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Abstract. The ocean plays a key role in modulating the climate of the Earth system (ES). At the present time it is also

a major sink both for the carbon dioxide (CO2) released by human activities as well as for the excess heat driven by the

resulting atmospheric greenhouse effect. Understanding the ocean’s role in these processes is critical for model projections of

future change and its potential impacts on human societies. A necessary first step in assessing the credibility of such future

projections is an evaluation of their performance against the present state of the ocean. Here we use a range of observational5

fields to validate the physical and biogeochemical performance of the ocean component of UKESM1, a new Earth system

model (ESM) for CMIP6 built upon the HadGEM3-GC3.1 physical climate model. Analysis focuses on the realism of the

ocean’s physical state and circulation, its key elemental cycles, and its marine productivity. UKESM1 generally performs well

across a broad spectrum of properties, but it exhibits a number of notable biases. Physically, these include a global warm

bias inherited from model spin-up, excess northern sea-ice but insufficient southern sea-ice, and sluggish interior circulation.10

Biogeochemical biases found include shallow remineralisation of sinking organic matter, excessive iron stress in regions such

as the Equatorial Pacific, and generally lower surface alkalinity that results in decreased surface and interior dissolved inorganic

carbon (DIC) concentrations. The mechanisms driving these biases are explored to identify consequences for the behaviour of

UKESM1 under future climate scenarios, and avenues for model improvement. Finally, across key biogeochemical properties,

UKESM1 improves in performance relative to its CMIP5 precursor, and performs well alongside its fellow members of the15

CMIP6 ensemble.

Key points

– Physical and biogeochemical evaluation of the ocean component of the UKESM1 model

– Identification and investigation of present-day biases in major properties

– UKESM1 improves on CMIP5 predecessor and compares well with CMIP6 ensemble20
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1 Introduction

The climate dynamics of the Earth system are a product in large part of the two interacting geophysical fluids at the planet’s25

surface: the atmosphere and the ocean. Both are reservoirs for heat and the greenhouse gas carbon dioxide (CO2), one of

several climatically-relevant chemical constituents. Because of the high specific heat capacity of water, as well as the chemical

buffering capacity of seawater, the ocean stores the majority of the Earth system’s active reserves of both. Over the past few

centuries, the atmospheric concentration of CO2 has risen exponentially from its quasi-stable interglacial background of around

278 ppm to more than 400 ppm. This growth is largely driven by the release of CO2 through anthropogenic processes such30

as fossil fuel combustion, land clearance and cement production. This change in the CO2 airborne fraction of the atmosphere

has also altered its radiative transfer properties toward retaining a greater fraction of outgoing long-wave radiation, resulting in

atmospheric warming and change to the climate of the Earth system. Further, for the reasons identified above, the ocean is the

destination for the majority of these anthropogenic perturbations in both heat and carbon dioxide (e.g. Archer, 2005; Kuhlbrodt

et al., subm.).35

Leaving aside the relatively static inventory within the geosphere, the Earth’s carbon cycle partitions this element dynami-

cally between atmosphere, ocean and land systems, including the living systems of the marine and terrestrial biosphere. While

ongoing climate change is driven in the first instance by change in carbon (as CO2) in the atmosphere, this reservoir represents

only approximately 1.4% of the total (pre-industrial) dynamic pool (Ciais et al., 2013), compared with 6.0% for land systems

(excluding permafrost) and 92.6% for ocean systems (excluding seafloor sediments). This dominance of the ocean reflects the40

solubility of inorganic carbon in seawater, and ultimately the majority fraction of these anthropogenic emissions is expected to

be absorbed into the ocean (Archer, 2005). However, the magnitude of this, as well as the rate at which it occurs is dependent

upon a raft of physico-chemical and biological processes, including surface solubility, deep ocean ventilation and circulation,

and biological uptake and deep sequestration via sinking biogenic particles. Representing this uptake within an ESM requires

realistic performance across many aspects of its simulated ocean state, both physical and biogeochemical, and both surface and45

interior.

The situation is similar for heat, with observations over recent decades showing a clear upward trend in ocean heat content

since the 1960s at the earliest, and accelerating since the 1990s (Levitus et al., 2012; Cheng et al., 2017). Approximately 90%

of the anthropogenic imbalance in the Earth’s heat content is stored within the ocean (Meyssignac et al., 2019). Consequently,

and similarly to carbon, simulating this important property requires ESMs to accurately represent a broad range of physical50

phenomena, such as ocean circulation and mixing that distribute heat, as well as sea-ice that caps its exchange and affects

albedo.

This manuscript is concerned with the realism of the ocean component of UKESM1, during CMIP6 Historical period simu-

lations (1850-2014; Eyring et al., 2016. It has three primary goals:

– First, to evaluate the performance of UKESM1 against observational metrics, and identify biases in physical and biogeo-55

chemical properties.

– Second, to identify the first-order causes of biases found, to elucidate where modelled processes may be less realistic.
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– Third, to identify avenues for addressing model limitations and weaknesses in future versions.

Model performance is evaluated across a broad range of properties to identify biases, with analysis focusing on the near-present

period of 2000-2009 because of the greater availability of observational data in recent decades. Overall, the manuscript aims60

to facilitate subsequent more in-depth analyses of the model by identifying ocean states or processes where its representation

is weaker. A summary analysis across all of UKESM1’s components can be found in Sellar et al. (2019).

The manuscript is structured as follows. A brief introduction to UKESM1 is presented, with an emphasis on its ocean

components, followed by outlines of the model simulations used and the observational datasets selected for their evaluation.

Results are then presented for the physical ocean, sea-ice and marine biogeochemistry components, with surface and interior65

bulk properties, dynamical and biogeochemical processes, and time-series examined. Discussion is focused on the major biases

identified, proposals for reducing these in future model revisions, and an evaluation of UKESM1 in the context of peer (and

precursor) CMIP models.
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2 Methods

2.1 Earth system model70

This study utilises UKESM1, a new state-of-the-art model built to simulate the coupled physical and biogeochemical dynamics

of the Earth system including its atmosphere, ocean and land systems. UKESM1 uses the Hadley Centre Global Environment

Model version 3 Global Coupled (GC) version 3.1 configuration, HadGEM3-GC3.1 (Williams et al., 2017; Kuhlbrodt et al.,

2018), as its core physical climate model. This is then extended through the addition of interactive stratospheric–tropospheric

trace gas chemistry, land biogeochemistry and ecosystem dynamics, and ocean biogeochemistry. In addition to the internal dy-75

namics of these components, the resulting ESM includes couplings between them to represent potential feedback processes or

interactions that may impact the time-evolution of the modelled climate. Sellar et al. (2019) provides an overview of UKESM1,

including its development and tuning, while Yool et al. (2020) describes the spin-up of its pre-industrial control (piControl)

state ahead of Historical period (1850-2014) simulations.

Supplementary Figure S1 shows a schematic overview of the constituent models of UKESM1. In outline, UKESM1 is80

comprised of closely-coupled atmosphere and land submodules that are linked through an explicit coupler module, OASIS3-

MCT_3.0 (Valcke, 2013; Craig et al., 2017), to coupled ocean and sea-ice submodules. All three major ES components –

atmosphere, land and ocean – are themselves built from submodels that separately represent domains such as physical dynam-

ics, biogeochemistry and ecosystem dynamics.

The physical dynamics of the atmosphere of UKESM1 are represented by GA7.1 (Mulcahy et al., 2018; Walters et al., 2019),85

which includes processes such as mass transport, radiative transfer, thermodynamics and the water cycle. The UK Chemistry

and Aerosols model (UKCA; Morgenstern et al., 2009; O’Connor et al., 2014) is coupled to GA7.1, and includes stratospheric

and tropospheric chemistry together with separate aerosol (Mann et al., 2010) and dust schemes (Woodward, 2011). UKESM1

adds several couplings that are absent in GA7.1, including natural emissions of monoterpenes, dimethyl sulphide (DMS) and

primary marine organic aerosols (PMOA), all of which are calculated dynamically from land and ocean components and which90

permit additional climate feedbacks. The atmosphere in UKESM1 also serves as a conduit for mineral dust, transferring this

from bare soil on land into the ocean where it can fuel biological production and CO2 uptake. Mulcahy et al. (2018), Sellar

et al. (2019), Archibald et al. (2020) and Mulcahy et al. (2020) provide further details of the atmospheric chemistry and aerosol

schemes in UKESM1.

Physics and biogeochemistry on land in UKESM1 is represented by the Joint UK Land Environment Simulator (JULES;95

Best et al., 2011; Clark et al., 2011). This is closely coupled to the Top-down Representation of Interactive Foliage and Flora

Including Dynamics model (TRIFFID; Cox, 2001; Jones et al., 2011), which represents plant and soil dynamics on land. TRIF-

FID developments new to CMIP6 include updated plant parameterisations (Kattge et al., 2011), increased plant functional types

(Harper et al., 2016), the production of volatile organic compounds (Pacifico et al., 2015), and nitrogen limitation of terrestrial

primary production and carbon uptake (Wiltshire et al., subm.). TRIFFID represents land-use by agriculture by reserving grid100

cell time-varying fractions for occupation by crops and pasture. For further details of UKESM1’s land component, please refer

to Sellar et al. (2019).
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The physical ocean component in UKESM1 makes use of the Nucleus for European Modelling of the Ocean framework

(NEMO; Madec et al., 2016) This is comprised of an ocean general circulation model, Océan PArallélisé version 9 (OPA9;

Madec et al., 1998; Madec, 2008), and is coupled here to a separate sea-ice model, the Los Alamos Sea Ice Model ver-105

sion 5.1.2 (CICE; Hunke et al., 2015). OPA9 is a primitive equation model of ocean dynamics, and is used within UKESM1

at a horizontal resolution of approximately 1◦ on a tripolar grid (Madec and Imbard, 1996) with enhanced equatorial res-

olution (the extended ORCA1 grid, or eORCA1). This shared configuration of NEMO, dubbed “shaconemo”, is used by a

number of European research groups, and many of its grid resolution-dependent settings are aligned with these other ESMs

(NEMO v3.6_stable; available from http://forge.ipsl.jussieu.fr/shaconemo). Some other parameterisations (typically110

resolution-independent) are drawn from the GO6 configuration of NEMO developed in the UK (Storkey et al., 2018). More

complete descriptions of the NEMO and CICE configurations used in UKESM1 (GO6, GSI8), including details of its sensitiv-

ity and resulting tuning, can be found in Storkey et al. (2018), Ridley et al. (2018) and Kuhlbrodt et al. (2018), while Kuhlbrodt

et al. (subm.) investigates ocean heat uptake.

Marine biogeochemistry in UKESM1 is represented by the Model of Ecosystem Dynamics, nutrient Utilisation, Sequestra-115

tion and Acidification (MEDUSA-2.1). MEDUSA-2.1 is “intermediate complexity” with a double size-class ecosystem that

represents phytoplankton, zooplankton and particulate detrital pools, and which explicitly includes the biogeochemical cycles

of nitrogen, silicon and iron nutrients as well as the cycles of carbon, alkalinity and oxygen (Supplementary Figure S2). During

its inclusion within UKESM1, a number of changes were introduced from its earlier predecessor model, MEDUSA-2, de-

scribed in Yool et al. (2013), and the version used here is identified as MEDUSA-2.1, to distinguish it. These changes include120

updated carbonate chemistry Orr and Epitalon (2015), the addition of empirical submodels of dimethyl sulphide (DMS; An-

derson et al., 2001 and primary marine organic aerosol (PMOA; Gantt et al., 2011; Gantt et al., 2012), and code improvements

such as variable volume (VVL) and the XML Input-Output Server (XIOS) (Meurdesoif, 2013). Within UKESM1, MEDUSA

interacts with other model components via the following feedback connections: atmosphere-ocean exchange of CO2; ocean-

to-atmosphere fluxes of DMS and PMOA; deposition of terrestrial iron to the ocean via atmospheric dust transport. A more125

complete description of MEDUSA-2.1 can be found in Appendix A.

In addition to the biogeochemical tracers of MEDUSA-2.1, UKESM1 includes the chlorofluorocarbon tracer, CFC-11. This

artificial tracer has an atmospheric time-history analogous to that of anthropogenic CO2, and can be used as a marker for

recently ventilated watermasses (Key et al., 2004). It can be measured from seawater samples with high accuracy, and provides

an additional measure here for evaluating simulated circulation.130

UKESM1 is the successor model to its CMIP5 predecessor, HadGEM2-ES (Collins et al., 2011). Many of its components

are evolved versions of those in the earlier model, including its land surface, physical atmospheric core, and atmospheric

chemistry components (Sellar et al., 2019). However, in the specific case of the ocean in UKESM1, its dynamical core, grid

domain, sea-ice, and marine biogeochemistry are wholly new and replace the corresponding components in HadGEM2-ES.

