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Abstract. Simple climate models (SCMs) are frequently used in research and decision-making communities because of their 

flexibility, tractability, and low computational cost. SCMs can be idealized, flexibly representing major climate dynamics as 

impulse response functions, or process-based, using explicit equations to model possibly nonlinear climate and earth system 

dynamics. Each of these approaches has strengths and limitations. Here we present and test a hybrid impulse response modeling 10 

framework (HIRM) that combines the strengths of process-based SCMs in an idealized impulse response model, with HIRM’s 

input derived from the output of a process-based model. This structure allows it to capture the crucial nonlinear dynamics 

frequently encountered in going from greenhouse gas emissions to atmospheric concentration to radiative forcing to climate 

change. As a test, the HIRM framework was configured to emulate total temperature of the simple climate model Hector 2.0 

under the four Representative Concentration Pathways and the temperature response of an abrupt four times CO2 concentration 15 

step. HIRM was able to reproduce near-term and long-term Hector global temperature with a high degree of fidelity. 

Additionally, we conducted two case studies to demonstrate potential applications for this hybrid model: examining the effect 

of aerosol forcing uncertainty on global temperature, and incorporating more process-based representations of black carbon 

into a SCM. The open-source HIRM framework has a range of applications including complex climate model emulation, 

uncertainty analyses of radiative forcing, attribution studies, and climate model development. 20 

1 Introduction  

Climate models encompass a diverse collection of approaches to representing Earth system processes at various levels of 

complexity and resolution. The most complex are the Earth System Models (ESMs): highly detailed representations of the 

physical, chemical, and biological processes governing the Earth system at high spatial and temporal resolution (Hurrell et al. 

2013). These models are computationally expensive and therefore can only be run for a limited number of scenarios. Less 25 

complex climate models, Simplified Climate Models (SCMs), sacrifice process realism with the benefit that they are 

computationally inexpensive (van Vuuren et al., 2011). Although SCMs are generally low resolution in space and time, they 

have a wide range of applications including but not limited to emulation (Dorheim et al. 2019); probabilistic estimates 
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demanding thousands of separate model runs (Stainforth et al. 2005; Webster 2012); factor separation analysis (Mheel et al. 

2007); and Earth system model development and diagnosis (Meinhausen et al., 2011).  30 

 

SCMs can be characterized as either process-based or idealized climate models. Process-based SCMs consist of systems of 

equations that represent, albeit in highly simplified form, carbon cycle and climate dynamics; in contrast, idealized SCMs 

convolve linear impulse response functions to approximate climate dynamics (Millar et al., 2017). One of the fundamental 

differences between idealized and process-based SCMs is the representation of the evolution of emissions to climate impacts. 35 

Process-based models (whether SCMs or ESMs) have equations that represent emissions accumulating as concentrations, 

which in turn affect the energy balance at the top of the troposphere (radiative forcing) resulting in climate changes (most 

prominently, temperature change) (Harvey et al. 1995; Claussen et al. 2002). The system of equations used by process-based 

SCMs includes nonlinearities such as interactions between atmospheric chemical constituents (Wigley et al. 2002); 

relationships between greenhouse gas concentrations and energy absorption, i.e. radiative forcing (Shine et al. 1990 and Mhyre 40 

et al. 1998); and carbon-climate feedbacks on CO2 concentrations (Wenzel et al. 2014, Tang Riley 2015, and Heinmann and 

Reichstein 2008).  

 

Idealized SCMs are based on impulse response functions (IRFs) (Aamaas et al., 2013; Fuglestvedt et al., 2003; Millar et al., 

2017; Myhre et al., 2013), defined as the system response to a unit perturbation. In the context of climate modeling, the most 45 

common IRFs used are temperature responses to emission or concentration perturbations. Models that rely on IRFs, including 

the impulse response model used in the Intergovernmental Panel on Climate Change Fifth Assessment Report (AR5-IR) 

(Myhre et al., 2013) use IRFs to represent the time-integrated relationship between emissions and temperature change. In these 

models, a linear impulse response function is convolved with a time series (Thompson and Randerson 1999).   Idealized SCMs 

have been widely used by the research and decision-making communities (Joos et al. 2013) because they are simple in the 50 

sense that they are mathematically transparent, consisting of a small number of equations. Idealized SCMs may exhibit biased 

results, however, due to their lack of nonlinear dynamics. This can be ameliorated to some extent by adding nonlinear terms 

to them (Hooß et al. 2001, Millar et al. 2017), although differences from process-based SCMs may still occur (Schwarber et 

al. 2019). In addition, the physical interpretation of their behavior is not always straightforward.  

