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Abstract. With MLAir (Machine Learning on Air data) we created a software environment that simplifies and accelerates the

exploration of new machine learning (ML) models, specifically shallow and deep neural networks, for the analysis and fore-

casting of meteorological and air quality time series. Thereby MLAir is not developed as an abstract workflow, but hand in

hand with actual scientific questions. It thus addresses scientists with either a meteorological or an ML background. Due to

their relative ease of use and spectacular results in other application areas, neural networks and other ML methods are gaining5

enormous momentum also in the weather and air quality research communities. Even though there are already many books and

tutorials describing how to conduct an ML experiment, there are many stumbling blocks for a newcomer. In contrast, people

familiar with ML concepts and technology often have difficulties understanding the nature of atmospheric data. With MLAir

we have addressed a number of these pitfalls so that it becomes easier for scientists of both domains to rapidly start off their

ML application. MLAir has been developed in such a way that it is easy to use and is designed from the very beginning as10

a standalone, fully functional experiment. Due to its flexible, modular code base, code modifications are easy and personal

experiment schedules can be quickly derived. The package also includes a set of simple validation tools to facilitate the evalua-

tion of ML results using standard meteorological statistics. MLAir can easily be ported onto different computing environments

from desktop workstations to high-end supercomputers with or without graphics processing units (GPU).

Copyright statement. TEXT15

1 Introduction

In times of rising awareness of air quality and climate issues, the investigation of air quality and weather phenomena is moving

into high focus. Trace substances such as ozone, nitrogen oxides or particulate matter pose a serious health hazard to humans,

animals and nature (Cohen et al., 2005; Bentayeb et al., 2015; World Health Organization, 2013; Lefohn et al., 2018; Mills

et al., 2018; US Environmental Protection Agency, 2020). Accordingly, the analysis and prediction of air quality are of great20

importance in order to be able to initiate appropriate countermeasures or issue warnings. Likewise, impacts of severe weather

can be disastrous leading to losses of lives and great economic damage. Weather prediction has been established operationally
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in many countries and has become a multi-million dollar industry, creating and selling specialized data products for many

different target groups.

These days, forecasts of weather (as a common generic term for atmospheric chemistry, air quality, and meteorology) are25

generally made with the help of so-called Eulerian grid point models. This type of models, which solve physical (and chemical)

equations, operate on grid structures. In fact, however, local observations of weather and air quality are strongly influenced

by the immediate environment. For instance, it is quite difficult for atmospheric chemistry models to represent very small-

scale problems due to the limited grid resolution of these models and other limitations. Consequently, both global models

and so-called small-scale models, whose grid resolution is still in the magnitude of about a kilometre and thus rather coarse30

in comparison to local-scale phenomena in the vicinity of a measurement site, show a high uncertainty of the results (c.f.

Vautard, 2012; Brunner et al., 2015). To enhance the model output, approaches focusing on the individual point measurements

at weather and air quality monitoring stations through downscaling methods are applied allowing local effects to be taken into

account. Unfortunately, these methods, being optimized for specific locations, cannot be generalized for other regions and need

to be re-trained for each measurement site.35

In a complementary way to traditional downscaling techniques like linear regression and other statistical methods, the use

of machine learning (ML) is a promising approach to predict point observations. Methods such as neural networks are able to

recognize and reproduce underlying and complex relationships in data sets. Especially driven by computer vision and speech

recognition, technologies like convolutional neural networks (CNN, Lecun et al., 1998) or recurrent networks variations such as

long short term memory (LSTM, Hochreiter and Schmidhuber, 1997) or gated recurrent units (GRU, Cho et al., 2014) but also40

more advanced concepts like variational autoencoders (VAE, Kingma and Welling, 2014; Rezende et al., 2014), or generative

adversarial networks (GAN, Goodfellow et al., 2014) are powerful and widely used successfully.

Although the scientific areas of ML and meteorology exists for many years, combining both disciplines is still a formidable

challenge, because scientists from these areas do not speak the same language. Meteorologists are used to build models on

the basis of physical equations and empirical relationships from field experiments, and they evaluate their models with data.45

In contrast, ML scientists use data to build their models on and evaluate either with additional independent data or physical

constraints. This elementary difference can lead to misinterpretation of studies and results so that, for example, the ability of

the network to generalize is misjudged. Another frequent problem of published studies on ML approaches to weather fore-

casting is an incomplete reporting of ML parameters, hyperparameters and data preparation steps that are key to comprehend

and reproduce the work that was done. As shown by Musgrave et al. (2020) these issues are not limited to meteorological50

applications of ML only.

To further advance the application of ML in the meteorological area, easily accessible solutions to run and document ML

experiments together with readily available and fully documented benchmark data sets are urgently needed (c.f. Schultz et al.,

2021, forthcoming). Such solutions need to be understandable by both, the ML and meteorological communities and help both

sides to prevent unconscious blunders. A well-designed workflow embedded in a meteorological and ML related environment55

while accomplishing subject-specific requirements will bring forward the usage of ML in this specific research area.
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In this paper, we present a new framework to enable fast and flexible Machine Learning on Air data time series (MLAir). Fast

means that MLAir is distributed as full end-to-end framework and thereby simple to deploy. It also allows deploying typical

optimization techniques in ML workflows, and offers further technical features like the use of graphics processing units (GPU)

due to the underlying ML library. MLAir is suitable for ML beginners by its simple usage, but also offers high customization60

potential for advanced ML users and can therefore be employed in real-world applications. For example, more complex model

architectures can be easily integrated. ML experts who want to explore weather data will find MLAir helpful as it enforces

certain standards of the meteorological community. For example, its data preparation step acknowledges the auto-correlation

which is typically seen in meteorological time series, and its validation package reports skill scores, i.e. improvement of the

forecast compared to reference models such as persistence and climatology. From a software design perspective, MLAir has65

been developed according to state-of-the-art software development practices.

This work is structured as follows. Section 2 introduces MLAir by expounding the general design behind the MLAir work-

flow. We also share a few more general points about ML and how a typical workflow looks like. This is followed by section 3

showing three application examples to allow the reader to get a general understanding of the tool. Furthermore, we show how

the results of an experiment conducted by MLAir are structured and which statistical analysis is applied. Section 4 extends70

further into the configuration options of an experiment and details on customization. Section 5 delineates the limitations of

MLAir and discusses for which applications the tool might not be suitable. Finally, section 6 concludes with an overview and

outlook on planned developments for the future.

At this point we would like to point out that in order to simplify the readability of the manuscript, highlighting is used.

Frameworks are highlighted in italics and typewriter font is used for code elements such as class names or variables. Other75

expressions that, for example, describe a class but do not explicitly name it, are not highlighted at all in the text. Last but not

least, we would like to mention that MLAir is an Open Source project and contributions from all communities are welcome.

2 MLAir workflow and design

ML in general is the application of a learning algorithm to a data set that generates a model. During the so-called training

process, the model learns patterns in the data set with the aid of the learning algorithm. Afterwards, this model can be applied80

to new data. Since there is a large number of such learning algorithms and also an arbitrarily large number of different ML

models, it is generally not possible to determine in advance which model will deliver the best results under which configuration.

Therefore, the optimal setting must be find by trial and error.

ML experiments often follow similar patterns. First, data must be obtained, cleaned if necessary, and finally put into a

suitable format (preprocessing). Next, an ML model is selected and configured (model setup). Then the learning algorithm can85

optimize the model under the selected settings on the data. This is an iterative procedure, a single iteration is called epoch

(training). The accuracy of the model is then evaluated (validation). If the results are still not satisfactory, the experiment is

continued with other settings or a new model and the process starts again from the beginning. For further details on ML, we

refer to Bishop (2006) and Goodfellow et al. (2016), but would also like to point out that there is a large amount of further

3



introductory literature and freely available blog entries and videos, and that the books mentioned here are only two of many90

options out there.

