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Abstract. Simple climate models (SCMs) are frequently used in research and decision-making communities because of their 

flexibility, tractability, and low computational cost. SCMs can be idealized, flexibly representing major climate dynamics as 

impulse response functions, or process-based, using explicit equations to model possibly nonlinear climate and Earth system 

dynamics. Each of these approaches has strengths and limitations. Here we present and test a hybrid impulse response modeling 10 

framework (HIRM) that combines the strengths of process-based SCMs in an idealized impulse response model, with HIRM’s 

input derived from the output of a process-based model. This structure enables the model to capture some of the major nonlinear 

dynamics that occur in complex climate models as greenhouse gas emissions transform to atmospheric concentration to 

radiative forcing to climate change. As a test, the HIRM framework was configured to emulate the total temperature of the 

simple climate model Hector 2.0 under the four Representative Concentration Pathways and the temperature response of an 15 

abrupt four times CO2 concentration step. HIRM was able to reproduce near-term and long-term Hector global temperature 

with a high degree of fidelity. Additionally, we conducted two case studies to demonstrate potential applications for this hybrid 

model: examining the effect of aerosol forcing uncertainty on global temperature, and incorporating more process-based 

representations of black carbon into a SCM. The open-source HIRM framework has a range of applications including complex 

climate model emulation, uncertainty analyses of radiative forcing, attribution studies, and climate model development. 20 

1 Introduction  

Climate models encompass a diverse collection of approaches to representing Earth system processes at various levels of 

complexity and resolution. The most complex are the Earth System Models (ESMs): highly detailed representations of the 

physical, chemical, and biological processes governing the Earth system at high spatial and temporal resolution (Hurrell et al. 

2013). These models are computationally expensive and therefore can only be run for a limited number of scenarios. Slightly 25 

less complex and more computationally efficient are the Earth System Models of Intermediate Complexity (EMICS) (Stocker, 

2011). Finally, Simplified Climate Models (SCMs) sacrifice process realism but are computationally inexpensive (van Vuuren 

et al., 2011). Although SCMs are generally low resolution in space and time, they have a wide range of applications including 

emulation (Dorheim et al. 2019); probabilistic estimates demanding thousands of separate model runs (Stainforth et al. 2005; 



 

2 
 

Webster 2012); factor separation analysis (Mheel et al., 2007); and Earth system model development and diagnosis 30 

(Meinshausen et al., 2011).  

 

SCMs vary in complexity. Process based SCMs such as Hector (Hartin et al. 2015) and MAGICC (Meinshausen et al., 2011) 

consist of systems of equations that represent, albeit in highly simplified form, carbon cycle and climate dynamics. Other 

SCMs are more abstract, consisting of a few highly parameterized equations. Some of the more idealized SCMs (sensu Millar 35 

et al. 2017) use impulse response functions (IRFs) to approximate climate dynamics (Millar et al., 2017). IRF-based SCMs are 

themselves diverse; some are highly idealized, such as the  Impulse  Response Function used in the Fifth IPCC Assessment 

Report (Myhre et al., 2013) (AR5_IR), while others are quasi process-based, only using IRFs to approximate linear climate 

dynamics, with the rest of the climate system represented by process-based equations (Strassmann and Joos 2018; Smith et al. 

2018; and Joos and Bruno 1996).  40 

 

One of the fundamental differences between process-based SCMs and idealized IRF-based SCMs is in their representation of 

the important nonlinear climate dynamics occurring during the evolution of emissions to climate impacts. Process-based 

models (whether SCMs or ESMs) have equations that represent emissions accumulating as concentrations, which in turn affect 

the energy (radiative forcing) resulting in climate changes (most prominently, temperature change) (Harvey et al. 1995; 45 

Claussen et al. 2002). The system of equations used by process-based SCMs represents some, though not all, of the more 

complex and often nonlinear dynamics observed in the Earth system. These dynamics include interactions between 

atmospheric chemical constituents (Wigley et al. 2002); non-linear relationships between greenhouse gas concentrations and 

energy absorption, i.e. radiative forcing (Shine et al. 1990 and Myhre et al. 1998); and carbon-climate feedbacks such as ocean 

surface CO2 uptake (Wenzel et al. 2014, Tang Riley 2015, and Heinmann and Reichstein 2008). Comprehensive process-based 50 

SCMs such as Hector and MAGICC have thousands of lines of code and take significant effort to expand. On the other extreme, 

simple impulse response models can be expressed in a few equations and are readily implemented, but these simplifications 

can produce biases in results (van Vuuren et al. 2011, Schwarber et al. 2019). We discuss here a framework that can be used 

as a testbed for SCM development and analysis.   