Consequently, there is no direct traceability between the oceans of the two generations of CMIP model. Nonetheless, as part of135

the assessment of UKESM1, elements of its performance relative to that of HadGEM2-ES are examined in Section 4.2.
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2.2 CMIP6 simulations

This study utilises simulations of the UKESM1 model performed as part of the 6th phase of the Coupled Model Intercompar-

ison Project (CMIP6). Model output is taken from the piControl and Historical simulations of CMIP6, and from an ensemble

of 9 members, consistent with Sellar et al. (2019). Each ensemble member represents a branch at a different time point from140

the piControl, after which the new simulation experiences time-varying changes in atmospheric and land-use properties char-

acteristic of the Historical period from start-1850 to end-2014. Ensemble branch points were chosen selectively to span the

variability in the model’s multi-decadal behaviour (Sellar et al., 2019). To achieve this the model’s behaviour across two major

ocean modes was sampled: the Atlantic Multi-decadal Oscillation (AMO; Kerr, 2000), and the Inter-decadal Pacific Oscillation

(IPO; Zhang et al., 1997; Power et al., 1999). Supplementary Table S1 lists the local run IDs of the simulations comprising the145

ensemble, together with their branch times from the piControl. The mean of this 9 member ensemble is used throughout the

following analysis, except where stated otherwise.

2.3 Datasets and evaluation

Model analysis in this study is focused on a subset of ocean properties. More complete evaluations of other UKESM1 com-

ponents can be found in the dedicated studies of Mulcahy et al. (2018) and Mulcahy et al. (2020) (aerosols), Archibald et al.150

(2020) (atmospheric chemistry) and Andrews et al. (2019) (radiative forcing, feedbacks and climate sensitivity). Sellar et al.

(2019) provides a summary overview of the full model.

The specific observational datasets used for evaluation are as follows:

– World Ocean Atlas 2013, for ocean physical (interior; Locarnini et al., 2013; Zweng et al., 2013) and biogeochemistry

(interior, surface; Garcia et al., 2014; Garcia et al., 2014) fields155

– Hadley Centre Sea Ice and Sea Surface Temperature (HadISST.2.2; Titchner and Rayner, 2014), for ocean SST and

sea-ice fields

– National Sea Ice Data Centre for sea-ice thickness (Stroeve and Meier, 2016) and sea-ice index (Fetterer et al., 2017)

– Estimating the Circulation and Climate of the Ocean (ECCO) V4r4 (Forget et al., 2015; Fukumori et al., 2019), for ocean

hydrodynamic circulation state160

– Smeed et al. (2018) for RAPID-MOCHA time-series measurements of the Atlantic meridional overturning circulation

(AMOC) at 26◦N

– SeaWiFS (O’Reilly et al., 1998), for surface ocean chlorophyll concentration

– Oregon State University Ocean Productivity group, for VGPM (Behrenfeld and Falkowski, 1997), Eppley-VGPM (Carr

et al., 2006) and CbPM (Westberry et al., 2008) vertically-integrated primary production165

– Rödenbeck et al. (2013) for observationally-derived global air-sea CO2 flux and surface pCO2
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– Lana et al. (2011) for surface dimethyl sulfide (DMS) concentrations

– Global Ocean Data Analysis Project v1.1 (Key et al., 2004) and v2 (Key et al., 2015; Lauvset et al., 2016), for interior

and surface carbonate biogeochemistry, including anthropogenic CO2

– Moriarty and O’Brien (2013) for the COPEPOD dataset of gridded zooplankton biomass170

Links to these datasets are given in Appendix D.

In addition, several derived variables are calculated from observational and model fields.

– Mixed layer depth (MLD) is calculated in the same way from both observed and modelled 3D fields of potential tem-

perature. MLD is determined to be the depth at which the vertical profile of potential temperature is 0.5◦C lower than

that at the depth of 5 m. Alternative MLD schemes using similar thresholds in potential density (either fixed or variable175

with temperature) were also examined, but global coverage was less complete with these (especially in sea-ice regions),

so the potential temperature criterion was favoured.

– Modelled integrated AMOC and Drake Passage transports are calculated here using the BGC-val toolkit (de Mora et al.,

2018). In the case of AMOC, the calculations are based on those of Kuhlbrodt et al. (2007) and McCarthy et al. (2015)

and use the cross-sectional area at the 26◦N transect to calculate the maximum depth-integrated current. Drake Passage180

transport is calculated following Donohoe et al. (2016) as the total, depth-integrated current along a north-south transect

between the South American continent and the Antarctic Peninsula. The methods for both transports are described in de

Mora et al. (2018).

– Model anthropogenic CO2 is estimated by differencing DIC fields from the Historical simulation of each ensemble

member with the corresponding DIC field from the piControl at the same relative timepoint. For example, we estimate185

anthropogenic CO2 in 1990 from a given Historical ensemble member as the difference between this member’s DIC

field at this particular time and the DIC field from the piControl simulation from the same timepoint, i.e. the time that

corresponds to 140 years (i.e. 1990− 1850 = 140) after the Historical ensemble member branched from the piControl.

This approach aims to account for drift in the simulations, although it omits changes driven by divergence in circulation

and biogeochemistry between the Historical and piControl simulations. These are assumed to be small in this method.190

Evaluation primarily uses the period 2000-2009 of the CMIP6 Historical simulation and compares to corresponding periods

of observational data. Some evaluated properties are not as comprehensively sampled, but we assume that the same time period

is likely to be representative of the ocean’s state and use this for consistency. The results shown make use of monthly clima-

tologies of both model output and observational data (where available) for this period. A number of figures illustrate observed

and modelled properties (and the biases of the latter) for the June-July-August (JJA) and December-January-February (DJF)195

meteorological seasons that correspond respectively to northern hemisphere summer and winter (and southern hemisphere

winter and summer).
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Throughout, fields of observational and model properties are plotted on their original horizontal and vertical grids. Where

these properties are directly intercompared, for instance in difference plots, observational fields are first regridded to the model

grid (using the scatteredInterpolant function of Matlab v2020a). In Section 4.2, horizontal fields of UKESM1 output200

are compared with those from fellow CMIP6 models, and here all models are regridded to a common, uniform 1◦ grid.
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3 Results

3.1 Surface physical ocean

Figure 1 shows observed (HadISST; Titchner and Rayner, 2014) and simulated global-scale sea surface temperature (SST) for

summer and winter in both hemispheres, together with (model - observed) patterns of difference. The model reproduces the205

main observed features, including latitudinal and seasonal gradients, upwelling regimes and major fronts. A number of biases

are also evident, including warm biases up to 4◦C in upwelling regimes (especially the equatorial Pacific), a general warm bias

in the Southern Ocean, cool biases of up to -2◦C throughout the subtropics, and a marked cold bias in the North Atlantic of

greater than -4◦C. The former Pacific biases occur in December-January-February (DJF) when tropical atmospheric convection

is primarily over the western Pacific warm pool, and the east-west pressure gradient is seasonally at a maximum. This gradient210

drives east-west wind stress and equatorial Ekman-induced upwelling, and a poor representation of this in UKESM1 likely

leads to reduced upwelling and the warm SST bias. A warm bias close to the North American coastline and strong cold bias

in the western North Atlantic occur due to resolution-dependent errors where the Gulf Stream separates too far north and then

extends too zonally across the North Atlantic (Marzocchi et al., 2015; Hirschi et al., 2020). Similar but less marked biases

occur in the Pacific in association with the Kuroshio Current. In general, surface temperature biases in the model have strong215

latitudinal patterns associated with major currents and patterns of upwelling and downwelling, and are persistent across the

seasons. To illustrate the full seasonal cycle, Supplementary Figure S3 shows Hovmöller diagrams of latitudinal mean observed

and simulated SST.

SST exhibits a number of major climate modes such as the Interdecadal Pacific Oscillation (IPO) and Atlantic Multidecadal

Oscillation (AMO) that can introduce persistent and large-scale shifts in temperature that are of comparable magnitude to220

the model biases identified above. For instance, the IPO has a negative index (cooler than reference) during the time period

shown in Figure 1, but a positive index (warmer than reference) during the preceding two decades (Salinger et al., 2001; Hu

et al., 2018). Models also have climate modes, but these can be out of phase with those observed, and they may occlude

or exaggerate biases. Supplementary Figure S4 partially addresses this by repeating the difference plot from Figure 1, but

for the three preceding decades. The resulting patterns of model-observation difference are generally consistent between the225

decades and for both seasons, suggesting that they represent model biases rather than variability mismatch. In particular,

persistent features include the strong cold bias in the western North Atlantic, warm biases in the equatorial Atlantic and Pacific

basins (the latter seasonally), and a general warm bias in the Southern Ocean. As most other observational datasets used in

the evaluation of UKESM1 properties are more restricted in the time periods they have available, similar analyses are more

difficult. However, given the primary role of SST in many ocean processes, the apparent dominance of model bias in SST over230

its temporal variability is suggestive that mismatches in major climatic modes are of secondary importance in our analysis.

Supplementary Figure S5 parallels Figure 1, showing the observed (WOA, 2013; Zweng et al., 2013) and simulated sea

surface salinity (SSS) for summer and winter, together with (model - observed) differences. UKESM1 shows a general negative

bias in SSS (≈ 1 PSU), but with significant regions of positive bias in the tropical Atlantic and Indian oceans (< 1 PSU). There

are also “hotspots” of bias in the Bay of Bengal (positive), off the west (negative) and east (postive) coastline of equatorial235
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South America, in the Yellow and East China seas (negative), and in the Arctic (both positive and negative). These regions are

mostly located close to major riverine inputs, and likely reflect model inaccuracies in the precise location and magnitude of

associated freshwater additions.

Remaining with the surface ocean but moving to high latitude regions, Figure 2 shows the observed and simulated sea-ice

concentrations at the seasonal maxima, March in the Arctic and September in the Antarctic (HadISST; Titchner and Rayner,240

2014). In general terms, the model reproduces the observed northern hemisphere sea-ice patterns, with complete ice cover in

the main Arctic basin, Baffin Bay down to Davis Strait, and Hudson Bay, cover on the eastern margins of Newfoundland and

Greenland, and bounding the Barents Sea. In the Arctic, simulated maximum sea-ice area is 15.3 × 106 km2, compared with

an observational maximum of 13.9 × 106 km2. This relationship is reversed in the Antarctic, with a simulated maximum of

11.8 × 106 km2 compared to 16.3 × 106 km2 observed. As the bottom row of Figure 2 shows, this general pattern of excess245

sea-ice in the Arctic and a deficit around Antarctica generally persists seasonally, with a modelled Arctic minimum of 8.7

compared to 4.7 × 106 km2 observed, and a model Antarctic minimum of 2.7 compared to 2.6 × 106 km2 observed. Modelled

Arctic sea-ice also reaches its seasonal minimum slightly earlier than observed, in August rather than September. In the Arctic,

sea-ice typically persists for multi-year periods, such that this bias towards excess ice area in UKESM1 is accompanied by

sea-ice cover that is also excessively thick. Thicknesses are up to 5 m in the simulated “dome” of sea-ice over the north pole,250

compared to flatter observational estimates that are closer to 3 m (Supplementary Figure S6; Stroeve and Meier, 2016).

In response to ongoing climate change, Arctic sea-ice shows one of the most pronounced trends within the Earth system

over recent decades (Brennan et al., 2020). Figure 3 shows simulated Arctic and Antarctic sea-ice extent over the full Historical

period (1850–2014), together with observational estimates (HadISST, Titchner and Rayner, 2014; NSIDC, Fetterer et al., 2017)

and for recent decades. Much as with sea-ice extent itself, UKESM1 performs better in the Arctic, with similar negative trends255

since 1980. In the Antarctic, however, the discrepancy in seasonal extent already noted is exacerbated by a negative trend

in maximum sea-ice extent in UKESM1 opposite to the rising trend actually observed (although this observed trend may be

reversing; Parkinson, 2019).