The overall goal of designing MLAir was to create a ready-to-run ML application for the task of forecasting weather and air

quality time series. The tool should allow many customization options to enable users to easily create a custom ML workflow,

while at the same time it should support users in executing ML experiments properly and evaluate their results according to

accepted standards of the meteorological community. At this point, it is pertinent to recall that MLAir’s current focus is on95

neural networks.

In this section we present the general concepts on which MLAir is based. We first comment on the choice of the underlying

programming language and the used packages and frameworks (section 2.1). We then focus on the design considerations and

choices and introduce the general workflow of MLAir (section 2.2). Thereafter we explain how the concept of run modules

(section 2.3), model class (section 2.4) and data handler (section 2.5) was conceived and how these modules interact with each100

other. More detailed information on, for example, how to adapt these modules can be found in the corresponding subsection of

the later section 4.

2.1 Coding language

As underlying coding language python (Python Software Foundation, 2018, release 3.6.8) was used for two major reasons. First,

python is pretty much independent of the operating system and is not required to be compiled before a run. python is flexible to105

handle different tasks like data loading from web, training of the ML model or plotting. Numerical operations can be executed

quite efficiently due to the fact that they are usually performed by highly optimized and compiled mathematical libraries.

Furthermore, because of its popularity in science and economics, python has a huge variety of freely available packages to

use. Secondly, python is currently the language in the ML community (Elliott, 2019) and has well-developed easily-to-use

frameworks like TensorFlow (Abadi et al., 2015) or PyTorch (Paszke et al., 2019) which are state-of-the-art tools to work on110

ML problems. Due to the presence of such compiled frameworks, there is for instance no performance loss during the training,

which is the biggest part of the ML workflow, by using python.

Concerning the ML framework, Keras (Chollet et al., 2015, release 2.2.4) was chosen for the ML parts using TensorFlow

(release 1.13.1) as back-end. Keras is a framework that abstracts functionality out of its back-end by providing a simpler

syntax and implementation. For advanced model architectures and features it is still possible to implement parts or even the115

entire model in native TensorFlow by using the Keras front-end for training. Furthermore, TensorFlow has GPU support for

training acceleration if a GPU device is available on the running system.

For data handling, we chose a combination of xarray (Hoyer and Hamman, 2017; Hoyer et al., 2020, release 0.15.0) and

pandas (Wes McKinney, 2010; Reback et al., 2020, release 1.0.1). pandas is an open source tool to analyse and manipulate

data primarily designed for tabular data. xarray that was inspired by pandas is developed to work with multi-dimensional120

arrays as simple and efficient as possible. xarray is based on the off-the-shelf python package for scientific computing NumPy

(van der Walt et al., 2011, release 1.18.1) and introduces labels in form of dimensions, coordinates, and attributes on top of raw

NumPy-like arrays.
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2.2 Design of the MLAir workflow

In order to enable a wide range of adaptations but also to support the users sufficiently, MLAir had to be designed as an125

end-to-end workflow comprising all required steps of the time series forecasting task. The workflow of MLAir is controlled

by a run environment, which provides a central data store, performs logging and ensures the orderly execution of a sequence

of individual stages. Different workflows can be defined and executed under the umbrella of this environment. The standard

MLAir workflow (described in section 2.3) contains a sequence of typical steps for ML experiments as indicated by Fig. 1:

experiment setup, preprocessing, model setup, training, and postprocessing.130

Besides the run environment, the experiment setup plays a very important role. During experiment setup, all customization

and configuration modules, like the model class (section 2.4), data handler (section 2.5), or hyperparameters, are collected and

made available to MLAir. Later in the ongoing workflow, these modules are then queried, e.g. the hyperparameters are used in

training whereas the data handler is responsible for an accurate use of the data and therefore already used in the preprocessing.

We want to mention that apart from this default workflow, it is also possible to define completely new stages and integrate them135

into a custom MLAir workflow (see section 4.8).

2.3 Run modules

MLAir models the ML workflow as a sequence of self-contained stages called run modules that handle distinct tasks whose

calculations or results are usually required for all subsequent stages. At run time, all run modules can interchange information

through a temporary data store. All run modules are executed sequentially upon successful termination of the precursor. Ad-140

vanced work flow concepts such as conditional execution of run modules, are not implemented in this version of MLAir. Also,

run modules cannot be run in parallel, although a single run module can very well execute parallel code. In the default setup

(c.f. Fig. 1), the MLAir workflow constitutes on the following run modules:

– Run Environment: The run module RunEnvironment is the base class for all other run modules. By wrapping the

RunEnvironment class around all run modules, parameters are tracked, the workflow logging is centralized, and145

the temporary data store is initialized. After each run module and at the end of the experiment, RunEnvironment

guarantees a smooth (experiment) closure by providing supplementary information on stage execution and parameter

access from the data store.

– Experiment Setup: The initial stage of MLAir to set up the experiment workflow is called ExperimentSetup.

Parameters which are not customized are filled with default settings and stored for the experiment workflow. Furthermore,150

all local paths for the experiment itself but also for data are created during experiment setup.

– Preprocessing: During the run module PreProcessing, MLAir loads all required data and carries out typical ML

preparation steps to have the data ready-to use for training. If the DefaultDataHandler is used, this step includes

downloading or loading of (locally stored) data, data transformation and interpolation. Finally, data are split into the

subsets for training, validation, and testing.155
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– Model Setup: The ModelSetup run module builds the raw ML model implemented as a model class (see section 2.4),

sets Keras and TensorFlow callbacks and checkpoints for the training, and finally compiles the model. Additionally, if

using a pre-trained model, the weights of this model are loaded during this stage.

– Training: During the course of the Training run module, training and validation data are distributed according to the

parameter batch_size to properly feed the ML model. According to the batch size, training and validation data are160

distributed to properly feed the ML model. Right after, the actual training starts. After each epoch of training, the model

performance is evaluated on validation data. If performance improved compared to previous cycles, the model is stored

as best_model. In this way, the final model is the best training model according to validation performance.

– Postprocessing: In the final stage, PostProcessing, the trained model is statistically evaluated on the test data set.

For comparison, MLAir provides two additional forecasts, first an ordinary multi-linear least squared fit trained on the165

same data like the ML model and second a persistence forecast, where observations of the past represent the forecast for

the next steps within the prediction horizon. For daily data, the persistence forecast refers to the last observation of each

sample to hold for all forecast steps. Skill scores based on the model training and evaluation metric are calculated for

all forecasts and compared with climatological statistics. The evaluation results are saved as publication-ready graphics.

Furthermore, a bootstrapping technique is used to evaluate the importance of each input feature. More details on the170

statistical analysis that is carried out can be found in section 3.3. Finally, an unpretentious geographical overview map

containing all stations is created for convenience.

Ideally this predefined default workflow should meet the requirements for an entire end-to-end ML workflow on station-wise

observational data. Nevertheless, MLAir provides options to customize the workflow according to the application needs (see

section 4.8).175

2.4 Model Class

In order to ensure a proper functioning of ML models, MLAir uses a model class, so that all models are created according to the

same scheme. Inheriting from the AbstractModelClass guarantees a correct handling during the workflow. The model

class is designed to follow an easy plug-and-play behaviour so that within this security mechanism, it is possible to create

highly customized models with the frameworks Keras and TensorFlow. We know that wrapping such a class around each ML180

model is slightly more complicated, but by requiring the user to build their models in the style of a model class, the model

structure can be documented more easily and there is less potential for errors when interacting with MLAir. More details on

the model class can be found in section 4.5.

