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Abstract. Sub-seasonal to seasonal (S2S) prediction, especially the prediction of extreme 

hydroclimate events such as droughts and floods, is not only scietificallyscientifically challenging 

but has substantial societal impacts. Motivated by preliminary studies, the Global Energy and 20 

Water Exchanges (GEWEX)/Global Atmospheric System Study (GASS) has launched a new 

initiative called “Impact of initialized Land Surface temperature and Snowpack on Sub-seasonal 

to Seasonal Prediction” (LS4P), as the first international grass-roots effort to introduce spring land 

surface temperature (LST)/subsurface temperature (SUBT) anomalies over high mountain areas 

as a crucial factor that can lead to significant improvement in precipitation prediction through the 25 

remote effects of land/atmosphere interactions. LS4P focuses on process understanding and 

predictability, hence it is different from, and complements, other international projects that focus 

on the operational S2S prediction. More than forty groups worldwide have participated in this 

effort, including 21 Earth System Models, 9 regional climate models, and 7 data groups.  

This paper overviews the history and objectives of LS4P, provides the first phase 30 

experimental protocol (LS4P-I) which focuses on the remote effect of the Tibetan Plateau, 

discusses the LST/SUBT initialization, and presents the preliminary results. Multi-model 

ensemble experiments and analyses of observational data have revealed that the hydroclimatic 

effect of the spring LST in the Tibetan Plateau is not limited to the Yangtze River basin but may 

have a significant large-scale impact on summer precipitation beyond East Asia and its S2S 35 

prediction. Preliminary studies and analysis have also shown that LS4P models are unable to 

preserve the initialized LST anomalies in producing the observed anomalies largely for two main 

reasons: i) inadequacies in the land models arising from total soil depths which are too shallow 

and the use of simplified parameterizations which both tend to limit the soil memory; and ii) 

reanalysis data, that are used for initial conditions, have large discrepancies from the observed 40 

mean state and anomalies of LST over the Tibetan Plateau. Innovative approaches have been 

developed to largely overcome these problems. 
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1. Introduction 

Sub-seasonal-to-seasonal (S2S) prediction, especially the prediction of extreme hydroclimatic 45 

events such as droughts and floods, is not only scientifically challenging but also has substantial 

societal impacts since such phenomena can have serious agricultural, economic, and ecological 

consequences (Merryfield et al., 2020).  However, the prediction skill for precipitation anomalies 

in spring and summer months, a significant component of extreme climate events, has remained 

stubbornly low for years.  It is therefore important to understand the sources of such predictability 50 

and to develop more reliable monitoring and prediction capabilities.  Various mechanisms have 

been attributed to S2S predictability.  For instance, oceanic basin-wide tropical sea surface 

temperature (SST) anomalies are known to play a major role in causing extreme events. The 

connection between SST [e.g., El Niño Southern Oscillation (ENSO), Pacific Decadal Oscillation 

(PDO), Atlantic Multidecadal Oscillation (AMO), and Madden–Julian oscillation (MJO)] and the 55 

associated weather and climate predictability has been extensively studied for decades (Trenberth 

et al., 1988; Ting and Wang, 1997; Barlow et al., 2001; Schubert et al., 2008; Jia and Yang, 2013; 

Seager et al., 2014).  The linkage of extreme hydrological events to tropical ocean basin SST 

anomalies allows us to predict them with useful skill at long lead times, ranging from a few months 

to a few years.  Despite significant correlations and demonstrated predictive value, numerous 60 

studies based on observational data analyses and numerical simulations have consistently shown 

that SST alone only partially explains the phenomena of predictability (Rajagopalan et al., 2000; 

Schubert et al., 2004, 2009; Scaife et al., 2009; Mo et al., 2009; Rui and Wang, 2011; Pu et al., 

2016; Xue et al., 2016a, b, 2018; Orth and Seneviratne, 2017).  For instance, the 2015-2016 El 

Niño event, one of the strongest since 1950, was associated with an extraordinary Californian 65 

drought, while the 2016-2017 La Niña event has been related to record rainfall that effectively 

ended the 5-year Californian drought, contrary to established canonical SST-Californian 

drought/flood relationships. In South America, there is also an example where the canonical 

association of thermally direct, SST-driven atmospheric circulation fails (Robertson and Mechoso, 

2000; Nobre et al., 2012). Although an important role for random atmospheric internal variability 70 

in such extreme events has been proposed (Hoerling et al., 2009), such exceptions in explaining 

vital hydroclimatic extreme events as well as low prediction skill underscore the need to seek 

explanations beyond current traditional approaches.  It is therefore imperative to explore other 

avenues to improve S2S prediction skill. 
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Studies have demonstrated that the predictive ability of models may come from their 75 

capability to represent land surface features that have inertia, such as vegetation (evolving cover 

and density), soil moisture, snow, among others (e.g., Xue et al., 1996a, 2010b; Lu et al., 2001; 

Delire et al., 2004; Koster et al., 2004, 2006; Gastineau et al., 2017).  Most land/atmosphere 

interaction studies have focused on local effects, for instance, such as those in the previous Global 

Land -Atmosphere Coupling Experiment System Study (GLASSCE) experiment (Koster et al., 80 

2006).  The possible remote (non-local) effects of large-scale spring land surface/subsurface 

temperature (LST/SUBT) anomalies in geographical areas upstream of the areas which experience 

late spring-summer drought/flood, an underappreciated relation, have largely been ignored until 

recent preliminary modeling and data analyses studies revealed the important role of high 

mountain LST/SUBT in S2S predictability: andthis discovery has stimulated the research in this 85 

direction.  For instance, observational data in the Tibetan Plateau and the Rocky Mountains have 

shown that land surface temperature anomalies can be sustained for entire seasons, and that they 

are accompanied by persistent subsurface temperature, snowsnow, and albedo anomalies (Liu et 

al., 2020). Since only 2-m air temperature (T-2m) has significant global coverage, and because its 

values are very close to LST in stations with measurements for both (Liu et al., 2020; also see the 90 

discussion in Section 5.1), observed T-2m data have been used in diagnostic studies to identify 

spatial and temporal characteristics of land surface temperature variability and its relationship with 

other climate variables.  Figure 1 exhibits the persistence of the monthly mean difference of T-2m 

between warm and cold Mays, which are selected based on a threshold of one-half standard 

deviation during the period 1981-2010. Please note, the warm and cold years that are selected 95 

based on May values are applied to other months in the figure.  Those anomalies can persist for 

several months, especially during the spring.  Preliminary studies have been carried out to explore 

the relationship between spring LST/SUBT anomalies and summer precipitation anomalies in 

downstream regions in North America and East Asia (Xue et al., 2002, 2012, 2016b, 2018; Diallo 

et al., 2019).  Data analyses from these studies identify significant correlations between springtime 100 

T-2m cold (warm) anomalies in both the Rocky Mountains and Tibetan Plateau and respective 

downstream drought (flood) events in late spring/summer.  Modeling studies using the NCEP 

Global Forecast System (GFS, Xue et al., 2004) and the regional climate model version of Weather 

Research and Forecasting (WRF; Skamarock et al., 2008), both of which were coupled with a land 

model Simplified Simple Biosphere Model (SSiB, Xue et al., 1991; Zhan et al., 2003) using 105 
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observed T-2m and reanalysis data as constraints, have also suggested that there is a remote effect 

of land temperature changes in the Rocky Mountains and the Tibetan Plateau on their respective 

downstream regions with a magnitude comparable to the more familiar effects of SST and 

atmospheric internal variability.  Recent studies have further revealed the presence of LST/SUBT 

effects in other seasons and regions (Shukla et al., 2019).  These studies have stimulated the 110 

scientific community’s interest in pursuing this issue further with multi-models experiments, 

which will be discussed in the next Section. 