 55 

 In this manuscript we document and demonstrate a highly idealized IRF-based framework.  This modeling framework is 

configured using output from a process-based model to capture nonlinear and complex climate dynamics, we refer to it as a 

hybrid impulse response modeling (HIRM) framework. HIRM was configured using the open source, object-oriented, process-

based SCM Hector v 2.3.0, although in theory it could potentially use information from any climate model (ESM, EMIC, 

SCM). The first two experiments in this paper demonstrate HIRM’s ability to accurately reproduce global mean temperature, 60 

including the temperature response to large climate system perturbations. We also demonstrate the potential utility of this 

framework in an uncertainty analysis and examine how changing the response function for black carbon impacts HIRM output. 

We discuss the implications of these results as well as potential future uses of this framework. 
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2 Methods  

2.1 Parent Model Description  

In this study we used Hector v 2.3.0 as the parent model, providing both of HIRM’s primary and only inputs. We selected 

Hector because it is open source, well documented, fast-executing, and has a structure that makes it easy to obtain ‘clean’ IRFs 70 

from model runs (Schwarber et al. 2019). (As noted above, however, HIRM can be coupled with any parent model that can 

provide its inputs.) Hector has been well documented (Hartin et al. 2015), but we provide a brief summary here. 

 

Hector (Hartin et al. 2015) is an open source, process-based SCM carbon-climate model available at 

https://github.com/jgcri/hector. The model is written in C++ and has an object-oriented structure, allowing for substitutions of 75 

different model components; it has both internal and external automated testing, e.g. enforced unit-checking, that provides 

robustness and quality assurance. Hector models carbon and energy flows between the ocean, atmosphere, and terrestrial 

biosphere, starting with a preindustrial steady-state system that is then perturbed by anthropogenic emissions provided as input 

files. The model runs on an annual timestamp, although the carbon cycle as an adaptive-timestep solver to ensure smooth 

numerical changes when fluxes (primarily ocean uptake) are large. The terrestrial carbon cycle is divided into biota, litter, and 80 

soil across multiple biomes; the ocean features surface, intermediate, and deep pools in different hemispheres, with heat uptake 

governed by an implementation of the DOECLIM (Kriegler 2005; Urban et al. 2014) 1-dimensional heat diffusion sub-model.  

Hector models the dynamics of 37 different radiative forcing agents. The total radiative forcing in turn affects global 

temperature change, with all of Hector’s radiative forcing agents exhibiting the same temperature response to change in 

radiative forcing. In effect, Hector can be considered to interpret forcing assumptions as Effective Radiative Forcing values, 85 

which are more closely related to surface temperature changes than the previously used values for stratospheric-adjusted 

radiative forcing (Richardson et al. 2019). This has no impact on the model dynamics that are our focus here, and only impact 

how numerical values are selected as input settings. Note that Hector also assumes that the temporal shape of the response 

function is the same for all forcers, a simplifying assumption that has consequences for HIRM configuration, but also the 

consequences of which we examine below. 90 

2.2 HIRM Description  

HIRM’s total atmospheric temperature response is calculated as the sum of the Green’s function of a temperature response to 

a radiative forcing perturbation with radiative forcing time series, an approach taken by many SCMs (Joos et al. 1999; Van 

Vuuren 2011; Millar et al. 2015; and Boas 2006). By relying on a process-based climate model to compute RF values, HIRM 

is able to use a linear IRF in a simple impulse response model and capture the major nonlinear dynamics between the emissions 95 

to radiative forcing calculations by using radiative forcing time series as input data. 
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HIRM calculates the atmospheric temperature change from preindustrial temperature (!) as the sum of the temperature 

contribution from individual forcing agents !! Eq. (1):  

 100 

T(t) = ∑ T"(t)#
"$% ,                    (1) 

 

Here the individual temperature contribution is equal to the convolution of the radiative forcing time series ()!  with the 

temperature response to a radiative forcing pulse *()! for a single radiative forcing agent Eq. (2). 

