
models

::::
with

::::::
respect

::
to

::::
their

:::::::::::
sub-modules,

::
the

::::::::::::
configuration

:::
data

::
is
::::::::
centrally

::::
read

::
as

::::::::
key/value

::::
pairs

::
of

::::::
strings

::::
into

:
a
::::
C++

::::
map

::::
data

:::::::
structure

::::::::::::::::::::::::
((ISO, 1998; Meyers, 1992)

:::::::
similarly

::
to

::
a
:::::::::
dictionary

::
in

:::::::
Python,

:::
for

::::::::
example)

:::
but

:::
not

:::::::::
processed

:::
any

:::::::
further.

::::
This

::::
data

:::::::
structure

::
is
::::

then
::::::::

provided
::
to
:::::

each

:::::::::
sub-module

:::
to

::::::
extract

:::
and

:::::
parse

:::
its

::::::::
supported

:::::::::::
configuration

:::::
keys.

:::::::::
Therefore

:::
the

::::
data

:::::
model

::
is
:::::::::
delegated

::
to

:::
the

:::::::::::
sub-modules

:::::
which

::::::
enforce

::::
data

:::::
types,

::::::
ranges,

:::::::::
validation

:::
and

:::::::::::
dependencies

:::::::
between

:::::::::::
configuration

:::::
keys,

::::::
keeping

::::
each

::::::::::
sub-module

::::::::::
independent110

::
of

:::
the

:::::
others

:::::::::::::::::::::
(Bavay and Egger, 2014).

:::::
This

::::::::
redundant

:::::::::
validation

:::
(in

:::
the

::::
GUI

:::
and

:::
in

:::
the

::::::::
numerical

:::::::
model)

:::
also

:::::::
ensures

::::
that

:::::::
manually

::::::
edited

:::::::::::
configuration

::::
files

:::
are

::::::::
supported

::
as

::
in
:::::
such

:
a
::::
case

::
no

::::
GUI

:::::
could

:::::::
perform

:::::
input

:::::::::
validation.

::
In

:::::
order

::
to

::::::
further

::::::::
improve

:::
the

:::::::
quality

::
of

:::
the

:::::::::
numerical

:::::::::
modeling

:::::
work

:::
and

:::::::::
constrain

:::
the

::::::::
problem,

:::::::::
numerical

::::::
model

:::::::::
developers

::
are

:::::::
strongly

::::::::::
encouraged

::
to

::::
rely

::
on

::
a

:::::
single

:::::::::::
configuration

:::
file

:::
for

:::
the

:::::
whole

:::::
model

::::
and

::
all

:::
its

:::::::::::
sub-modules,

::::::::
including

::
as

:::::
much

::
of

:::
the

::::
pre-

::::
and

::::
post-

::::::::::
processing

::
as

:::::::
possible

::::
(but

::
in

:::::
their

::::
own

:::::::
sections

:::
for

:::::::
clarity).

:::
For

:::::::
example

::
it
::
is
:::::::
possible

:::::
with115

::
the

::::::::
MeteoIO

::::::::::::
pre-processor

:::::::::::::::::::::::::::::::::::::
(Bavay and Egger, 2014; Bavay et al., 2018)

:
to

::::
start

:::::
from

::::
raw

::::
data

::::
files

:::
(as

::::
they

:::::
come

:::::
from

:::
the

:::
data

:::::::
logger)

:::
and

::::::::
perform

:::::::
complex

::::::::::
simulations

:::::
such

::
as

::::::
alpine

::::::::
catchment

::::::::::
hydrology.

::::
This

:::
has

::::
the

::::::::
advantage

::::
that

::
a
::::
copy

:::
of

::
the

::::
said

::::::::::::
configuration

:::
file

::::
kept

:::::::
together

::::
with

:::
the

:::::::::
generated

::::::
model

::::::
outputs

::::
and

:::
raw

::::::
inputs

::
is

::::
then

:
a
:::::::::::

reproducible
::::::::::
description

::
of

:::
the

::::::::
numerical

:::::::::
simulation

::::
that

:::
has

:::::
been

:::::::::
performed

:::::::::::::::::
(Bavay et al., 2020a).

:::::::::
Enforcing

::
in

:::
the

:::::
GUI

:::
that

:::
the

::::
end

::::
user

:::::
saves

:::
the

:::::::::::
configuration

:::
into

::
a
:::::::::::
configuration

:::
file

::::::
before

:::::::
running

:::
the

:::::::::
numerical

:::::
model

::::::::
(contrary

::
to

:::::
many

:::::::::
interactive

::::::::
software

::::
often

:::::
used120

::
for

::::::::::
exploratory

::::
data

:::::::
analysis,

:::::::::::
(Peng, 2011)

:
)
:::
thus

::::::
makes

:::
the

:::::::::::
configuration

:::
file

:::::::::
equivalent

::
to

::::
some

::::
sort

::
of

:
a
:::::::::
numerical

:::::::::
simulation

::::::::
notebook.

:::::::::
Moreover,

:::::
having

::
a

::::
GUI

:::::
makes

::::::::
providing

:::::
long,

:::::::::
descriptive

:::::::::::
configuration

::::
keys

:::::::
painless

:::
for

::
the

::::
end

:::
user

::
as

::::
they

:::
can

:::
be

:::::::::
graphically

:::::::
selected.

:::::
This

::::
helps

:::
for

:::
the

::::
very

::::
long

:::::
term

:::::::::::::
reproducibility:

:::::::::
descriptive

:::::::::::
configuration

::::
keys

::::
that

::::::
provide

::::::::::
parameters

::
for

::
a
:::::::
classical

:::::::::
algorithm

:::
will

:::
be

:::::::::::::
understandable

::
in

::::
half

:
a
:::::::
century

::::
even

::
if

:::
the

:::::
exact

::::::::
numerical

::::::
model

:::::
itself

:
is
:::::

very
:::::::
difficult

::
to

::::
rerun

:::
by

::::
then.

:
125

::
In

:::::
order

::
to

:::::::
increase

:::
the

:::::::::
possibility

:::
to

:::::
rerun

:::
the

:::::
exact

::::
same

:::::::::
numerical

::::::
model

::
in

:::
the

::::::
future,

:::::
there

:::
are

::::::
several

:::::::::::
approaches:

::
for

::::::::
example

::
as

::
a
::::::
Docker

::::::
image

::::
that

:::::::
contains

:::::
every

:::::::
element

:::::::::
necessary

::
to

:::
the

:::::::::::::
reproducibility

::
of

:::
the

:::::::::
numerical

:::::
work

::
as

::::
laid

:::
out

::
by

::::::::::::::::::
(Havens et al., 2020)

::
or

::
as

:::::::
another

::::::::
approach

::
by

::::::::
working

::
on

:::
the

:::::::::
numerical

::::::
model

:::
and

:::
its

:::::::::::
dependencies

:::::::::
following

:::
the

:::::::::::
Reproducible

::::::
Builds1

:::::::
approach

::::::::::::::::::::::::
(Lamb and Zacchiroli, 2021)

::
or

:::::::::
ReScience

::::::
efforts

:::::::::::::::::
(Rougier et al., 2017)

:
.
::::
The

::::::
former

:::::::
assumes

:::
that

:::
the

:::::
users

:::::
know

::::
how

:::
to

:::
use

:::::::
Docker

:::::
while

:::
the

:::::::::
long-term

:::::::
stability

::
of
::::

the
::::::::
container

:::
file

::::::
format

:::::::
remains

:::
to

::
be

:::::::::
evaluated130

:::::::::::::::::::::::::::::::::::::::
(Rougier et al., 2017; Navarro Leija et al., 2020)

:::
and

:::
the

::::
later

:::::::
requires

:::::::::
systematic

:::::::
tracking

::
of

:::
all

::::::::::
components

::
of

:::
the

:::::::::
toolchain.