The main hypothesis of LS4P is that LST and SUBT anomalies in early spring carry 

information about the energy and water balances in frozen ground, which is related to the amount 

of snow/ice on the ground and in the frozen soil layer below that is melted in late spring and early 115 

summer, as well as the thermal status from the preceding winter which has a long memory.  The 

more snow/ice on the ground and in the frozen soil layer, the longer the seasonal transition from 

spring to summer. The timing of such a seasonal transition over high elevation areas in the western 

part (upstream) of the land mass plays an important role in setting up the circulation pattern 

downstream over the lower elevation areas to the east.  The strength as well as the duration of 120 

LST/SUBT interactions with downstream circulation patterns should affect the occurrence of 

droughts or floods in late spring/summer over the eastern part of the continents. 

A number of studies have also started to pursue the potential causes of the spring 

LST/SUBT anomaly in the Tibetan Plateau and the Rocky Mountains. Analyses based on 

observational station data over the Tibetan Plateau show that the LST anomaly is highly correlated 125 

with anomalous snow, surface albedo and SUBT in the preceding months.   Using data from an 

off-line model incorporating permafrost processes (Li et al., 2010) and driven with observed 

meteorological data as forcing over the Tibetan Plateau, a regression model can predict a LST 

anomaly at the monthly and seasonal scales, with surface albedo and middle-layer (40–160 cm) 

SUBT as predictors (Liu et al., 2020).  Additional analyses using observational data show that the 130 

spring LST in the Tibetan Plateau is significantly coupled with the regional snow cover in 

preceding months.  The latter is also strongly coupled with February atmospheric circulation 

patterns and wave activity in mid-to-high latitudes (Zhang et al., 2019).  Moreover, a modeling 

study focusing on North America (Broxton et al., 2017) showed that snow water equivalent (SWE) 

anomalies more strongly affect April–June temperature forecasts than SST anomalies.    It is likely 135 

that a temporary filtered response to snow anomalies may be preserved in the LST and SUBT 
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anomalies, and this mechanism deserves further investigation.  Additional research on the causes 

of LST/SUBT anomalies would likely help us to better understand the sources of S2S 

predictability. 

One factor that is closely related to the LST/SUBT anomaly is light absorbing particles 140 

(LAPs) in snow.  In particular, the snow darkening effect by LAPs in snow due to deposition of 

aerosols, e.g.e.g., desert dust, black carbon and organic carbon from industrial pollution, biomass 

burning, and nearby wildfires, can reduce snow albedo which increases the absorption of solar 

radiation by the land surface. This enhanced energy absorption can alter the surface energy 

balance, leading to anomalous T-2m and snowmelt during the boreal spring.  Recent studies have 145 

shown that the snow darkening effect can lead to large increases in surface temperature over the 

Tibetan Plateau in April-May, thereby strongly affecting the subsequent evolution of the jet stream 

and variability of summertime precipitation over India, East AsiaAsia, and Eurasia (Lau and Kim 

2018, Rashimi et al. 2019, Sang et al. 2019). At present, the representation of snow amount, 

coverage, and LAPs in snow are either absent or grossly inadequate in most climate models, 150 

especially in high mountain regions.  This could be one of the major reasons for the large 

discrepancies in simulated T-2m and its anomaly in current Earth System Models (ESMs).    

In the following text, Section 2 introduces the historical development of the initiative 

“Impact of initialized Land Surface temperature and Snowpack on Subseasonal to Seasonal 

Prediction” (LS4P) and its research objectives. Section 3 presents the LS4P Phase I protocol 155 

(LS4P-I): its experimental design and model output requirements. Section 4 discusses causes of 

current LS4P-I models’ deficiencies in preserving land memory and possible approaches for 

improvement. Section 5 briefly presents some preliminary LS4P-I results and discusses the future 

plan and perspectives. 

 160 

2. Development of the Initiative on “Impact of initialized Land Surface temperature and 

Snowpack on Subseasonal to Seasonal Prediction” (LS4P) and its link to other S2S 

Prediction Programs 

Although T-2m measurement has the longest meteorological observational record with global 

coverage and the best quality among various land surface variables, its application in S2S 165 

prediction has largely been overlooked.  Preliminary experiments to test the impact of model 

initialization of LST/SUBT on the S2S prediction as presented in previous section are encouraging, 
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but the results were obtained from only one ESM and one RCM, with North America and East 

Asia as the focus regions (Xue et al., 2016b, 2018).  Due to the existing shortcomings and 

uncertainties associated with individual models, it is imperative to have a multi-model approach 170 

in order to further test the LST-memory hypothesis and to explore predictability in more regions.  

Furthermore, since LS4P proposes a new approach, involving a decade-long effort to explore, test, 

and understand the concept, as well as to develop a proper methodology for the use of ESMs and 

RCMs, it is also imperative to disseminate information related to the LST/SUBT approach, 

including lessons-learned and experience, such that more research groups can understand the 175 

approach/methodology and test the LST/SUBT effect. 

With the preliminary results revealing the promising use of T-2m for LST/SUBT S2S 

prediction thereby opening a new gateway for improving S2S prediction, the Global Energy and 

Water Exchanges (GEWEX) and GEWEX/Global Atmospheric System Study (GASS) have 

supported the establishment of a new Initiative called LS4P.  The idea for the new initiative was 180 

first presented at the 2nd Pan-GASS meeting in Lorne, Australia, in February 2018.  The initiative 

was introduced to the GEWEX community at the GEWEX Open Science Conference in Canmore, 

Canada, May 2018. 

Since the inception of the LS4P in December 2018, more than forty groups worldwide have 

participated in this effort, including twenty-one ESM groups, many of which are from major 185 

climate research centers, nine RCM groups, and seven data groups.  A description of the major 

components of each of the ESM and RCM models is summarized in Appendix A.  The main data 

products that are relevant to the LS4P research form the data group are presented in Section 3.1.  

A complete listing of LS4P group information can be found at https://ls4p.geog.ucla.edu/.   