2.5 Data handler

In analogy to the model class, the data handler organizes all operations related to data retrieval, preparation and provision of185

a single data origin. For example, if a set of observation stations is being examined in the MLAir workflow, a new instance of
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the data handler is created for each station automatically and MLAir will take care of the iteration across all stations. To ensure

a smooth integration into MLAir, each data handler must also follow certain rules. As with the creation of a model, it is not

necessary to modify MLAir’s source code. Instead, the AbstractDataHandler class provides guidance on which methods

a data handler needs to interact smoothly with the workflow.190

By default, MLAir uses the DefaultDataHandler. It accesses data from JOIN as demonstrated in section 3.1. A de-

tailed description of how to use this data handler can be found in section 4.4. However, if a different data source or struc-

ture is used for an experiment, the DefaultDataHandler must be replaced by a custom data handler based on the

AbstractDataHandler. Simply put, such a custom handler requires methods for creating itself at runtime and meth-

ods that return the inputs and outputs. Partitioning according to the batch size or suchlike is then handled by MLAir at the195

appropriate moment and does not need to be integrated into the custom data handler. Further information about custom data

handlers follows in section 4.3.

3 Conducting an experiment with MLAir

Before we dive deeper into available features and the actual implementation, we show three basic examples of the MLAir usage

to demonstrate the underlying ideas and concepts and how first modifications can be made (section 3.1). In section 3.2, we then200

explain how the output of a MLAir experiment is structured and which graphics are created. Finally, we briefly touch on the

statistical part of the model evaluation (section 3.3).

3.1 Running first experiments with MLAir

To install MLAir, the program can be downloaded as described in the Code availability section and the python library depen-

dencies should be installed from the requirements file. To test the installation, MLAir can be run in a default configuration205

with no extra arguments (see Fig. 2). These two commands will execute the workflow depicted in Fig. 1. This will perform an

ML forecasting experiment of daily maximum ground-level ozone concentrations using a simple feed-forward neural network

based on seven input variables consisting of preceding trace gas concentrations of ozone and nitrogen dioxide, and the values

of temperature, humidity, wind speed, cloud cover, and the planetary boundary layer height.

MLAir uses the DefaultDataHandler class (see section 4.4) if not explicitly stated and automatically starts download-210

ing all required air quality and meteorological data from the Jülich Open Web Interface (Schultz et al., 2017a,b, JOIN) the

first time it is executed after a fresh installation. This web interface provides access to a database of measurements of over

10,000 air quality monitoring stations worldwide. In the default configuration, 21-year time series of nine variables from five

stations are retrieved with a daily aggregated resolution (see Table 3 for details on aggregation). The retrieved data are stored

locally to save time on the next execution (the data extraction can of course be configured as described in section 4.4). It is also215

possible to replace the DefaultDataHandler with a self-made data handler to use other data sources or read in different

data structures. An introduction to this is given in section 2.5.
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After preprocessing this data, splitting them into training, validation, and test data, and converting them to a xarray and

NumPy format (details in section 2.1), MLAir creates a new vanilla feed-forward neural network and starts to train it. Finally,

the results are evaluated according to meteorological standards and a default set of plots is created. The trained model, all220

results and forecasts, the experiment parameters and log files, as well as the default plots are pooled in a folder in the current

working directory. Thus, in its default configuration, MLAir performs a meaningful meteorological ML experiment, which can

serve as a benchmark for further developments and baseline for more sophisticated ML architectures.

In the second example (Fig. 3), we expand the number of precedent time steps as model inputs to provide more contextual

information to the vanilla model. Furthermore, we use a different set of observational stations. Therefore, we need to adjust225

the parameter window_history_size for the former and stations for the latter in the run call. From a first glance,

the output of the experiment run is quite similar to the earlier example. However, there are a couple of aspects in this second

experiment, which we would like to point out. Firstly, the DefaultDataHandler keeps track of data available locally and

thus reduces the overhead of reloading data from the web if this is not necessary. Therefore, no new data was downloaded

for one of the stations (DEBW107), because these data had been stored locally already in our first experiment. Of course the230

DefaultDataHandler can be forced to reload all data from its source if needed (see section 4.1). The second key aspect to

highlight here is that the parameter window_history_size could be changed and the network was trained anew without

any problem even though this change affects the shape of the input data and thus the neural network architecture. This is made

possible since the model class in MLAir queries the shape of the input variables and adapts the architecture of the input layer

accordingly. Naturally, this procedure does not make perfect sense for every model, as it only affects the first layer of the model.235

In case the shape of the input data changes to a large extent, it is advisable to adapt the entire model as well. Concerning the

network output, the second experiment overwrites all results from the first run, because without an explicit setting of the file

path, MLAir always uses the same sandbox directory called testrun_network. In a real-world sequence of experiments,

we recommend to always specify a new experiment path with a reasonably descriptive name (details on the experiment path in

section 4.1).240

The third example in this section demonstrates the activation of a partial workflow, namely a re-evaluation of a previously

trained neural network. We want to rerun the evaluation part with a different set of stations to perform an independent validation.

This partial workflow would also be employed if the model is supposed to run in production. As we replace the stations for

the new evaluation, we need to create a new testing set, but we want to skip the model creation and training steps. Hence, the

parameters create_new_model and train_model are set to False (see Fig. 4). With this setup, the model is loaded245

from the local file path and the evaluation is performed on the newly provided stations. By combining the stations from the

second and third experiment in the station parameter the model can be evaluated at all of these stations together. In this setting,

MLAir will fail to execute the evaluation if parameters pertinent for preprocessing or model compilation changed compared to

the training run.

It is also possible to continue training of an already trained model. If the train_model parameter is set to True, training250

will be resumed at the last epoch reached, if this epoch number is lower than the final epoch setting. Use cases for this are

either an experiment interruption (for example due to wall clock time limit exceedance on batch systems) or the desire to extend
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the training if the optimal network weights have not been found yet. Further details on training resumption can be found in

section 4.9.

3.2 Results of an experiment255

All results of an experiment are stored in the directory, which is defined during the experiment setup stage (see section 4.1).

The sub directory structure is created at the beginning of the experiment. There is no automatic deletion of files in case of

aborted runs so that the information that is generated up to the program termination can be inspected to find potential errors or

to check on a successful initialization of the model, etc. Fig. 5 shows the output file structure. The content of each directory is

as follows:260

– All samples used for training and validation are stored in the batch_data folder. Even if the batch data could be used

further, they serve rather as auxiliary files.

– forecasts contains the actual predictions of the trained model. For comparison, MLAir provides two additional fore-

casts, first an ordinary multi-linear least squared fit trained on the same data like the ML model and second a persistence

forecast, where observations of the past represent the forecast for the next steps within the prediction horizon. For daily265

data, the persistence forecast refers to the last observation of each sample to hold for all forecast steps. All forecasts

(model and references) are provided in normalized and original value ranges. Additionally, the bootstrap forecasts are

stored here (see section 3.3).

– In latex_report, there are publication-ready tables in Markdown (Gruber, 2004) or LaTeX (LaTeX Project, 2005)

format, which give a summary about the used stations, the number of samples, and the hyperparameters and experiment270

settings.

– The logging folder contains information about the execution of the experiment. In addition to the console output,

MLAir also stores messages on the debugging level, which give a better understanding of the internal program sequence.

MLAir has a tracking functionality, which can be used to trace which data have been stored and pulled from the cen-

tral data store. In combination with the corresponding tracking plot that is created at the very end of each experiment275

automatically, it allows to visually track which parameters have an effect on which stage. This functionality is most

interesting for developers who make modifications to the source code and want to ensure that their changes don’t break

the data flow.