 105 

T"(t) = ∫ RF"(t&)IRF"(t − t&)dt&'
'! ,                   (2) 

 

The method we used to obtain ()! and *()! for HRIM relies on output from a parent process-based model. The subsequent 

sections discuss how we obtained ()! and *()! specifically from Hector. It is important to note that while HIRM can be set 

up with unique IRFs for each radiative forcing agent (as demonstrated below), this was not done in this application since 110 

Hector uses one IRF for all species.   

 

HIRM is an open source R package (https://github.com/jgcri/hirm) with Doxygen-style comments, unit tests, and online 

documentation via pkgdown (Wickham and Hesselberth 2020). The online documentation available at 

https://jgcri.github.io/HIRM/ documents all of the package functions and links with a vignette(example) that demonstrates 115 

how to set up and run HIRM. The package contains all of the IRFs and RF inputs used in this manuscript that can be used in a 

customizable configuration matrix to set up and run HIRM.   

2.3 IRF Derivation  

As previously mentioned, one of Hector’s assumptions is that all of Hector’s radiative forcing agents elicit the same 

temperature response to a change in radiative forcing.  Even though HIRM can use a unique IRF for each radiative forcing 120 

agent, for the purposes of HIRM validation exercises in this study, HIRM’s setup must be analogous to that of its parent model 

Hector. In this study we configured HIRM with a single IRF that characterizes Hector’s temperature response to all of its 37 

radiative forcing agents, derived from a reference run and a black carbon (BC) emissions perturbation run of Hector. In Hector, 

BC emissions are converted directly to radiative forcing, and therefore an emissions pulse of BC is analogous to a radiative 

forcing pulse. BC was chosen as the forcing agent since there are no gas-cycle or forcing interactions with other species within 125 

Hector, making it straightforward to derive the IRF, but other forcing agents could have been selected for the perturbation run. 

During the reference model run Hector was driven with the RCP 4.5 scenario, while for the perturbation model run BC 

emissions were doubled relative to RCP 4.5 BC emissions in a single year. RCP 4.5 CO2 concentrations were prescribed during 

these runs, suppressing Hector’s normal carbon cycle temperature feedbacks.   
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 130 

For the two validation experiments we did not include carbon-cycle climate feedbacks into the IRF as we wanted to examine 

the relative importance of non-linearities in emission to forcing calculations, at least as represented in Hector, as compared to 

non-linearities in Hector’s forcing to temperature calculations (as represented within DOECLIM). For this reason the IRF 

should represent only the response of temperature to radiative forcing; otherwise, the temperature response from these feedback 

mechanisms would be incorporated into the IRF, which would then be doubled-counted as forcing time series are being used 135 

as inputs. For the replication experiments we also focus on reproducing Hector temperature without carbon-climate feedbacks. 

Other applications of HIRM may require IRFs that include the temperature response from carbon-cycle feedbacks.   

 

The temperature response (!()*+,-*) ) to the BC emissions perturbation is equal to the difference between the reference 

(!().)	and perturbation temperature 2!+3 Eq. (3), with the perturbation occurring at year t0:  140 

 

T/0123#10(t − t4) = T2(t − t4) − T/05(t − t4),                                                                                                                          (3) 

 

The temperature response to a radiative forcing perturbation was calculated by dividing the temperature response to the 

emissions perturbation by the size of the radiative forcing pulse Eq. (4). The size of the radiative forcing pulse (46 ) was set 145 

equal to the difference in radiative forcing between the reference and emissions perturbation runs (described in the paragraph 

above) in the perturbation year: 

 

IRF"(t − t4) = T/0123#10(t − t4)/X7,                                                                                                                                        (4)  

 150 

This IRF had a length of 300 years, in order to ensure the IRF was long enough to be convolved with the RF inputs; the end 

of the IRF was extrapolated with an exponential decay function to a length of 3000 years with a decay constant of 0.20. 

Extending the length of the IRF prevents the IRF from being padded with zeros and having to truncate the RF inputs.  