Because LS4P takes a new approach in S2S prediction, GEWEX, the Third Pole Environment 190 

(TPE), and the U.S. National Science Foundation have supported two workshops at the American 

Geophysical Union Fall Meeting in December 2018 and December 2019, and another one at the 

Nanjing University, China in July 2019. The workshop goals were to discuss and develop the 

project, and to provide training for the modeling groups to better understand and practice the 

LST/SUBT approach (Xue et al., 2019 a, b).   195 

The LS4P activities are closely related to a number of ongoing international projects.  S2S 

prediction is the topic of a joint project of the World Weather Research Program (WWRP) & 

World Climate Research Program (WCRP) which aims to improve understanding and forecast 
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skill at the S2S timescale, between two weeks and a season (WMO, 2013, Vitart et al., 2017; 

Merryfield et al., 2020).  Their S2S project has the study of land initialization and configuration 200 

as one of its major activities.  The LS4P research activities to address these scientific challenges 

are consistent with those of the WWRP/WCRP S2S project.  The LS4P activity is also closely 

related to the TPE program.  The TPE has closely worked with LS4P to provide and maintain a 

data base to support this project, which are discussed in Section 3.1 and Appendixes C and D.  The 

first phase of LS4P will be a joint effort with the TPE Earth System Model Inter-comparison 205 

Project (TPEMIP), which focuses on regional-scale Earth system modeling over the high elevation 

Tibetan Plateau region.  The LS4P initiative is also relevant to the GEWEX Global Land 

Atmosphere System Study (GLASS) Panel objectives because estimating the contribution of land 

memory to atmospheric predictability from convective to seasonal timescales is one of its main 

themes.  This requires an understanding of the key physical interactions between the land and the 210 

atmosphere, and how feedbacks can change the subsequent evolution of both the atmosphere and 

the land state. The focus of LS4P on soil temperature also complements GLASS’s research on the 

role of soil moisture as it pertains to land-atmosphere coupling and predictability.  LS4P has 

interacted with these project groups and developed the experiments which support and 

complement their planned research activities. 215 

This LS4P project intends to address the following questions: 

• What is the impact of initializing large scale LST/SUBT and LAPs in snow in climate 

models on S2S prediction in different regions?  

• What are the relative roles and uncertainties of the associated land processes compared to 

those of ocean state in S2S prediction?  How do they synergistically enhance S2S predictability?  220 

LS4P focuses on process understanding and predictability, hence it is different from, and 

complements, other international projects that focus on the operational S2S prediction. The 

majority of the models participating in LS4P are ESMs, although, there is a good amount of RCMs 

involved.  Some difficulties have been identified regarding how to apply RCMs for studying the 

LST/SUBT effect (Xue et al., 2012).  The main concern is that imposition of the same lateral 225 

boundary conditions (LBC) for RCM’s control and anomaly runs may hamper the necessary 

modification of circulations at larger scales in the anomaly run.  This issue will be more 

comprehensively studied in LS4P using a much larger RCM domain configuration to reduce the 

LBC control on the large-scale change.   



   

10 
 
 

The project will ultimately consist of several phases, and each of which will focus on a 230 

particular high mountain region on one continent as a focal point.   The LS4P-I will investigate the 

LST/SUBT effect in Tibetan Plateau.  The second phase of LS4P will focus on the Rocky 

Mountains of North America.  It is intended that this project will also provide motivation for 

examining additional high mountains in other continents with similar geographic structure, such 

as those in South America, for the potential of the LST/SUBT effect to provide added-value to 235 

S2S prediction and understanding of the pertinent physical principles. Since the Phase I is mainly 

looking for first order effects most related to the soil surface and deeper layers, the effect of LAPs 

in snow in high mountain regions will not be included in the Phase I experiments except for some 

individual group efforts, and therefore they will not be presented further in this paper. 

 240 

3. LS4P First Phase Experiment Protocol: Remote Effects of Tibetan Plateau LST/SUBT 

The Tibetan plateau region provides an ideal geographic location for the LS4P-I test owing to its 

relatively high elevation and large-scale (areal extent) as well as the presence of persistent LST 

anomalies.  The Tibetan Plateau provides thermal and dynamic forcings which drive the Asian 

monsoon through a huge, elevated heat source in the middle troposphere, and this has been 245 

reported in the literature for decades (e.g., Ye, 1981; Yanai et al., 1992; Wu et al., 2007; Wang et 

al., 2008; Yao et al., 2019).  ThusThus, a large impact of the Tibetan Plateau LST/SUBT anomaly 

effect should be expected and has been demonstrated in a preliminary test (Xue et al., 2018).   

 

3.1 Observational data for LS4P Phase I (LS4P-I) 250 

The observational data provide the foundation for the LS4P research and are used for the LS4P 

model initialization of surface and boundary conditions, validation, and other relevant research 

activities and are listed in Appendix B.  Moreover, there are large amounts of observational data 

available in the Tibetan Plateau area, which are produced by the data groups, which are 

participating in LS4P and are available for the community to conduct further LS4P related 255 

research, such as studying the causes of the LST/SUBT anomalies, the characteristics of the 

surface and atmospheric processes in Tibetan Plateau etc.  

 The TPE has conducted comprehensive measurements over Tibetan Plateau for more than 

a decade and has integrated the observational data into the National Tibetan Plateau Data Center 

(Li et al., 2020), which has more than 2400 different data sets for scientific research focused on 260 
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the Tibetan Plateau. Featured datasets of high mountainous observations on the Tibetan Plateau 

include those from the High-cold Region Observation and Research Network for Land Surface 

Processes & Environment of China (HORN) which contains the meteorological,  hydrological and 

the ecological datasets (Peng and Zhu, 2017); soil temperature and moisture observations (Su et 

al., 2011; Yang et al., 2013); multi-scale observations of the Heihe River Basin (Li et al., 2017; 265 

Liu et al., 2018; Che et al., 2019; Li et al., 2019); and multiple datasets from the coordinated Asia-

European long-term observing system for the Tibetan Plateau (Ma et al., 2009).   

The Third Tibetan Plateau Atmospheric Scientific Experiment (TIPEX-III, Zhao et al., 

2018) also provides field measurement data for the LS4P project. The Chinese Meteorological 

Administration (CMA) provides some field measurements with long term records.  The observed 270 

CMA monthly mean precipitation and T-2m, and topography data, with a 0.5-degree resolution 

based on station measurements (Han et al., 2019; Liang et al., 202019), are used in LS4P to evaluate 

the LS4P models’ performance over the Tibetan Plateau and to help produce the LST/SUBT mask 

for model initialization (see Section 4.2 for details).  There are 80 stations over the Tibetan Plateau 

covering the period from 1961-2017. Among them, 14 stations have soil temperature 275 

measurements reaching a depth of 320 cm.  After 2006, more station data are available from the 

TPE.  A detailed spatial interpolation method for the data sets areis discussed in Han et al. (2019).  

This is in contrast with most ground stations around the world, which only include measurements 

for shallow soil layers, e.g., only reaching down to 101.6 cm (Hu and Feng, 2004).  Because of the 

lack of subsurface measurements, there has been some speculation as to whether the LST/SUBT 280 

anomaly and memory, as well as the hypothesized relationship between T-2m/LST/SUBT truly 

exist in the real world. These data provide crucial information to support LS4P related research 

(e.g., Liu et al., 2020; Li et al., 2021). 