– The folder model contains everything that is related to the trained model. Besides the file, which contains the model

itself (stored in the binary hierarchical data format HDF5, Koranne, 2011), there is also an overview graphic of the model280

architecture and all callbacks, for example from the learning rate. If a training is not started from the beginning but is

either continued or applied to a pre-trained model, all necessary information like the model or required callbacks must

be stored in this subfolder.
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– The plots directory contains all graphics that are created during an experiment. Which graphics are to be created

in post-processing can be determined using the plot_list parameter in the experiment setup. In addition, MLAir285

automatically generates monitoring plots for instance of the evolution of the loss during training.

As described in the last bullet, all plots which are created during an MLAir experiment can be found in the subfolder plots.

By default, all available plot types are created. By explicitly naming individual graphics in the plot_list parameter, it is

possible to override this behaviour and specify which graphics are created during postprocessing. Additional plots are created

to monitor the training behaviour. These graphics are always created when a training session is carried out. Most of the plots290

which are created in the course of postprocessing are publication-ready graphics with complete legend and resolution of 500

dpi. If it is intended to add custom graphics in MLAir, these graphics can be added to the workflow by attaching an additional

run module (see section 4.8) including the graphic creation methods.

A general overview of the underlying data can be obtained with the graphics PlotStationMap and PlotAvailability.

PlotStationMap (Fig. 6) marks the geographical position of the used stations on a plain map with a land-sea mask, country295

boundaries and major water bodies. The data availability chart created by PlotAvailability (Fig. 7) indicates the time

periods for which preprocessed data for each measuring station are available. The index data availability also shows whether a

station with measurements is available at all for a point in time. In addition, the three subsets for training, validation and testing

are highlighted in different colours.

The monitoring graphics show the course of the loss function as well as the error depending on the epoch for the training300

and validation data (c.f. Fig. 8). In addition, the error of the best model state with respect to the validation data is shown in the

heading. If the learning rate is modified during the course of the experiment, another plot is created to show its development.

These monitoring graphics are kept as simple as possible and are meant to provide insight into the training process. The

underlying data are always stored in the JavaScript Object Notation format (.json, ISO Central Secretary, 2017) in the subfolder

model and can therefore be used for customized plots.305

Through the graphs PlotMonthlySummary and PlotTimeSeries it is possible to review the forecast of the ML

model. The PlotMonthlySummary (see Fig. 9) summarizes, according to its name, all predictions of the model covering

all stations but considering each month separately as a box-and-whisker diagram. With this graph it is possible to get a general

overview of the distribution of the predicted values compared to the distribution of the observed values for each month. Besides,

the exact course of the time series compared to the observation can be viewed in the PlotTimeSeries (not included as310

figure). However, since this plot has to scale according to the length of the time series, it should be noted that this last-mentioned

graph is kept very simple and rather not suitable for publication.

3.3 Statistical analysis of results

A central element of MLAir is the statistical evaluation of the results according to state-of-the-art methods used in meteorology.

To obtain specific information on the forecasting model, we treat forecasts and observations as random variables. Therefore, the315

joint distribution p(m,o) of a model m and an observation o contains information on p(m), p(o) (marginal distribution) and the
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relation p(o|m), p(m|o) (conditional distribution) between both of them (Murphy and Winkler, 1987). Following Murphy et al.

(1989), marginal distribution is shown as a histogram (light grey), while the conditional distribution is shown as percentiles in

different line styles. By using PlotConditionalQuantiles, MLAir automatically creates plots for the entire test period

(Fig. 10) and, as is common in meteorology, separated by seasons.320

In order to access the genuine added value of a new forecasting model, it is essential to take other existing forecasting

models into account instead of reporting only metrics related to the observation. In MLAir we implemented three types of basic

reference forecasts; i) a persistence forecast, ii) an ordinary least square model and iii) four climatological forecasts.

The persistence forecast is based on the last observed time step, which is then used as a prediction for all lead times. The

ordinary least square model serves as a linear competitor and is derived from the same data the model was trained with. For325

the climatological references, we follow Murphy (1988) who defined single and multi valued climatological references based

on different time scales. We refer the reader to Murphy (1988) for an in-depth discussion on the climatological reference.

Note, that this kind of persistence and also the climatological forecast might not be applicable for all temporal resolutions and

therefore may need adjustment. We think here, for example, of a clear diurnal pattern in temperature, for which a persistence

of successive observations would not provide a good forecast. In this context, a reference forecast based on the observation of330

the previous day at the same time might be more suitable.

For the comparison, we use a skill score S, which is naturally defined as the performance of a new forecast compared to a

competitive reference with respect to a statistical metric (Murphy and Daan, 1985). Applying the mean squared error as the

statistical metric, such a skill score S reduces to unity minus the ratio of the error of the forecast to the reference. A positive

skill score can be interpreted as the percentage of improvement of the new model forecast in comparison to the reference. On335

the other hand, a negative skill score denotes that the forecast of interest is worse than the referencing forecast. Consequently,

a value of zero denotes that both forecasts perform equally (Murphy, 1988).

The PlotCompetitiveSkillScore (Fig. 11) includes the comparison between the trained model, the persistence and

the ordinary least squared regression. The climatological skill scores are calculated separately for each forecast step (lead

time) and summarized as a full-detail box-and-whiskers plot over all stations and forecasts (Fig. 12), and as simplified version340

showing the skill score only (not shown) using PlotClimatologicalSkillScore.

In addition to the statistical model evaluation, MLAir also allows to assess the importance of individual input variables

through bootstrapping of individual input variables. For this, the time series of each individual input variable is resampled n

times (with replacement) and then fed to the trained network. By resampling a single input variable, its temporal information

is disturbed, but the general frequency distribution is preserved. The latter is important because it ensures that the model is345

provided only with values from a known range and does not extrapolate out-of-sample. Afterwards, the skill scores of the

bootstrapped predictions are calculated using the original forecast as reference. Input variables that show an overly negative

skill score during bootstrapping have a stronger influence on the prediction than input variables with a small negative skill

score. In case the bootstrapped skill score even reaches the positive value domain, this could be an indication that the examined

variable has no influence on the prediction at all. The result of this approach applied to all input variables is presented in350

PlotBootstrapSkillScore (Fig. 13). A more detailed description of this approach is given in Kleinert et al. (2021).

11



4 Configuration of experiment, data handler, and model class in the MLAir workflow

Beside the already described workflow adjustments, MLAir offers a high number of configuration options. Instead of defining

parameters at different locations inside the code, all parameters are centralized set in the experiment setup. In this section, we

describe all parameters that can be modified and the authors’ choices for default settings when using the default workflow of355

MLAir.

4.1 Host system and processing units

The MLAir workflow can be adjusted to the hosting system. For that, the local paths for experiment and data are adjustable

(see Table 1 for all options). Both paths are separated by choice. This has the advantage that the same data can be used multiple

times for different experiment setups if stored outside the experiment path. Contrary to the data path placement, all created360

plots and forecasts are saved in the experiment_path by default, but this can be adjusted through the plot_path and

forecast_path parameter.

Concerning the processing units, MLAir supports both central processing units (CPU) and GPUs. Due to their bandwidth

optimization and efficiency on matrix operations, GPUs have become popular for ML applications (c.f., Krizhevsky et al.,

2012). Currently, the sample models implemented in MLAir are based on TensorFlow v1.13.1, which has distinct branches:365

the tensorflow-1.13.1 package for CPU computation and the tensorflow-gpu-1.13.1 package for GPU devices respectively.

Depending on the operating system, the user needs to install the appropriate library if using TensorFlow releases 1.15 and older

(TensorFlow, 2020). Apart from this installation issue, MLAir is able to detect and handle both TensorFlow versions during

run time. An MLAir version to support TensorFlow v2 is planned for the future (see section 5).

4.2 Preprocessing370

In the course of preprocessing, the data are prepared to allow immediate use in training and evaluation without further prepa-

ration. In addition to the general data acquisition and formatting, which will be discussed in section 4.3 and 4.4, preprocessing

also handles the splitting into training, validation, and test data. All parameters discussed in this section are listed in Table 2.