::::::::
Although

::::::
mature

:::::::::::
programming

:::::::::
languages

::::::
might

:::::::
develop

::::
some

:::::::::::::::
incompatibilities

::::
over

::::
time

::::::::::::::::::
(Brunner et al., 2016)

:
,
:::
this

::
is
:::

of

::::::
concern

:::
for

::
a

::::
very

::::::
limited

::::::
subset

::
of

:::
the

::::::::
language

:::
and

:::
the

:::::::
standard

:::::::
tooling

:::::
should

:::
be

::::
able

::
to

::::
offer

:::::::::::
conformance

::
to

:::
the

:::::::
various

:::::::
versions

::
of

:::
the

::::::::
standard

:::
on

:::
the

::::
very

:::::
long

::::
term

:::
(as

::
is
::::::::

currently
::::

the
::::
case

:::
for

::::::::
example

::::
with

::
C

:::
or

::::::
Fortran

::::::::::
compilers).

:::::
Both

:::::::::
approaches

::::
thus

::::::
benefit

::::
from

::::::::
standard

:::::::::
compliance

::
to
:::
the

::::::::::::
programming

::::::::
language

::
of

:::
the

::::::::
numerical

::::::
model,

::
a

:::::::
strongly

::::::::
restricted135

:::
use

::
of

:::::::
external

::::::::::::
dependencies

:::::::::::::::::::::
(Bavay and Egger, 2014)

:::
and

:::::
good

:::::::
software

::::::::::
engineering

::::::::
practice

::
in

:::::
order

::
to

:::
be

::::
easy

:::::::
enough

::
to

::::::
deploy

::
or

:::::::::
recompile

::::
from

::::::
source

::
in

:::
the

::::::
future

:::::::::
(including

:::::::::::
recompilation

::::::
within

::
a

::::::
docker

::::::
image).

::
If
:::::
these

:::::::::::
assumptions

:::
are

1
::::::::::::::::::::
https://reproducible-builds.org/

5

:::::::
fulfilled,

:::
the

::::
long

::::
term

:::::::::::::
reproducibility

::::::
should

::
be

::::::::
adequate

:::
by

::::::::
providing

:::
the

::::
raw

::::
data,

:::
the

::::::::::::
configuration

:::
files

:::
in

:
a
::::
text

::::::
format

:::
and

:::
the

:::::
exact

:::::
source

:::::
code

::::
(and

::::
fully

::::::::::
documented

::::::::::::
dependencies)

::
of

:::
the

:::::::::
numerical

:::::
tools.

2 Methodology140

2.1
:::
GUI

:
Requirements

Ideally model developers would like to offer a user friendly graphical interface for configuring their numerical model that re-

quires very little initial investment and expertise and where new configuration options are quickly deployed. This configuration

interface should provide explanations of every configuration parameter, validate the user input (to avoid possible misconfigu-

rations), easily integrate new options and output the complete configuration in a standard configuration file format. This GUI145

should also be able to transparently integrate the configuration options for each sub-module without requiring any duplication

of efforts and to easily support multiple numerical models.

Keeping the concept of a configuration file is important
:::
for

::::::::::::
reproducibility

::
as

::::
well

::
as

:
since such models are often configured

on one system and then sent to run on some clusters to perform the heavy duty computing. This file should be manually editable

in order to allow for copy-pasting part of it between similar simulations (keeping in mind that several hundred lines might be150

copied that represent hours of carefully choosing the options), to be able to modify it with text terminals through remote

sessions (as is typically the case when running on a computing cluster) or to generate at least some parts of the configuration

with scripts (for example to study the sensitivity of certain configuration parameters). It is therefore necessary to support both

the use of a GUI and of manual editing of a text file.

Finally, the users would also benefit from being able to run their numerical models from within the GUI even if this kind155

of integration is only very loose (meaning that there is only very limited feedback from the numerical model to the GUI and

no interactive control of the numerical model once started) as it avoids having to open a command line terminal to run the

numerical model therefore adding unnecessary friction in the workflow.

2.2 General principles of Inishell

The Inishell Open Source
::::
open

::::::
source

:
software alongside numerical model design considerations is our technical answer to160

the previously laid out requirements. It is written in C++ with the Qt framework2 as a way to provide a cross-platform GUI

with native look and feel that can be reused for multiple numerical models and that is sustainable over many years. It aims to

feel familiar to the end users while considerably lowering the required skill set and time investment for the model developers

and also shifting support requests away from IT tasks to work directly concerning the models. It is Open Source
::::
open

::::::
source

under a GPLv3 license and works on Linux, Microsoft Windows and Apple macOS among others.165

For the user provided configuration data, as it would not be feasible to support all possible configuration file syntax choices,

a reasonable standard is enforced. The INI3 informal standard has been chosen as it is a text format that is very easy to read and

2https://www.qt.io/
3https://en.wikipedia.org/wiki/INI_file

6

https://www.qt.io/
https://en.wikipedia.org/wiki/INI_file

parse with various programming languages as well as for interoperability with some existing numerical models. Its syntax is

also supported by many text editors, making manual edition convenient on multiple platforms. However its simplistic structure

can not contain enough information to define a data model and as it is created by the end user, all inputs coming from an ini170

file must be checked by the numerical model. It
:::
The

::::
INI

::::::
syntax is described in details in appendix A. On the longer term,

Inishell has been written in a modular way so it is possible to develop parsers to support other, more modern configuration files

standards, such as YAML.

Model developer

XML

Model user

INI

Inishell

Numerical
Model

ru
n

User workflow

Model results

da
ta

m
od

el

us
er

co
nfi

gu
ra

tio
n

Figure 2. Inishell principle
:::::::
Overview of operations

::
the

::::::
Inishell

::::::::
workflows

:::
for

::::
model

:::::
users

:::
and

:::::
model

::::::::
developers

The Inishell software is a simplified derivative of Declarative User Interface Models that focuses on the data that has to be

provided by the end user (high level semantic description) instead of the appearance of the GUI (low level interface attributes175

such as exact positioning or complex layout of the GUI). As laid out in Fig. 2, the data model of the configuration data is

explicitly defined in an XML file that supports including other XML files to merge the data models of various sub-modules

together. The XML syntax defines for each configuration key the key name itself, the data type of the value that should be

provided by the end user (including units) as well as a help text. This basic data model of the configuration data provided by

the numerical model developer is then used by the Inishell software to automatically populate its GUI that is presented to the180

end user to input the numerical model configuration data. Inishell enforces the user input validations at data entry time and

therefore the writing of a configuration file that the numerical model can rely upon to run (more details in section 3.2). The

7

servicing of existing GUIs and the creation of new GUIs is therefore
:::
still

:
decoupled from the release cycle of Inishell itself.

Input validation is supported through data types, optional range checking and by regular expressions. This is similar to the

input validation provided by common JavaScript libraries such as Angular4 or React5: data type, min, max, required or not,185

pattern.