The Earth’s ocean and atmosphere interact principally at their interface, but turbulent mixing of the ocean ventilates its upper

layer with both physical and biogeochemical consequences. As described in Section 2.3, this layer is characterised from both260

observational and model fields of 3D potential temperature using a 0.5◦C change criterion. Figure 4 shows the observed and

modelled thickness of this mixed layer, together with (model - observed) patterns of difference. Again, the model reproduces

the main features of the ocean, including strong seasonality at high latitudes, deep mixed layers (> 100 m) throughout the year

in the Southern Ocean (away from sea-ice), and shallow mixed layers (< 50 m) in equatorial upwelling regions. When and

where the mixed layer is shallow, the model tends to exaggerate this with even shallower mixed layers, most noticeably during265

the summer at temperate latitudes. At subpolar latitudes, in the Southern, Atlantic and Pacific oceans, deep mixing in the winter

is more pronounced in the model, with larger areas experiencing mixing to deeper than 500 m. These model biases towards both

shallower and deeper mixed layer depths are more clearly visible in Figure 5, which shows the frequency at which different

mixed layer depths occur seasonally. While median frequencies are similar between the model and those observation-derived,

modelled summer and winter distributions can be seen to be shifted shallow and deep respectively.270
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Table 1 lists the global means (or mean integrals) of these surface physical properties across both the full Historical period

and the corresponding piControl period. For both of these simulation ensembles, the variability and ranges of each of these

properties are given, together with the simple linear trend over the full 165 y period.

3.2 Interior physical ocean

Switching to the ocean interior, Figures 6 and 7 respectively illustrate zonally-averaged depth profiles of temperature and salin-275

ity along so-called “thermohaline transects” of the Atlantic, Southern and Pacific oceans, for both UKESM1 and observations

(Locarnini et al., 2013; Zweng et al., 2013). These transects are created from basin zonal means of the plotted properties.

They track southward down the Atlantic into the Southern, before reversing direction to travel northward from the Southern

into the Pacific, with the aim of broadly following watermass properties from young, freshly-ventilated North Atlantic Deep

Water (NADW) through to much older North Pacific waters. For the purposes of this transect, the Arctic Ocean is considered280

a northern extension of the Atlantic, while the Indian Ocean – west of the Malay Archipelago, and including its sector of the

Southern Ocean – is entirely omitted from consideration. In both cases, observed and modelled interior properties are shown,

together with a difference plot to highlight biases.

For ocean temperature, while there are spots of cooler biases in the upper ocean (< 1000 m), temperature is generally

positively biased in the upper 3000 m. This is more pronounced in the Atlantic basin, in particular at tropical latitudes, where285

midwater (100–1000 m) biases up to 4◦C are found in the model. The bias in southward-moving NADW (> 1000 m) is

consistent with the warm bias in SST shown in its subpolar source regions in Figure 1. Comparable Pacific biases are much

lower, and tropical latitudes instead show a cold bias in the upper 500 m. At depth (> 3000 m), both basins show negative biases,

which again are more pronounced in the Atlantic. Southern Ocean temperatures exhibit small postive biases, most clearly in

the Atlantic sector, although these switch sign at depth into the Atlantic proper as already mentioned. Patterns of ocean salinity290

broadly mirror those of temperature in the Atlantic basin, with corresponding positive biases in the upper 3000 m, and negative

biases below. The model’s Pacific basin is more uniformly fresh in the upper 1000 m, with smaller positive biases beneath,

and negligible biases below 3000 m. Overall, temperature and salinity patterns indicate that the Atlantic is a warmer, more

evaporative basin in the model, with its most positive upper ocean biases located there, as well as its largest negative biases

in the deep ocean. Supplementary Figure S7 shows the corresponding patterns in potential density anomaly (σθ; referenced to295

atmospheric pressure). These show the model ocean, particularly the Pacific basin, to be more stratified vertically compared to

observations, with generally lower density surface waters (< 1000 m) overlying more dense deep waters. This bias suggests

that the model’s parameterisation of vertical mixing may be insufficient, reducing the transfer of heat from the surface to deeper

layers (and potentially weakening the deeper circulation; see below).

This pattern of biases in the zonal sections above indicates differences in the balance of interior watermasses in UKESM1300

compared to that of the real ocean. Observationally, zonally-averaged North Atlantic circulation below 1000 m is dominated

by the transports associated with North Atlantic Deep Water (NADW) and the Antarctic Bottom Water (AABW). NADW is

produced by the the subduction of cool, salty water at subpolar latitudes in north of the basin, and its southward-moving cell

overlies a denser cell of Antarctic Bottom Water (AABW) travelling northward from its production in the Southern Ocean.
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To illustrate this, the upper panel of Figure 8 shows a reconstruction of the global streamfunction of the ocean’s meridional305

overturning circulation (MOC), produced by the Estimating the Circulation and Climate of the Ocean consortium (ECCO;

Forget et al., 2015; Fukumori et al., 2019). This is an ocean reanalysis product in which the MOC is a result of a model

simulation that has been constrained with observations (for a more complete overview, see Jackson et al., 2019). In this, the

upper positive (clockwise) overturning cell extends its influence below 2000 m (in red; driven by circulation in the North

Atlantic), overlying the negative overturning cell (in blue) of AABW. The lower panel of Figure 8 shows the corresponding310

MOC in UKESM1. In general, this follows the pattern shown in the ECCO reanalysis, although with a slightly stronger

maximum MOC at 40◦N, and a weaker AABW cell northward of the Antarctic Circumpolar Current (ACC). We note that the

southernmost part of the overturning associated with AABW is stronger in UKESM1 than in ECCO (around 6 Sv against 4 Sv),

suggesting that sinking around Antarctica is stronger in UKESM1. Stronger sinking in UKESM1 around Antarctica, combined

with a slightly weaker NADW than observed, indicates a more dominant role for AABW in the model, and is consistent315

with the colder and fresher biases found in the deep ocean (particularly the Atlantic) in Figures 6 and 7, as well as biases in

biogeochemical fields (see later).

While Figure 8 shows a time- and zonally-averaged state of the MOC, ocean circulation exhibits significant variability

(Majewski et al., 2009; Smeed et al., 2018). Annual mean observation-based estimates of the Atlantic MOC (AMOC) from the

RAPID-MOCHA array at 26.5◦N range from 14.6–19.3 Sv between 2004–2016 (Smeed et al., 2018). In the Southern Ocean,320

Drake Passage, the channel between the Antarctic Peninsula and South America, focuses the ACC that rings Antarctica, and

from intermittent sampling has a transport estimated at 173 ± 11 Sv (Donohoe et al., 2016). Figure 9 shows time-series of

both of these major transports across the full Historical period, for all 9 ensemble members (and includes RAPID-MOCHA

observations of the AMOC). UKESM1’s pre-industrial AMOC is typically lower than that found by RAPID-MOCHA (Yool

et al., 2020; consistent with the spatial displacement mentioned previously), but strengthens by approximately 3 Sv from 1850325

to a maximum of around 17 Sv by the 1990s. This increase in AMOC strength, which ends in UKESM1 around 2000, is

almost certainly causally linked to temporal trends in negative radiative forcing driven by anthropogenic aerosol emissions

in the northern hemisphere over this period (Menary et al., 2020). Increases in these, driven by industrial activity, cool the

north relative to the south, change the inter-hemispheric thermal gradient, and result in increasing AMOC strength in response.

Although good observational data is absent prior to the construction of the RAPID-MOCHA array, this rise in AMOC strength330

is consistent with model reanalysis over this period (Jackson et al., 2016), although possibly overestimated in CMIP6 models

such as UKESM1 (Menary et al., 2020). The subsequent decline during first decades of the 21st century matches that found

by RAPID-MOCHA (Smeed et al., 2018) and reanalysis (Jackson et al., 2016). The modelled AMOC increase in UKESM1 is

absent in the parallel segments of the piControl simulation that do not experience these anthropogenic changes (see the linear

trends in Table 1).335

Time-averaged over the Historical period (≈ 150 Sv), Drake Passage transport in UKESM1 is lower than that estimated

(Donohoe et al., 2016), although across the full ensemble and its long-period variability, the model intermittently reaches the

range observed (Figure 9). Throughout the Historical period the ensemble exhibits considerable multi-decadal to centennial

scale variability in modelled ACC strength (135–173 Sv; see also Table 1). Unlike AMOC strength, where the ensemble
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shows a clear trend that all members follow, ACC strength is much less aligned across the ensemble, most clearly in the340

period 1850–1930. Between 1930–1980, however, the ensemble spread is reduced and most ensemble members exhibit a weak

ACC. However, following this point most strengthen notably, recovering from this earlier minimum to reach higher values

more consistent with the recent observations. The increase in ACC strength post-1970 is consistent with development of the

Antarctic ozone hole and strengthened westerlies over the Southern ocean which then drives a stronger ACC (e.g. Li et al.,

2016). Nonetheless, as Figure 9 shows, two of the nine members do not exhibit this minimum around 1970, suggesting that345

while a forced climate driver may be operating on ACC strength, it cannot completely override internal variability in the

Southern Ocean.

3.3 Surface nutrient biogeochemistry

Figures 10 to 16 present model-observation intercomparisons for a range of key surface biogeochemical properties, showing

seasonal geographical fields and zonal Hovmöller diagrams (where possible). Similarly to Table 1, Table 2 presents global-350

scale statistics for major biogeochemical properties, including variability and trends across both the full Historical period and

the corresponding period of the piControl simulation. Table 3 compares global and regional means for the same properties with

corresponding observational means for the 2000–2009 period. To summarise across these properties, Supplementary Figure S9

additionally shows seasonal and regional Taylor diagrams.

In terms of surface concentrations of the macronutrients that regulate biological productivity in the ocean, UKESM1 shows355

some shared and some divergent biases. For dissolved inorganic nitrogen (DIN; Figure 10), while the major, circulation-driven

features occur (i.e. subtropical gyre lows, upwelling highs), the model is typically biased positive, with excess nutrients most

obvious in the tropical Pacific and in the Arctic Ocean (see also Supplementary Figure S10). Globally, the model’s mean is

7.8 compared to an observational mean of 5.2 mmol m−3 (+48%). However, in regions such as the North Atlantic, the model

is biased negative with winter maximum concentrations much lower (≈ 5 vs. ≈ 10 mmol m−3) in this important productive360

region. The North Pacific, by contrast, exhibits the year-round high nutrient concentrations that characterise this region (12 vs.

10 mmol m−3). However, the spatial distribution of North Pacific DIN, particularly around the Bering Straits, biases inflow

concentration to the Arctic Ocean and is responsible for the excess concentration in this region.

In MEDUSA, silicic acid is a key limiting factor for the growth of the model’s large phytoplankton, the diatoms. As Figure

11) shows, away from the Southern Ocean where it is strongly biased positive (≈ 63 vs. ≈ 32 mmol m−3; Table 3), the model365

is typically biased negative. Globally, the model’s mean is 10.1 compared to an observational mean of 7.5 mmol m−3 (+50%).

While silicic acid concentrations are generally low throughout the tropical and subtropical ocean (maxima < 20 mmol m−3),

modelled concentrations are much more depleted throughout the year (maxima < 5 mmol m−3). In the North Pacific, un-

like with DIN, seasonal maximum silicic acid concentrations are signficantly lower than observed in this region (4.5 vs.

21.3 mmol m−3).370

Alongside nitrogen and silicon (the latter for diatoms only), phytoplankton productivity in MEDUSA is additionally lim-

ited by the micronutrient, iron. An important source of iron to the ocean is via deposition of aeolian dust that has been lifted

from dessicated land surfaces and transported by winds (Tagliabue et al., 2017; Kok et al., 2018). MEDUSA represents this
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source of iron to the ocean, and in UKESM1 this flux of dust is driven by dynamic land-atmosphere interactions (Woodward,

2011). Figure 12 compares the simulated flux of iron from dust with the observationally-derived dataset of Mahowald (2005).375

Following Yool et al. (2013), dust is scaled in UKESM1 such that total iron added to the ocean by deposited dust is approx-

imately 2.6 Gmol Fe y−1 (excluding the Mediterranean Sea), and the Mahowald (2005) panel is similarly scaled. In general,

UKESM1 exhibits similar spatial patterns to the observational product, including high deposition downwind of arid regions

such as the Sahara, and corresponding low deposition where airmasses do not intersect with land such as over the Southern

Ocean. However, several key areas of low deposition are more pronounced in the model, including the Southern Ocean, the Pe-380

ruvian upwelling and the Equatorial Pacific. These regions are also those where excess DIN occurs, indicating that at least one

source for these biases may be excessively strong iron limitation on biological activity. To further illustrate this, Supplementary

Figure S11 shows the dominant nutrient limitation for both phytoplankton types. Noticably, compared to other runs employing

MEDUSA (Yool et al., 2013), iron-stress is more pronounced in UKESM1, especially compared to nitrogen-stress, with the

Southern Ocean and almost the whole of the Pacific iron-limited for non-diatom phytoplankton, and diatom phytoplankton385

iron-stressed across the Equatorial Pacific. Corresponding observational patterns of nutrient stress are more sparsely available

(Moore et al., 2013). However, UKESM1’s nutrient limitation overlaps the major observed patterns, including widespread ni-

trogen stress in the Atlantic Ocean, and iron stress throughout the Pacific and Southern oceans, as well as at high latitudes in

the North Atlantic (Moore et al., 2013). Nonetheless, the simplicity of MEDUSA prevents it from representing the limitation

of phytoplankton found by Moore et al. (2013) for the macronutrient, phosphorus, and the micronutrients, cobalt, zinc and390

vitamin B12.