 55 

Here we present a hybrid impulse response modeling framework (HIRM) that uses output from process-based SCMs to 

incorporate nonlinear dynamics into a linear impulse response model. This framework leverages the nonlinear dynamics of a 

process-based SCM with the simplicity of an impulse response model. The first two experiments in this paper demonstrate 

HIRM’s ability to accurately reproduce global mean temperature, including the temperature response to large climate system 

perturbations. We demonstrate the potential utility of this framework in an uncertainty analysis, and by examining how 60 

changing the response function for black carbon to reflect recent ESM results impacts HIRM output. The implications of these 

results are discussed as well as potential future uses of this framework. 
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2 Methods  

2.1 Model Description  

HIRM total atmospheric temperature is calculated with an IRF that characterizes the SCM’s temperature response to a change 65 

in radiative forcing. This is comparable to other idealized SCMs that use IRFs as a simple way to represent major climate 

system dynamics (Aamaas et al., 2013; Fuglestvedt et al., 2003; Millar et al., 2017; Myhre et al., 2013). What distinguishes 

HIRM is that the RF input is derived from the output of a separate process-based model. This hybrid approach, combining the 

process-based output in an impulse response model, should be able to incorporate the nonlinear dynamics of the process-based 

SCM system if the majority of the nonlinear dynamics of SCMs occur between the emissions to radiative forcing calculations, 70 

and if the total atmospheric temperature is equal to the linear sum of the temperature contribution from individual radiative 

forcing agents. 

  

HIRM calculates the atmospheric temperature change from preindustrial temperature (𝑇) as the sum of the temperature 

contribution from individual forcing agents T# Eq. (1):  75 

T(t) = ∑ T#(t))
#*+ ,                    (1) 

 

Here the individual temperature contribution is equal to the convolution of the radiative forcing time series RF# with the 

temperature response to a radiative forcing pulse IRF# for a single radiative forcing agent Eq. (2). 

T#(t) = ∫ RF#(t0)IRF#(t − t0)dt0
3
34

,                   (2) 80 

 

The RF# and IRF# are derived from  process-based climate model output. In this paper HIRM uses output from the process-

based SCM Hector v 2.3.0 (Link et al. 2019) in its default release configuration. Hector is an open-source simple climate model 

that includes representations of the major processes driving the climate system and carbon-cycle (Hartin et al. 2015) with 

simple formulations rooted in the physics of ocean dynamics, atmospheric chemistry, and carbon-cycle science. Hector can be 85 

calibrated to emulate the more complex ESMs (Dorheim et al. in review) and produces realistic response to large perturbations 

(Schwarber et at. 2019).  

2.2 IRF Derivation  

One of Hector’s assumptions is that all of Hector’s radiative forcing agents exhibit the same temperature response to a change 

in radiative forcing. This means HIRM can be configured with a single IRF that characterizes Hector’s temperature response 90 

to all of its 37 radiative forging agents. The IRF was derived using output from a reference run and a black carbon (BC) 

emissions perturbation run of Hector, although any forcing agent could have been selected for the perturbation run. During the 

reference model run Hector was driven with the RCP 4.5 scenario, while for the perturbation model run BC emissions were 
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doubled relative to RCP 4.5 BC emissions in a single year. RCP 4.5 CO2 concentrations were prescribed during these runs, 

suppressing Hector’s normal carbon cycle temperature feedbacks.   95 

 

For the purposes of the two validation experiments we did not want to include carbon-cycle climate feedbacks into the IRF, as 

the IRF should represent only the forcing-to-temperature response. If the CO2 concentrations were allowed to change in 

response to carbon-climate feedbacks, the temperature response from these feedback mechanisms would be incorporated into 

the IRF, which would then overestimate the temperature response to the emission perturbation. For the replication experiments 100 

we focus on reproducing Hector temperature without carbon-climate feedbacks. Other applications of HIRM may require IRFs 

that include the temperature response from carbon-cycle feedbacks.   