In addition to the ground measurements, satellite products from 1981 to 2018 from the 

Global LAnd Surface Satellite (GLASS, Liang S. et al., 2013, 2020) data set will also be employed 285 

for this project. This dataset consists of surface skin temperature, albedo, emissivity, surface 

radiation components, and vegetation conditions (www.glass.umd.edu).   

 

3.2 Experimental Design: Baseline and Sensitivity Experiments 

This section describes standard design and configuration for the LS4P-I experiment, which 290 

consists of four tasks (Table 1).  May and June 2003 are the time periods which have been selected 
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for the main tests.  The summer of 2003 was characterized by a severe drought over the southern 

part of the Yangtze River Basin in eastern China, with an average anomalous precipitation rate of 

-1.5 mm/day over the area bounded by 112-121°E & 24-30°N1. The drought resulted in 100 × 106 

kg crop yield losses, along with an economic loss of 5.8 billion Chinese Yuan (Zhang & Zhou, 295 

2015). To the north of the Yangtze River, there was above normal precipitation, with anomaly 

precipitation rates of 1.32 mm/day over the area within 112-121°E & 30-36°N2. Over the same 

time period, observational data show a cold spring over the Tibetan Plateau; the average T-2m in 

May above 4000m was about -1.4°C below the climatological average.  Maximum Covariance 

Analysis (MCA, Wallace et al., 1992; Von Storch & Zwiers, 1999) showed a positive/negative lag 300 

correlation between the May T-2m anomaly in the Tibetan Plateau and a June precipitation 

anomaly to the south (north) of the Yangtze River.  Meanwhile, a preliminary modeling study 

revealed the causal relationship between the May T-2m/LST/SUBT anomaly over the Tibetan 

Plateau and the June drought/flood in East Asia (Xue et al., 2018).  LS4P intends to further test 

and confirm such causal relationships with multiple state-of-the-art ESMs along with to in order 305 

to assess the uncertainty, and to compare the T-2m/LST/SUBT effect with that of the ocean state. 

 (1). Task 1.   In Task 1, each modeling group conducts a 2-month simulation starting from 

around late April to May 1 (e.g., April 27, 28…May 1, …) through June 30, 2003, consisting in a 

multi-member ensemble.  Each group decides whether they use observed May and June 2003 SST 

and sea ice to specify the ocean surface conditions, which is similar to the AMIP (Atmospheric 310 

Model Intercomparison Project) experimental protocol, or to use the specific ocean initial 

condition at the beginning of the model integration (for those ESMs which can run a fully coupled 

land-atmosphere-ocean configuration), similar to the CMIP (Coupled Model Intercomparison 

Project) experiment, or both.  The reanalysis data are used as atmospheric and land initial 

conditions (as these ESM groups usually do).  Since the spin-up time for different models for the 315 

S2S simulation varies, some groups start their simulations earlier than May 1, for example, on 

April 1 or even earlier.  LS4P does not require a specific number of ensemble members: each 

modeling group makes the decision based on their normal practice in performing their S2S 

simulations, buthowever it is required by LS4P that there should be no less than 6 members. The 

 

1     See black box in Figure 6b for reference. 
2     See red box in Figure 6b for reference. 
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main purpose of Task 1 is to evaluate the performance of each model for the May 2003 T-2m and 320 

the June 2003 precipitation.   

The evaluation of Task 1 results will be used to check: (1) model biases in terms of the 

May 2003 T-2m across the Tibetan Plateau and in terms of June precipitation in the South and 

North Yangtze River Basins (see the corresponding black/red boxes in Figure 6b as a reference); 

(2) the lag relationship between these two biases; and (3) the model’s ability to produce the 325 

observed May 2003 T-2m anomaly in the Tibetan Plateau and the June precipitation anomaly over 

the areas as listed in criterion (1).  The CMA May 2003 T-2m and June 2003 precipitation, these 

two variables’ climatologies, as well as topography data with a 0.5-degree resolution (as discussed 

in Section 3.1) are used to calculate model biases, root-mean-square errors (RMSE), and 

anomalies.  When calculating the bias, it should be noted that the elevations of the T-2m 330 

observational data and model surface are usually not at the same levels, especially in high mountain 

regions.  The observing stations tend to be situated in valleys and are generally at a lower elevation 

than the mean elevation of a model grid box.  Before calculating the model bias, the model-

simulated T-2m data must be adjusted with a proper lapse rate to the elevation height of the 

observational data as discussed in Xue et al. (1996a) and Gao et al. (2017). 335 

The relationship between these two biases areis evaluated to see whether they are consistent 

with the observed lag anomaly relationship, i.e., whether a cold/warm bias in May T-2m over the 

Tibetan Plateau is associated with a dry/wet bias in the South Yangtze River Basin, and an opposite 

bias to the North of the Yangtze River Basin.  The consistency between these relationships would 

suggest the possibility that reducing the May T-2m bias may reduce the June precipitation bias if 340 

the observed May land surface temperature anomaly on the Tibetan Plateau does contribute to the 

observed June East Asian precipitation anomaly.  In other words, if a model can produce the 

observed May T-2m anomaly, it may also be able to produce the observed June precipitation 

anomaly.   

The discoveries from Task 1 will provide crucial information for the LS4P project to pursue 345 

its objectives as discussed in Section 2.  If the LS4P ESMs produced no large bias in precipitation 

and T-2m and/or they were able to simulate the observed anomaly well over Tibetan Plateau and 

eastern China, the justification for the LS4P approach would be questionable.  Furthermore, should 

the model bias relationship between the May T-2m and the June precipitation be the opposite of 

the observed anomaly relationship of these two variables, it maywould also be difficult, if not 350 
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impossible, to pursue the LS4P approach further for these models.  The preliminary assessments, 

however, are encouraging and strongly support the need for LS4P to further pursue its goals, and 

they will be briefly demonstrated in Section 5.  It should be pointed out that the evaluation of the 

bias relationship between May T-2m in the Tibetan Plateau and June precipitation in eastern China 

is just a necessary condition for LS4P to pursue its approach. i.e., to propose a hypothesis.  It is 355 

not sufficient to guarantee the model can improve the June precipitation prediction by using 

improved May T-2m initial conditions.  Only Task 3, as discussed below, will serve this purpose. 

(2).  Task 2.  A number of LS4P modeling groups are from big climate modeling centers, 

and, as such, have the required climatological runs already in their respective data bases.  Those 

groups are required to send each year’s global May T-2m and June precipitation from their 360 

climatological runs. Since different centers have different years in their climatology, LS4P only 

requires the climatological data set covering the time period from around 1981 to around 2010.  