Switching to the marine biology, Figure 13 presents surface chlorophyll, the main light-harvesting pigment used by phy-

toplankton. Again, the model exhibits both postitive and negative biases relative to observations, but with a general positive

bias (0.26 vs. 0.22 mg chl m−3). Most noticeably, modelled summer concentrations of chlorophyll in the Southern Ocean are

biased positive throughout the year, particularly so in the unproductive winter, when the model continues to simulate moderate395

concentrations even at high latitudes (although winter observations are less reliable or absent). In part, the positive bias of

chlorophyll concentrations in UKESM1 are driven by the reduced extent of winter sea-ice in this hemisphere, although, on the

observational side, global satellite-based algorithms have also been shown to underestimate surface chlorophyll in this region

(Johnson et al., 2013). At the equator, the model is biased positive in the Pacific (0.25 vs. 0.18 mg chl m−3), while strongly

biased negative in the Atlantic (0.07 vs. 0.36 mg chl m−3). Meanwhile, in the subtropical gyres, the model simulates lower400

concentrations than observed throughout, particularly in the Atlantic Ocean, whereas the lowest observed concentrations oc-

cur in the southern Pacific subtropics. At high northern latitudes, maximum chlorophyll concentrations are typically slightly

lower than those observed, although, much as in the southern hemisphere, moderate winter concentrations extend much further

poleward than observed.

Figure 14 presents the corresponding distributions of net primary production, the process driving consumption of surface405

nutrients, biological uptake of dissolved CO2, and the ultimate source of organic matter for the ocean’s food web. The obser-

vations shown here are the simple mean of three observation-driven estimates of productivity algorithms: VGPM (Behrenfeld

and Falkowski, 1997); Eppley-VGPM (Carr et al., 2006); and CbPM (Westberry et al., 2008). Generally, although with some
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of the same model biases already noted, simulated patterns clearly replicate those observed. Integrated globally, modelled

productivity across the UKESM1 ensemble averages 44.3 Pg C y−1, compared with an average of 39.5 Pg C y−1 estimated410

by the three algorithms. Regionally, the clearest bias lies, again, in the Southern Ocean, where modelled productivity is both

greater and geographically more extensive, with a large summer bloom that extends further south towards Antarctica (0.31 vs.

0.10 g C m−2 d−1). Another discrepancy lies in the tropics, where UKESM1’s productivity is more focused along the equator

in the Pacific, and with generally lower productivity in the subtropical gyres. Also, while productivity is focused in shelf re-

gions in both observations and the model, in the model it extends further into the open ocean than observed, where productivity415

is generally restricted to a narrow band around the continents. Finally, in terms of seasonal extent, modelled productivity is

typically broader, with positive biases extending further polewards during winter in both hemispheres.

Supplementary Figure S12 shows the time-series of net primary production, and its main driver, DIN, across the Historical

period for all nine ensemble members. Earlier plots evaluated the geography and phenology of both fields in the early 21st

century, but this plot makes it clear that neither property is at equilibrium at this time. Global surface DIN shows a pronounced420

rise (approximately 5%) from 1950 to around 2000, consistent across the ensemble, but by 2014 this increase has been en-

tirely reversed. Meanwhile, primary production has no clearly comparable 20th century trend, but from around 2000 declines

(approximately 2%). In terms of the main production regions, the North Atlantic and the Southern Ocean drive these global

signals, with production unsurprisingly lagging that of DIN (Supplementary Figure S12).

The critical role of primary production as the source of organic carbon (and chemical energy) on which marine ecology425

runs means that the realism of its representation in models has consequences across marine biogeochemistry. To illustrate

this, Supplementary Figures S13 and S14 compare UKESM1 surface fields of a higher trophic level (mesozooplankton) and a

climatically-active biogenic gas (DMS) with observational estimates. As would be expected, both properties scale closely with

productivity, and share a number of the same geographical biases. While much of the ocean shows good model-observation

agreement, mesozooplankton biomass in the Southern Ocean is significantly elevated in both summer and winter compared430

with Moriarty and O’Brien (2013)’s dataset, as well as more focused around the Antarctic Polar Front (Supplementary Figure

S13). The corresponding biomasses in both seasons in the northern hemisphere are better reproduced, although still with

biases, including lower North Pacific mesozooplankton, a region where their abundance has long been known to play a role in

seasonal dynamics (Steele and Henderson, 1992). Switching to DMS, the model actually shows pronounced negative biases in

the Southern Ocean, in contrast with other properties (Supplementary Figure S14). Elsewhere, regions of high concentration are435

also typically more geographically confined in the model, with maximum values lower than those observed. The relatively good

general agreement with the observational (Lana et al., 2011) dataset in part relates to the tuning of the underlying (Anderson

et al., 2001) DMS model, although the divergence where observed concentrations are high, especially the Southern Ocean,

suggest this real-world property is a more complex function of primary production than modelled in UKESM1.

3.4 Surface carbon biogeochemistry440

Figure 15 compares the annual mean surface concentrations of DIC and alkalinity, two key carbonate chemistry properties

that constrain the ocean’s exchange of CO2 with the atmosphere. In both cases, the model reproduces the spatial patterns well,

16



with main features such as elevated DIC at high latitudes, a strong Atlantic-Pacific alkalinity gradient, and generally lower

concentrations of both at lower latitudes. Globally, both model mean DIC and alkalinity are slightly biased negative compared

to observations, with implications for interior concentrations of DIC (see Section 3.5). Noticeable regional biases include445

positive biases for both properties in the Southern Ocean (particularly around Antarctica), and negative biases in alkalinity in

the North Atlantic and (especially) the North Pacific.

Critically linked to surface DIC and alkalinity, Figure 16 shows the observed and modelled patterns of air-sea exchange of

CO2. This is a key Earth system property, as its integrated magnitude modulates the accumulation of anthropogenic CO2 in

the atmosphere with its absorption by sinks such as the ocean and the land. The observational product used here fits a simple450

ocean mixed layer biogeochemistry scheme to observations of surface ocean CO2 partial pressure, and then extrapoloates this

globally (Rödenbeck et al., 2013). Much as with its surface carbonate chemistry, the model reproduces the main features of

air-sea CO2 exchange, including zonal bands of ingassing and outgassing, pronounced equatorial outgassing in the Pacific,

and strong seasonal ingassing at high latitudes in the northern hemisphere. However, the model also exhibits a number of

biases in its regional and seasonal patterns of flux. While observations suggest that the Southern Ocean is a complex mix of455

summer ingassing and winter outgassing, the model is biased towards ingassing, with weaker and more geographically limited

outgassing in the southern winter. Further, though showing similar patterns to those observed, the model exaggerates seasonal

ingassing in the northern hemisphere, particularly during late winter and spring at subtropical latitudes. Note that, again, the

reliability of this observational product is lower in less sampled regimes, such as the Southern Ocean and during winter.

Overall, the ocean is a net sink for CO2, with the model simulating total uptake of 2.05 Pg C y−1 compared to an observational460

estimate of 1.60 Pg C y−1 (although observational products differ on this quantity; see below). Supplementary Figure S15

shows corresponding plots of surface pCO2, a function of surface DIC, alkalinity, temperature and salinity (Rödenbeck et al.,

2013). Biases in these fields illuminate those in CO2 flux, for instance much lower pCO2 in the North Atlantic drives stronger

uptake, while higher pCO2 in the Southern Ocean damps down outgassing in this region.

To complement Figure 16’s geographical snapshot, Figure 17 shows the time-series of CO2 uptake across the Historical465

period for the UKESM1 ensemble, together with the observationally-derived estimate of Khatiwala et al. (2009). The plot

shows the varying rate in the rise of oceanic uptake of CO2 across this period, with growth from the 1850s until the 1930s,

followed by stalling growth until the 1950s, and finally strong continuous growth to the present-day. With some variability,

particularly in the early decades, the ensemble tracks the observationally-estimated uptake, reproducing the same pace and

features, but with the ensemble estimating a slightly lower flux than estimated (88.5%; integrated 1850-2013). The plot also470

shows UKESM1’s piContol simulation to illustrate the magnitude and period of variability with constant background atmo-

spheric xCO2. This shows CMIP6’s Historical period beginning (and the piControl period ending) in 1850, approximately a

century after the industrial revolution and significant fossil fuel CO2 emissions began. This differs from the Khatiwala et al.

(2009) product, which estimates ocean CO2 uptake over the more complete period of anthropogenic emissions. Note that the

observational estimate for the present-day here is more closely matched by the model than the preceding dataset of Rödenbeck475

et al. (2013), although this is not unexpected given the large uncertainties involved in estimating this flux. The influx of CO2
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into the surface ocean is also documented in Table 2’s mean and trend statistics of surface DIC and air-sea flux, in particular

how they compare with the corresponding piControl period.

The air-sea flux is just the first stage of ocean storage of anthropogenic CO2, and Figure 18 illustrates its fate once in

the ocean interior. The upper row shows estimated and simulated vertically-integrated anthropogenic CO2 for the 1990s (the480

normalised period for Key et al., 2004). As described in Section 2.3, model anthropogenic CO2 is estimated by subtracting the

3D fields of DIC from Historical and piControl simulations aligned in time. In broad outline, UKESM1 reproduces most of

the geographical patterns of storage, with Southern Ocean uptake distributed into the southern sectors of the Atlantic, Pacific

and (especially) Indian basins, maximum column inventories in the North Atlantic, and much lower storage at low latitudes,

in the North Pacific and around Antarctica. However, the modelled distributions of anthropogenic CO2 also show some clear485

discrepancies with observational estimates. For instance, although exhibiting high column inventories in the Greenland-Iceland-

Norwegian Sea, the model ensemble does not simulate the corresponding high observationally-estimated concentrations off

Newfoundland in the west of the Atlantic. More significantly, the pattern of anthropogenic CO2 being transported southward

at depth in the North Atlantic shows a strong east-west gradient that does not correspond with that observed. To investigate this

further, Figure 19 shows observational and model sections across the Atlantic at 30◦N for both anthropogenic CO2 and CFC-490

11. The former is estimated from observations, while the latter is measured directly. These show a general deficit in UKESM1

in tracer concentrations between approximately 1000 and 3000 m in depth west of the mid-Atlantic ridge. In the case of CFC-

11, the model completely misses a distinctive watermass with high concentrations immediately adjacent to the coast of North

America at approximately 1800 m. As already noted for the surface ocean in Section 3.1, grid resolution introduces errors into

transport pathways, and UKESM1’s poor representation of Deep Western Boundary Current (DWBC) return flow may be an495

interior example of similar limitations, coupled potentially to discrepancies in patterns in convection and deep mixing in the

vicinity of the Labrador Sea (e.g. Handmann et al., 2018).