 

The majority of Hector’s temperature response to a radiative forcing pulse occurs within the first 50 years after the perturbation 155 

(Fig. 1). The strongest response occurs during the perturbation year itself, with a maximum value of 0.09 (°C	W-1m-2); by year 

35 the temperature response has decreased by 97% and continues to approach zero for the remainder of the IRF. This IRF is 

used in both of the validation experiments and case studies except where noted.  
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3 Validation Experiments 

3.1 Replication of RCP Results 160 

Emulation is used to validate HIRM by illustrating that the HIRM framework reproduces the dynamics of a process-based 

SCM with a minimal loss of information. If HIRM can accurately reproduce or emulate the atmospheric temperature of a more 

complex, process-based-model such as Hector, then we assume that HIRM is able to capture important non-linear dynamics 

of the climate system using this setup, at least to the extent these are captured in the SCM. Conversely, if HIRM is unable to 

reproduce Hector’s global temperature outputs, this would indicate that important processes are not being captured by the 165 

HIRM framework.  

In the first validation experiment, HIRM was set up to reproduce Hector temperature for RCP 2.6, RCP 4.5, RCP 6.0, and RCP 

8.5. HIRM was configured for each RCP scenario with a single IRF derived from Hector (fig. 1) together with a complete set 

of time series from Hector’s 37 radiative forcing agents. The radiative forcing time series for these validation experiments 

came from Hector output from RCP 2.6, 4.5, 6.0, and 8.5 with prescribed CO2 concentrations. The global mean temperature 170 

outputs from Hector driven with RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5 were saved and used as validation data for HIRM. 

 

HIRM was able to emulate Hector’s temperature for the four RCPs with a minimal loss of information (Fig. 2a). The difference 

between HIRM and Hector total temperature, measured as the root mean squared error (RMSE), was 1.3 x 10-9 °C (Fig. 2a) 

for each RCP scenario. The cumulative percentage difference between HIRM and Hector temperature was 0 % (rounded from 175 

1.0 x 10-5; other 0% results are similar) for each RCP scenario.  

3.2 Replication of 4X CO2 Results 

The second validation experiment tested HIRM’s ability to reproduce Hector’s temperature response to an abrupt four times 

CO2 concentration step. The abrupt four times CO2 concentration step is a test commonly used by climate modelers to 

understand the climate system’s response to CO2 (Taylor et al 2012). In this experiment HIRM was set up with the Hector 180 

derived IRF and a RF input from an abrupt four times CO2 concentration step. The radiative forcing time series was obtained 

from Hector runs following the CMIP5 protocol (Taylor et al. 2012). HIRM’s radiative forcing time series input was the 

difference in Hector radiative forcing from Hector driven with a constant CO2 concentration of 278 ppm and Hector driven 

with a CO2 concentration of 278 ppm until year 2010 when the CO2 concentration increased by a magnitude of four and 

remained constant for the rest of the run. The difference in Hector’s global mean temperature anomaly between the constant 185 

reference run and the perturbed step run was then compared with HIRM’s output.  

 

HIRM reproduced Hector’s abrupt four times CO2 concentration step temperature response with a high degree of accuracy 

(Fig. 2b).  The RMSE between HIRM and Hector temperature output from the abrupt CO2 concentration step was 1.5 x 10-19 

°C with a cumulative percent difference of 0%. The abrupt CO2 concentration step is a standard diagnostic test used to examine 190 
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climate model responses (Taylor et al. 2012; Eyring et al. 2016). Since HIRM was able to accurately emulate Hector’s 

temperature response to a large step perturbation we conclude that the majority of the nonlinearities within Hector are occurring 

during the emissions-to-radiative forcing portion of the emissions-to-temperature causal chain. While this is to be expected 

from the general principles of SCMs, it nonetheless provides a useful check that our understanding of the parent model’s 

behavior is correct. 195 

4 HIRM Application Case Studies 

4.1 Aerosol Uncertainty Case Study  

 

Uncertainties in the magnitude of historical and future radiative forcing effects continue to be a crucial challenge for climate 

science research, and this is particularly true for aerosol effects (Forest 2018). In this first case study HIRM was used to explore 200 

a range of future temperature change when accounting for uncertainty in some aerosol radiative forcing effects, specifically 

black carbon (BC), organic carbon (OC), indirect SO2 effects (SO2i), and direct SO2 effects (SO2d). To do so, HIRM was again 

set up to recreate Hector’s RCP 4.5 temperature. In this analysis, BC, OC, SO2i, SO2d RF inputs were varied. (Aerosol cloud 

indirect effects are represented in Hector as a function of SO2 emissions only, so we refer to that as SO2 indirect forcing.) We 

present a simple demonstration of the model in this case study and note that we have not produced probabilistic results but an 205 

illustrative range of temperature pathways that result from aerosol uncertainties (e.g. Smith and Bond 2014). A full 

probabilistic analysis would also involve varying additional parameters, such as climate sensitivity, ocean heat update, and 

carbon-cycle parameters. 
 

