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Answer to Anonymous Referee #2

> 1) It seems to me that the authors did not adopt the best techniques for the objective.
For example, the authors adopted C++/Qt for creating the GUI, which means that the
tool is dedicated to the local desktop environment. I was hoping that the tool can be
Web based to allow wider and easier access. Another example is about the XML and
INI. I understand that INI is more human friendly; however, a better option is YAML,
which is also human friendly and better on supporting complex hierarchical structure,
which is important for describing the models.

Regarding the choice of execution environment, the authors had an extended period
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of time to reflect on this topic before starting working on the major rewrite that is pre-
sented in this paper. We considered both a web based version and a fat client version.
In the end, we felt that on the long term, most probably both version will be required,
although for different use cases. As we have also been leading the development of
a complex web based data visualization tool (see https://niviz.org for visualization and
editing of snow profiles, 121k lines of code) over many years, we have gathered ex-
perience in both kind of technologies. A web based version offers an easier access
(no need to install anything) but suffers from our point of view from the following limi-
tations: first, we had noticed that for our users, being able to run the numerical model
from within the GUI is a major requirement. On of the major negative feedback to our
numerical models was that the users had to open a terminal, go to the proper direc-
tory and run the numerical model from the command line. This had implications in
terms of support requests (many requests were directly related to using the terminal),
users frustration and acceptance of the original Inishell GUI (many users would not go
back and forth between Inishell and their terminal emulator and ended up discarding
the original Inishell, thus loosing the benefits of input validation, online documentation
etc). Unfortunately, because of the sandboxing requirements of web technologies it is
not possible to run a local program on the user’s computer from a web environment.
Another limitation that we saw is the relative lack of maturity of most of the client-side
web technologies. A complex web based tool will be based on numerous third party
libraries that so far evolve very fast and often lead to incompatibilities in a very short
time frame. This means that the long term maintenance of a complex tool almost man-
dates full rewrites of the said tool every couple of years in order to migrate away from
deprecated dependencies. This represents a major investment for an open source
software that is not self funded. Finally, the programming model of Qt/C++ is much
more familiar to the traditional scientific model developer than that of Javascript, mean-
ing that low complexity changes can be implemented by a scientific model developer if
need be in the fat client version while almost any change in a web based tool requires
an outsourcing contract (although the idea behind Inishell is to avoid having to edit the
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source code, there might always be some minor bugs and annoyances to fix).

Regarding the choice of file formats, it was also a compromise. We considered moving
away from the XML files to store the configuration data data model but preferred to
keep this format in order to reduce the risks associated with the rewrite that we were
performing. As these files are not directly exposed to the end users, we might still
move to a different format and different syntax at a later stage. But independently of
the format and syntax, the main point is that the current level of expressiveness covers
adequately the needs of multiple scientific numerical models. The format of the storage
of the configuration data (INI files) has also been the result of a compromise. Within
our field of cryosphere modeling, there is already a wide range of strategies to deal with
configuration parameters, from direct source code editing (the parameters are therefore
hard-coded, this happens often in models implemented in a scripting language such as
Python, Matlab or Julia), INI variants (usually without even an explicit and consistent
syntax definition), INI variants with some namespace structures (although some model
only have one namespace that starts and ends the configuration file) and XML files.
Some models relied on multiple configuration files or a mixed approach between hard-
coded configuration parameters (that had to be manually edited in the source code)
and some configuration files. We decided quite early in favor of an explicitly defined INI
syntax in order to keep the configuration files sufficiently similar to the legacy ones so
the end users would not struggle too much when porting their configurations to the new
syntax. This is also the result of a compromise between the user friendliness of the
syntax and its expressiveness and robustness: we always had to support direct editing
of the configuration files (ie without relying on our GUI which is specially relevant until
we can ensure that our GUI can cover all the needs of all our users) as well as editing
through scripts (for automation such as running a large number of related simulations).

> 2) The paper did not provide a clear approach on handling geospatial information,
which is quite common for geoscientific models. I noticed that the paper briefly men-
tioned about the geographical coordinates, but did not mention other forms of geospa-
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tial information, such as polygon, raster.

So far, all the geospatial information that we have encountered beyond simple geo-
graphical coordinates have been handled directly by the underlying numerical models
as input data and not as configuration data, therefore this kind of information is not
"seen" in the GUI itself besides providing input files or web services end points. As
we’ve noticed that snippets of information (such as a few time ranges) are more obvi-
ously visible when provided as configuration data than as input data (somehow hidden
within an input file), we might add more support for other forms of geospatial informa-
tion in the future (but this will also have to be a compromise between the amount of
information contained in the configuration file and the readability of the said file).

> 3) It is important to clarify how the tool is compatible with the standards and specifics
that are using by the community, such as these from the OGC. Otherwise, it will be a
closed system that is hard to adopt by others.

So far we have adopted several standards (such as date and time representations) but
as Inishell is only focused on configuration data and mostly handles quite basic types,
there is little overlap with standards such as those from the OGC (on the other hand,
there is much more overlap with OGC standards in the underlying numerical models).
In the future, depending on the needs that may arise, Inishell might gain more complex
data types that would be more within the scope of standards such as OGC.

> 4) The paper has been written like a technical document instead of a research article.
It has been focused on presenting the specs of the tool, but not much on the justification
of the approach and the scientific contributions the tool can bring to the community,
especially on reusing the scientific models.

Following the comments of reviewer #1, we have expanded the introduction section
and reframed Inishell within the context of declarative User Interface Model (UIM, see
(DaSilva, 2000) and (Díaz et al., 2020)). In this context, Inishell shows that within a
niche application such as the configuration of scientific numerical models, it is both
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easy and efficient to rely on this approach in order to provide a GUI to the end users.
We have also expanded the description of our approach to include the strategy to deal
with configuration data within the scientific numerical model. We hope to show to nu-
merical mode developers the benefits this approach can bring: less support requests,
low maintenance needs, high flexibility to accommodate new configuration options and
better reproducibility of the model results. We have also added a discussion part to
the paper in order to reflect on our practical experience from the point of view of model
developers and maintainers.
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