One major issue with the preceding estimate of anthropogenic CO2 in the ocean is that it must be separated from the natural

background of DIC in the ocean. In the case of the model, this is straightforward (although there remain several ways of doing

so), but it is challenging observationally. The datasets used in this study, Key et al. (2004) and Lauvset et al. (2016) use different500

methodologies (as well as different-sized underlying databases) to estimate and separate anthropogenic and natural CO2. As

this complicates evaluation of the model’s distributions, the lower row of Figure 18 shows the vertical inventory of CFC-11,

a conservative artificial tracer accumulating within the ocean similarly to anthropogenic CO2. Relatively straightforward to

quantify to high precision, and without any natural background, this tracer serves as a loose proxy for anthropogenic CO2

(Dutay et al., 2002; Doney et al., 2004). As such, it provides a second performance measure against which to compare the505

interior redistribution of surface anthropogenic CO2 uptake. Overall, UKESM1’s CFC-11 distributions better match those of

the observational dataset than anthropogenic CO2. However, the same differences also arise, particularly the east-west gradient

in Atlantic column inventory, likely for the same reasons suggested above. The model also exhibits more extensive coastal

uptake of CFC-11 in the Weddell Sea.
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3.5 Interior biogeochemistry510

Figures 20 and 21 show intercomparisons of ocean interior DIN and DIC, with Supplementary Figures S16 to S19 showing the

corresponding intercomparisons for other tracers. Per Figure 6, the plots use a thermohaline transect to illustrate the connection

between young watermasses in the North Atlantic through to old watermasses in the North Pacific.

In the case of DIN, the main observational features are reproduced, including the low concentrations in the Arctic and

(especially) the surface oligotrophic gyres, generally lower concentrations within the NADW, a limb of elevated concentrations515

within the AAIW, intermediate concentrations within the Southern Ocean, and the highest concentrations in the North Pacific,

particularly at midwater depths. However, despite this agreement on the main patterns of features, the model also exhibits a

number of pronounced biases. In the Atlantic basin, small positive biases in near-surface waters overlie strong negative biases

in the upper 3 km, where maximum concentration differences of more than 10 mmol N m−3 occur. In the South Atlantic, these

negative biases occur in association with the northward-moving limb of AAIW (approximately 1 km depth) that supplies DIN520

to the North Atlantic, but which can be seen to be less pronounced in UKESM1 (and also in the salinity field of Figure 7).

Meanwhile, in deeper waters the bias is reversed to strong positive, as the more sluggish AABW circulation shown in Figure

8 is ventilated less efficiently, accumulating excess DIN while accruing an oxygen deficit (Supplementary Figure S17). This

split of biases is generally aligned with the NADW and AABW watermasses in this basin. In the Pacific basin this pattern

is broadly repeated, although with stronger positive bias in the upper 1 km, and less pronounced, but similar sign, biases at525

depth. More clearly than in the Atlantic basin, the model shows a shallow focused layer of maximum DIN concentration in the

upper 1 km, while observations indicate a more gradual change in DIN concentration with depth. An indication of its source

lies in Supplementary Figure S17, which shows the corresponding transect for dissolved oxygen. Oxygen concentrations are

typically highest at the surface where they are replenished by the atmosphere, and progressively lower in older watermasses

as oxygen is consumed by remineralisation of sinking organic matter driven by the biological pump. Based on these fields,530

UKESM1 exhibits a bias towards shallower remineralisation, with less nitrogen reaching the deep ocean interior through

sinking particles, and corresponding overconsumption of oxygen in shallower waters, and underconsumption at depth.

Supplementary Figure S16 shows the corresponding situation for silicic acid, a nutrient which is primarily consumed by

diatom phytoplankton in the ocean (and by diatom phytoplankton only in UKESM1). Unlike nitrogen, which is incorporated

in organic matter and widely used in cellular biochemistry, silicic acid is polymerised to make protective shells (frustules),535

and is returned to solution principally by physicochemical dissolution rather than active remineralisation (Kamatani, 1982).

Consequently, its biological turnover is slower, and a greater proportion of biogenic silica (opal) reaches the deep ocean than

nitrogen. Coupled to the current mode of the thermohaline circulation, which has deep-water formation in the Atlantic and

the oldest watermasses in the Pacific, this results in a deep nutrient distribution where the highest concentrations occur in the

Pacific basin. UKESM1 generally reproduces the differences in the nitrogen and silicon distributions, although with a number540

of biases. Principally, the AABW cell in the Atlantic is a more significant reservoir of silicic acid, while the North Pacific

maxima is decreased. The silicon nutricline in the North Pacific is also deeper, although this is shallower in the South Pacific.

Overall, the model shows a less skewed silicon cycle, with a greater fraction of total silicon stored in the Atlantic than observed.
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As Figure 21 shows, the biological coupling between nitrogen and carbon means that the distribution of DIC in the ocean

shares a number of common patterns with nitrogen (albeit against a high background concentration driven by CO2 solubil-545

ity). As a consequence, UKESM1’s DIC distribution also shares a number of the same biases, including NADW negative

biases and AABW positive biases. However, modelled DIC has an additional negative bias across the global domain, indi-

cating that the ocean of UKESM1 has a lower mean DIC concentration than observed, 2289.4 mmol C m−3 as compared to

2337.6 mmol C m−3 (-2.1%; Key et al., 2004). Figure 22 shows the corresponding profiles of modelled and observed DIC,

together with corresponding profiles of alkalinity, anthropogenic CO2 and CFC-11. As shown by Figures 16 and 17, this dif-550

ference in DIC concentration does not prevent the model from realistically simulating the rate of ocean exchange and uptake

of anthropogenic CO2 over the Historical period, but it alters the model ocean’s carbonate chemistry system including ocean

pH, potentially with consequences (see Section 4.3).

Supplementary Figure S18 shows the corresponding distributions of alkalinity. While patterns of surface alkalinity are pri-

marily driven by the hydrological cycle (evaporation, precipitation and runoff), interior alkalinity is affected by marine biogeo-555

chemistry. In UKESM1 a simplified alkalinity cycle is represented with only the net production of calcium carbonate (CaCO3;

calcite polymorph) affecting alkalinity distributions (i.e. “hard tissues pump” only, no “soft tissues pump”; cf. Marinov and

Sarmiento, 2004). As this production of CaCO3 is ultimately tied to the production of organic material, the patterns of bias in

alkalinity overlap with those already seen. However, a significant mismatch in model alkalinity is a general negative surface

bias. As alkalinity balances dissolved CO2, bicarbonate and carbonate, it regulates total DIC concentration, with a negative bias560

in alkalinity acting to reduce total DIC concentration. Such a negative DIC bias at the surface preconditions the interior ocean

to lower DIC, consistent with Figure 21. To further illustrate this model bias, Supplementary Figure S20 shows the observed

and simulated relationships between salinity and alkalinity. Each data point is a surface alkalinity versus surface salinity, and

the plot shows the linear relationship between these properties (c.f. Lee et al., 2006) and the offset from the observed relation-

ship exhibited by UKESM1. The calculated regressions intersect at a salinity of 35 PSU, although model alkalinity generally565

lies below that observed even above this value.
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4 Discussion

For ESMs to deliver reliable estimates of future global change, including quantification of key feedbacks, it is important that the

states of their component submodels are realistic, in particular for climate-relevant time-mean distributions and temporal trends

of material (carbon) and energy (heat). Here we have examined the state of the ocean component of the UKESM1 model, a570

new state-of-the-art ESM, and participant in CMIP6. We have evaluated the performance of both physical and biogeochemical

aspects of the ocean submodel in the context of diverse observational datasets. As well as the model’s “present-day” state,

we have additionally examined trends in key model properties across the Historical period (1850–2014). Kuhlbrodt et al.

(subm.) presents a complementary analysis of ocean heat uptake. Separate ensemble members have been used to understand

the consistency of these temporal trends, but where comparing with observational fields, we have used model output averaged575

across the Historical ensemble (per Supplementary Table S1).

In terms of the physical performance of UKESM1’s ocean, its state is broadly realistic, but with a number of biases. At

the ocean’s surface, temperature is well-reproduced globally, but with biases including a warm Southern Ocean driven by

receipt of too much shortwave radiation (Sellar et al., 2019), and a marked North Atlantic “cold spot” associated with poor

Gulf Stream separation and North Atlantic Current pathway. Model upper ocean mixing also reproduces the geographical and580

seasonal patterns observed, with a bias towards exaggeration of extreme low and high mixing. UKESM1’s sea-ice distribution

captures much of the seasonal cycle in both hemispheres, although is biased positive (and thicker) throughout the year in the

north (driven primarily by excessively cooling aerosol forcing), while falling short of its maximum extent in the south (in part

owing to the Southern Ocean warm bias). The excess in Arctic sea-ice is driven by a general cool bias in surface temperature

in the northern hemisphere in UKESM1, a product of aerosol or land-use forcing (Sellar et al., 2019). In the ocean interior,585

compensating biases in temperature and salinity are found, related to the deficiencies in the overturning circulation mentioned

in Section 3.1 (Figures 6 to 8), as well as a cumulative warming bias produced during forced ocean-only spin-up (Yool et al.,

2020).

Biogeochemical performance of UKESM1 largely traces to previous applications of the model (e.g. Yool et al., 2013) de-

spite a significantly longer-duration spin-up as part of UKESM1 (Yool et al., 2020). Regarding the ocean’s nutrient cycles590

and biological activity, the model displays a pattern of general agreement but with biases that are sometimes large. In the sur-

face ocean, while retaining major nutrient boundaries, the model also exhibits excessive nitrogen and silicon in the Southern

Ocean, excess nitrogen in the Equatorial Pacific, and depletion of silicon in the North Pacific. Upper ocean productivity in the

model also follows major observed patterns, though with biases including a excessively productive Southern Ocean (both geo-

graphically and temporally), and insufficiently productive oligotrophic gyres. These biases are also mirrored in other important595

biological fields such as zooplankton and in the surface concentration of dimethyl sulphide. Meanwhile, in the ocean interior,

biases in mesopelagic nitrogen and oxygen indicate that remineralisation of sinking biogenic material in the model occurs too

shallow, with compensating opposite-sense biases below. In the deep Atlantic, the model’s sluggish AABW cell accumulates

more nutrients than observed, both nitrogen and silicon, while losing more oxygen.
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Regarding the ocean’s carbon cycle, the model represents patterns of surface carbon properties well, although with general600

negative biases in both DIC and alkalinity concentrations. Spatial and temporal patterns of air-sea CO2 exchange are broadly in

agreement with those estimated from observations, though the model does not well represent Southern Ocean outgassing, and

simulates excessively strong North Atlantic ingassing. Despite these discrepancies, the model falls within the uncertainty in

the observationally-estimated temporal patterns of net ocean CO2 uptake over the Historical period. Storage of anthropogenic

CO2 in the model ocean generally matches that estimated from observations, with high amounts in the Southern and North605

Atlantic oceans. However, the model exhibits a spatial discrepancy in storage in the North Atlantic, with southward transport

down the western side of the basin in NADW noticeably lower than observed. Within the ocean interior, because of the role of

the biological pump, the spatial pattern in DIC biases tracks those of nitrogen. However, the surface bias towards lower DIC

also imposes a general negative bias throughout the ocean interior, with the model ocean storing less carbon than observed in

the Earth system.610

On the spatial and temporal scales analysed here (i.e. global and centennial), the main fields and time-series analysed

show good consistency across the UKESM1 ensemble. For higher time frequencies (e.g. decadal in the Southern Ocean;

interannual for the El Niño–Southern Oscillation), or for smaller regions with significant dynamics (e.g. the Arctic), cross-

ensemble variability will be more important, and will be considered for detailed future studies.

4.1 Biogeochemistry biases615

As already described in Sections 3.1 and 3.2, UKESM1 has a number of physical biases. Examining these biases within

UKESM1 forms a component of a number of parallel studies, including on circulation and Gulf Stream separation (Kuhlbrodt

et al., 2018), sea-ice thickness (SIMIP Community, 2020), ocean heat uptake (Kuhlbrodt et al., subm.), and AMOC trends

(Menary et al., 2020). Consequently, in the following, we focus on explaining the biogeochemical biases found within UKESM1.

As described above, although UKESM1 reproduces the broad patterns observed in marine biogeochemistry, it also includes620

a number of significant biases in properties. In the following, we consider the likely underlying causes as well as potential

actions to address them in future versions of UKESM1.

Vertical profiles of nitrogen, oxygen and carbon display matching patterns driven by the action of the biological pump.

Nitrogen and carbon consumed by phytoplankton growth in the upper ocean are transported as organic material by this pump

into the ocean interior where they are released back to dissolved inorganic forms in parallel with the consumption of oxygen.625

In UKESM1, the profile of this process is skewed, with remineralisation of organic matter occurring too shallow in the water

column, resulting in excess nitrogen and carbon in the mesopelagic, a corresponding deficit of oxygen, and reversal of these

biases in deeper waters that less sinking material reaches. In MEDUSA, the organic material reaching the deep interior does so

primarily as “fast-sinking” particles, coupled to a ballast model in which biominerals (opal and calcite) “protect” this organic

flux. Extending the remineralisation lengthscale of these sinking particles, or affording them greater biomineral protection, are630

both means of addressing this bias to first order.