Data are split into subsets along the temporal axis and station between a hold-out data set (called test data) and the data that

are used for training (resp. training data) and model tuning (validation data). For each subset, a {train,val,test}_start375

and {train,val,test}_end date not exceeding the overall time span (see section 4.4) can be set. Additionally, for each

subset it is possible to define a minimal number of available samples per station {train,val,test}_min_length to re-

move very short time series that potentially cause misleading results especially in the validation and test phase. A spatial split of

the data is achieved by assigning each station to one of the three subsets of data. The parameter fraction_of_training

determines the ratio between hold-out data and data for training and validation, where the latter two are always split with a380

ratio of 80% to 20% which is a typical choice for these subsets.

To achieve absolute statistical data subset independence, data should ideally be split along both temporal and spatial di-

mension. Since the spatial dependency of two distinct stations may vary related to weather regimes or season and time of day
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(Wilks, 2011), a spatial and temporal division of the data might be useful, as otherwise a trained model can presumably lead

to over-confident results. On the other hand, by applying a spatial split in combination with a temporal division, the amount385

of utilizable data can drop massively. In MLAir, it is therefore up to the user to split data either in the temporal or along both

dimensions by using the use_all_stations_on_all_data_sets parameter.

4.3 Custom data handler

The integration of a custom data handler into the MLAir workflow is done by inheritance from the AbstractDataHandler

class and implementation of at least the __init__() method, and the accessors get_X(), and get_Y(). The custom390

data handler is added to the MLAir Workflow as a parameter without initialization. At runtime, MLAir then queries all the

required parameters of this custom data handler from it’s arguments and keyword arguments, loads them from the data store

and finally calls the constructor. If data need to be downloaded or preprocessed, this should be executed inside the constructor.

It is sufficient to load the data in the accessor methods if the data can be used without conversion. We would like to remind

that a data handler is only responsible for a single data origin and the iteration and distribution on batches is taken care of by395

MLAir.

The accessor methods for input and target data form a clearly defined interface between MLAir and the custom data handler.

During training the data are needed as NumPy array, for preprocessing and evaluation the data are partly used as xarray.

Therefore the accessor methods have the parameter as_numpy and should be able to return both formats. Furthermore it is

possible to use an individual upsampling technique for training. To activate this feature the parameter upsamling can be400

enabled. If such a technique is not used and therefore not implemented, the parameter has no further effect.

Two other methods do not return a value in the default implementation, but do not necessarily have to be adapted. With the

method transformation it is possible to either define or calculate the transformation properties of the data handler before

initialization. The returned properties are then applied to all subdata sets, namely training, validation and testing. Another sup-

porting class method is get_coordinates. This method is currently used only for the map plot for geographical overview405

(see section 3.2). To feed the overview map, this method must return a dictionary with the geographical coordinates indicated

by the keys lat and lon.

4.4 Default data handler

In this section we describe a concrete implementation of a data handler, namely the DefaultDataHandler using data from

the JOIN interface in detail.410

Regarding the data handling and preprocessing, several parameters can be set to control the choice of inputs, size of data,

etc. in the data handler (see Table 3). First, the underlying raw data is required to load from the web. The current version of

the DefaultDataHandler is configured for use with the REST API of the JOIN interface (Schultz et al., 2017c). Alter-

natively, data could be already available on the local machine in the directory data_path, e.g. from a previous experiment

run. Additionally, a user can force MLAir to load fresh data from web by enabling the overwrite_local_data param-415

eter. According to the design structure of a data handler, data are handled separately for each observational station indicated
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by its ID. By default, the DefaultDataHandler uses all German air quality stations provided by the German Environ-

ment Agency (Umweltbundesamt, UBA) that are indicated as "background" stations according to the European Environmental

Agency (EEA) Airbase classification (European Parliament and Council of the European Union, 2008). Using the stations

parameter, a user-defined data collection can be created. To filter the stations, the parameters network and station_type420

can be used as described in Schultz et al. (2017a) and the documentation of JOIN (Schultz et al., 2017c).

For the DefaultDataHandler, it is recommended to specify at least

– the number of preceding time steps to use for a single input sample (window_history_size),

– if and which interpolation should be used (interpolation_method),

– if and how many missing values are allowed to fill by interpolation (limit_nan_fill),425

– and how many time steps the forecast model should predict (window_lead_time).

Regarding the data content itself, each requested variable must be added to the variables list and be part of the statistics_per_var

dictionary together with a proper statistic abbreviation (see documentation of Schultz et al., 2017c). If not provided, both

parameters are chosen from a standard set of variables and statistics. Regarding the target variable, similar actions are re-

quired. Firstly, target variables are defined in target_var, and secondly, the target variable need also to be part of the430

statistics_per_var parameter. Note that the JOIN REST API calculates these statistics online from hourly values,

thereby taking into account a minimum data coverage criterion. Finally, the overall time span the data shall cover can be de-

fined via start and end, and the temporal resolution of the data is set with sampling. At this point, we want to refer to

section 5, where we discuss the temporal resolution currently available.

4.5 Defining a model class435

The idea of using model classes was already motivated in section 2.4. Here, we show more details on the implementation and

customization.

To achieve the goal of an easy plug-and-play behaviour, each ML model implemented in MLAir must inherit from the

AbstractModelClass and the methods set_model and set_compile_options are required to be overwritten

for the custom model. Inside set_model, the entire model from inputs to outputs is created. Thereby it has to be en-440

sured that the model is compatible with Keras to be compiled. MLAir supports both the functional and sequential Keras

application programming interface. For details on how to create a model with Keras, we refer to the official Keras doc-

umentation (Chollet et al., 2015). All options for the model compilation should be set in the set_compile_options

method. This method should at least include information on the training algorithm (optimizer), and the loss to measure

performance during training and optimize the model for (loss). Users can add other compile options like the learning445

rate (learning_rate), metrics to report additional merely informative performance metrics, or options regarding the

weighting as loss_weights, sample_weight_mode or weighted_metrics. Finally, methods that are not part of

Keras or TensorFlow like customized loss functions or self-made model extensions are required to be added as so-called
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custom_objects to the model so that Keras can properly use these custom objects. For that, it is necessary to call the

set_custom_objects method with all custom objects as key value pairs. See also the official Keras documentation for450

further general information on custom objects.

An example implementation of a little model using a single convolution and three fully connected layers is shown in Fig. 14.

By inheriting from the AbstractModelClass (l. 9), invoking of its constructor (l. 15), defining the set_model (l. 25 -

35) and set_compile_options (l. 37 - 41) method, whereas the call of these both methods (l. 21 - 22), the custom model

is immediately usable for MLAir. Additionally, the loss is added to the custom objects (l. 23). This last step would not be455

necessary in this case, because an error function incorporated in Keras is used (l. 2 / 40). For demonstration purposes of how to

use a customized loss, it is added nevertheless.

For another example we refer to Kleinert et al. (2021) who used extensions to the standard Keras library in their workflow. So-

called inception blocks (c.f. Szegedy et al., 2015) and a modification of the two-dimensional padding layers were implemented

as Keras layers and could be used in the model afterwards. In such a case it is important to add the corresponding classes to460

the custom_objects, as mentioned above.

4.6 Training

With the parameters train_model and create_new_model either a halted or interrupted training can be resumed (or

extended) or skipped if no training is scheduled since the model was already trained before. Most parameters to set for the

training stage are related to hyperparameter tuning (c.f. Table 4). Firstly, the batch_size can be set. Furthermore, the number465

of epochs to train is required to be adjusted. Last but not least, the used model itself must be provided to MLAir including

additional hyperparameters like the learning_rate the algorithm to train the model (optimizer) and the loss function

to measure model performance. For more details on how to implement an ML model properly we refer to section 4.5.