Inishell is therefore similar to JSONForm6 or Json-GUI (Galizia et al., 2019) and it is a higher level view of the GUI than in

previous efforts such as XUL (XML User Interface Language, Goodger et al. (2001)) that is still focused on low level widgets

or even UIML (User Interface Markup Language, Abrams et al. (1999)) that still keeps low level widgets as basic building

blocks. It can be best compared to Atomic Design (Frost, 2016) since it is also built around a hierarchical point of view but190

keeping in mind that here the focus is not the entry widget type but data semantics of the data that has to be retrieved from the

user.

Read model
XML file

new INI?

Create

Select model
to configure

INI file
Select existing

Generate
input widgets

INI file
Read & parse

Fill configuration
data

Input
validation

Save
file

Write
INI file

Run
Simulation

Spawn
model process

View
Results

Call
external viewer

No

input widgets
Set values in

Yes

User Inishell Numerical Model

Run with provided
configuration

Write
results

Figure 3. Inishell end user workflow: activity diagram

The user workflow is described in Fig. 3: the user selects from within Inishell for which numerical model to configure a

simulation, which loads the numerical model’s associated XML file. Inishell can then populate its GUI with input widgets

that allow the user to fill configuration data or load and edit a previously written INI configuration file. Inshell performs input195

4https://angular.io/api/forms/Validators
5https://react-hook-form.com
6https://jsonforms.io/

8

https://angular.io/api/forms/Validators
https://react-hook-form.com
https://jsonforms.io/

validation as the data is entered in order to provide the user with a quick feedback if necessary. Then the user saves the

configuration file and can run the numerical model from within the GUI (which spawns a new process in the background).

After completion of this external process, the user has the possibility to trigger the visualization of the simulation results from

within the GUI, through a call to an external viewer.

2.3 Reproducible science considerations200

Although the topic of reproducible science (Munafò et al., 2017) is very broad even when restricted to numerical simulations

(Fitzpatrick, 2019), Inishell can be a technical means to help address some of the key issues. As a side effect of using Inishell

for a numerical model, having an easy to maintain GUI at their disposal gives an incentive to model developers to explicitly

describe the data model of the configuration data (through the XML file), encourages them to document new features (as

help text in the XML file) and to avoid hard-coded values (Cuntz et al., 2016) since making a dynamic setting be read from a205

user-editable configuration file is easy, quickly done and can be shown in the GUI. This contributes to making the research more

reproducible (Martin, 2009) because as the numerical model code remains independent of the simulations that are performed,

it does not need to be edited for each research project. It is then advised to manage the source code with a code versioning

system which allows citing the specific version of the model that has been used (Fitzpatrick, 2019).

On the numerical model side, in order to allow for high modularity of the numerical models with respect to their sub-modules,210

the configuration data is centrally read as key/value pairs of strings into a C++ map data structure (ISO (1998); Meyers (1992)

similarly to a dictionary in Python, for example) but not processed any further. This data structure is then provided to each

sub-module to extract and parse its supported configuration keys. Therefore the data model is delegated to the sub-modules

which enforce data types, ranges, validation and dependencies between configuration keys, keeping each sub-module independent

of the others (Bavay and Egger, 2014). This redundant validation (in the GUI and in the numerical model) also ensures that215

manually edited configuration files are supported as in such a case no GUI could perform input validation.

In order to further improve the quality of the numerical modeling work and constrain the problem, numerical model

developers are strongly encouraged to rely on a single configuration file for the whole model and all its sub-modules, including

as much of the pre- and post- processing as possible (but in their own sections for clarity). For example it is possible with

the MeteoIO pre-processor (Bavay and Egger, 2014; Bavay et al., 2018) to start from raw data files (as they come from the220

data logger) and perform complex simulations such as alpine catchment hydrology. This has the advantage that a copy of the

said configuration file kept together with the generated model outputs and raw inputs is then a reproducible description of the

numerical simulation that has been performed (Bavay et al., 2020a). This fits the usage workflow of Inishell as the user must

save the configuration into an INI file before running the numerical model (contrary to many interactive software often used for

exploratory data analysis, (Peng, 2011)), thus making the configuration file equivalent to some sort of a numerical simulation225

notebook. Moreover, having a GUI makes providing long, descriptive configuration keys painless for the end user as they can be

graphically selected. This helps for the very long term reproducibility: descriptive configuration keys that provide parameters

for a classical algorithm will be understandable in half a century even if the exact numerical model itself is very difficult to

rerun by then.

9

The approach that has been laid out by (Havens et al., 2020) relies on Docker images to contain every element necessary to230

the reproducibility of the numerical work. However this requires that the users know how to use Docker and in the long term

migrate their containers as no backward compatibility is guaranteed. The approach laid out above makes two assumptions: first,

that the numerical tools that have been used have strongly restricted the use of external dependencies (Bavay and Egger, 2014)

and secondly that they rely on good software engineering practice in order to be easy enough to deploy or recompile in the

future. If these assumptions are fulfilled, the long term reproducibility should be improved by providing the raw data, the235

configuration files in a text format and the exact source code of the numerical tools. Although mature programming languages

might develop some incompatibilities over time (Brunner et al., 2016), this is of concern for a very limited subset of the

language and the standard tooling should be able to offer conformance to the various versions of the standard on the very long

term (as is currently the case for example with C or Fortran compilers).

3 Implementation240

3.1 Overview of the interface

Figure 4. Overview of the Inishell software with the MeteoIO numerical model profile loaded (here on Linux
:::
with

:::
the

::::
light

:::::
theme).

The overall interface (Fig. 4) is made of three areas, as well as a standard top menu bar. Area 1 controls the whole user

workflow: In the upper panel (Applications), the user selects which model he or she wants
:::::
users

:::::
select

:::::
which

:::::
model

::::
they

:::::
want

to configure. Below (Simulations), it is possible to open a pre-configured pair of numerical model profile and configuration

file (i.e. the XML file for a model associated with an INI file for the same model). One drawer lower (INI files), it is possible245

to open an existing configuration file. Finally, for numerical models that support it, the lowest drawer (METEOIO, shown in

blue) enables running the simulation and potentially opening the simulated results.

Area 2 in Fig. 4 contains all configuration widgets for the selected numerical model profile, as provided in the XML file. It is

therefore empty when starting Inishell and gets populated after loading an XML file. Once the XML file has been loaded, this

10

area is where the end user fills his or her
::::
users

:::
fill

::::
their

:
configuration parameters for the numerical model. Area 3 is a status bar250

that shows error messages or warnings (such as for missing mandatory configuration keys) or the status of a currently running

simulation. Messages are also logged for unattended runs.

In order to further encourage end users to rely on Inishell to configure and run their simulations, a text editor is offered

within Inishell under the name Preview Editor. It is powered by Inishell’s INI format parsing and as such provides operations

specifically targeted to INI files in addition to more common text editor functionality. It also keeps snapshots of the file255

throughout the editing process every time it is called. Hence, the Preview Editor incorporates several Inishell features into a

text editor like every user will have seen and used while still minimizing classical user errors (such as by marking unrecognized

or deprecated keys as unknown with syntax highlighting).

3.2 General architecture

ApplicationViewIniFolderView

Group

Templates

Selector Replicator

Dropdown Textfield

Number ...