The CMA precipitation and T-2m data averaged over 1981-2010 are employed to assess the 

simulated climatology biases and RMSE from these groups. The purpose of this task is to check 

whether the major bias features that we found in Task 1 based on year 2003 for the LS4P ESMs 365 

are also present in the modeled climatologies.  Please note that discrepancies between simulated 

and observed fields are commonly referred to as biases, although differences for the 2003 are not 

biases in the strict statistical sense, but for simplicity we use the term "bias" to refer to all these 

difference in this paper as did in Pan et al. (2001).  Our premise is that the large biases in the high 

elevation Tibetan Plateau region and in the East Asian drought/flood simulation produced by the 370 

LS4P ESMs are also persistent in the models’ climatology. As such, any progress achieved in 

LS4P-I will not be limited to only one individual year, i.e., year 2003, but should have a broader 

implication.  This issue will be further addressed in Section 5.   

(3). Task 3.  Task 3 is the main LS4P experiment, which tests the effect of the May 2003 

T-2m anomaly in the Tibetan Plateau on the June 2003 precipitation anomaly.   Thus far, every 375 

ESM has a large bias in producing the observed May T-2m anomaly in the Tibetan Plateau, and 

so does the reanalysis data, which are used by the ESMs for atmospheric and surface initialization 

(see more discussion in Section 4.1).  To reproduce the observed May T-2m anomaly in the Tibetan 

Plateau, which is the surface variable interacting with the atmosphere by influencing surface heat 

and momentum fluxes and affecting upwelling longwave radiation, initialization of the LST/SUBT 380 

has to be improved to generate the T-2m anomaly in the model simulation. Preliminary research 
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within the LS4P modeling group suggests that prescribing both LST and SUBT initial anomalies 

based on the observed T-2m anomaly and model bias is the only way for the current ESMs to 

produce the observed May T-2m anomalies, unless the observed T-2m is specified during the entire 

model simulation, which would be a difficult task because, unlike specifying SST, LST has a large 385 

diurnal variation.   It should also be pointed out that if we do not impose initial SUBT anomalies 

in a model simulation, the imposed initial LST anomaly and the corresponding T-2m anomaly 

would disappear after a couple of days of model integration.   Studies based on observational data 

have shown a high correlation between LST and SUBT, and the memory in the soil subsurface is 

one of the major factors for producing soil surface temperature anomalies (Hu and Feng, 2004; 390 

Liu et al., 2020).  

To improve the LST/SUBT initialization, a surface temperature mask for each grid point, 

∆𝑇 𝑖, 𝑗 , over the Tibetan Plateau is produced based on each model bias and the observed 

climate anomaly.  The 𝑖, 𝑗  indexes represent the latitude and longitude coordinates of the grid 

point in the model.  The initial surface temperature condition for Task 3 at each grid point after 395 

applying the mask,  𝑇 𝑖, 𝑗  will be defined as follows:  

applying the mask,  𝑇 𝑖, 𝑗  will be defined as follows:  

𝑇 𝑖, 𝑗 𝑇 𝑖, 𝑗 ∆𝑇 𝑖, 𝑗 𝑇 𝑖, 𝑗 𝑛 𝑇  𝑖, 𝑗 𝑇 𝑖, 𝑗       
when 𝑇  𝑇 0                                                                                                     1𝑎  

𝑇 𝑖, 𝑗 𝑇 𝑖, 𝑗 ∆𝑇 𝑖, 𝑗 𝑇 𝑖, 𝑗 𝑛 𝑇  𝑖, 𝑗 𝑇 𝑖, 𝑗    400 

when 𝑇  𝑇 0                                                                                 1𝑏   

where 𝑇 𝑖, 𝑗 , 𝑇 𝑖, 𝑗 , and 𝑇 𝑖, 𝑗  correspond to the original model surface 

initial condition (used in Task 1), monthly mean model bias, and monthly mean observed anomaly, 

respectively, at grid point (i,j).  Where “n” is a tuning parameter which is described in a subsequent 

paragraph.  Please note, there are no observed daily land surface temperature data available over 405 

globe.  The 𝑇 and 𝑇  are the averaged observed anomaly and model bias, respectively, 

over the entire area where the mask is intended to be applied, such as the Tibetan Plateau.  Equation 

1a is applied for the situation when observed anomaly and model bias have the same sign, while 

Equation 1b is used when observed anomaly and model bias have different signs, regardless 

whether the anomaly is positive or negative.  Figure 2 shows schematic diagrams for imposed 410 

masks for surface temperature initialization under different conditions, which delineates the 

concept for the mask formulation.  In this figure, a cold year (such as year 2003 that is used in the 
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LS4P Phase I) is selected for demonstration.  A schematic diagram, also based on Equation 1, for 

the warm year (such as year 1998) was displayed in Supplemental Figure S1 for readers’ as a 

reference for readers in order to help them to organize their own experiments with different 415 

scenarios. 

In Equation 1, we use 𝑇 and 𝑇  to determine whether Equation 1a or 1b is 

employed because even if a model has a general strong warm/cold bias for the entire area, there 

are always a few grid points where the bias is reversed.  For anomalies, we did not find individual 

grid point and area average having different signs since we always select areas and seasons with 420 

relativerelatively large T-2m anomalies (Figure 1). Using 𝑇  as a criterion in equation 1 will 

prevent the initial conditions of those grid points from adjusting in an opposite direction from the 

majority of other grid points.  In other words, if most grid points in Task 3 have higher/lower initial 

surface temperature than that in Task 1, so do these grid points (with opposite bias) after imposing 

the mask.  For simplicity, these scenarios are not displayed in Figure 2.   425 

Figure 2 along with Equation 1 delineate how the grid points’ initial conditions in Task 3 

are adjusted.  The methodology presented here is to create the initial condition   𝑇~ 𝑖, 𝑗  for Task 3, 

and to produce the observed LST anomaly with the difference between Task 3 and Task 1.  One 

of the LS4P Phase I goals is to examine how such anomaly affects the summer downstream 

precipitation S2S predictability.  For some ESMs, it may not produce the optimal initial condition 430 

if they choose observed climatology, not Task 1, as their reference.  However, with the 

understanding gained from this experiment plus a slight modification of the equation 1, this 

approach should also serve this purpose.  It needs to be pointed out that 𝑇  in some cases may 

not be available.  In section 5, we will show that the  𝑇  for a model’s climatology and for a 

specific year generally are quite consistent, so the climatological bias can be applied if there is no 435 

better information.  As discussed earlier, the sign of the bias is crucial to determine how to make 

the mask. 

Because all ofall the models are unable to maintain the soil temperature anomaly (or 

produce adequate soil memory), a tuning parameter “n” (e.g., 1, 2, 3) is introduced.  Through trial 

and error, each model selects a proper “n” with the intendtion toof produceing the T-2m anomaly 440 

which is close to observation.  For the subsurface, the “n” may be different from that for LST 

depending on the ESM’s land surface scheme.  But currently, most modeling groups use the same 
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“n” for every soil layer.  Better initialization for soil sublayers can be improved after more deep 

soil layer measurements are conducted. available.   