The aerosol uncertainty scalers were generated from the 2011 aerosol radiative forcing ranges reported in IPCC AR5 8.SM 210 

table 5 (Myhre et al. 2013). The BC, OC, SO2i, and SO2d radiative forcing IPCC ranges were individually sampled at intervals 

of 0.04 W m-2 in 2011 (Table 1), resulting in a total of 29000 times uncertainty scalar combinations. Default HIRM 2011 BC, 

OC, SO2i, and SO2d radiative forcing values were then divided by the values sampled from the respective IPCC ranges to 

obtain the uncertainty scalers.  

 215 

HIRM was set up to run every possible combination of the scaled RF time series, a total of 29000 times. This created an 

ensemble of uncertainty runs, whose results were constrained (i.e., filtered) by historical radiative forcing and temperature. 

HIRM total radiative forcing was constrained to match IPCC historical estimates in radiative forcing and temperature change. 

The 2011 aerosol (SO2i, SO2d, BC, + OC) radiative forcing was constrained to pass through an uncertainty range [-1.66 to 

0.14 Wm-2] (similar to Myhre et al. 2013, but adjusted to account for nitrate and dust forcing and empirical constraints, see 220 

discussion in Smith and Bond 2014). HIRM temperature trend was calculated as the slope of a linear regression and then 
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compared to the observed temperature trend range of [0.65 to 1.1] °C over 1880–2012 reported by Hartmann et al. 2013. Cases 

that did not meet these constraints were removed (see Fig. 3). 

 225 

We found that the historical constraints had an unequal impact on the scaled radiative forcing impacts. The temperature at the 

end of the century for the unconstrained ensemble ranged over 2.5°C – 3.1°C; incorporating the historical constraints into the 

uncertainty analysis narrowed uncertainty in future temperature to 2.7°C – 2.9°C (Fig. 3). The historical constraints had 

different impacts on the sampled aerosol uncertainty scalers. All of the sampled OC scalers passed through the historical 

constraints (Fig. 4b), while the constraints had a modest effect on the OC, BC, and SO2d scalers (Fig. 4a, b, and c).   230 

 

The historical constraints have the most noticeable effect on the SO2i uncertainty scalers. This is because of the large absolute 

magnitude of the uncertainty in aerosol indirect effects (Myhre et al., 2013), which results in a large role for assumptions about 

the strength of aerosol indirect cooling (Tomassini et al 2007, Meinshausen et al. 2009). This shows that strong (negative) 

aerosol indirect forcing is consistent with only a few numerical combinations of forcing values from other species, at least for 235 

default Hector climate system parameters. The sample analysis using HIRM illustrates how this modeling framework can be 

utilized to calculate the range of past and future temperature changes under assumed uncertainty in aerosol radiative forcing. 

4.2 HIRM as a Tool for Development Case Study  

Radiative forcing effects from aerosols are complex (Fan et al. 2016, Bond et al. 2013), and while the physics driving these 

complexities have been incorporated into ESMs, they are not considered in most SCMs. For example, consider black carbon 240 

(BC): unlike cooling effects from aerosols that scatter shortwave radiation back into space, BC heats within the atmosphere, 

and also at the surface when deposited on snow or ice, potentially contributing to both cloud indirect cooling and heating 

effects (Bond et al. 2013). It can also increase cloud amounts, as BC atmospheric heating stabilizes the atmospheric thermal 

profile (Bond et al. 2013).  Experiments conducted with ESMs have found large differences in the response to a step change 

in BC emissions compared to a step change in CO2 (Sand et al. 2015; Yang et al. 2019). 245 

 

Incorporating these dynamics into Hector would be a nontrivial task, but HIRM can be used to estimate what effect they would 

have on the model’s global temperature. For this case study, HIRM was set up to emulate Hector RCP 4.5 as before, but with 

one difference: instead of pairing the BC RCP 4.5 RF time series with Hector’s single IRF, the BC RCP 4.5 RF time series 

was paired with a BC-specific IRF. Since HIRM is set up with a BC-specific IRF, the results will no longer be equivalent to 250 

Hector's. Instead, the results illustrate what Hector’s temperature could be if the BC dynamics were modified.  