MainPanel

Data classes

WorkflowPanel PreviewWindow

MainWindow

LoggerSectionTab

XMLParser

INIParser

SectionList

Section

KeyValue

Atomic

Grouping

Basic building blocks

Dynamic GUI elements Data classesStatic GUI elements

Figure 5. Simplified class diagram of Inishell: only the most relevant classes and relations have been represented. The classes shown in green

show a set of static widgets in the GUI, the classes shown in blue are used to dynamically build widgets (based on the XML file) and the

classes shown in black don’t
::
do

:::
not draw in the GUI.

Following the steps exposed in the activity diagram in Fig. 3, the user is
::::
users

:::
are first presented with only the static parts of260

the GUI (classes seen in green in Fig. 5). These provide the most generic features such as opening the XML file for a numerical

model (XMLParser class), loading a specific INI file (INIParser class), inspecting the logs (Logger class) or previewing the

generated INI file (PreviewWindow class). Once an XML file has been selected and parsed (XMLParser class), the SectionTab

class that handles the area 2 in Fig. 4 recursively calls an object factory to generate widgets inheriting the Atomic class
::::
(that

:::::::
contains

:::
the

::::::::
properties

::::::::
common

::
to

::
all

::::::::
widgets) in order to populate its area of the GUI (all data that came from the XML file265

11

is then contained in the widgets). The mapping of the XML elements to GUI elements is done at this stage and is detailed later

starting in section 3.3. These widgets can be input widgets or grouping widgets (by creating new tabs, the SectionTab class

also acts as a grouping element). When the user saves his or her
::::
users

::::
save

::::
their

:
configuration, the INIParser class is called

to write out the INI file, collecting the properties from each input widget. In order to keep other user content in the INI files

such as comments, line breaks (that help visually group keys together) or unsupported keys (for example belonging to another270

numerical model that will read its configuration from the same configuration file), all content that could not be stored in the

input widgets is kept in the INIParser and merged back before writing out.

Inishell has a hierarchical approach both in its handling of the widgets and in the underlying architecture (where Inishell

mirrors the XML structure). The most atomic elements (atoms in Atomic Design) are the widgets provided by the Qt toolkit.

These are never exposed to the model developer, instead they are grouped into higher level elements (molecules in Atomic275

Design) by Inishell for each parameter type in the XML file (most often consisting on a label, an input widget and a help text

which allows a big subset of HTML supporting quite advanced typesetting). In effect, by writing a succession of parameters

belonging to sections in the XML file, the model developer sets
:::::::::
developers

:::
set up all parameters necessary for the configuration

of a module of his or her
:::
their

:
model, distributed over one or more tabs in the GUI that act as the next hierarchical level and

are mapped to sections in the resulting INI file. These will then be grouped together under an application name that might also280

receive a workflow (step-by-step instructions to configure and run some model) and an icon. This is the highest hierarchical

level as it matches a specific numerical model.

This hierarchical approach is simplified by relying on two modularity constructs: parameter groups and includes. Parameter

groups allow giving an internal name to any group of parameters. This internal name can then be referred to later on to call this

group one or multiple times. This is even more meaningful when used with the built-in inclusion system: an arbitrary number285

of files can be included and from them it is possible to only select the needed subset of parameters thanks to parameter groups.

Several applications sharing most of the same configuration keys for any subset of their configuration can then include one file

that defines all possibilities and only call the parameter groups that are relevant. In fact it is recommended to heavily rely on

this system for increased modularity and decreased verbosity. In the same way models that rely on other models (e.g. in the

form of libraries) can simply include this lower level model and freely extend upon it.290

3.3 Basic building blocks

Inishell supports the following data types: strings, dates and times, paths to files and paths, decimal numbers, integral numbers

and booleans, usually with several display options. Strings are less strictly defined as this type can accommodate free text entry

or a selection among a preset list of choices (that can potentially be extended by the end user). Geographic coordinates are

matched within strings through a regular expression that triggers the generation of an additional button that shows the provided295

coordinates on an online map. Strings can be validated by means of a regular expression, as well as through an expression

parser to make them suitable for mathematical formulas.

For each data type, Inishell generates a low level entry widget prefixed with a label that shows the matching INI configu-

ration key (or another, better suited label chosen by the model developer) and followed by a help text (that may also contain

12

a) XML declaration

b) Inishell GUI

c) INI entry

Figure 6. Basic building block: integer entry,
::
as
::::::
defined

::
in

:::
the

::::
XML

:::
file,

::
as

:::::
shown

::
in

:::
the

:::
GUI

:::
and

::
as

:::::::
generated

::::
after

::::
user

::::
entry

:
in
:::

the
:::
INI

:::
file

hyperlinks to a more exhaustive online documentation). Hence, Inishell manages several abstraction layers for the programmer300

and adequately adding and describing a model setting in the right place is now as easy as adding an XML text node with-

out the need to recompile any software. Several properties for each INI configuration key can be declared. Among those, the

XML property optional when set to false visually emphasizes the widget and displays a warning message when saving the file

without setting it. In such a case, all the mandatory keys that have not been set by the end user will be highlighted, listed in a

message, and the user can cancel saving. Manual styling of all of the used fonts is possible. Colors can be chosen freely with305

an RGB hexadecimal representation, but Inishell also offers a set of predefined colors with symbolic names (such as warning,

info . . .) which have been designed to keep good visibility if the end user changes the GUI theme, for example when using the

dark theme or system wide accessibility settings.

3.4 Grouping elements

The first grouping element is matched to an INI structure: sections. It is either expressly declared in the XML or indirectly as310

the basic building blocks can declare which section they belong to. In the GUI, this is represented by a tab, so all INI keys

belonging to a given section will have their matching widgets appear in the same tab. The end user has an overview of all the

sections with the list of tabs on the top of Inishell (Fig. 4, on top of area 2).

Another grouping element is available that does not match any INI structure: frames. A frame is used to graphically group

basic elements that belong together, for example a set of configuration parameters all related to the same concept in the315

numerical model. A frame can have its own help text which can be convenient to describe in details the feature that is configured

by the keys within the frame.

3.5 Templates

Some fragments of the INI configuration file might have to be repeated multiple times, for example to iterate over multiple input

files or over meteorological parameters. In this case, a base key is defined (for example "STATION") and multiple versions320

derived from this base key will be generated on-demand as requested by the user (for example by clicking on a "+" button

13

a) XML declaration

b) Inishell GUI

c) INI entry

Figure 7. Visually
:::::::
Constructs

::
to
::::::
visually

:
grouping elements together:

::::::
sections

:::
and

::::::
frames

a) XML declaration

b) Inishell GUI

c) INI entry

Figure 8. Simple example of templates
:
to

:::::::
generate

::
as

::::
many

::::
input

::::::
widgets

::
as

:::
the

:::
user

:::::
deems

::::::::
necessary

:::
with

:::
an

:::::::::::
auto-numbering

::::::
scheme

to generate "STATION1", "STATION2" . . .). This lets the end user provide as many variants as necessary without having to

hard-code the configuration keys for each variant. In the XML file, it is handled with a system of templates where the iterators

are defined first (for example, as integral numbers or as a fixed list of strings) followed by the group of configuration keys

containing a wildcard character. Inishell will then dynamically generate as many entry widgets (or groups) as asked by the end325

user and write all resulting INI keys in the output file.

14

3.6 Nested widgets

a) XML declaration

b) Inishell GUI before combobox selection

c) Inishell GUI after combobox selection

Figure 9. Example of nested widgets (for clarity, the help texts have been removed). Please note that the METEO key uses an alternate label

and is defined as mandatory. Once it is selected as SMET, more widgets appear including the METEOPATH that is then also mandatory.