Figure 3 shows a mask application example from one LS4P model, which has a warm bias 445 

(Figure 3b). Based on the bias and the observed May 2003 T-2m anomaly, a mask using Equation 

1b (given the model has warm bias) was generated and only imposed over the Tibetan Plateau 

region as demonstrated in the global map, (See Figure 3c).  The mask is imposed on the initial 

condition at the first time step of the model integration.  The model run starts around May 1 and 

runs through June 30 with multi-ensemble members (the same total number as for Task 1), and the 450 

LST/SUBT is updated by the ESM after the initial imposition of the mask.  However, in the 

example shown in Figure 3, the mask using n=1 failed to produce proper May T-2m anomaly 

(Figure 3d).  Once the model produces a reasonable observed May T-2m anomaly through a tuning 

of “n” in Equation 1 (in Figure 3, only the mask with n=3 produces proper May T-2m anomaly), 

the June precipitation difference between the Task 3 run and the Task 1 run is then evaluated.    455 

To assess the model simulation in this task, we produce composite data sets for global May 

and June T-2m and precipitation for both the year of 2003 and climatology, in which the CMA 

data are used within China for both variables (Han et al., 2019; Liang et al., 2020), while Climate 

Anomaly Monitory System (CAMS, Fan and Van den Dool 2008) and Climate Research Unit 

(CRU, Harris et al., 2014) data are used elsewhere for T-2m and precipitation, respectively.  These 460 

composite data are used to evaluate whether the May T-2m difference between the Task 3 run and 

the Task 1 run produce the observed May T-2m anomaly over the Tibetan Plateau, which is the 

key objective of Task 3.  If a model is capable of producingcan produce about 25% of the observed 

May T-2m anomaly over the Tibetan Plateau, we will further examine the difference of the June 

global precipitation between the two runs and observed global June precipitation anomaly. 465 

Moreover, the improvement in reducing the bias and RMSE for the sensitivity runs will also be 

assessed. 

(4). Task 4.  Task 4 tests the effect of the ocean state on the June 2003 precipitation.  There 

are two possible approaches for this test.  Groups with the AMIP type of experiment use the 

observed May and June 2003 SST for their Task 1 and Task 3 experiments.  For those groups, in 470 

Task 4, the 2003 SST conditions will be replaced by the climatological SST.  For modeling groups 

using the CMIP type experimental setup, the 2003 initial condition used in Task 1 and Task 3 will 

be replaced by the climatological initial condition. The year 2003 is a La Niña year. The modeling 
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groups with the CMIP type of simulations need to check their models’ SST simulations to be sure 

that their models are producing adequate La Niña conditions along the western coast of South 475 

America and the eastern Pacific.  The June precipitation difference between the control run (with 

2003 ocean state) and the Task 4 run (with climatological ocean state) will be compared with the 

observed anomaly in 2003 to assess the global ocean state effect on the precipitation, then it will 

be compared with the LST/SUBT effect from the Task 3 results.  These four tasks are summarized 

in Table 1. 480 

(5). Model Output and Availability 

The data output requirements take into account the evaluations that are required as 

discussed in Sections 3.2(1)-(4), along with the information required to characterize the land 

surface/atmosphere interactions at and near the surface, and the mid and upper troposphere 

atmospheric wave propagation.  In addition to the T-2m and precipitation, other model outputs 485 

from the land surface and the atmosphere (Table S1 in Supplemental) will also be used to evaluate 

the model results.  The NOAA metrics and protocol for short to medium range weather forecast 

performance evaluations as discussed in Wang et al. (2010) will be applied to assess model 

performance. Careful considerations are necessary to limit output frequency in order to save 

storage while still providing sufficient information for crucial diagnostic analyses. The LS4P data 490 

are stored and will be distributed through the National Tibetan Plateau Data Center (Li et al., 2020) 

and the U.S. Department of Energy Lawrence Livermore National Laboratory Earth System Grid 

Federation (ESGF) node (Cinquini et al., 2014).  The detailed information is described in Appendix 

C. 

 495 

4.  Main Issues in LST/SUBT initialization and deficiency in model memory 

To date, all ofall the LS4P ESMs with their land models have difficulty producing the observed T-2m 

anomaly over the Tibetan Plateau to varying degrees.  Moreover, they are also unable to maintain the 

imposed LST/SUBT anomaly from the mask during the model integration.  The current model deficiencies 

in T-2m simulation are rooted in the data, mainly from the reanalysis data, which are used for the model 500 

initialization, and the model parameterizations.  Certain studies (Liu et al., 2020; Li et al., 2021) have 

identified the roles of land parameterizations and soil depth related to this deficiency.  More research is 

necessary to further elucidate the potential roles of other ESM parameterizations.  The LS4P has developed 

an initialization scheme which seeks to mitigate this deficiency in order to yield better S2S prediction.  
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Further development is necessary to improve this approach.  Eventually, the model’s deficiencies in 505 

producing observed high mountain surface temperature anomalies should be overcome through 

the development of proper physical and dynamic processes and relevant data sets to preserve land 

memory, which are a long termlong-term task and require community efforts.  This section will 

discuss a few relevant issues based on our practice intending to raise the community’s interest and 

attention and to promote more comprehensive developments in this aspect.  510 

 

4.1   Data Uncertainty 

Observational T-2m/LST/SUBT data are crucial for model initialization of surface conditions and for model 

validation.  However, ground measurements over high-elevation areas are relatively sparse.   For instance, 

most currently available gridded global T-2m data sets with long records only consist of a few dozen stations 515 

over the Tibetan Plateau.  Considering the complex topography of the region, potentially large interpolation 

errors can occur.  The same is true for the reanalysis data, which are used for the model initialization.  In most 

reanalysis data sets, the T-2m is only a model product.  In LS4P, we employ the CMA T-2m data (1980-

2017) with a 0.5-degree resolution (Han et al., 2019; Liang et al., 2020) for model initialization, , and it which 

is based on about 150 ground station measurements over the Tibetan Plateau.   Figure 4 shows the May T-520 

2m climatology (the 1980-2013 average) over the Tibetan Plateau, and the anomalies of May 2003/1998, 

which corresponds to a very cold/warm spring in the Tibetan Plateau, respectively, from CMA, CAMS, 

CRU, Climate Forecast System Reanalysis (CFSR, Saha et al., 2014), ERA-Interim (ERAI, Berrisford et 

al., 2011), and the Modern-Era Retrospective analysis for Research and Applications, version 2 (MERRA-

2, Gelaro et al., 2017).  Because each T-2m data set has its own elevation, all ofall the data have been adjusted 525 

to the CMA elevation for comparison.  Compared with the CMA data, the CAMS/CRU climatology is 

about 1.8°C cooler/1.5°C warmer, respectively.  The biases for warm/cold years are even larger for 

CAMS/CRU (not shown), respectively.  While the climatological bias for CFSR reanalysis data is small, the 

bias for ERAI is still on the order of one standard deviation of the Tibetan Plateau T-2m variability (~0.7 

°C).  The bias is larger in MERRA-2, at about 4°C. In addition, for cold/warm years, MERRA-2 and CFSR 530 

show opposite anomalies.  The large surface temperature biases in the reanalysis data sets likely interact with 

temperature of the lower atmosphere. There are limited atmospheric sounding data over the Tibetan Plateau 

for data assimilation.  That said, lower atmosphere temperature is also subject to model bias.  Since there are 

no observed near surface layer observations, we compare the reanalysis-based surface and near surface 

temperature anomalies with their own climatology.   These anomalies are very close (not shown), which 535 
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means even if we impose a mask to overcome the LST/SUBT bias, the bias in the lower troposphere is still 

there.  This bias in the reanalysis data has an important implication in affecting the LST initialization and its 

simulation, which will be discussed further in section 4.2.   