 

The BC-specific IRF was derived using output from a study that performed BC emission step tests with the ESM NorESM-1 

(Sand et al. 2015). Mathematically, the derivative of a step response is equal to the impulse response function, and therefore 

we can derive an impulse response function from the step response results reported in the Sand et al. ESM experiment. The 255 
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temperature response to a BC step in ESM experiments is well fit by a single exponential approach to a constant response (see 

Yang et al. 2019 for details). We fit the Sand et al. (2015) abrupt BC step response as:  

   

!(7) = 8	(1 − :
"#
$ ),                    (5) 

 260 

The results of a nonlinear optimization of this function returned values of and ; that were 1.8 °C and 2.1 years, respectively. 

These optimal values were used in Eq. (6), the differentiated form of Eq. (5), to provide a numerical BC temperature impulse 

response function corresponding to the Sand et al. (2015) result:    

 

R'(t) =
8
9 	e

"%
& dt,                     (6) 265 

 

The numerical result of Eq. (6) is converted to a BC impulse response per unit forcing by dividing by the forcing from a 133 

Tg BC emissions change (used in Sand et al. 2015) using Hector’s default forcing per unit BC emission assumptions. With 

this transformation we have replaced Hectors’ default BC representation in HIRM with the Sand et al. temperature response 

in both magnitude and temporal behavior. 270 

 

We found that the BC Sand et al. IRF has a weaker temperature response in the perturbation year and a more rapid decline in 

temperature response compared to Hector’s global IRF (Fig. 5a). The maximum IRF response for the BC Sand et al. IRF is 

0.06 (°C	W-1m-2) which is 0.03 (°C	W-1m-2) cooler than Hector’s IRF. In addition, the BC. Sand et al. IRF approaches 0 (°C	
W-1m-2) faster than Hector’s IRF. These differences are expected since the BC Sand et al. IRF was derived from the NorESM-275 

1 ESM, meaning that this IRF incorporates the complex cooling and warming effects of BC emissions, the net warming over 

land as compared to no net warming over oceans (Sand et al. 2015). When HIRM was configured with the BC Sand et al. 

(2015) IRF the global temperature was lower by 0.2 °C from 1750 to 2100 under the RCP 4.5 scenario (Fig. 5b). Based on 

these results, if Hector were modified to emulate this BC response, we predict that the model’s global temperature would be 

cooler by approximately 0.2 °C in 2100. 280 

 

We note the idea of different forcing agents has been around for quite some time. For example, this has been incorporated 

mechanistically for aerosols in the MAGICC model for around 30 years now (Wigley and Raper 1992), and more recently 

inferred by Shindell (2014) from GCM results. Richardson et al. (2019) used separate response functions for CO2, CH4, solar 

insolation, and aerosols, although the differences in these response functions were not discussed. As further information on 285 

species-specific IRFs become available it will be important to quantify the consequences of these different IRFs using tools 

such as HIRM. 
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5 Discussion and Conclusion 

In this paper we document and test HIRM, a framework that leverages the nonlinear dynamics of process-based SCMs within 

a computationally efficient, highly idealized linear impulse response model. Our two case studies demonstrate that HIRM can 290 

be used as a testbed to quickly examine the consequences of different model assumptions, and to estimate changes in parent 

model behavior from including new mechanisms. While other IRF-based models have incorporated nonlinear dynamics using 

a number of approaches  (Hooß et al. 2001, Millar et al. 2017, ADD), HIRM is able to demonstrate nonlinear dynamics through 

its use of exogenous forcing inputs from Hector. HIRM is available as an open source R package (available at 

https://github.com/JGCRI/HIRM), its computational flexibility and short run time make it particularly appropriate for 295 

uncertainty analyses and experimental SCM design. 