Some dedicated widgets offer the possibility to include more configuration options that will be shown only when a certain

choice is selected by the user (Fig. 9). This allows offering more configuration options related to a given sub-module if the

said sub-module has been enabled (for example, ticking a checkbox could show further options of the same INI section and so330

could the selection of specific list entries). This is a recursive process and allows for indefinite nesting.

3.7 Workflows

In order to allow the end user to run the numerical model from within Inishell, it is possible to declare the necessary workflow

in the XML file. This includes command line programs as well as their command line options (based on the data types that are

provided by the end user), directory views (for example to open the model results directory) or opening URLs (for example to335

open an online viewer). As mentioned in section 2.2, running command line programs is performed by spawning a new process

for the said command line program and is currently only supported on the current computer (ie. no remote execution) and does

not support running through a batch scheduler (such as Sun Grid Engine or SLURM). The terminal outputs of the applications

started by Inishell are captured and shown in Inishell’s main window with some basic syntax highlighting in order to highlight

error messages or warnings.340

15

a) XML declaration

b) Inishell Workflow

Figure 10. Example of a workflow
::::
panel: a few command line parameters must be provided by the user who can then run the numerical

model and open a visualization application.

3.8 Applications

Since multiple profiles of numerical models can be loaded into Inishell by opening their respective XML files, it is necessary to

visually show which choices of numerical models profiles are supported and easily change between them. This is achieved by

providing some meta data of the applications’ properties in the XML files that define the previously described XML elements

for the configuration widgets (and potentially a workflow). An application will therefore consist of a name and an icon in the345

applications panel, several tabs with configuration options in the main panel and often a workflow to run the application.

Combining the features listed here (choosing an application from a list, optionally auto-loading an INI file and a coupled

workflow), developers can set up a list of all their models’ workflows and simulations. Inishell can then handle everything from

configuring the model, running it and performing maintenance work (by executing user defined system commands) – all with

the click of a button within one uniform GUI and without any programming necessary.350

16

4 Discussion

Although fully automatic GUI generation by Declarative User Interface Models requires complex modeling (Machado et al.,

2017; Meixner et al., 2011), Inishell fully automatically generates a GUI based on a simple, high level description of the data

model. This has been made possible by restricting Inishell to the narrow and simple use case of configuring scientific numerical

models, contrary to more generic approaches such as (Díaz et al., 2020). In this use case, the numerical models run from a355

static configuration file without feedback to the GUI other than textual information (such as progression indicators, warnings

and errors) and no interactive coupling – the user can not change the configuration data while the numerical model is running

and the numerical model can not change its configuration data (as is typically the case when simulating over a domain defined

in time and space). This has several important consequences that lead to a great reduction in complexity. First, the palette of

interaction patterns is reduced (Machado et al., 2017) to Create, Read, Update and Delete (CRUD, Martin (1983)) operations.360

Then the reduction in application domain to a narrow scope allows reducing the required descriptive capabilities of the data

model (Schaefer et al., 2006; Meixner et al., 2011) and data model description file and syntax (Galizia et al., 2019). This in

turn makes the data model map to a very limited palette of input widgets (as shown in section 3.2) and the event model is even

simpler (feedback stemming from input validation, hiding/showing elements based on another element’s value). The focus is

also not on the visual appearance of the GUI but on the data that has to be provided by the end user. Finally, the selection365

of supported platforms is restricted to traditional desktop computers, removing the need for one layer of abstraction (Paterno’

et al., 2009). Inishell is therefore a practice-driven simplification of Declarative User Interface Models or Model Based UI

Development to make this approach usable by non specialists similarly to other efforts for web-based forms such as (Galizia

et al., 2019; Fardoun et al., 2018) or JsonForms.

As the Web is becoming the platform of choice for more and more complex tools, a web version of Inishell which could be370

integrated within a system processing the generated configuration files directly on the web certainly would have its benefits.

However, a major negative feedback from some of the scientific numerical models that we develop was that the users had

to open a terminal, go to the proper directory and run the numerical model from the command line. This has created many

support requests and frustration from the users. Due to sandboxing and obvious security reasons, running a local executable is

not permissible from a web application, which is the main reason the implementation as a fat
:::::
native

:
client was the preferred375

choice. Moreover as web technologies evolve very fast
::::::
quickly, the long term maintenance and evolution of web applications is a

hurdle for research groups that must rely on external contractors for their development including trivial bug fixes. Furthermore,

the interaction of a local web application with files in arbitrary locations on the system remains cumbersome.

The choice of file formats for the configuration files (currently INI) has been the result of compromises between ease of use

and robustness for manual editing by the end users on one hand and expressiveness and compatibility with existing standards380

on the other hand. The legacy numerical models and tools have also weighted in for an easy transition to this new system and

for a less risky migration. A similar project starting from scratch without any retro-compatibility issue would most probably

rely on more modern and better defined standard file formats. Future developments of Inishell could benefit from supporting

several output formats in order to generate configuration files for a wider range of scientific numerical models.

17

Since the first version of Inishell was written in the Java programming language in 2011, it is possible to draw some con-385

clusions related to its real life impact. Overall it has worked well, allowing multiple numerical models to evolve freely without

worrying about tedious redesigns of the GUI. Most of the additionally introduced configuration keys could be declared in

Inishell in a matter of minutes and the possibilities offered by the XML elements recognized by Inishell have been mostly

adequate. Support requests by end users of numerical models have dramatically dropped for users of Inishell since it was

launched. However, some issues have been identified and addressed in the current version. First, as the Java environment is390

often not installed by default on personal computers anymore, it has started to cause more support requests related to the in-

stallation of Java as well as its configuration; the move to C++ is a response to this issue. Moreover, the original version of

Inishell missed the possibility to run the numerical models directly from within its own interface and this has been identified

as a major hindrance towards having more users rely on Inishell for their day to day simulations. This new capability has been

brought through the expansion of the descriptive capabilities of the XML elements so Inishell now offers a fully self sufficient395

environment for configuring and running the numerical models that rely on it. This means that end users don’t
::
do

:::
not

:
need to

work through a combination of tools that tended to encourage them to manually tweak the configuration files (and therefore

introduce errors) but find everything they need in one integrated package. This has also significantly improved the uptake of

new numerical models features as end users now visually see new options in the GUI instead of having to read through many

pages of documentation or detailed changelogs (similarly to what was reported for technical users in section 1.3).400

The new version has since been used in complex operational simulation toolchains with completely different numerical

models than it was originally developed for. Merely by adhering to the INI syntax it was possible to adequately set up the

models’ parameters through Inishell, document them and offer an easy to use and familiar GUI to the people running the

models.

5 Conclusions405

Scientific numerical models require a large number of configuration parameters to operate that are generally quite complex

to set up. Providing a Graphical User Interface (GUI) to set up such configuration parameters improves the control that the

end users have over the numerical models beyond what a standard documentation would do. However, standard GUIs are very

time consuming to program for these large numbers of configuration parameters and often require a skill set that is not found

in such numerical models developers. By relying on an approach derived of Declarative User Interface Models and restricting410

itself to the narrow use case of scientific numerical models configuration (a low complexity use case), Inishell allows model

developers to quickly define in an XML file the configuration parameters that must be provided by the users along with a few

properties and then generate on the fly a GUI based on these definitions. The maintenance of the GUI solely consists of editing

this XML file, for example to add new configuration parameters. Ten years after the first version of Inishell has been deployed

in the field, this concept has globally worked well and has been efficient both from the end users point of view and from the415

numerical models developers point of view. Enforcing a well defined syntax and a single configuration file has also brought

added benefits such as improved reproducibility.

