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Figure S1. Schematic diagram of the components of UKESM1 and the associated code structuring and coupling relationships. Circular
arrows indicate couplings between closely associated component codes, while large arrows indicate couplings between separate and distinct

component codes (principally the atmosphere and ocean).
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Figure S2. Schematic diagram of the MEDUSA-2.1 marine biogeochemistry model, showing both its components and their linkages. The

model includes the biogeochemical cycles of nitrogen, silicon, iron, carbon, alkalinity and oxygen in a dual size class nutrient-phytoplankton-

zooplankton-detritus framework. Components with solid borders are those explicitly represented as passive tracers in MEDUSA-2.1, while

those with dashed borders are implicit to reduce model cost. These are either linked via rigid stoichiometry to explicit components (e.g.

carbon in plankton) or occur only temporarily (e.g. fast-sinking detritus). Oxygen has been omitted from the diagram for simplicity.



Observed Model

Latitude [°N]

0. N L " ' L L L L L L L _ N N N N N N N N N " " "
JFMAMJJASOND goJFMAMJJASOND
Time [month] Time [monthl

Model - Observed
90 T T T

Latitude [ °N]

o||||||||||||
JFMAMJ JASOND
Time Imanthl

Figure S3. Observed (left; HadISST) and simulated (right) Hovmoller diagrams of sea surface temperature (in °C).



Observed, JJUA Simulated, JJA

Figure S4. Observational (WOA, 2013) and simulated sea surface salinity for northern (top; JJA) and southern (medium; DJF) summer.

Differences (simulated - observed) for both seasons shown in bottom row. Salinity (and difference in salinity) in PSU.



Observed, March Simulated, March

Figure S5. Observational (left; NSIDC) and simulated (right) maximum (top; March) and minimum (bottom; September) sea-ice thickness

for the Arctic. Model sea-ice thicknesses of less than 0.01 m have been masked. Sea-ice thickness is in m.
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Figure S6. A “thermohaline circulation” section of observed (top) and modelled (bottom) zonal potential density anomaly (og; referenced

to atmospheric pressure). Figure 6 explains the format of this section. Potential density anomaly in kg m™* (minus 1000 kg m™>).
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Figure S7. Observationally-derived (left; World Ocean Atlas) and simulated (right) annual average pycnocline depth. Depth derived using
the Gnanadesikan et al. (2002) methodology and full three-dimensional fields of potential temperature and salinity. Pycnocline depth in m,

and shown on a linear scale.
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Figure S8. Time-series plots of mean surface DIN (left) and verticagy—integrated primary production (right) during the Historical period
from 1850 to 2015. Time-series are shown for global (row 1), North Atlantic (row 2), North Pacific (row 3) and Southern Ocean (row 4)

regions. Panels show annual averages for all 9 ensemble members (coloured lines) and the ensemble mean (solid black line).
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Figure S9. Time-series plots of mean mixed layer depth for the main productive biomes during the Historical period from 1850 to 2015.

Panels show annual averages for the North Atlantic (top left), North Pacific (top right), and Southern Ocean (bottom). All 9 ensemble

members are shown (coloured lines), together with the ensemble mean (solid black line).
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Figure S10. Taylor diagrams illustrating the seasonal and regional skill of UKESM1 over the set of standard surface ocean of biogeochemical
properties: DIN (row 1, left), silicic acid (row 1, centre), chlorophyll (row 1, right), primary production (row 2, left), DIC (row 2, centre),

alkalinity (row 2, right) and air-sea CO2 flux (row 3). The diagrams share a common model key (row 3).
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Figure S11. Annual mean observed (top left) and simulated (top right) mesozooplankton biomass, together with latitudinal averages for

northern summer (bottom left; JJA) and southern summer (bottom right; DJF). Concentrations in mg C m~3.
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Figure S12. Observed (left; Rodenbeck et al. (2013)) and simulated (right) surface carbon dioxide partial pressure, shown geographically for

northern (top; JJA)and southern summer (middle; DJF), and as zonal Hovmoller diagrams (bottom). pCO2 in patm.
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Figure S13. Observed (left; Lana et al. (2011)) and simulated (right) surface dimethylsulfide concentration, shown geographically for north-

ern (top; JJA)and southern summer (middle; DJF), and as zonal Hovméller diagrams (bottom). DMS concentration in gzmol S m™3.
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Figure S14. A “thermohaline circulation” section of observed (top) and modelled (bottom) zonal average silicic acid. Figure 6 explains the

format of this section. Concentrations in mmol Si m~>.
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Figure S15. A “thermohaline circulation” section of observed (top) and modelled (bottom) zonal average dissolved oxygen. Figure 6 explains

the format of this section. Concentrations in mmol O m™>.
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Figure S16. A “thermohaline circulation” section of observed (top) and modelled (bottom) zonal average alkalinity. Figure 6 explains the

format of this section. Concentrations in meq m™°.
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Figure S17. A “thermohaline circulation” section of observed (top) and modelled (bottom) zonal average CFC-11. Figure 6 explains the

format of this section. Concentrations in nmol m™2.
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Figure S18. Simulated patterns of most-limiting nutrient for non-diatom (left; N and Fe) and diatom (right; N, Si and Fe) phytoplankton.