Due to its application focus on meteorological time series and therefore on solving a regression problem, MLAir offers a

particular handling of training data. A popular technique in ML, especially in the image recognition field, is to augment and470

randomly shuffle data to produce a larger number of input samples with a broader variety. This method requires independent

and identically distributed data. For meteorological applications, these techniques should be carefully selected, because of

the lack of statistical independence of most data and auto correlation (see also Schultz et al., 2021, forthcoming). To avoid

generating over-confident forecasts, train and test data are split into blocks so that little or no overlap remains between the

datasets. Another common problem in ML, not only in the meteorological context, is the natural under-representation of475

extreme values, i.e. an imbalance problem. To address this issue, MLAir allows placing more emphasis on such data points.

The weighting of data samples is conducted by an over-representation of values that can be considered as extreme regarding

the deviation from a mean state in the output space. This can be applied during training by using the extreme_values

parameter, which defines a threshold value at which a value is considered extreme. Training samples with target values that

exceed this limit are then used a second time in each epoch. It is also possible to enter more than one value for the parameter.480

In this case, samples with values that exceed several limits are duplicated according to the number of limits exceeded. For

positively skewed distributions, it could be helpful to apply this over-representation only on the right tail of the distribution

15



(extremes_on_right_tail_only). Furthermore, it is possible to shuffle data within, and only within, the training subset

randomly by enabling permute_data.

4.7 Validation485

The configuration of the ML model validation is related to the postprocessing stage. As mentioned in section 2.3, in the default

configuration there are three major validation steps undertaken after each run besides the creation of graphics: First, the trained

model is opposed to the two reference models, a simple linear regression and a persistence prediction. Second, these models

are compared with climatological statistics. Lastly, the influence of each input variable is estimated by a bootstrap procedure.

Due to its encroachment on time or the irrelevance for the custom workflow, the calculation of the input variable sen-490

sitivity can be skipped and the graphics creation part can be shortened. To perform the sensitivity study, the parameter

evaluate_bootstraps must be enabled and the number_of_bootstraps defines, how many samples shall be drawn

for the evaluation (c.f. Table 5). If such a sensitivity study was already performed and the training stage was skipped, the

create_new_bootstraps parameter should be set to False to reuse already preprocessed samples if possible. Regard-

ing the creation of graphics, the parameter plot_list can be adjusted. If not specified, a default selection of graphics is495

generated. When using plot_list, each graphic to be drawn must be specified individually. More details about all possible

graphics have already been provided in section 3.2 and 3.3. In the current version, the validation as part of MLAir’s default

postprocessing stage cannot be easily extended, but it is still possible to append another run module to the workflow to perform

an individual validation additionally.

4.8 Custom run modules and workflow adaptions500

MLAir offers the possibility to define and execute a custom workflow for situations in which special calculations or data

evaluation not available in the standard version are to be performed. For this purpose it is not necessary to modify the program

code of MLAir, but instead user-defined run modules can be included in a new workflow. This is done analogous to the

procedure of model class by inheritance from the base class RunEnvironment and the individually adapted programming

of a run module. Compared to the very simple examples from section 3, such a use of MLAir requires a slightly increased effort.505

The implementation of the run module is done straightforwardly by a constructor method, which initializes the module and

executes all desired calculation steps upon call. To execute the custom workflow, the MLAir Workflow class must be loaded

and then each run module must be registered. The order in which the individual stages are added determines the execution

sequence.

As custom workflows will generally be necessary if a custom run module is to be defined, we briefly describe how the central510

data store mentioned in section 2.3 interacts with the workflow module. With the data store it is possible to share any kind of

information from previous or subsequent stages. By invoking the constructor of the super class during the initialization of a

custom run module, the data store is automatically connected with this module. Information can then be set or queried using

the accesssor methods get and set. For each saved information object a separate namespace called scope can be assigned.

If not specified, the object is always stored in the general scope. If the scope is specified, a separate sub-scope is created.515
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Information stored in this scope memory cannot be accessed from the general scope memory, but conversely all sub-scopes

have access to the general scope. For example, more general objects can be set in the general scope and objects specific to a

sub-data set, such as test data, can be stored in under the scope test. If some objects for the keyword test are retrieved from

the data store, then for non-existent objects in the test namespace attributes from the general scope are used if available.

An example for the implementation of a custom run module embedded in a custom workflow can be found in Fig. 15. The520

custom run module named CustomStage inherits from the base class RunEnvironment (l. 4) and calls its constructor (l.

8) on initialization. The CustomStage expects a single parameter (test_string, l. 7), that is used during the run method

(l. 11 - 15). The run method first logs two information messages by using the test_string parameter (l. 12 - 13). Then it

extracts the value of the parameter epochs (l. 14) that has been set in the ExperimentSetup (l. 21) from the data store

and logs the value of this parameter too. To run this custom run module is has to be included in a workflow. First an empty525

workflow is created (l. 19) and then individual run modules are attached (l. 21 - 23). As last step, this new defined workflow is

executed by calling the run method (l. 25).

4.9 How to continue an experiment?

There can be different reasons for the continuation of an experiment. First of all, by looking at the monitoring graphs, it could

be discovered that training has not yet converged and the number of epochs should be increased. Instead of training a new530

network from scratch, the training can be resumed from the latest epoch to save time. To do so, the parameter epochs must

be increased accordingly and create_new_model must be set to False. If the model output folder has not been touched,

the intermediate results and the history of the previous training are usually available in full, so that MLAir can continue the

training as if it had never been interrupted. Another reason for a continuation would be the interruption of the training for

unexpected reasons such as runtime exceedance on batch systems. By keeping the same number of epochs and switching off535

the creation of a new model, the training continues at the last checkpoint (see Model Setup in section 2.3).

5 Limitations

Even though MLAir addresses a wide range of ML related problems and allows embedding of many different ML architectures

and customized workflows, it is still no universal Swiss Army knife, but focuses on the application of neural networks for the

task of station time series forecasting. In this section we will explain the limitations of MLAir and why MLAir ends at these540

points.

Due to the scientifically oriented development of MLAir starting from a specific research question (Kleinert et al., 2021),

MLAir could initially only use data from the REST API of JOIN. This binding has already been revoked in the current version,

however, the DefaultDataHandler still uses this data source. Furthermore, MLAir always expects a particular structure in

the data and especially considers the data as a collection of time series data from various stations. We are currently investigating545

the possibility of integrating grid data, which could be taken from a weather model, and timeless data such as topography into

the MLAir workflow, but cannot yet present any results on how easy such an integration would be.
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While MLAir can technically handle data in different time resolutions, it has been tested primarily on daily aggregated

data due to the specific science case which served as seed for its development. The use of different temporal resolutions was

spot-checked and could be successfully confirmed without obvious errors, but we cannot guarantee that the results will be550

meaningful if data in other temporal resolutions are used as inputs. In particular, most of the evaluation routines may not make

sense for data in less than hourly or greater than daily resolution. Note also that MLAir does not perform explicit error checking

or missing value handling. Such functionality must be implemented within the data handler. MLAir expects a ready-to-use data

set without missing values provided by the data handler during training.

Another limitation is the choice of the underlying libraries and their versions. Due to the selection of TensorFlow as backend,555

it is not possible to use PyTorch or other frameworks in combination with MLAir. Specifically, MLAir was developed and tested

with TensorFlow version 1.13.1, as the HPC systems on which our experiments are performed support this version. We have

already tested MLAir occasionally with the TensorFlow version 1.15 and could not find any errors. But due to the lack of

extensive testing, we can therefore not make any reliable statement about the functionality with newer versions like 1.15 or

2.X yet. It is planned to implement an updated version of MLAir with the new TensorFlow version 2.X as soon as our systems560

support this version without any problems.