 In addition to the surface temperature, subsurface temperature initialization is also challenging in 

high elevation areas.  Measurements for deep subsurface conditions do not exist in most mountain areas.  540 

However, there are fourteen stations in the Tibetan Plateau (Figure 5a) that have soil temperature 

measurements during the period 1981-2005 at depths of 0, 5, 10, 15, 20, 40, 80, 160, and 320 cm, which 

shed light on the quality of subsurface layer temperature in the reanalysis data.  Below 320 cm, the soil 

temperature exhibits very little annual variation. The soil temperature profiles from station observations are 

averaged and four typical months that represent the four seasons are displayed in Figure 5b.  The differences 545 

between the T-2m and the LST are less than 1 degree for these four months.  During winter and summer, 

the deep soil temperature profiles show a larger lag compared with the LST. The reanalysis products over 

the grid points closest to the observation stations (Figure 5a) have been averaged over the same time period. 

However, these data show large discrepancies compared to observations in addition to biases (Figures 5b-c).  

For instance, the top 1-m soil temperatures in the ERAI data are nearly constant for every season with little 550 

change with soil depth.   In MERRA-2, the lag response in the soil profiles only appears in the winter and 

summer up to about 1 m deep; for other seasons or soil temperature below 1-m does not change much.   The 

CFSR shows a better lag response, but it only reaches 1.5 m in depth.   Its biases in these stations compared 

to the observation stations are also apparent. 

The deficiencies in the reanalysis products pose a challenge for properly producing the observed T-555 

2m anomalies since the reanalyses are used to provide the basis for the surface initial condition for most 

ESMs.  Since every LS4P ESM showed a large bias in simulating the May 2003 T-2m anomaly over the 

Tibetan Plateau, we have addressed how to take the bias into account in producing the initial condition mask 

in Section 3.2.  In the next section, the efforts from different modeling groups to generate the observed T-2m 

anomaly are presented further.  560 

 

4.2 Approaches in Improving the LST/SUBT Initialization and T-2m Anomaly Simulation 

In addition to the data that are used for LST/SUBT initial conditions, land models also have deficiencies in 

maintaining the anomalies that are imposed using an initial mask as discussed in Section 3.2.  In the LS4P-I 

experiment, most models are only able to partially produce the observed T-2m anomaly in May despite the 565 

fact that the imposed initial masks normally contain much larger anomalies than those observed.  Although 
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tThe recent available daily Tibetan Plateau dailysurface data from the LS4P data group show our imposed 

initial anomaly is not extreme, but models lost the imposed anomaly rather quickly.  This section highlights 

some specific approaches undertaken by a few groups during their application of the LS4P-I protocol to 

improve the T-2m anomaly simulation.  570 

 The surface soil (20-30 cm) in the central and eastern Tibetan Plateau contains a large amount of 

organic matter which greatly reduces the soil thermal conductivity and increases the soil heat capacity (Chen 

et al., 2012; Liu et al., 2020).  However, this factor is not taken into account in the LS4P ESMs, except for 

CNRM-CM6-1.  That said, the soil thermal conductivity/heat capacity over the Tibetan Plateau in the ESMs 

is too high/too low.  In addition, some ESMs overestimate the precipitation over the Tibetan Plateau, making 575 

the soil water content higher than in reality (Su et al., 2013), which also leads to higher soil thermal 

conductivity.  Less soil organic matter and high soil moisture both accelerate the heat exchange rate between 

the soil and the atmosphere, which causes the rapid loss of soil thermal anomalies in the models.   

 The soil layer depth in the ESM also affects the model’s ability to generate the observed T-2m 

anomaly.  The long memory in deeper soil helps to preserve the soil temperature anomaly in shallower layers. 580 

In a sensitivity study that changed the soil depth from 6 m to 3 m, it was found that with reduced total soil 

column depth, a similar magnitude anomalous soil temperature can only be kept for about 20 days, then it 

disappears much faster thereafter compared with the 6-m soil layer model (Liu et al., 2020).  The total soil 

column depth may not be deep enough in some LS4P models.  To overcome these shortcomings in current 

ESMs and to reproduce the observed T-2m anomaly, a tuning parameter “n” is introduced (Eq. 1) when 585 

setting up the surface mask since it is not a simple task to increase the soil layer depth for all ofall the ESMs.   

One of the intentions of the initialization of LST/SUBT is to influence the lower atmosphere since 

the corresponding initial condition from reanalysis also has inherent errors as discussed in section 5.1, and 

for some models they can be quite large.  A number of modeling groups have started the model simulation 

earlier, for instance on April 01, in order to have sufficient time for the lower atmosphere to spin-up and to 590 

be consistent with the within-mask imposed soil surface conditions.  In some models, such as ACCESS-S2 

and KIM, the models make an adjustment after reading in the initial condition, usually referred to as shock 

adjustment, in order to avoid an imbalance between the atmosphere, land, and ocean initial conditions.  This 

shock adjustment has become a more popular practice in a number of modeling groups.  The idea behind 

the shock adjustment arises from the potential inconsistency among different sources for initial conditions, 595 

and the belief that the atmospheric components are considered to be relatively the most reliable.  With such 

an approach, within the first week or 10 days, the atmospheric forcing plays a dominant role in adjusting the 
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other components’ initial conditions.  As such, the imposed initial soil temperature from the mask at the top 

soil layers could be compromised very dramatically toward the lower atmospheric conditions, which, 

unfortunately, also have large errors over the Tibetan Plateau as previously discussed.  Although the imposed 600 

deep soil temperatures eventually start to affect the air temperature, this process generally takes more than 20 

days. For the model with such a shock adjustment, the mask needs to be imposed when the shock adjustment 

becomes weak, such as at the second day in ACCESS-S2 or half a month after the initial simulation date, as 

done in KIM.  As such, the models may have to start their integrations much earlier.  A couple of models 

tried to impose the mask more than once to produce the T-2m anomaly. For instance, the FGOALS-f2 model 605 

imposed the LST/SUBT anomaly on both May 1 and May 2 to better produce the observed T-2m anomalies.  