 

We demonstrated that HIRM can be used to examine uncertainty within the climate system, and that incorporating a more 

realistic BC temperature response into Hector has a significant impact on Hector’s global temperature. If more studies 

corroborate the findings of Sand et al. (2015) and Yang et al. (2019) by observing shorter timescale responses for BC 300 

temperature dynamics across a number of ESMs and Atmosphere-Ocean General Circulation Models (AOGCMs), then SCM 

modeling groups will need to consider incorporating the BC temperature response dynamics into SCMs. Some SCMs, such as 

MAGICC 5.3 and MAGICC 6 (Wigely et al. 2002), already exhibit multiple temperate responses; interestingly, MAGICC has 

a shorter timescale for the temperature response for aerosols (Schwarber et al. 2019), but the resulting response in MAGICC 

still has a longer timescale than that from the AOGCMs (Sand et al. 2015, Yang et al. 2019). 305 

 

During the HIRM validation experiments we demonstrate that most of nonlinearities are in the emissions to forcing steps, in 

which the SCM calculates concentrations from emissions and radiative forcings from concentrations, relationships that widely 

used (Etminan et al. 2016). In comparison the non-linearites in going from forcing to global-mean temperature are relatively 

minor in contrast. This implies that efforts to improve the representation of nonlinear behavior in SCMs should be focused on 310 

emissions-to-forcing processes. We note that we draw this conclusion by calibrating HIRM to a single process-based SCM; 

this finding should be verified using other models, including Earth System Models of Intermediate Complexity (Claussen et 

al. 2002). Such EMICs have more physically-based parameterizations but low levels of internal model noise, which would be 

valuable for exploring the magnitude and nature of non-linearites in going from forcing to temperature. If this finding holds 

for a wider class of models, this would mean that a wide range of model responses to forcing could be quickly simulated using 315 

IRFs. Good et al. 2013 showed that SCMs based on step responses work fairly well for more reproducing General Circulation 

Model (GCM) results suggesting that the assumptions underlying HIRM are valid. 

 

The case studies showcase HIRM’s flexibility, which is based on HIRM’s dependence on a parent model. Arguably this can 

be viewed as a limitation or a tradeoff allows HIRM to be used as a tool for rapid exploration. One limitation of this framework 320 
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is that interactions between forcing agents are not directly considered. For example, multiple species of aerosols may contribute 

to cloud indirect cooling effects. These interactions, however, are not well constrained (Fan et al. 2016) and, for many purposes 

where SCMs might be applicable, it is most important to be able to represent the overall (large) uncertainty range, rather than 

interactions among species that have yet to be definitively quantified. An effort to represent aerosol indirect effects semi-

analytically (Ghan et al. 2013) demonstrated not only the multiple processes that are relevant but also the difficulty in 325 

understanding the drivers of the different forcing estimates from more complex models. 

Insights gained from HIRM could be useful in future work applying impulse response functions in general and the design of 

simple climate models in particular. We suggest that improvements to simple climate models should focus on improving the 

representation of emission to concentration and concentration to forcing relationships. As we note above, however, it would 

be useful to also design comparisons with more complex models, perhaps EMICS given their lower noise and computational 330 

requirements, to determine the extent to which the temperature response to forcing in more complex models can be accurately 

represented by impulse response functions, particularly on 20-30 year time scales where GCM outputs are particularly noisy. 

 

HIRM could also be used with data generated by other SCMs. This could be a useful way of decomposing differences in 

responses between SCMs (e.g. Nicholls et al. 2020) into differences in the emissions to forcing step compared to differences 335 

in the model’s response to a forcing impulse. Similarly, HIRM could be used to examine the uncertainty due to the different 

forcing to temperature responses amongst SCMs (see Schwarber et al 2019 for examples of different forcing to temperature 

IRFs). 

 

HIRM can be used as a testbed for future SCM development. As demonstrated here, the incorporation of a GCM-derived 340 

temperature response function for black carbon emissions results in a significantly different global mean temperature response 

(Figure 5). Exploration of the potential impact of such changes can be done quickly in HIRM to decide if changes should be 

incorporated into, for example, Hector. Incorporating such a change into the Hector model itself would be a more time and 

labor intensive process for several reasons. First, to incorporate this change into Hector one would need to decide how to 

physically interpret the faster BC response time seen in GCMs since Hector does not use impulse response functions directly. 345 

There is some debate if this is due to different response over land vs ocean, or if this is more closely related to differing 

hemispheric responses (Meinshausen et al. 2011, Shindell 2014, Sand et al. 2015). Further, explorations or model extensions 

using HIRM can be accomplished without a user having to understand Hector’s code, dependencies, and coding standards.   