18

1 [G e n e r a l] ; e n t e r i n g t h e " G e n e r a l " s e c t i o n

2 # meteo d a t a i n p u t s e t t i n g s t h i s whole l i n e i s a comment

3 BUFF_CHUNK_SIZE = 370 ; t h i s i s an i n l i n e comment

4 METEO = SMET ; v a l u e as s t r i n g

5 METEOPATH = . / i n p u t / meteo ; a p a t h i s a l s o a s t r i n g

6 STATION1 = FLU2 ; p r o v i d i n g two s t a t i o n IDs

7 STATION2 = FIR2

8

9 [F i l t e r s] ; e n t e r i n g t h e " F i l t e r s " s e c t i o n

10 TA : : f i l t e r 1 = min_max ; namespace f o r key " f i l t e r 1 " i s "TA"

11 TA : : a rg1 = 240 320 ; (h e r e s h o r t f o r Ai r Tempera tu r e)

12

13 RH : : f i l t e r 1 = min_max ; a n o t h e r " f i l t e r 1 " key , b u t i n namespace "RH"

14 RH : : a rg1 = 0 . 0 1 1 . 2

Figure A1. Syntax of the INI file with numbered lines

Code availability. The current version of Inishell is available from the project forge https://code.wsl.ch/snow-models/inishell under the GNU

General Public License v3.0 (GPL v3) license. The exact version of Inishell presented in this paper is archived on envidat.ch (Bavay et al.,

2020b).420

Appendix A: Supported INI file syntax

Although best practices have emerged that make the INI informal standard reasonably usable as a configuration file syntax, it

is too loosely specified to be easily automatically generated and therefore has been defined more strictly for this work as well

as extended to better suit the needs of numerical models.

The general format consists of a list of key/value pairs, delimited by an ’=’ sign (line 3 in Fig. A1). The values can be of type425

doubles, integers, boolean (true/false or 0/1) or strings. It is possible to add comments: all characters following ’#’ or ’;’ will

be considered to be comments until the end of the line is reached (lines 2 & 3 in Fig. A1). The keys can be grouped by sections

in order to bring more clarity and structure to the configuration file, each section being marked by a section name between

square brackets (lines 1 & 9 in Fig. A1). Spaces and tabs can be used freely between words (either keys or values). Each key

must appear only once per section but the same key can appear in several sections: for example a time zone information can430

appear in an input and an output section.

In order to keep the uniqueness of the keys in each section while allowing semantically identical keys to coexist, several

extensions have been defined. A first possibility is to simply add a number after the key, making it in effect unique but clearly

showing the user that all these keys participate to the same concept (lines 6 & 7 in Fig. A1). Another possibility is that a key

may receive several values by providing the different values space-delimited after the equals sign (line 11 in Fig. A1). Finally, a435

weak concept of namespaces has been introduced: a key can be prefixed by a namespace so multiple keys belonging to different

19

https://code.wsl.ch/snow-models/inishell

namespaces can coexist in the same section. This makes it possible for example to declare keys for specific meteorological

parameters by using the meteorological parameter abbreviation as namespace (lines 10 & 11 in Fig. A1).

Author contributions. M. Bavay lead the project from the beginning, contributed maintenance and development on all versions. He also

wrote the bulk of the paper. M. Reisecker provided the bulk of the development of the new Inishell as well as maintenance since then440

and also contributed to the paper. T. Egger assisted with the implementation of the first version, helped maintain it over many years and

contributed to the paper. D. Korhammer co-designed and implemented most of the original Inishell.

Competing interests. The authors declare that they have no conflict of interest

Acknowledgements. The authors are very thankful for the continued support of Charles Fierz and Michael Lehning who trusted us with our

vision. Four anonymous reviewers helped to improve the paper significantly with their very insightful and constructive comments.445

20

References

Abrams, M., Phanouriou, C., Batongbacal, A. L., Williams, S. M., and Shuster, J. E.: UIML: an appliance-independent XML user interface

language, Computer networks, 31, 1695–1708, https://doi.org/https://doi.org/10.1016/S1389-1286(99)00044-4, 1999.

Bair, E. H., Rittger, K., Ahmad, J. A., and Chabot, D.: Comparison of modeled snow properties in Afghanistan, Pakistan, and Tajikistan, The

Cryosphere, 14, 331–347, https://doi.org/10.5194/tc-14-331-2020, https://tc.copernicus.org/articles/14/331/2020/, 2020.450

Bavay, M. and Egger, T.: MeteoIO 2.4. 2: a preprocessing library for meteorological data, Geoscientific Model Development, 7, 3135–3151,

https://doi.org/doi:10.5194/gmd-7-3135-2014, 2014.

Bavay, M., Fiddes, J., Fierz, C., Lehning, M., Monti, F., and Egger, T.: The METEOIO pre-processing library for operational applications,

in: International Snow Science Workshop ISSW, Innsbruck, Austria, https://doi.org/10.5281/zenodo.5718629, https://arc.lib.montana.edu/

snow-science/objects/ISSW2018_O08.2.pdf, 2018.455

Bavay, M., Fiddes, J., and Østein Godøy: Automatic Data Standardization for the Global Cryosphere Watch Data Portal, Data Science

Journal, 19, https://doi.org/10.5334/dsj-2020-006, 2020a.

Bavay, M., Reisecker, M., Egger, T., and Korhammer, D.: Inishell-2.0.4, https://doi.org/http://dx.doi.org/10.16904/envidat.194, https://www.

envidat.ch/dataset/inishell-2-0-4, 2020b.

Bogdan, C.: Declarative interaction towards evolutionary user interface prototyping, in: IFIP Conference on Human-Computer Interaction,460

pp. 83–90, Springer, https://doi.org/10.1007/978-3-319-92081-8_8, 2017.

Brown, A. W.: Large-scale, component-based development, vol. 1, Prentice Hall PTR Englewood Cliffs, 2000.

Brunner, T., Pataki, N., and Porkoláb, Z.: Backward compatibility violations and their detection in C++ legacy code using static analysis,

Acta Electrotechnica et Informatica, 16, 12–19, https://doi.org/10.15546/aeei-2016-0009, 2016.

Ceaparu, I., Lazar, J., Bessiere, K., Robinson, J., and Shneiderman, B.: Determining causes and severity of end-user frustration, International465

journal of human-computer interaction, 17, 333–356, https://doi.org/https://doi.org/10.1207/s15327590ijhc1703_3, 2004.

Côté, K., Madore, J.-B., and Langlois, A.: Evaluating the potential of using Snowpack and Alpine3D simulations in three Canadian mountain

climates, in: International Snow Science Workshop ISSW, Banff, Canada, https://doi.org/10.13140/2.1.3463.9363, http://citeseerx.ist.psu.

edu/viewdoc/download?doi=10.1.1.866.2893&rep=rep1&type=pdf, 2014.

Cuntz, M., Mai, J., Samaniego, L., Clark, M., Wulfmeyer, V., Branch, O., Attinger, S., and Thober, S.: The impact of standard and hard-coded470

parameters on the hydrologic fluxes in the Noah-MP land surface model, Journal of Geophysical Research: Atmospheres, 121, 10,676–

10,700, https://doi.org/https://doi.org/10.1002/2016JD025097, https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2016JD025097,

2016.