Limitation is summertime mean, weighted by biomass and integrated for the full water column.
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Figure S19. Intercomparison of annual mean surface dissolved inorganic nitrogen concentration in the Arctic between observed (top row,

left), UKESM1 simulated (top row, centre) and a range of comparable CMIP6 models (rows 2—4). DIN concentration in mmol N m~3.
Previously published results from MEDUSA-2 (Yool et al., 2013) are shown for comparison (top row, right).
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Figure S20. Surface alkalinity plotted against surface salinity for observations (red dots) and model (blue dots). Lines are corresponding

linear regressions, with equations shown below legend. Salinity in PSU, alkalinity in meq m~3.
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Figure S21. Intercomparison of annual mean surface dissolved inorganic nitrogen concentration between observed (top row, left), UKESM1
simulated (top row, centre) and a range of comparable CMIP6 models (rows 2—4). DIN concentration in mmol N m~2. Results from CMIP5’s

precursor to UKESM1, HadGEM2-ES (Jones et al., 2011; row 2, left) and MEDUSA-2 (Yool et al., 2013; top row, right) are shown for
comparison.
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Figure S22. Intercomparison of annual mean surface silicic acid concentration between observed (top row, left), UKESM1 simulated (top
row, centre) and a range of comparable CMIP6 models (rows 2—4). Results from CMIP5’s precursor to UKESM 1, HadGEM?2-ES (Jones et al.,
2011; row 2, left) and MEDUSA-2 (Yool et al., 2013; top row, right) are shown for comparison. Silicic acid concentration in mmol Si m3.
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Figure S23. Intercomparison of annual mean surface chlorophyll concentration between observed (top row, left), UKESM1 simulated (top
row, centre) and a range of comparable CMIP6 models (rows 2—4). Results from CMIP5’s precursor to UKESM 1, HadGEM2-ES (Jones et al.,
2011; row 2, left) and MEDUSA-2 (Yool et al., 2013; top row, right) are shown for comparison. Chlorophyll concentration in mg chl m~2.
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Figure S24. Intercomparison of annual mean surface dissolved inorganic carbon concentration between observed (top row, left), UKESM1
simulated (top row, centre) and a range of comparable CMIP6 models (rows 2—4). Results from CMIP5’s precursor to UKESM1, HadGEM2-

ES (Jones et al., 2011; row 2, left) and MEDUSA-2 (Yool et al., 2013; top row, right) are shown for comparison. DIC concentration in
mmol C m~3.
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Figure S25. Intercomparison of annual mean surface alkalinity between observed (top row, left), UKESM1 simulated (top row, centre) and
a range of comparable CMIP6 models (rows 2—4). Results from CMIP5’s precursor to UKESM1, HadGEM2-ES (Jones et al., 2011; row 2,
left) and MEDUSA-2 (Yool et al., 2013; top row, right) are shown for comparison. Alkalinity in meq m~3
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Figure S26. Intercomparison of annual mean air-sea CO2 flux between observed (top row, left), UKESM1 simulated (top row, centre) and

a range of comparable CMIP6 models (rows 2—4). Results from CMIP5’s precursor to UKESM1, HadGEM2-ES (Jones et al., 2011; row 2,

left) and MEDUSA-2 (Yool et al., 2013; top row, right) are shown for comparison. Red / blue colours respectively indicate flux into / out of
the ocean. CO» flux in mmol C m~2d ™.
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HH

RunID Branch point Ensemble ID

0 wu-aw3i0 - -

1 u-az513 170y r5ilplf2
2 uv-az5l5 200y r6ilplf2
3 u-az524 145y r7ilp1f2
4 u-bb075 110y rdilplf2
5  u-bb277 710y r8ilplf2
6  u-bcl79 400 y rlilplf2
7 u-bc292 315y 2ilplf2
8  u-bc370 270y r3ilplf2
9  u-bc470 435y M9ilplf2

Table S1. Historical ensemble members used in this study. Run IDs are the formal job identification tags of the ensemble members on
local systems, and can be used to access full model outputs on the MASS archive system. The branch points indicate the time points of the
piControl simulation from which model states were taken to initialise the ensemble members. The ensemble IDs are the experimental variant

identifiers used in the ESGF. Note that the table is ordered by run ID and not branch point time.
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https://furtherinfo.es-doc.org/CMIP6.NCAR.CESM2-FV2.historical.none.r1i1p1f1
https://furtherinfo.es-doc.org/CMIP6.CNRM-CERFACS.CNRM-ESM2-1.historical.none.r1i1p1f2
https://furtherinfo.es-doc.org/CMIP6.CCCma.CanESM5.historical.none.r1i1p1f1
https://furtherinfo.es-doc.org/CMIP6.IPSL.IPSL-CM6A-LR.historical.none.r32i1p1f1
https://furtherinfo.es-doc.org/CMIP6.MIROC.MIROC-ES2L.historical.none.r1i1p1f2
https://furtherinfo.es-doc.org/CMIP6.MPI-M.MPI-ESM1-2-LR.historical.none.r1i1p1f1
https://furtherinfo.es-doc.org/CMIP6.MRI.MRI-ESM2-0.historical.none.r1i2p1f1
https://furtherinfo.es-doc.org/CMIP6.NCC.NorESM2-LM.historical.none.r1i1p1f1