 

The emissions perturbation temperature response (T56789)76)  was equal to the difference between the reference (T56:)	and 

perturbation temperature <T8= Eq. (3), with the perturbation occurring at year t0:  105 

T56789)76(t − t>) = T8(t − t>) − T56:(t − t>),                                                                                                                          (3) 

 

 

The temperature response to a radiative forcing perturbation was calculated by dividing the temperature response to the 

emissions perturbation by the size of the radiative forcing pulse Eq. (4). The size of the radiative forcing pulse (X@ ) was set 110 

equal to the difference in radiative forcing between the reference and emissions perturbation runs in the perturbation year: 

IRF#(t − t>) = T56789)76(t − t>)/X@,                                                                                                                                        (4)  

 

The end of the IRF was extrapolated with an exponential decay function to ensure that the IRF was long enough to be convolved 

with HIRM’s RF time series inputs without having to pad zeros onto the end or having to truncate the radiative forcing inputs.  115 

2.3 Validation Experiments 

2.3.1 Replication of  RCP Results 

Emulation is used to validate HIRM by illustrating that the HIRM framework reproduces the dynamics of the process-based 

SCM with a minimal loss of information. If HIRM can accurately reproduce or emulate the atmospheric temperature of a more 

complex, process-based-model such as Hector, then HIRM’s underlying assumptions about where the majority of the non-120 

linearities occur are true. Conversely, if HIRM is unable to reproduce Hector’s global temperature outputs, this would indicate 

that important physical and chemical processes are not being captured by the HIRM framework.  

In the first validation experiment HIRM was set up to reproduce Hector temperature for RCP 2.6, RCP 4.5, RCP 6.0, and RCP 

8.5. HIRM was configured each time using Hector’s single IRF paired with a complete set of radiative forcing time series from 

Hector’s 37 radiative forcing agents. The radiative forcing time series for these validation experiments came from Hector 125 
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output from RCP 2.6, 4.5, 6.0, and 8.5 with prescribed CO2 concentrations. For each RCP, the 37 radiative forcing time series 

were convolved with Hector’s IRF and the result summed Eq. (1, 2). The global mean temperature outputs from Hector driven 

with RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5 were saved and used as validation data for HIRM.  

2.3.2 Replication of  4X CO2 Results 

The second validation experiment tested HIRM’s ability to reproduce Hector’s temperature response to an abrupt four times 130 

CO2 concentration step. The abrupt four times CO2 concentration step is a test commonly used by climate modelers to 

understand the climate system’s response to CO2 (Schwarber et al. 2019). In this experiment HIRM was configured with 

Hector’s IRF was paired with radiative forcing time series featuring an abrupt four times CO2 concentration step test. The 

radiative forcing time series was obtained from Hector runs following the CMIP5 protocol (Taylor et al. 2012). HIRM’s 

radiative forcing time series input was the difference in Hector radiative forcing from Hector driven with a constant CO2 135 

concentration of 278 ppm and Hector driven with a CO2 concentration of 278 ppm until year 2010 when the CO2 concentration 

increased by a magnitude of four and remained constant for the rest of the run. The difference in Hector’s global mean 

temperature anomaly between the constant reference run and the perturbed step run was then compared with HIRM’s output.  

3. Results  

3.1 Impulse Response Function  140 

The majority of the Hector’s temperature response to a radiative forcing pulse occurs within the first 50 years since the 

perturbation (Fig. 1). The strongest response occurs during the perturbation year itself, with a maximum value of 0.09 

(°C/W/m2); by year 35 the temperature response has decreased by 97% and continues to approach zero for the remainder of 

the IRF. This IRF is used in both of the validation experiments and case studies except where noted.  

3.2 Validation Experiments   145 

HIRM was able to emulate Hector’s temperature for the four RCPs with a minimal loss of information (Fig. 2a). The difference 

between HIRM and Hector total temperature, measured as the root mean squared error (RMSE), was 1.3 x 10-9 °C (Fig. 2a) 

for each RCP scenario. The cumulative percentage difference between HIRM and Hector temperature was 0.0 % (rounded 

from 1.0 x 10-5; other 0.0 results are similar) for each RCP scenario. The results from this validation test confirm our first 

assumption: the total atmospheric temperature change is the sum of the temperature contributions from individual radiative 150 

forcing agents.  