Significantly for ocean productivity, UKESM1’s ocean displays strong positive biases in the surface concentration of nitrogen

nutrient in a number of ocean regions, including the Southern Ocean, the Equatorial Pacific and the Peruvian Upwelling. Such
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biases can indicate oversupply of nutrients, or insufficient consumption by phytoplankton. On the first, as all three regions

experience significant upwelling of interior waters, any biases in the nitrogen supply from these watermasses will play a role.635

For instance, shallow remineralisation bias noted above will contribute toward the positive biases in surface waters in these

regions. On the second, an additional issue lies with the availability of the micronutrient iron in these regions. Although this

is also supplied by upwelling watermasses, its availability is also dependent on deposition of iron from aeolian dust, and this

deposition is biased negative in these regions in UKESM1. While atmosphere-land aspects of the deposition flux may ultimately

be important here (e.g. location of desert source regions, patterns of wind dispersal), within the ocean model itself, parameter640

changes to reduce iron stress (more iron from dust, lower iron quotients in phytoplankton) could assist here. However, by

relieving iron stress in this uniform way, there may be consequences elsewhere in the model.

Leaving aside the interior biases described above, carbon in UKESM1 is more generally negatively biased throughout the

ocean, with implications for the ocean’s role as the largest reservoir of carbon in the Earth system. As noted previously, surface

alkalinity plays a role in interior carbon by buffering the surface carbonate system and regulating the surface DIC concentrations645

that ultimately ventilate the ocean interior. Modelled surface alkalinity has a general negative bias, and a different relationship

with surface salinity than that observed (cf. Lee et al., 2006). In the model, aside from hydrological cycle processes, only net

calcium carbonate production (and its subsequent dissolution at depth) affects alkalinity, and this acts to decrease its upper

concentration and increase its interior concentration below the calcite compensation depth (CCD). As such, this bias could

be addressed in MEDUSA simply by decreasing calcium carbonate production (and its export) to increase the retention of650

alkalinity in the surface ocean. However, while alkalinity is generally lower across the upper ocean, calcite production is

not uniform, with a latitudinal gradient in which most net calcification occurs in the tropics. A broader point is that calcium

carbonate production in MEDUSA is highly simplified and only concerns the fraction export to the ocean interior, whereas

other models treat it in more complex ways (e.g. Kvale et al., 2015; Butenschön et al., 2016; Buitenhuis et al., 2019) that

potentially offer more realistic solutions than simple parameter scaling.655

Another clear surface bias in UKESM1, and one which is easy to discern because of the ready availability of synoptic, high

quality observational data, is its field of surface chlorophyll. In the Southern Ocean in particular, the seasonal spring-summer

bloom has higher chlorophyll concentrations that persist longer and extend further polewards. Even in winter, anomalously

high chlorophyll concentrations (> 0.1 mg m−3) extend southward to the tip of the Antarctic Peninsula. This bias is strongly

associated with a corresponding productivity bias, although at the highest latitudes (in both hemispheres) there is a degree of660

decoupling. This bias is particularly significant in UKESM1 because simulated chlorophyll is used in its empirical submodels

of DMS and PMOA, both of which are climatically-active compounds (cf. Quinn and Bates, 2011). Noticeably, the high

concentrations of chlorophyll simulated at high latitudes also persist beyond the peak of productivity. In part these biases are

related to negative sea-ice biases that allow more light to penetrate into the high latitude ocean, but their excess extent and

persistence also suggest that the chlorophyll submodel may be too responsive under low light conditions. At lower latitudes,665

where light is less limiting and nutrient stress more important, sensitivity to the chlorophyll model is less pronounced.

Separate from these biogeochemical biases, the model exhibits several physical biases, including a general warm bias

throughout the ocean, warm and cool biases regionally, some hemisphere-specific ice biases, and issues with interior circu-
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lation. These all affect the realism of the physical regime in which MEDUSA’s biogeochemistry is embedded and introduce

biases independently of those arising from its deficiencies. For instance, the weak deep overturning AABW cell north of670

the ACC (Figure 8) reduces the ventilation rate of the abyssal Atlantic, and contributes to the build-up of nutrients and the

corresponding depletion of oxygen.

Finally, the corrective measures outlined above are proposed independently without any consideration of their full impacts.

For instance, decreased calcium carbonate production is proposed as a countermeasure to decrease the negative bias in surface

alkalinity. However, this change will also decrease the quantity of sinking organic material “protected” by this mineral, allowing675

it to be remineralised more rapidly, shoaling the remineralisation horizon of the biological pump, and worsening the biases

in nitrogen, carbon and oxygen profiles. This interdependency of model biogeochemical processes and states – and their

dependency on the ocean physical state – significantly complicates model tuning, particularly given the long timescales of

ventilation and three-dimensional connectivity in the ocean. Optimisation techniques such as the Transport Matrix Method

(TMM; Khatiwala et al., 2005) are increasingly being used to address this (e.g. Kriest, 2017), although the resulting solutions680

are also found to be sensitive to the physical framework (Kriest et al., accepted).

4.2 CMIP intercomparison

Figure 23 and Supplementary Figures S21 to S26 illustrate the performance of UKESM1 alongside a series of CMIP6 models

for the same suite of key surface biogeochemical properties already shown. Annual mean fields for each property for each model

are shown, together with the corresponding observational field (data missing from the CMIP6 archive is denoted by a blank685

field). Fields are also shown from UKESM1’s CMIP5 predecessor, HadGEM2-ES (Totterdell, 2019), to illustrate improvement

between CMIP generations, together with those from MEDUSA-2.0 (Yool et al., 2013) to demonstrate the traceability of

UKESM1’s MEDUSA-2.1 to prior work (note that this latter work is ocean-only rather than fully-coupled).

The CMIP6 models included in this analysis are: CESM2-FV2 (Danabasoglu et al., 2020); CNRM-ESM2-1 (Voldoire et al.,

2019); CanESM5 (Swart et al., 2019); IPSL-CM6A-LR (Boucher et al., 2020); MIROC-ES2L (Hajima et al., 2020); MPI-690

ESM1-2-LR (Mauritsen et al., 2020); MRI-ESM2-0 (Yukimoto et al., 2019); NorESM2-LM (Tjiputra et al., 2020). While the

full configurations of these models are diverse, the CNRM-ESM2-1, CanESM5, and IPSL-CM6A-LR models share a common

NEMO physical ocean with UKESM1, though they diverge on other components, including marine biogeochemistry.

Supplementary Figures S21 and S22 show patterns of surface nitrogen and silicon nutrients. Reassuringly, most of the models

capture the main geographical features of availability, including high abundance in the Southern Ocean and the subpolar north,695

low availability throughout the subtropics, and elevated concentrations in upwelling regions (less prominently in the case of

silicon). All of the models do display biases, however, differing in over- or under-estimation of Southern Ocean concentrations

(UKESM1 consistently over-estimates), and in how low subtropical concentrations are drawn down to.

The patterns in surface chlorophyll shown in Supplementary Figure S23, however, are more diverse. As already noted,

UKESM1 exhibits both excess concentrations in regions such as the Southern Ocean and Equatorial Pacific, and negative biases700

in its oligotrophic gyre regions. Other CMIP6 models exhibit both similar and different biases. For instance, several models

share UKESM1’s positive biases in major productive regions (MPI, MRI), while others reverse its pattern in oligotrophic region
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and instead have excessive chlorophyll concentrations (MIROC, NorESM). In general, while patterns of surface nutrient are

broadly shared by models, chlorophyll patterns are instead somewhat divergent.

Figure 23 shows a similarly diverse pattern for ocean productivity, with models estimating both much higher and much705

lower global totals. While all of the models show biases, they agree on the focusing of productivity in key biomes such as the

temperate high latitudes and upwelling regimes, although the biases found are not always aligned with those in chlorophyll.

Excessive productivity in the Southern Ocean is significant problem in UKESM1, although it is noticeable that models using

PISCES marine biogeochemistry (IPSL, CNRM) do much better in this regard.

Supplementary Figures S24 and S25 respectively show surface DIC and alkalinity across the suite of models. As already710

suggested from the results of UKESM1, biases in surface alkalinity are important in setting biases in DIC, with several models

showing matching positive biases in both (CanESM, MRI). Interestingly, while UKESM1’s institutional precursor model,

HadGEM2-ES, shares neither its ocean physics nor its marine biology (Totterdell, 2019), the models share biases, particularly

in alkalinity, a field strongly governed by atmospheric freshwater interactions, and a component where the models do share

submodels. This underscores the role that other Earth system components may play in shaping model marine biogeochemistry.715

Similarly, there is generally strong agreement in patterns of air-sea CO2 flux shown in Supplementary Figure S26. The

models broadly reproduce the latitudinal patterns of flux observed, outgassing in the tropics and (generally) ingassing at high

latitudes. The models differ in detail, with variation in the magnitude of CO2 uptake in regions such as the North Atlantic,

its release along the Equatorial Pacific, and in the magnitude and geographical extent of outgassing regions in the Southern

Ocean. Interestingly, a marked bias in UKESM1, strong outgassing along the west coast of South America, is reproduced in720

several models (CanESM, MRI), while being absent in others (MIROC, CESM).

Figure 24 summarises the performances of this suite of models using Taylor diagrams Taylor (2001). In each case, the panels

indicate spatial variability normalised to that of observations (radial axis) and model-observation correlation (circular axis),

both at the global, annual mean scale used in the preceding figures. In such diagrams, proximity to the red and black circle

on the x-axis indicates agreement with the observational field. Overall, UKESM1 performs comparably with other ESMs,725

particularly well for DIC and alkalinity, and less well for DIN. The panels also show that no one model is superior in all

properties, with the “best” model differing between properties, and that the various models tend to perform similarly across

properties. Chlorophyll, in particular, is a property that all of the models perform badly at, while DIN is something they all

perform relatively well at.

Note that this cross-CMIP6 analysis overlooks the role played by the duration of spin-up prior to Historical simulations730

in the magnitude of model biases. The analysis Séférian et al. (2016) found that spin-up duration of CMIP5 models ranged

widely from 200 years up to almost 12000 years, and that this duration could explain the magnitude of biases. Essentially, the

longer that a model is spun-up, the greater its drift from the observationally-derived initial conditions that also typically serve

as performance targets (as they do here). In the specific case of UKESM1, its ocean component was spun-up for approximately

5300 years to equilibrate its net air-sea CO2 flux below a target of 0.1 Pg C y−1 (Yool et al., 2020). This duration was also735

sufficient for other physical and biogeochemical properties to approach quasi-equilibrium, and UKESM1’s performance is

unlikely to be significantly affected by drift.
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In terms of performance between CMIP generations, UKESM1 shows improved representation across almost all properties

relative to HadGEM2-ES, with the exception of surface DIN (where excess concentrations in the Equatorial Pacific impact

UKESM1’s global realism). UKESM1 improves on the marked biases in silicic acid and chlorophyll in particular, as well as a740

generally better representation of the ocean’s role in CO2 exchange. Séférian et al. (2020) provides a more complete view of

the improvements achieved in marine biogeochemistry modelling from CMIP5 to CMIP6, including between HadGEM2-ES

and UKESM1.

Finally, the preceding figures show good traceability in the marine biogeochemistry performance of UKESM1 with previous

instances of its use (e.g. Yool et al., 2013). For better and for worse, UKESM1 and MEDUSA-2 perform similarly across all of745

the properties examined. With the exception of DIN, where UKESM1’s geographical biases are similar but clearly larger than

those of MEDUSA-2, UKESM1’s performance in Figure 24 is marginally better (and despite a much longer spin-up period;

5300 vs. 120 years).

4.3 Future projection

As described above, when compared to observational metrics, UKESM1 performs well over a large number of diverse physical750

and biogeochemical properties. However, the model displays a number of biases in the present-day state that have implications

for its future behaviour under different climate scenarios.