Da Silva, P. P.: User interface declarative models and development environments: A survey, in: International Workshop on Design, Specifi-

cation, and Verification of Interactive Systems, pp. 207–226, Springer, https://doi.org/10.1007/3-540-44675-3_13, 2000.475

Díaz, E., Panach, J. I., Rueda, S., and Vanderdonckt, J.: An empirical study of rules for mapping BPMN models to graphical user interfaces,

Multimedia Tools and Applications, pp. 1–36, https://doi.org/https://doi.org/10.1007/s11042-020-09651-6, 2020.

Fardoun, H. M., Tesoriero, R., Sebastian, G., and Safa, N.: A Simplified MbUID Process to Generate Web Form-based UIs., in: Proceedings

of the 13th International Conference on Software Technologies (ICSOFT 2018), pp. 835–842, Science and Technology Publications, Lda,

https://doi.org/10.5220/0006943908010808, 2018.480

Fellmann, T., Kavakli, M., et al.: A command line interface versus a graphical user interface in coding VR systems, in: Proceedings of the

Second IASTED International Conference on Human Computer Interaction. ACTA Press, 2007.

21

https://doi.org/https://doi.org/10.1016/S1389-1286(99)00044-4
https://doi.org/10.5194/tc-14-331-2020
https://tc.copernicus.org/articles/14/331/2020/
https://doi.org/doi:10.5194/gmd-7-3135-2014
https://doi.org/10.5281/zenodo.5718629
https://arc.lib.montana.edu/snow-science/objects/ISSW2018_O08.2.pdf
https://arc.lib.montana.edu/snow-science/objects/ISSW2018_O08.2.pdf
https://arc.lib.montana.edu/snow-science/objects/ISSW2018_O08.2.pdf
https://doi.org/10.5334/dsj-2020-006
https://doi.org/http://dx.doi.org/10.16904/envidat.194
https://www.envidat.ch/dataset/inishell-2-0-4
https://www.envidat.ch/dataset/inishell-2-0-4
https://www.envidat.ch/dataset/inishell-2-0-4
https://doi.org/10.1007/978-3-319-92081-8_8
https://doi.org/10.15546/aeei-2016-0009
https://doi.org/https://doi.org/10.1207/s15327590ijhc1703_3
https://doi.org/10.13140/2.1.3463.9363
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.866.2893&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.866.2893&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.866.2893&rep=rep1&type=pdf
https://doi.org/https://doi.org/10.1002/2016JD025097
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2016JD025097
https://doi.org/10.1007/3-540-44675-3_13
https://doi.org/https://doi.org/10.1007/s11042-020-09651-6
https://doi.org/10.5220/0006943908010808

Fitzpatrick, B. G.: Issues in reproducible simulation research, Bulletin of mathematical biology, 81, 1–6,

https://doi.org/https://doi.org/10.1007/s11538-018-0496-1, 2019.

Frost, B.: Atomic design, Brad Frost Pittsburgh, https://atomicdesign.bradfrost.com/, 2016.485

Galizia, A., Zereik, G., Roverelli, L., Danovaro, E., Clematis, A., and D’Agostino, D.: Json-GUI—A module for the dynamic generation of

form-based web interfaces, SoftwareX, 9, 28–34, https://doi.org/https://doi.org/10.1016/j.softx.2018.11.007, 2019.

Gambino, O., Rundo, L., Cannella, V., Vitabile, S., and Pirrone, R.: A framework for data-driven adaptive GUI generation based on DICOM,

Journal of biomedical informatics, 88, 37–52, 2018.

Goodger, B., Hickson, I., Hyatt, D., and Waterson, C.: XML User Interface Language (XUL) 1.0, Tech. rep., Mozilla.org, https:490

//www-archive.mozilla.org/projects/xul/xul, 2001.

Grünewald, T., Wolfsperger, F., and Lehning, M.: Snow farming: conserving snow over the summer season, The Cryosphere, 12, 385–400,

https://doi.org/10.5194/tc-12-385-2018, 2018.

Haberkorn, A., Wever, N., Hoelzle, M., Phillips, M., Kenner, R., Bavay, M., and Lehning, M.: Distributed snow and rock temperature

modelling in steep rock walls using Alpine3D, The Cryosphere, 11, 585–607, https://doi.org/10.5194/tc-11-585-2017, 2017.495

Havens, S., Marks, D., Sandusky, M., Hedrick, A., Johnson, M., Robertson, M., and Trujillo, E.: Automated Water Supply Model (AWSM):

Streamlining and standardizing application of a physically based snow model for water resources and reproducible science, Computers

& Geosciences, 144, 104 571, https://doi.org/https://doi.org/10.1016/j.cageo.2020.104571, https://www.sciencedirect.com/science/article/

pii/S0098300420305598, 2020.

ISO: ISO/IEC 14882:1998: Programming languages — C++, International Organization for Standardization, 1998.500

Jamieson, R. A., Beaumont, C., Warren, C., and Nguyen, M.: The Grenville Orogen explained? Applications and limitations

of integrating numerical models with geological and geophysical data, Canadian Journal of Earth Sciences, 47, 517–539,

https://doi.org/https://doi.org/10.1139/E09-070, 2010.

Kennard, R. and Leaney, J.: Towards a general purpose architecture for UI generation, Journal of Systems and Software, 83, 1896–1906,

https://doi.org/https://doi.org/10.1016/j.jss.2010.05.079, https://www.sciencedirect.com/science/article/pii/S0164121210001597, 2010.505

Köhler, A., Fischer, J.-T., Scandroglio, R., Bavay, M., McElwaine, J., and Sovilla, B.: Cold-to-warm flow regime transition in snow

avalanches, The Cryosphere, 12, 3759–3774, https://doi.org/10.5194/tc-12-3759-2018, 2018.

Lamb, C. and Zacchiroli, S.: Reproducible Builds: Increasing the Integrity of Software Supply Chains, IEEE Software, 2021.

Lehning, M., Bartelt, P., Brown, B., Fierz, C., and Satyawali, P.: A physical SNOWPACK model for the Swiss avalanche warning: Part II.

Snow microstructure, Cold regions science and technology, 35, 147–167, https://doi.org/https://doi.org/10.1016/S0165-232X(02)00073-3,510

2002.

Machado, M., Couto, R., and Campos, J. C.: MODUS: Model-Based User Interfaces Prototyping, in: Proceedings of the ACM SIGCHI

Symposium on Engineering Interactive Computing Systems, EICS ’17, p. 111–116, Association for Computing Machinery, New York,

NY, USA, https://doi.org/10.1145/3102113.3102146, https://doi.org/10.1145/3102113.3102146, 2017.

Martin, J.: Managing the data base environment, Prentice Hall PTR, 1983.515

Martin, R. C.: Clean code: a handbook of agile software craftsmanship, Pearson Education, 2009.

Meixner, G., Paternò, F., and Vanderdonckt, J.: Past, Present, and Future of Model-Based User Interface Development, i-com, 10, 2–11,

https://doi.org/10.1524/icom.2011.0026, 2011.