 

Furthermore, HIRM reproduced Hector’s abrupt four times CO2 concentration step temperature response with a high degree 

of accuracy (Fig. 2b).  The RMSE between HIRM and Hector temperature output from the abrupt CO2 concentration step was 

1.5 x 10-19 °C with a cumulative percent difference of 0.0%. The abrupt CO2 concentration step is a standard diagnostic test 155 
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used to examine climate model responses (Taylor et al. 2012; Eyring et al. 2016). Since HIRM was able to accurately emulate 

Hector’s temperature response to a large step perturbation we conclude that the majority of the nonlinearities of the SCM are 

occurring during the emissions-to-radiative forcing portion of the emissions-to-temperature causal chain.  

4 HIRM Application Case Studies 

4.1 Aerosol Uncertainty Case Study  160 

Uncertainties in the magnitude of historical and future radiative forcing effects continue to be a crucial challenge for climate 

science research, and this is particularly true for aerosol effects. In this first case study HIRM was used to explore a range of 

future temperature change when accounting for uncertainty in aerosol radiative forcing. To do so, HIRM was again set up to 

recreate Hector’s RCP 4.5 temperature. In this analysis, however, the black carbon (BC), organic carbon (OC), indirect SO2 

effects (SO2i), and direct SO2 effects (SO2d) RF input time series were varied. (Aerosol cloud indirect effects are represented 165 

in Hector as a function of SO2 emissions only, so we refer to that as SO2 indirect forcing.)  

 

The aerosol uncertainty scalers were generated from the 2011 aerosol radiative forcing ranges reported in IPCC AR5 8.SM 

table 5 (Myhre et al. 2013). The BC, OC, SO2i, and SO2d radiative forcing IPCC ranges were individually sampled at intervals 

of 0.04 W/m2 in 2011 (Table 1).  Then default HIRM 2011 BC, OC, SO2i, and SO2d radiative forcing values were divided by 170 

the values sampled from the respective IPCC ranges to obtain the uncertainty scalers. HIRM was set up to run every possible 

combination of the scaled RF time series.  

 

HIRM was run a total of 29,000 times creating an ensemble of uncertainty runs, these results were constrained (i.e., filtered) 

by historical radiative forcing and temperature. HIRM total radiative forcing were constrained to match IPCC historical 175 

estimates in radiative forcing and temperature change. The 2011 aerosol radiative forcing had to pass through the IPCC AR5 

2011 aerosol uncertainty range [-1.66 to 0.14 Wm-2] from Myhre et al. 2012. HIRM temperature trend was calculated as the 

slope of a linear regression and then compared to the observed temperature trend range [0.65 to 1.1] °C reported by Hartmann 

et al. 2013.  

 180 

We found that the historical constraints had an unequal impact on the scaled radiative forcing impacts. The temperature at the 

end of the century for the unconstrained ensemble ranged over 2.5°C – 3.1°C; incorporating the historical constraints into the 

uncertainty analysis narrowed uncertainty in future temperature to 2.7°C – 2.9°C (Fig. 3). The historical constraints had 

different impacts on the sampled aerosol uncertainty scalers. All of the sampled OC scalers passed through the historical 

constraints (Fig. 4b), while the constraints had a modest effect on the OC, BC, and SO2d scalers (Fig. 4a, b, and c).   185 
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The historical constraints have the most noticeable effect on the SO2d uncertainty scalers. This is because of the large absolute 

magnitude of the uncertainty in aerosol indirect effects (Myhre et al., 2013), which results in a large role for assumptions about 

the strength of aerosol indirect cooling. This shows that there are few numerical combinations of forcing values from other 

species, at least for default Hector climate system parameters, that are consistent with strong (negative) aerosol indirect forcing. 190 

The aerosol uncertainty analysis using HIRM illustrates how this modeling framework can be utilized to calculate future 

temperature under assumed uncertainty in aerosol radiative forcing.   