UKESM1’s Arctic sea-ice is biased positive in both seasonal extent and, in particular, thickness. In the absence of biases in

the other direction, these aspects will enable it to persist longer under climate change, with a range of likely consequences for

the Arctic environment (Thackeray and Hall, 2019).755

Decreased productivity is a common ecosystem response under climate change, as ocean warming enhances ocean strati-

fication, reduces nutrient resupply from mixing and depletes surface concentrations (Kwiatkowski et al., 2020). The positive

nitrogen nutrient biases across UKESM1’s ocean may (at least temporarilty) stave off this depletion dampening the response

of its marine ecosystem. In particular, the excess nutrient bias in the Arctic may result in unrealistic future responses as the

Arctic continues to thaw (cf. Popova et al., 2012; Vancoppenolle et al., 2013).760

In terms of surface DIC and alkalinity, UKESM1 performs best in the CMIP6 ensemble examined here (Figure 24). However,

as already noted, UKESM1 exhibits a negative bias in surface alkalinity which drives a corresponding bias in surface DIC (and

within the ocean interior more generally; Figure 21). This bias reduces the buffering capacity of the surface ocean (Egleston

et al., 2010) and impacts the long-term capacity of the model ocean to act as a reservoir for carbon (cf. Archer, 2005).

Staying with the carbon cycle, although the simulated uptake of anthropogenic CO2 by the ocean is comparable to that765

estimated at the global scale (Figure 17, its spatial pattern within the ocean interior exhibits circulation-driven biases (Figure

22). Invasion of anthropogenic CO2 into shallow or rapidly ventilated water masses will lead to its more rapid return to the

surface ocean and atmosphere, potentially reducing future uptake by the ocean.
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5 Conclusions

– Physical and biogeochemical properties of the ocean component of the UKESM1 model have been evaluated against770

observations for the Historical period.

– Examined properties indicate that the model generally reproduces the main geographical and temporal features of the

ocean, but with a number of marked biases.

– Physically, model biases include a global warm bias, resolution-dependent surface biases, excessive northern sea-ice,

sluggish AABW circulation and weak DWBC flow.775

– Biogeochemically, model biases include nutrients skewed by remineralisation and iron availability, corresponding pro-

ductivity biases, and surface chemistry causing reduced carbon storage.

– Temporally, the ocean shows a number of secular trends including aerosol-driven strengthening Atlantic MOC transport,

associated sea-ice and productivity changes, and realistic carbon uptake.

– The UKESM1 ensemble shows consistent behaviour across ocean properties, it performs well in key metrics compared780

to CMIP6 peers, and improves on that of its CMIP5 predecessor, HadGEM2-ES.

– Though overall performance is good, UKESM1’s biases have implications for its response to climate change, including

the sea-ice loss rate, future productivity changes and ocean carbon uptake.
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Code and data availability. All simulations used in this work were performed using version 10.9 of the Unified Model (UM), version 5.0 of

JULES, NEMO version 3.6, CICE version 5.1.2 and OASIS3-MCT version 3.0. Model output from the NEMO ocean model was handled785

using the XML Input-Output Server (XIOS) library (Meurdesoif, 2013).

Guidance concerning the availability and use of UKESM1 is available from a dedicated website:

http://cms.ncas.ac.uk/wiki/UM/Configurations/UKESM

(last access: 30 October 2020)

Due to intellectual property rights restrictions, neither the source code nor documentation papers for the UM or JULES can be provided.790

However, the Met Office UM is available for use under licence, and further information on how to apply for a licence is available here:

https://www.metoffice.gov.uk/research/approach/modelling-systems/unified-model/

(last access: 30 October 2020)

JULES is also available under licence, free of charge, with further information on obtaining access for research purposes here:

http://jules-lsm.github.io/access_req/JULES_access.html795

(last access: 30 October 2020)

The simulation data used in this study are archived on the Earth Sytem Grid Federation (ESGF) node:

https://esgf-index1.ceda.ac.uk/projects/cmip6-ceda/

(last access: 30 October 2020)

The model Source ID for UKESM1 is UKESM1-0-LL, and simulations are identified by the following Variant Labels: r5i1p1f2, r6i1p1f2,800

r7i1p1f2, r4i1p1f2, r8i1p1f2, r1i1p1f2, r2i1p1f2, r3i1p1f2, and r9i1p1f2 (see Supplementary Table S1 for more details). The simulation data

are also archived at the Met Office and are available for research purposes through the JASMIN platform (www.jasmin.ac.uk). For further

details please contact UM_collaboration@metoffice.gov.uk referencing this paper.

The Matlab scripts used for analysis and plotting are available in this Zenodo archive:

https://doi.org/10.5281/zenodo.4155210805

(last access: 30 October 2020)
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Appendix A: MEDUSA-2.1

MEDUSA’s dual size-structure resolves small (nanophytoplankton and microzooplankton) and large (microphytoplankton and

mesozooplankton) components. Similar to its living components, MEDUSA’s detrital components are also split into two size

classes, with small, slow-sinking detrital particles represented explicitly as separate nitrogen and carbon tracers, and large, fast-810

sinking particles represented implicitly. At the seafloor, MEDUSA resolves 4 reservoirs to temporarily store organic (nitrogen

and carbon) and inorganic (opal and CaCO3) material reaching the sediment via both slow- and fast-sinking particles (iron is

slaved to nitrogen in these reservoirs). Supplementary Figure S2 presents a schematic outline of MEDUSA’s components and

the process connections between them.

The model’s nitrogen, silicon and alkalinity cycles are closed and conservative (e.g. no riverine inputs), while the cycles of815

iron, carbon and oxygen are open. The ocean’s iron cycle includes additions from aeolian and benthic sources, and is depleted

by scavenging based on local iron availability (and an assumed fixed binding ligand concentration). The ocean’s carbon cycle

exchanges CO2 with the atmosphere based on local carbonate chemistry, atmospheric xCO2 and ambient winds. The ocean’s

oxygen cycle exchanges with the atmosphere (which has an assumed fixed oxygen concentration), and dissolved oxygen is

additionally created by primary production and depleted by remineralisation throughout the ocean. The various elemental820

cycles include both fixed and variable stoichiometry. Iron is slaved to nitrogen throughout, while nitrogen and carbon have

fixed (but different) ratios in phytoplankton and zooplankton, and variable ratios in detritus. Diatom silicon has a variable ratio

with nitrogen, dependent on nutrient availability and growth rate. Calcium carbonate is produced at a geographically-variable

rate relative to organic carbon according to the ambient calcite saturation state, and consumes both dissolved inorganic carbon

(DIC) and alkalinity in a ratio of 1:2 respectively. Oxygen production and consumption reflects the C:N ratio of organic matter825

produced and consumed.

Yool et al. (2013) extensively describes the structure, differential equations, functional forms and parameterisation of the

MEDUSA-2.0 model in an earlier, ocean-only configuration. As part of the development cycle of UKESM1, a number of

changes were made to the model, and the resulting version used here is denoted as MEDUSA-2.1 for clarity. These specific

developments are listed below.830

– The carbonate chemistry submodel used in MEDUSA-2, Blackford et al. (2007) (also Artoli et al., 2012) has been

replaced by the MOCSY-2.0 scheme of Orr and Epitalon (2015). See Appendix B for more details.

– Since UKESM1 represents atmospheric chemistry, including elements of the sulphur cycle, MEDUSA now includes

several empirical submodels of surface dimethyl sulphide (DMS) concentration to permit this Earth system feedback.

See Appendix C for more details.835

– In addition to DMS, the atmospheric chemistry submodel of UKESM1 includes the emission of primary marine organic

aerosol (PMOA). This utilises MEDUSA’s simulated surface chlorophyll coupled to the PMOA parameterisation of

Gantt et al. (2011) and Gantt et al. (2012).

– During development and testing, a small number of changes have been made to MEDUSA parameter values.
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– MEDUSA’s underlying model code has been extensively reorganised into small subroutines with discrete functionality,840

to facilitate better code management and to adopt newer Fortran conventions. Its code has also been reorganised to reflect

changes within the host NEMO code, for example around model restarting.

– Throughout MEDUSA, processes involving the model’s representation of vertical space, including the explicit sinking of

slow detritus and the time-stepping of material fluxes into and out of the benthic reservoirs, have been revised to reflect

the adoption of variable volume (VVL) by the host NEMO model.845

– Diagnostic output in MEDUSA has been upgraded to utilise the XML Input-Output Server (XIOS) adopted by NEMO.

Available output from MEDUSA has been extended to include additional diagnostics, including those requested by

CMIP6.

Appendix B: MOCSY-2

As indicated above, MEDUSA-2.1 replaces an existing carbonate chemistry submodel with that of MOCSY-2.0 Orr and Epi-850

talon (2015). This includes an improved iterative solver, applicability over a wider range of ambient conditions, as well as

revised parameterisations that avoid several approximations in the earlier scheme. MOCSY-2.0 is primarily used to calculate

surface ocean carbonate chemistry and air-sea CO2 exchange, but it is additionally used on a periodic basis (monthly) to calcu-

late ocean interior carbon chemistry. In MEDUSA-2.1, the latter is used to determine the dissolution depth of sinking biogenic

calcite (via its normalised saturation state, Ωcalcite). MEDUSA-2.1 principally passes bulk ocean temperature, salinity and855

concentrations of dissolved inorganic carbon and alkalinity, together with atmospheric pressure, gas transfer velocity (calcu-

lated from wind speed), and xCO2 (i.e. mole fraction; ppm) to MOCSY-2.0. Ocean concentrations of ambient silicic acid and

estimated phosphate (= DIN ÷ 16) are additionally passed to MOCSY-2.0 for use in secondary coefficients, and for interior

carbonate chemistry, depth and latitude are used to calculate pressure. MOCSY-2.0 has been implemented within MEDUSA in

a “plug–and–play” manner to permit easy replacement with future revisions.860

Per the guidance of Orr et al. (2017), the updated gas exchange scheme of Wanninkhof (2014) is used to calculate gas

transfer velocity.

Appendix C: DMS concentration

As already mentioned, one addition to MEDUSA-2.1 is a representation of surface dimethyl sulphide concentration. This

concentration is passed to the atmospheric chemistry component, UKCA, where it is used in UKESM1’s sulphur cycle.865

MEDUSA-2.1 includes four empirical calculations for surface DMS: Anderson et al. (2001), Simo and Dachs (2002),

Aranami and Tsunogai (2004) and Halloran et al. (2010). After evaluation (Sellar et al., 2019), the formulation of Ander-

son et al. (2001) selected for use in UKESM1 simulations. This calculates DMS from three fields provided by MEDUSA-2:

surface chlorophyll, C (mg chl m−3), surface daily average shortwave radiation, J (W m−2), and surface nutrient limitation,

Q (–). Surface chlorophyll, C, is the sum of contributions of the two phytoplankton types, while J is provided by UKESM1’s870
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atmospheric component. The Q term is a conventional hyperbolic function of nitrogen nutrient concentration and uptake half-

saturation concentration, here using the lower half-saturation concentration of the non-diatom phytoplankton, kN,Pn (which

has the same numerical value as that originally used in Anderson et al., 2001). Anderson et al. (2001) used these terms in a

“broken stick” regression:

if log10 (C · J · Q) ≤ s875

DMS = a

else

DMS = b · [ log10 (C · J · Q) - s ] + a

Parameters a, b and s were originally fitted using an observational dataset (Kettle et al., 1999), and were tuned during the

development of UKESM1 to balance the top-of-atmosphere (TOA) radiation (Sellar et al., 2019). Parameter a was lowered to880

1.0 (from 2.29), in line with Anderson et al. (2001)’s own assessment of likely high-biased observations; parameter b was left

unchanged (at 8.24); while parameter s was linearly extended to 1.56 (from 1.72) to align with the reduced a.

Appendix D: Observational data sources

The following weblinks are to sources of the observational data used in the evaluation of UKESM1.