 

Finally, this framework could also be used for analysis that requires capabilities not present in SCMs–for example, regional 350 

analysis. Regional temperature trends could be simulated by HIRM by incorporating the ratio of regional to global temperature 

responses for each forcing agent into HIRM (Sand et al. 2019 and Shindell and Faluvegi et al. 2009). This could be particularly 

valuable for a region such as the Arctic, where a variety of forcing agents, from regional sulfate (Acosta Navarro et al. 2016), 

local black carbon (Sand et al. 2013 and Yang et al. 2019), and global forcing changes, e.g. Arctic amplification, all may play 
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a role. This type of analysis could readily be accomplished using HIRM, including the wide range of uncertainty space that 355 

should be examined (e.g. Figure 3). Future research with HIRM could test IRFs set up with different climate sensitivity values 

and inputs from other process-based models.  

 

 

Code availability 360 

The HIRM R package is available at https://github.com/JGCRI/HIRM with an online manual available at 

https://jgcri.github.io/HIRM/ . The package is also archived on Zenodo (https://doi.org/10.5281/zenodo.3756122). Code and 

results related to the discussion and conclusions of this paper are available on the Open Science Framework (OSF) at 

https://osf.io/kmrj8/.  
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RF agent  Min. 2011 RF Max. 2011 RF Hector Default 2011 
RF 

BC 0.05 0.87 0.40 

OC -0.21 -0.04 -0.17 

SO2i -1.2 0 -0.60 

SO2d -0.6 -0.2 -0.35 

Table 1: The minimum and maximum 2011 radiative forcing values from IPCC AR5 8.SM table 5 (Myhre et al. 2013). These values 
were used to obtain the min and max aerosol uncertainty scalers for four RF agents (BC, OC, SO2i, and SO2d).  Along with the 2011 
RF of the default configuration of HIRM/Hector for RCP 4.5.  

 525 
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Figure 1: The first 50 years of the global temperature response to a radiative forcing perturbation for Hector v2.0; the remaining 
2,500 years of the impulse response are almost constant and slowly approach zero. Here the black carbon emissions were doubled 
in 2010 relative to the Representative Concentration Pathway 4.5 value.  530 
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Figure 2: Comparison of Hector (grey dashed) and HIRM (blue dashed) global mean temperature anomaly from the two validation 535 
experiments. In panel (A) HIRM was used to the recreate Hector temperature for the four RCPs. The four lines in panel (A) from 
lowest to highest 2100 temperature represent results for RCP 2.6, RCP 4.5, RCP 6.0 and RCP 8.5. Panel (B) compares the 
temperature response of HIRM and Hector from the abrupt four times CO2 concentration step validation test.   
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 540 

 

Figure 3: The temperature (°C)_spread from the aerosol uncertainty runs in selected years. The grey regions show all of the possible 
runs before the historical constraints were put into the place; orange regions are the runs that passed through both historical 
temperature and radiative forcing constraints.  The uncertainty in temperature due to uncertainty in aerosol forcing decreases by 
2100 because emissions of aerosols and precursor compounds decrease over time so their influence on temperature decays over time 545 
as well. We note that uncertainty in other climate system parameters, such as climate sensitivity and ocean heat diffusivity, were not 
samples in this application. Including these uncertainties would alter these results. Note that temperature change in 2020 is larger 
than the applied historical constraint ( [0.65 to 1.1] °C over 1880–2012) because temperatures in this figure are relative to 1750. 
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Figure 4: Uncertainty scalers used to vary (A) black carbon, (B) organic carbon, (C) direct SO2 effects, and (D) indirect SO2 effects 550 
aerosol RF time series in the uncertainty analysis. HIRM was run a total of 29000 times with every combination of uncertainty scaler 
represented on the x-axes of panels A-D, creating an ensemble of uncertainty runs with scalars varying for all radiative forcing 
agents. Each panel of this figure plots a projection of the percent of runs passing through the historical constraints as the 2011 
radiative forcing agent of an agent is varied. The black vertical line marks default 2011 RF. 

 555 
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Figure 5: (A) Hector’s IRF (blue) compared with the BC Sand et al. 2015 IRF (red). (B) HIRM total temperature for the 
Representative Concentration Pathway 4.5 for two HIRM cases, one that only uses Hector’s IRF (blue) and the other pairing the 
BC RF time series with the BC Sand et al. 2015 IRF (red). 560 
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