4.1 HIRM as a Tool for Development Case Study  

Radiative forcing effects from aerosols are complex (Fan et al. 2016, Bond et al. 2013), and while the physics driving these 

complexities have been incorporated into ESMs, they are not considered in most SCMs. For example, consider black carbon 195 

(BC): unlike cooling effects from aerosols that scatter shortwave radiation back into space, BC heats within the atmosphere, 

and also at the surface when deposited on snow or ice, potentially contributing to both cloud indirect cooling and heating 

effects (Bond et al. 2013). It can also increase cloud amounts, as BC atmospheric heating stabilizes the atmospheric thermal 

profile (Bond et al. 2013). Experiments conducted with ESMs have found large differences in the response to a step change in 

BC emissions compared to a step change in CO2 (Sand et al. 2015; Yang et al. 2019).  200 

 

Incorporating these dynamics into Hector would be a nontrivial task, but HIRM can be used to estimate what effect they would 

have on the model’s global temperature. For this analysis, HIRM was set up to emulate Hector RCP 4.5 as before, but with 

one difference: instead of pairing the BC RCP 4.5 RF time series with Hector’s single IRF, the BC RCP 4.5 RF time series 

was paired with a BC-specific IRF. This BC-specific IRF was derived using output from a study that performed BC emission 205 

step tests with the ESM NorESM-1 (Sand et al. 2015).  

 

Mathematically, the derivative of a step response is equal to the impulse response function. Therefore we can derive an impulse 

response function from the step response results reported in the Sand et al. ESM experiment. The temperature response to a 

BC step in ESM experiments is well fit by a single exponential approach to a constant response (see Yang et al. 2019 for 210 

details). We fit the Sand et al. (2015) abrupt BC step response as:    

𝑇(𝑡) = 𝐴	(1 − 𝑒
FG
H ),                    (5) 

 

The results of a nonlinear optimization of this function returned values of values of 𝐴 and 𝜏 that were 1.8 °C and 2.1 years, 

respectively. These optimal values were used in Eq. (6), the differentiated form of Eq. (5), to provide a numerical BC 215 

temperature impulse response function corresponding to the Sand et al. (2015) result:    

R3(t) =
J
K
	e

FM
N dt,                     (6) 
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The numerical result of Eq. (6) is converted to a BC impulse response per unit forcing by dividing by the forcing from a 133 

Tg BC emissions change (used in Sand et al. 2015) using Hector’s default forcing per unit BC emission assumptions. With 220 

this transformation we have replaced Hectors’ default BC representation in HIRM with the Sand et al. temperature response 

in both magnitude and temporal behavior. 

 

We found that the BC Sand et al. IRF has a weaker temperature response in the perturbation year and a more rapid decline in 

temperature response compared to Hector’s global IRF (Fig. 5a). The maximum IRF response for the BC Sand et al. IRF is 225 

0.06 (°C/W/m2)	which	is 0.03 (°C/W/m2)	cooler	than	Hector’s	 IRF.	 In	addition,	the	BC.	Sand et al. IRF approaches 0 

(°C/W/m2)	faster	than	Hector’s	 IRF.	These differences are expected since the BC Sand et al. IRF was derived from the 

NorESM-1 ESM, meaning that this IRF incorporates the complex cooling and warming effects of BC emissions, the net 

warming over land as compared to no net warming over oceans (Sand et al. 2015). When HIRM was configured with the BC 

Sand et al. (2015) IRF the global temperature decreased by 0.2 °C from 1750 to 2100 under the RCP 4.5 scenario (Fig. 5b). 230 

Based on these results, if Hector were modified to emulate this BC response we predict that the model’s global temperature 

would be cooler by approximately 0.2 °C in 2100. 

5 Discussion and Conclusion 

In this paper we document and test HIRM, a framework that leverages the nonlinear dynamics of process-based SCMs within 

a computationally efficient, highly idealized linear impulse response model. The HIRM framework can be used as a testbed to 235 

quickly examine the consequences of different model assumptions, as demonstrated by the two case studies. Furthermore, we 

can draw conclusions about process-based climate models such as Hector (Hartin et al. 2015) based on HIRM. While other 

IRFs have incorporated nonlinear dynamics using nonlinear terms (Hooß et al. 2001, Millar et al. 2017), HIRM is distinguished 

by its lack of nonlinear terms, but it nonetheless demonstrates nonlinear dynamics because the majority of the nonlinear 

dynamics are incorporated into the forcing time series that drives HIRM. HIRM is available as an open source R package 240 

(available at https://github.com/JGCRI/HIRM), its computational flexibility and short run time make is particularly appropriate 

for uncertainty analyses and experimental SCM design. 