Mendoza, V. and Novick, D. G.: Usability over time, in: Proceedings of the 23rd annual international conference on Design of communica-

tion: documenting & designing for pervasive information, pp. 151–158, https://doi.org/10.1145/1085313.1085348, 2005.520

22

https://doi.org/https://doi.org/10.1007/s11538-018-0496-1
https://atomicdesign.bradfrost.com/
https://doi.org/https://doi.org/10.1016/j.softx.2018.11.007
https://www-archive.mozilla.org/projects/xul/xul
https://www-archive.mozilla.org/projects/xul/xul
https://www-archive.mozilla.org/projects/xul/xul
https://doi.org/10.5194/tc-12-385-2018
https://doi.org/10.5194/tc-11-585-2017
https://doi.org/https://doi.org/10.1016/j.cageo.2020.104571
https://www.sciencedirect.com/science/article/pii/S0098300420305598
https://www.sciencedirect.com/science/article/pii/S0098300420305598
https://www.sciencedirect.com/science/article/pii/S0098300420305598
https://doi.org/https://doi.org/10.1139/E09-070
https://doi.org/https://doi.org/10.1016/j.jss.2010.05.079
https://www.sciencedirect.com/science/article/pii/S0164121210001597
https://doi.org/10.5194/tc-12-3759-2018
https://doi.org/https://doi.org/10.1016/S0165-232X(02)00073-3
https://doi.org/10.1145/3102113.3102146
https://doi.org/10.1145/3102113.3102146
https://doi.org/10.1524/icom.2011.0026
https://doi.org/10.1145/1085313.1085348

Meyers, S.: Effective C++: 50 Specific Ways to Improve Your Programs and Designs, Addison-Wesley Publishing Company, 2 edn., 1992.

Morin, S., Horton, S., Techel, F., Bavay, M., Coléou, C., Fierz, C., Gobiet, A., Hagenmuller, P., Lafaysse, M., Ližar,

M., et al.: Application of physical snowpack models in support of operational avalanche hazard forecasting: A sta-

tus report on current implementations and prospects for the future, Cold regions science and technology, 170, 102 910,

https://doi.org/https://doi.org/10.1016/j.coldregions.2019.102910, 2020.525

Mortezapour, M., Menounos, B., Jackson, P. L., Erler, A. R., and Pelto, B. M.: The role of meteorological forcing and snow model

complexity in winter glacier mass balance estimation, Columbia River basin, Canada, Hydrological Processes, 34, 5085–5103,

https://doi.org/https://doi.org/10.1002/hyp.13929, 2020.

Munafò, M. R., Nosek, B. A., Bishop, D. V., Button, K. S., Chambers, C. D., Du Sert, N. P., Simonsohn, U., Wagenmakers, E.-J., Ware, J. J.,

and Ioannidis, J. P.: A manifesto for reproducible science, Nature human behaviour, 1, 1–9, 2017.530

Myers, B. A. and Rosson, M. B.: Survey on user interface programming, in: Proceedings of the SIGCHI conference on Human factors in

computing systems, pp. 195–202, ACM, Publ by ACM, 1992.

Navarro Leija, O. S., Shiptoski, K., Scott, R. G., Wang, B., Renner, N., Newton, R. R., and Devietti, J.: Reproducible Containers, in:

Proceedings of the Twenty-Fifth International Conference on Architectural Support for Programming Languages and Operating Systems,

ASPLOS ’20, pp. 167–182, https://doi.org/10.1145/3373376.3378519, 2020.535

Oden, J. T., Belytschko, T., Fish, J., Hugues, T. J., Johnson, C., Keyes, D., Laub, A., Petzold, L., Srolovitz, D., Yip, S., and Bass, J.:

Simulation-based engineering sciences, Tech. rep., National Science Foundation, https://www.nsf.gov/pubs/reports/sbes_final_report.pdf,

2006.

Paterno, F.: Model-based design and evaluation of interactive applications, Springer Science & Business Media, 1999.

Paterno’, F., Santoro, C., and Spano, L. D.: MARIA: A Universal, Declarative, Multiple Abstraction-Level Language for Service-Oriented540

Applications in Ubiquitous Environments, ACM Trans. Comput.-Hum. Interact., 16, https://doi.org/10.1145/1614390.1614394, https:

//doi.org/10.1145/1614390.1614394, 2009.

Peng, R. D.: Reproducible research in computational science, Science, 334, 1226–1227, https://doi.org/10.1126/science.1213847, 2011.

Rasmus, S., Kivinen, S., Bavay, M., and Heiskanen, J.: Local and regional variability in snow conditions in northern Finland: a reindeer

herding perspective, Ambio, 45, 398–414, https://doi.org/https://doi.org/10.1007/s13280-015-0762-5, 2016.545

Rougier, N. P., Hinsen, K., Alexandre, F., Arildsen, T., Barba, L. A., Benureau, F. C., Brown, C. T., De Buyl, P., Caglayan, O., Davison, A. P.,

et al.: Sustainable computational science: the ReScience initiative, PeerJ Computer Science, 3, e142, https://doi.org/10.7717/peerj-cs.142,

2017.

Sato, A., Ishizaka, M., Shimizu, M., Kobayashi, T., Nishimura, K., Nakai, S., Sato, T., Abe, O., Kosugi, K., Yamaguchi, S., et al.: Construction

of snow disaster forecasting system in Japan, Snow Engineering V, pp. 235–238, 2004.550

Schaefer, R., Bleul, S., and Mueller, W.: Dialog modeling for multiple devices and multiple interaction modalities, in: International Workshop

on Task Models and Diagrams for User Interface Design, pp. 39–53, Springer, https://doi.org/10.1007/978-3-540-70816-2_4, 2006.

Schlögl, S., Marty, C., Bavay, M., and Lehning, M.: Sensitivity of Alpine3D modeled snow cover to modifications in

DEM resolution, station coverage and meteorological input quantities, Environmental Modelling & Software, 83, 387–396,

https://doi.org/https://doi.org/10.1016/j.envsoft.2016.02.017, 2016.555

Spreitzhofer, G., Fierz, C., and Lehning, M.: SN_GUI: a graphical user interface for snowpack modeling, Computers & geosciences, 30,

809–816, https://doi.org/https://doi.org/10.1016/j.cageo.2004.05.011, 2004.

23

https://doi.org/https://doi.org/10.1016/j.coldregions.2019.102910
https://doi.org/https://doi.org/10.1002/hyp.13929
https://doi.org/10.1145/3373376.3378519
https://www.nsf.gov/pubs/reports/sbes_final_report.pdf
https://doi.org/10.1145/1614390.1614394
https://doi.org/10.1145/1614390.1614394
https://doi.org/10.1145/1614390.1614394
https://doi.org/10.1145/1614390.1614394
https://doi.org/10.1126/science.1213847
https://doi.org/https://doi.org/10.1007/s13280-015-0762-5
https://doi.org/10.7717/peerj-cs.142
https://doi.org/10.1007/978-3-540-70816-2_4
https://doi.org/https://doi.org/10.1016/j.envsoft.2016.02.017
https://doi.org/https://doi.org/10.1016/j.cageo.2004.05.011

Voronkov, A., Martucci, L. A., and Lindskog, S.: System administrators prefer command line interfaces, don’t they? an exploratory study

of firewall interfaces, in: Fifteenth Symposium on Usable Privacy and Security ({SOUPS} 2019), pp. 259–271, USENIX Association,

https://www.usenix.org/conference/soups2019/presentation/voronkov, 2019.560

24

https://www.usenix.org/conference/soups2019/presentation/voronkov