– World Ocean Atlas 2013: temperature, salinity, nutrients, oxygen885

https://www.nodc.noaa.gov/OC5/woa13/

– Hadley Centre Sea Ice and Sea Surface Temperature (HadISST.2.2): SST, sea-ice

https://www.metoffice.gov.uk/hadobs/hadisst2/

– National Sea Ice Data Centre: sea-ice thickness and index

https://nsidc.org/data/G10006/versions/1890

https://nsidc.org/data/G02135/versions/3

– Estimating the Circulation and Climate of the Ocean (ECCO) V4r4: ocean circulation

https://ecco-group.org/products-ECCO-V4r4.htm

– RAPID-MOCHA array: AMOC strength

https://www.rapid.ac.uk/data.php895

– Oregon State University Ocean Productivity group: chlorophyll and productivity

http://orca.science.oregonstate.edu/1080.by.2160.monthly.hdf.chl.seawifs.php

http://orca.science.oregonstate.edu/1080.by.2160.monthly.hdf.vgpm.m.chl.m.sst.php

http://orca.science.oregonstate.edu/1080.by.2160.monthly.hdf.eppley.s.chl.a.sst.php

http://orca.science.oregonstate.edu/1080.by.2160.monthly.hdf.cbpm2.s.php900
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Figure 1. Observational (top; HadISST) and simulated (middle) sea surface temperature for northern (left; JJA) and southern (right; DJF)

summer. Differences (simulated - observed) for both seasons shown in the bottom row. Temperature (and difference in temperature) in ◦C.
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Figure 2. Observational (top; HadISST) and simulated (middle) maximum annual sea-ice cover for the Arctic (March; left) and Antarctic

(September; right). Sea-ice cover is non-dimensional, and values less than 0.15 have been masked. The bottom row shows the seasonal

sea-ice extent (> 15% cover; in 106 km2) for the polar regions of each hemisphere.
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Figure 3. Observational (black, HadISST; grey, NSIDC) and simulated (blue) sea-ice extent in the Arctic (top) and Antarctic (bottom) across

the Historical period (1850–2014), with recent (1985–2014) trends shown. Panels show extent for September and March, which roughly

correspond to the seasonal minima and maxima. The model ensemble mean is shown, with ± 1 standard deviation shaded in blue to show

their variability.
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Figure 4. Observationally-derived (top; World Ocean Atlas) and simulated (middle) mixed layer depth for northern summer (left; JJA) and

southern summer (right; DJF). Differences (simulated - observed) for both seasons shown in the bottom row. Mixed layer depth derived from

full three-dimensional fields of potential temperature, using a temperature difference criterion (Monterey and Levitus, 1997). In this, mixed

layer depth is the depth at which potential temperature differs from that at 5 m by 0.5◦C. White regions are those where this criterion fails

(i.e. ocean interior temperature is never cooler than that at 5 m by the 0.5◦C criterion; typically sea-ice covered regions). Mixed layer depth

in m, and shown on a logarithmic scale.
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Figure 5. Frequency (in areal terms) of observation-derived (top; WOA) and simulated (bottom) seasonal mixed layer depths. Mixed layer

depth derived here using a 5 m temperature criterion (0.5 ◦C) and full three-dimensional fields of potential temperature (Monterey and

Levitus, 1997). Hemispheres have been temporally-aligned so that seasons co-occur (i.e. summer is JJA for the north and DJF for the south).

Circles indicate the medians for each seasonal period (i.e. the 50% of ocean area mark).
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Figure 6. A “thermohaline circulation” section of observed (top) and modelled (middle) zonal average potential temperature. Difference

(simulated - observed) is shown in the bottom panel. The section tracks southwards “down” the Atlantic basin from the Arctic to the

Southern Ocean, before tracking northwards “up” the Pacific basin from the Southern Ocean to the Bering Straits. The aim is to capture the

stereotypical transport of deep water from its formation as a “young” water mass in the high North Atlantic through to end as an “old” water

mass in the North Pacific. Dotted lines mark the “boundaries” of the Southern Ocean at 40◦S in each basin. Potential temperature in ◦C.
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Figure 7. A “thermohaline circulation” section of observed (top) and modelled (middle) zonal average salinity. Difference (simulated -

observed) is shown in the bottom panel. Salinity in practical salinity units (PSU). Figure 6 explains the format of this section.
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Figure 8. Observationally-derived (top) and simulated (bottom) meridional overturning circulation (MOC) for the global ocean. The obser-

vational circulation is derived from the ECCO V4r4 ocean circulation reanalysis for the period 1992-2017. The model circulation shown

is based on the decadally-averaged streamfunction, 2000-2009. Both plots include the components from parameterised mesoscaled eddies

(Gent and McWilliams, 1990; Gent et al., 1995). MOC is in Sv with a contour interval of 2 Sv.
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Figure 9. Time-series plots of the ocean circulation during the Historical period from 1850 to 2015. Panels show annual averages of AMOC

(left) and Drake Passage (right) transport for all 9 ensemble members (coloured lines) and the ensemble mean (solid black line). Observational

data of AMOC transport from the RAPID-MOCHA array is shown in grey for the period 2003-2015. For additional clarity, Supplementary

Figure S8 replots this panel to focus on this recent period.
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Figure 10. Observational (top; World Ocean Atlas) and simulated (middle) surface dissolved inorganic nitrogen, shown geographically for

northern (left; JJA)and southern summer (right; DJF), and as zonal Hovmöller diagrams (bottom). Concentrations in mmol N m−3.
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Figure 11. Observational (top; World Ocean Atlas) and simulated (middle) surface dissolved silicic acid, shown geographically for northern

(left; JJA)and southern summer (right; DJF), and as zonal Hovmöller diagrams (bottom). Concentrations in mmol Si m−3.
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Figure 12. Observational (top; Mahowald (2005)) and simulated ensemble mean (middle) aeolian deposition of iron. Due to its large dynamic

range, deposition flux is shown on a logarithmic scale. Deposition is in µmol Fe m−2 y−1.
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Figure 13. Observational (top; SeaWiFS) and simulated (middle) surface chlorophyll, shown geographically for northern (left; JJA)and

southern summer (right; DJF), and as zonal Hovmöller diagrams (bottom). Missing observational data at high latitudes because of polar

night / sea-ice appear as white regions in both geographical and Hovmöller panels. Concentrations in mg chl m−3.
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Figure 14. Observational (top) and simulated (middle) vertically–integrated net primary production, shown geographically for northern (left;

JJA)and southern summer (right; DJF), and as zonal Hovmöller diagrams (bottom). Missing observational data at high latitudes are shown

as zero because of polar night / sea-ice. Primary production in g C m−2 d−1.
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Figure 15. Observational (left; GLODAPv2) and simulated (right) annual average surface dissolved inorganic carbon (top) and total alkalinity

(bottom). DIC in mmol C m−3, alkalinity in meq m−3.
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Figure 16. Observed (top; Rödenbeck et al. (2013)) and simulated (middle) air-sea CO2 flux, shown geographically for northern (left;

JJA)and southern summer (right; DJF), and as zonal Hovmöller diagrams (bottom). Red colours indicate CO2 flux into the ocean, while blue

colours denote outgassing CO2. Flux in mmol C m−2 d−1.
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Figure 17. Time-series of globally integrated air-to-sea CO2 flux, showing observationally-estimated mean (solid black) and range (grey

shading; Khatiwala et al., 2009), and simulated piControl (thin black) and Historical ensemble (solid colours). Air-to-sea fluxes in Pg C y−1.

Note that while the Historical era of CMIP6 experiments begins in year 1850, the Industrial Revolution – and uptake of anthropogenic CO2

by the ocean – began prior to this date.
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Figure 18. Observed (left; Key et al., 2004) and modelled (right) vertically-integrated anthropogenic CO2 (top; mol C m−2) and CFC-11

(bottom; µmol m−2) in the 1990s. GLODAPv1.1 is used here as the time period used overlaps that of observational CFC-11.
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Figure 19. Observed (left; Key et al., 2004) and modelled (right) Atlantic sections (30◦N) of anthropogenic CO2 (top; mmol C m−3) and

CFC-11 (bottom; nmol m−3) in the 1990s.
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Figure 20. A “thermohaline circulation” section of observed (top) and modelled (middle) zonal average dissolved inorganic nitrogen. Dif-

ference (simulated - observed) is shown in the bottom panel. Concentrations in mmol N m−3. Figure 6 explains the format of this section.
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Figure 21. A “thermohaline circulation” section of observed (top) and modelled (middle) zonal average dissolved inorganic carbon. Differ-

ence (simulated - observed) is shown in the bottom panel. Concentrations in mmol C m−3. Figure 6 explains the format of this section.
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Figure 22. Observed (GLODAPv1.1; Key et al., 2004) and modelled vertical profiles of DIC (top left; mmol C m−3), alkalinity (top right;

meq m−3), anthropogenic CO2 (bottom left; mmol C m−3) and CFC-11 (bottom right; nmol m−3). GLODAPv1.1 is used here as the

time period used (the 1990s) overlaps that of observational CFC-11. Model profiles from the ensemble used in this analysis are presented

individually, and are geographically masked according to GLODAPv1.1.
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Figure 23. Intercomparison of annual mean vertically-integrated primary production between observed (top row, left), UKESM1 simulated

(top row, centre) and a range of comparable CMIP6 models (rows 2–4). Results from CMIP5’s precursor to UKESM1, HadGEM2-ES (Jones

et al., 2011; row 2, left) and MEDUSA–2 (Yool et al., 2013; top row, right) are shown for comparison. This field was not available for the

CESM2-FV2 model and this has been left blank. Production in g C m−2 d−1.
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Figure 24. Taylor diagrams illustrating the skill of UKESM1 (and its precursors, HadGEM2-ES and MEDUSA-2) and a series of CMIP6

models over a set of standard surface ocean of biogeochemical properties: dissolved inorganic nitrogen (top left), silicic acid (top centre),

chlorophyll (top right), primary production (middle left), dissolved inorganic carbon (middle centre), alkalinity (middle right), and air-sea

CO2 flux (bottom centre). The diagrams show model-observation comparisons based on annual average spatial fields, all regridded to the

same standard grid. The diagrams share a common model key (bottom centre).
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Property Mean σ Min. Max. M

[units]

AMOC 15.83 1.191 12.60 18.80 0.200

[Sv] 14.77 0.877 12.61 16.88 -0.024

Drake 151.52 5.908 139.75 164.18 -0.197

[Sv] 154.33 4.017 144.84 163.37 0.128

SST 17.76 0.175 17.45 18.42 0.015

[◦C] 17.67 0.075 17.45 17.88 -0.002

Temperature 3.78 0.008 3.76 3.80 -0.000

[◦C] 3.77 0.007 3.76 3.79 -0.001

SSS 34.31 0.015 34.27 34.34 -0.001

[PSU] 34.31 0.013 34.28 34.34 -0.001

Salinity 34.73 0.000 34.73 34.73 -0.000

[PSU] 34.73 0.000 34.73 34.73 -0.000

N sea-ice 12.23 0.519 10.69 13.39 -0.025

[106 km2] 12.15 0.387 11.18 13.30 0.017

S sea-ice 11.35 0.890 8.34 13.08 -0.092

[106 km2] 11.87 0.554 10.44 13.27 -0.013

MLD 50.06 0.729 48.02 52.17 0.017

[m] 49.99 0.547 48.61 51.59 -0.010

Table 1. Selected ocean physical properties averaged across both the Historical ensemble (upper rows) and corresponding segments of the

piControl (lower italicised rows). For each property, the statistics refer to the full 165 y period from 1850-2015. The final statistic, M, is the

linear slope of the change in the property across this full period.
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Property Mean σ Min. Max. M

[units]

Surface DIN 7.52 0.146 7.18 7.90 0.008

[mmol N m−3] 7.49 0.125 7.20 7.82 0.003

Surface silicic acid 9.30 0.312 8.69 10.10 0.038

[mmol Si m−3] 9.16 0.189 8.66 9.58 -0.010

Surface iron 0.52 0.005 0.50 0.53 -0.000

[µmol Fe m−3] 0.52 0.004 0.51 0.53 0.000

Surface DIC 2020.70 16.299 2000.76 2059.53 3.267

[mmol C m−3] 2002.35 1.043 1999.81 2005.20 -0.017

Surface alkalinity 2317.76 1.617 2314.60 2321.42 0.265

[meq m−3] 2316.09 0.817 2314.10 2317.93 -0.053

Surface O2 252.05 0.735 249.28 253.33 -0.060

[mmol O2 m−3] 252.42 0.334 251.43 253.35 0.009

Ocean O2 190.50 0.373 189.87 191.17 0.050

[mmol O2 m−3] 190.41 0.279 189.88 190.89 0.051

NPP 47.96 0.728 46.04 49.83 -0.014

[Pg C y−1] 48.01 0.682 46.05 49.74 -0.003

Air-sea CO2 flux 0.81 0.674 -0.17 2.45 0.129

[Pg C y−1] -0.02 0.118 -0.33 0.26 -0.001

Aeolian iron 2.41 0.228 1.89 3.07 -0.002

[Gmol Fe y−1] 2.41 0.219 1.88 3.12 0.003

Table 2. Selected ocean biogeochemical properties averaged across both the Historical ensemble (upper rows) and corresponding segments

of the piControl (lower italicised rows). For each property, the statistics refer to the full 165 y period from 1850-2015. The final statistic, M,

is the linear slope of the change in the property across this full period.
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