6 Summary

MLAir is an innovative software package intended to facilitate high-quality meteorological studies using ML. By providing

an end-to-end solution based on a specific scientific workflow of time series prediction, MLAir enables a transparent and

reproducible conduction of ML experiments in this domain. Due to the plug-and-play behaviour it is straightforward to explore565

different model architectures and change various aspects of the workflow or model evaluation. Although MLAir is focusing on

neural networks, it should be possible to include other ML techniques. Since MLAir is based on a pure python environment, it

is highly portable. It has been tested on various computing systems from desktop workstations to high-end supercomputers.

MLAir is under continuous development. Further enhancements of the program are already planned and can be found in the

issue tracker (see annex code availability). Ongoing developments concern the extension of the statistical evaluation methods,570

the graphical presentation of the results and the flawless support of temporal resolutions other than daily aggregated data.

Through further code refactoring, MLAir will become even more versatile as the decoupling of individual components is being

pushed forward. In particular, it is planned to structure the data handling in a more modular way so that varying structured data

sources can be connected and used without much effort. We invite the community of meteorological ML scientists to participate

in the further development of MLAir through comments and contributions to code and documentation. A good starting point575

for contributions is the issue tracker of MLAir.

Even if MLAir cannot be the all-encompassing environment for every kind of meteorological ML problem, we hope that

MLAir can serve as a blueprint for application developments in this field, as it seeks to combine best practices from ML

with best practices of meteorological model evaluation and data preprocessing. MLAir is thus a contribution to strengthen the

integration of the communities of ML and meteorology or air quality research.580
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Figure 1. Visualization of the MLAir standard setup DefaultWorkflow including the stages ExperimentSetup, PreProcessing,

ModelSetup, Training, and PostProcessing (all highlighted in orange) embedded in the RunEnvironment (sky blue). Each

experiment customization (bluish green) like the data handler, model class, and hyperparameter shown as examples, is set during the initial

ExperimentSetup and do affect various stages of the workflow.
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1 import mlair

2

3 # just give it a dry run without any modification

4 mlair.run()

INFO: DefaultWorkflow started

INFO: ExperimentSetup started

INFO: Experiment path is: /home/<usr>/mlair/testrun_network

...

INFO: load data for DEBW107 from JOIN

INFO: load data for DEBY081 from JOIN

INFO: load data for DEBW013 from JOIN

INFO: load data for DEBW076 from JOIN

INFO: load data for DEBW087 from JOIN

...

INFO: Training started

...

INFO: DefaultWorkflow finished after 0:03:04 (hh:mm:ss)

Figure 2. A very simple python script (e.g. written in a Jupyter Notebook (Kluyver et al., 2016) or python file) calling the MLAir package

without any modification. Selected parts of the corresponding logging of the running code are shown underneath. Results of this and following

code snippets have to be seen as a pure demonstration, because the default neural network is very simple.
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1 import mlair

2

3 # our new stations to use

4 stations = ['DEBW030', 'DEBW037', 'DEBW031', 'DEBW015', 'DEBW107']

5

6 # expanded temporal context to 14 (days, because of default

sampling="daily")

7 window_history_size = 14

8

9 # restart the experiment with little customisation

10 mlair.run(stations=stations,

11 window_history_size=window_history_size)

INFO: DefaultWorkflow started

INFO: ExperimentSetup started

...

INFO: load data for DEBW030 from JOIN

INFO: load data for DEBW037 from JOIN

INFO: load data for DEBW031 from JOIN

INFO: load data for DEBW015 from JOIN

...

INFO: Training started

...

INFO: DefaultWorkflow finished after 00:02:03 (hh:mm:ss)

Figure 3. The MLAir experiment has now minor adjustments for the parameters stations and window_history_size.
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1 import mlair

2

3 # our new stations to use

4 stations = ['DEBY002', 'DEBY079']

5

6 # same setting for window_history_size

7 window_history_size = 14

8

9 # run experiment without training

10 mlair.run(stations=stations,

11 window_history_size=window_history_size,

12 create_new_model=False,

13 train_model=False)

INFO: DefaultWorkflow started

...

INFO: No training has started, because train_model parameter was false.

...

INFO: DefaultWorkflow finished after 0:01:27 (hh:mm:ss)

Figure 4. Experiment run without training. For this, it is required to have an already trained model in the experiment path.
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<exp_dir>

batch_data

test

0.pickle

1.pickle

(...)

train

0.pickle

(...)

val

(...)

forecasts

bootstraps_*.nc

forecasts_*.nc

latex_report

model_settings.{md, tex}

station_sample_size.{md, tex}

station_sample_size_short.tex

training_settings.{md, tex}

logging

logging_*.log

tracking_*.{json, pdf}

model

history.json

<exp_dir>_model-{best, callbacks-*}.{h5, pickle}

<exp_dir>_<model_name>.{h5, pdf}

test_scores.txt

plots

conditional_quantiles_*.pdf

station_map.pdf

(...)

Figure 5. Default structure of each MLAir experiment with the subfolders forecasts, latex_report, logging, model, and plots.

<exp_dir> is a placeholder for the actual name of the experiment.

28



5°E

5°E

10°E

10°E

15°E

15°E

46°N 46°N

48°N 48°N

50°N 50°N

52°N 52°N

54°N 54°N

56°N 56°N

Figure 6. Map of central Europe showing the locations of some sample measurement stations as blue squares created by PlotStationMap.
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Figure 7. PlotAvailability diagram showing the available data for five measurement stations. The different colours denote which

period of the time series is used for the training (orange), validation (green) and test (blue) data set. "data availability" denotes if any of the

above mentioned stations has a data record for a given time.
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Figure 8. Monitoring plots showing the evolution of train and validation loss as a function of the number of epochs. This plot type is kept

very simplistic by choice. The underlying data are saved during the experiment so that it would be easy to create a more advanced plot using

the same data.
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Figure 9. Graph of PlotMonthlySummary showing the observations (green) and the predictions for all forecast steps (dark to light blue)

separated for each month.

32



0 20 40 60 80 100
forecast concentration (in ppb)

0

20

40

60

80

100
ob

se
rv

ed
 c

on
ce

nt
ra

tio
n 

(in
 p

pb
)

100
101
102
103
104

   
   

   
   

  s
am

pl
e 

siz
e

1 time step(s) ahead

.10th and .90th quantile

.25th and .75th quantile

.50th quantile
reference 1:1

Figure 10. Conditional quantiles in terms of calibration-refinement factorization for the first lead time and the full test period. The

marginal forecasting distribution is shown as log-histogram in light grey (counting on right axis). The conditional distribution (calibra-

tion) is shown as percentiles in different line styles. Calculations are done with a bin size of 1 ppb. Moreover, the percentiles are smoothed

by a rolling mean of window size three. This kind of plot was originally proposed by Murphy et al. (1989) and can be created using

PlotConditionalQuantiles.
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Figure 11. Skill scores of different reference models like persistence (persi), and ordinary least square (ols). Skill scores are shown separately

for all forecast steps (dark to light blue). This graph is generated by invoking PlotCompetitiveSkillScore.
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Figure 12. Climatological skill scores (CASE I to IV) and related terms of the decomposition as proposed in Murphy (1988) created by

PlotClimatologicalSkillScore. Skill scores and terms are shown separately for all forecast steps (dark to light blue). In brief,

CASE I to IV describe a comparison with climatological reference values evaluated on the test data. CASE I is the comparison of the forecast

with a single mean value formed on the training and validation data and CASE II with the (multi-value) monthly mean. The climatological

references for CASE III and IV are, analogous to CASE I and II, the single and the multi-value mean, however, on the test data. CASE I to

IV are calculated from the terms AI to CIV. For more detailed explanations of the cases, we refer to Murphy (1988).