 

We demonstrated that HIRM can be used to examine uncertainty within the climate system, and that incorporating a more 

realistic BC temperature response dynamics into Hector has a significant impact on Hector’s global temperature. If more 245 

studies corroborate the findings of Sand et al. (2015) and Yang et al. (2019) by observing shorter timescale responses for BC 

temperature dynamics across a number of ESMs and Atmosphere-Ocean General Circulation Models (AOGCMs), then SCM 

modeling groups will need to consider incorporating the BC temperature response dynamics into SCMs. Some SCMs, such as 

MAGICC 5.3 and MAGICC 6 (Wigely et al. 2002), already exhibit multiple temperate responses; interestingly, MAGICC has 
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a shorter timescale for the temperature response for aerosols (Schwarber et al. 2019), but the resulting response in MAGICC 250 

still has a longer timescale than that from the AOGCMs (Sand et al. 2015, Yang et al. 2019).  

 

During the HRIM validation experiments we found that most of non-linearities are in the emissions to forcing step, in which 

the SCM calculates concentrations from emissions and radiative forcings from concentrations. This implies that efforts to 

improve the representation of nonlinear behavior in SCMs should be focused on this emissions-to-forcing step. We note that 255 

we draw this conclusion by calibrating HIRM to a single process-based SCM; this finding should be verified using other 

models, including Earth System Models of Intermediate Complexity (Claussen et al. 2002). Such EMICs have more physically-

based parameterizations but low levels of internal model noise, which would be valuable for such explorations. If this finding 

holds for a wider class of models, this would mean that a wide range of model responses to forcing could be quickly simulated 

using IRFs. Good et al. 2013 showed that SCMs based on step responses work fairly well for more reproducing General 260 

Circulation Model (GCM) results suggesting that the assumptions underlying HIRM are valid. 
 

One limitation of this framework is that interactions between forcing agents are not directly considered. For example, multiple 

species of aerosols may contribute to cloud indirect cooling effects. These interactions, however, are not well constrained (Fan 

et al. 2016) and, for many purposes where SCMs might be applicable, it is most important to be able to represent the overall 265 

(large) uncertainty range, rather than interactions among species that have yet to be definitively quantified. An effort to 

represent aerosol indirect effects semi-analytically (Ghan et al. 2013) demonstrated not only the multiple processes that are 

relevant but also the difficulty in understanding the drivers of the different forcing estimates from more complex models.      

 

While impulse response functions have been used widely in the scientific community, they have well-known limitations. At 270 

least in the context of the SCM used here, we demonstrate that the use of a forcing-based impulse response function overcomes 

most of these limitations. This insight should be useful in future work applying impulse response functions in general and the 

design of simple climate models in particular. These findings imply that improvements to simple climate models should focus 

on improving the representation of emission to concentration and concentration to forcing relationships. As we note above, 

however, it would be useful to also design comparisons with more complex models, perhaps EMICS given their lower noise 275 

and computational requirements, to determine the extent to which the temperature response to forcing in more complex models 

can be accurately represented by impulse response functions, particularly on 20-30 year time scales where GCM outputs are 

particularly noisy. 

 

While the application of HIRM in this work was facilitated by the presence of an existing R-based interface with the Hector 280 

simple climate model, HRIM could also be used with data generated by other SCMs. This could be a useful way of 

decomposing differences in responses between SCMs (e.g. Nicholls et al. 2020) into differences in the emissions to forcing 
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step compared to differences in the model’s response to a forcing impulse. Similarly, HIRM could be used to examine the 

uncertainty due to the different forcing to temperature responses amongst SCMs. 

 285 

HIRM can be used as a testbed for future SCM development. As demonstrated here, the incorporation of a GCM-derived 

temperature response function for black carbon emissions results in a significantly different global mean temperature response 

(Figure 5). Exploration of the potential impact of such changes can be done quickly in HIRM to decide if changes should be 

incorporated into, for example, Hector. Incorporating such a change into the Hector model itself would be a more time and 

labor intensive process for several reasons. First, to incorporate this change into Hector one would need to decide how to 290 

physically interpret the faster BC response time seen in GCMs since Hector does not use impulse response functions directly. 