35



cloudcover no no2 o3 pblheight relhum temp u v

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

sk
ill 

sc
or

e

summary of all stations

1d
2d
3d

Figure 13. Skill score of bootstrapped model input predictions separated for each input variable (x-axis) and forecast steps (dark to light blue)

having the original (non-bootstrapped) predictions as reference. PlotBootstrapSkillScore is only executed if bootstrap analysis is

enabled.
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1 import keras

2 from keras.losses import mean_squared_error as mse

3 from keras.optimizers import SGD

4

5 from mlair.model_modules import AbstractModelClass

6

7 from mlair.workflows import DefaultWorkflow

8

9 class MyCustomisedModel(AbstractModelClass):

10

11 """

12 A customised model with a 1x1 Conv, and 2 Dense layers (16,

13 output shape). Dropout is used after Conv layer.

14 """

15 def __init__(self, input_shape: list, output_shape: list):

16

17 # set attributes _input_shape and _output_shape

18 super().__init__(input_shape[0], output_shape[0])

19

20 # apply to model

21 self.set_model()

22 self.set_compile_options()

23 self.set_custom_objects(loss=self.compile_options['loss'])

24

25 def set_model(self):

26 x_input = keras.layers.Input(shape=self._input_shape)

27 x_in = keras.layers.Conv2D(32, (1, 1))(x_input)

28 x_in = keras.layers.PReLU()(x_in)

29 x_in = keras.layers.Flatten()(x_in)

30 x_in = keras.layers.Dropout(0.1)(x_in)

31 x_in = keras.layers.Dense(16)(x_in)

32 x_in = keras.layers.PReLU()(x_in)

33 x_in = keras.layers.Dense(self._output_shape)(x_in)

34 out = keras.layers.PReLU()(x_in)

35 self.model = keras.Model(inputs=x_input, outputs=[out])

36

37 def set_compile_options(self):

38 self.initial_lr = 1e-2

39 self.optimizer = SGD(lr=self.initial_lr, momentum=0.9)

40 self.loss = mse

41 self.compile_options = {"metrics": ["mse", "mae"]}

42

43 # Make use of MyCustomisedModel within the DefaultWorkflow

44 workflow = DefaultWorkflow(model=MyCustomisedModel, epochs=2)

45 workflow.run()

Figure 14. Example how to create a custom ML model implemented as model class. MyCustomisedModel has a single 1x1 convolution

layer followed by two fully connected layers with a neuron size of 16, and the number of forecast steps. The model itself is defined in

the set_model method whereas compile options as the optimizer, loss and error metrics are defined in set_compile_options.

Additionally for demonstration, the loss is added as custom object which is not required because a Keras built-in function is used as loss.
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1 import mlair

2 import logging

3

4 class CustomStage(mlair.RunEnvironment):

5 """A custom MLAir stage for demonstration."""

6

7 def __init__(self, test_string):

8 super().__init__() # always call super init method

9 self._run(test_string) # call a class method

10

11 def _run(self, test_string):

12 logging.info("Just running a custom stage.")

13 logging.info("test_string = " + test_string)

14 epochs = self.data_store.get("epochs")

15 logging.info("epochs = " + str(epochs))

16

17

18 # create your custom MLAir workflow

19 CustomWorkflow = mlair.Workflow()

20 # provide stages without initialisation

21 CustomWorkflow.add(mlair.ExperimentSetup, epochs=128)

22 # add also keyword arguments for a specific stage

23 CustomWorkflow.add(CustomStage, test_string="Hello World")

24 # finally execute custom workflow in order of adding

25 CustomWorkflow.run()

INFO: Workflow started

...

INFO: ExperimentSetup finished after 00:00:12 (hh:mm:ss)

INFO: CustomStage started

INFO: Just running a custom stage.

INFO: test_string = Hello World

INFO: epochs = 128

INFO: CustomStage finished after 00:00:01 (hh:mm:ss)

INFO: Workflow finished after 00:00:13 (hh:mm:ss)

Figure 15. Embedding of a custom run module in a modified MLAir workflow. In comparison to Fig. 2, 3, and 4, this code example works on

a single step deeper regarding the level of abstraction. Instead of calling the run method of MLAir, the user needs to add all stages individually

and is responsible for all dependencies between the stages. By using the Workflow class as context manager, all stages are automatically

connected with the result that all stages can easily be plugged in.
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Table 1. Summary of all parameters related to the host system that are required, recommended, or optional to adjust for a custom experiment

workflow.

Host System

Parameter Default Adjustment

experiment_date testrun recommended

experiment_name {experiment_date}_network — *

experiment_path 〈cwd**〉/{experiment_name} optional

data_path 〈cwd**〉/data optional

bootstrap_path 〈data_path〉/bootstraps optional

forecast_path 〈experiment_path〉/forecasts optional

plot_path 〈experiment_path〉/plots optional

* only adjustable via the experiment_date parameter

** refers to the linux command to get the path name of the current working directory.
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Table 2. Summary of all parameters related to the preprocessing that are required, recommended, or optional to adjust for a custom experiment

workflow.

Preprocessing

Parameter Default Adjustment

stations default stations* recommended

data_handler DefaultDataHandler optional

fraction_of_training 0.8 optional**

use_all_stations_on_all_data_sets True optional

* default stations: DEBW107, DEBY081, DEBW013, DEBW076, DEBW087

** not used in the default setup because use_all_stations_on_all_data_sets is True
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Table 3. Summary of all parameters related to the default data handler that are required, recommended, or optional to adjust for a custom

experiment workflow.

Default Data Handler

Parameter Default Adjustment

data_path see Table 1 optional

stations default stations* recommended

network - optional

station_type - optional

variables default variables** recommended

statistics_per_var default statistics** recommended

target_var o3 recommended

start 1997-01-01 recommended

end 2017-12-31 recommended

sampling daily optional

window_history_size 13 recommended

interpolation_method linear optional

limit_nan_fill 1 optional

min_length*** 0 optional

window_lead_time 3 recommended

overwrite_local_data False optional

* default stations: DEBW107, DEBY081, DEBW013, DEBW076, DEBW087

** default variables (statistics): o3 (dma8eu), relhum (average_values), temp (maximum), u

(average_values), v (average_values), no (dma8eu), no2 (dma8eu), cloudcover

(average_values), pblheight (maximum)

*** indicates the required minimum number of samples per station
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Table 4. Summary of all parameters related to the training that are required, recommended, or optional to adjust for a custom experiment

workflow.

Training

Parameter Default Adjustment

train_model False recommended*

create_new_model False recommended*

batch_size 512 optional

epochs - required

loss** - required

metrics** - optional

model vanilla model*** required

learning_rate** - required

optimizer** - required

extreme_values - optional

extremes_on_right_tail_only False optional

permute_data False optional

* Note: Both parameters are disabled per default to prevent unintended overwriting of a model. If, upon

reversion, these parameters aren’t enabled on first execution of a new experiment without providing a

suitable and trained ML model, the MLAir workflow is going to fail.

** These parameters are set in the model class.

*** As default, a vanilla feed-forward neural network architecture will be loaded for workflow testing. The

usage of such a simple network for a real application is at least questionable.
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Table 5. Summary of all parameters related to the evaluation that are required, recommended, or optional to adjust for a custom experiment

workflow.

Evaluation

Parameter Default Adjustment

plot_list default plots* optional

evaluate_bootstraps True optional

number_of_bootstraps 20 optional

create_new_bootstraps False** optional

* default plots are: PlotMonthlySummary, PlotStationMap,

PlotClimatologicalSkillScore, PlotTimeSeries,

PlotCompetitiveSkillScore, PlotBootstrapSkillScore,

PlotConditionalQuantiles, and PlotAvailability.

** is automatically enabled if parameter train_model (see Table 4) is enabled.
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