There is some debate if this is due to different response over land vs ocean, or if this is more closely related to differing 

hemispheric responses (Meinshausen et al. 2011, Shindell 2014,  Sand et al. 2015). Further, explorations or model extensions 

using HIRM can be accomplished without a user having to understand Hector’s code, dependencies, and coding standards.   

 295 

Finally, this framework could also be used for analysis that requires capabilities not present in SCMs–for example, regional 

analysis. Regional temperature trends could be simulated by HRIM by incorporating the ratio of regional to global temperature 

responses for each forcing agent into HIRM (Sand et al. 2019 and Shindell and Faluvegi et al. 2009). This could be particularly 

valuable for a region such as the Arctic, where a variety of forcing agents, from regional sulfate (Acosta Navarro et al. 2016), 

local black carbon (Sand et al. 2013 and Yang et al. 2019), and global forcing changes, e.g. Arctic amplification, all may play 300 

a role. This type of analysis could readily be accomplished using HRIM, including the wide range of uncertainty space that 

should be examined (e.g. Figure 3).  

Code availability 

HIRM as an R package is available at https://github.com/JGCRI/HIRM with an online manual available  at 

https://jgcri.github.io/HIRM/ . The package is archived on Zenodo (https://doi.org/10.5281/zenodo.3756122), however 305 

because of Zenodo storage limits the code and results related to the discussion and conclusions of this paper are available on 

the Open Science Framework (OSF) at https://osf.io/kmrj8/.  
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RF agent  Min. 2011 RF Max. 2011 RF Hector Default 2011 
RF 

BC 0.05 0.87 0.40 

OC -0.21 -0.04 -0.17 

SO2i -1.2 0 -0.60 

SO2d -0.6 -0.2 -0.35 

Table 1: The minimum and maximum 2011 radiative forcing values from IPCC AR5 8.SM table 5 (Myhre et al. 2013). These values 
were used to obtain the min and max aerosol uncertainty scalers for four RF agents (BC, OC, SO2i, and SO2d).  Along with the 2011 
RF of the default configuration of HIRM/Hector for RCP 4.5.  415 
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Figure 1: The first 50 years of the global temperature response to a radiative forcing perturbation for Hector v2.0; the remaining 
2,500 years of the impulse response are almost constant and slowly approach zero. Here the black carbon emissions were doubled 420 
in 2010 relative to the Representative Concentration Pathway 4.5 value.  
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 425 

Figure 2: Comparison of Hector (grey dashed) and HIRM (orange dashed) global mean temperature anomaly from the two 
validation experiments. In panel (A) HIRM was used to the recreate Hector temperature for the four RCPs. The four lines in panel 
(A) from lowest to highest 2100 temperature represent results for RCP 2.6, RCP 4.5, RCP 6.0 and RCP 8.5. Panel (B) compares the 
temperature response of HIRM and Hector from the abrupt four times CO2 concentration step validation test.   
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Figure 3: The temperature (°C)_spread from the aerosol uncertainty runs in selected years. The grey regions show all of the possible 
runs before the historical constraints were put into the place; orange regions are the runs that passed through both historical 
temperature and radiative forcing constraints.   435 
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Figure 4: Uncertainty scalers used to vary (A) black carbon, (B) organic carbon, (C) direct SO2 effects, and (D) indirect SO2 effects 
aerosol RF time series in the uncertainty analysis. HIRM was run a total of 29,000 with every combination of uncertainty scaler 
represented on the x-axes of panels A-D, creating an ensemble of uncertainty runs with scalars varying for all radiative forcing 
agents. Each panel of this figure plots a projection of the percent of runs passing through the historical constraints for one radiative 440 
forcing agent as the uncertainty scaler is varied. The black vertical line marks the 1.0 scaler; scalers larger than 1 will enhance the 
radiative forcing agent effects relative to the default value, while those less than 1.0 decrease the effects. 
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 445 
Figure 5: (A) Hector’s IRF (blue) compared with the BC Sand et al. 2015 IRF (red). (B) HIRM total temperature for the 
Representative Concentration Pathway 4.5 for two HIRM cases, one that only uses Hector’s IRF (blue) and the other pairing the 
BC RF time series with the BC Sand et al. 2015 IRF (red). 
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