It should be pointed out that if a mask is imposed too many times, the ΔT in the mask may add up every time 

when it is imposed to become quite large sink/heat source.  Furthermore, enforcing the LST/SUBT 

perturbation too many times during the model simulation with accumulated large ΔT may distort the 

atmospheric conditions.  Precautions must be taken in this type of approach, probably with ΔT imposed no 610 

more than twice with a well-designed scheme to avoid the excessive accumulation of heating/cooling.          

 For the E3SM and CESM2, which are mainly used in long-term climate research (e.g., century-long 

simulations), real time initialization for S2S prediction is not very closely related to the research objective the 

model centers intend to pursue.  To conduct LS4P type research, the modeling groups have to develop an 

approach in nudging the reanalysis data for a real time initialization.  Nudging is one of the simplest data 615 

assimilation methods (Hoke and Anthes, 1976) and has been widely used in climate model evaluation and 

sensitivity studies (e.g., Xie et al., 2008; Sun et al., 2019; Tang et al., 2019) to constrain the simulations 

towards a predefined reference (the reanalysis data in this case) and hence to facilitate time-specific 

comparisons between model and observations. For the LS4P simulations, E3SM and CESM2 used 1-month 

worth of nudging of the horizontal wind components (U & V) with a 6-hour relaxation time scale before the 620 

land mask for the initial LST perturbation was applied.  A study (Ma et al., 2015) has shown that nudging 

only horizontal winds produces better results compared with those with nudging of more variables, such as 

temperature, specific humidity, etc.    

 

5.  Discussion: Perspectives and Impact of LS4P 625 

LS4P is the first international grass-roots effort focused on introducing spring LST/SUBT anomalies over 

high mountain areas as a factor to improve S2S precipitation prediction through the remote effects of 

land/atmosphere interactions.  Although the original idea of starting LS4P was more limited and only aimed 
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at evaluating whether the results from preliminary tests with one ESM and one RCM (Xue et al., 2016b, 

2018) could be reproduced by more modeling groups, multi-model participation has quickly leadled to the 630 

recognition that the Tibetan Plateau’s spring LST/SUBT effect on the precipitation anomaly to the south and 

north of the Yangtze River was only a small part of broader aspects.  

Figure 6 shows the observed May T-2m and June precipitation anomalies in 2003 and the 

corresponding ensemble mean biases from 13 LS4P ESMs for these two variables in 2003 over the eastern 

part of Asia.  As discussed in Section 3.2 (1), the appropriate relationship between model biases and observed 635 

anomalies are crucial for the LS4P hypothesis and approach.  Among the 13 ESMs, eleven ESMs had warm 

T-2m biases while the remaining two had cold biases, respectively.  Because the May 2003 T-2m had a cold 

anomaly, the T-2m and precipitation biases for the models with positive T-2m bias were multiplied by -1 to 

produce the ensemble mean composites as shown in Figures 6c and d.  Despite very different data sources 

(observed T-2m data were from CMA over China and CAMS for regions outside of China, observed 640 

precipitation data were from CMA over China and CRU in regions outside of China), and the fact that We 

note the caveat that the ESM results are from ensemble means, and in comparing to a particular year the 

spread of the ensemble results is also important. But one can immediately see that the biases are substantial, 

despite the particular combination of ESM results indexed to the Tibetan plateau temperature.  Despite ESMs 

results were produced from models with different numerical approaches and physical parameterizations, the 645 

modeled bias relationships between May T-2m and June precipitation are very consistent with the observed 

anomaly relationship between observed May 2003 T-2m over Tibetan Plateau and June 2003 precipitation 

in many parts of eastern Asia, in addition to the Yangtze River basin.  For instance, models with a cold bias 

in May T-2m in the Tibetan Plateau also have a dry bias in June precipitation over Northeast Asia, part of 

southeast and South Asia, and Siberia, and a wet bias to the west of Siberia, consistent with the observed 650 

precipitation anomaly.  The models with the opposite sign of T-2m bias produced the opposite precipitation 

response.  The spatial correlations between observed June precipitation anomalies and the corresponding 

model biases over the figure domain are 0.62.  Furthermore, the T-2m cold bias over the Tibetan Plateau is 

associated with a cold bias in the Iranian Highlands and a warm-cold-warm wave train over the Eurasian 

continent, which is also generally consistent with the observed T-2m anomalies.  Moreover, the consistencies 655 

suggest a possibly much larger scale remote effect of the Tibetan Plateau LST/SUBT on summer 

precipitation over many parts of the world and support the LS4P’s approach in its experimental design as 

discussed in Section 3.2. As a result, the diagnostic analyses from the tasks in Experiment 1 will cover the 



   

24 
 
 

entire globe. Comprehensive analyses and discussion will be presented in subsequent papers after the LS4P 

groups have completed their experiments. 660 

Although the T-2m anomaly covers large areas, our previous North American study has shown that 

only the LST/SUBT anomaly over high mountains (the Rocky) had a substantial impact on the subsequent 

drought over the South Great Plains (Xue et al., 2012).  One of the LS4P groups, KIM, also tested the effect 

of the LST anomaly in other parts of East Asia, but found their effects are incompatible with the Tibetan 

Plateau LST/SUBT effect.  In addition to year 2003, we also checked the May T-2m and June precipitation 665 

bias in the climatologies of the different models.  The thirteen ESMs shown in Figure 6 have also provided 

their climatological data sets.  Figure 7 shows the climatological biases for May T-2m and June precipitation 

from these ESMs.  The patterns between the bias in the 2003 simulation and the bias in the model 

climatologies are generally consistent, which suggests that the findings from the 2003 case may have a 

broader implications. is important, because the climatological bias is substantial and affects the individual 670 

years as well.  In Phase I, through the LS4P RCM efforts in incorporating the TPE and TIPEX-III data, we 

also intend to adequately simulate water and energy cycle and atmospheric conditions in the Tibetan Plateau 

and their variability. These simulations will provide the data for better atmospheric and surface initialization, 

along with obtaining an improved understanding of the atmospheric circulation and water cycle in “Tibetan 

Water Tower”.   675 

Thus far, our the discussion has been focused on the modeling approach.  A recent statistical study 

has shown that spring soil temperature in central Asia could be a predictor of summer heat waves over 

northwestern China (Yang et al., 2019).   In addition, surface temperatures from five Northern European 

observing stations have been used as a predictor for long-range forecasting of monsoon rainfall over 

southwestern India (Rajeevan, et al., 2007).  Moreover, spring (April-May) precipitation and 2m air 680 

temperature over northwestern India, Pakistan, Afghanistan, and Iran have been found to have a strong link 

with the first phase (June-July) of summer monsoon rainfall over India (Rai et al., 2015).  We will extend the 

data analyses for different major mountains and different seasons and to identify hot spots over the globe 

where LST has significant impacts.  Preliminary statistical forecasts will also be explored, using methods 

such as the Canonical-Correlation Analysis (CCA) and Joint Empirical Orthogonal Analysis (JEOF) (Smith 685 

et al., 2016). Based on the statistical analyses, a Tibetan Plateau Oscillation Index (TPO) and a Rocky 

Mountain Oscillation Index (RMO) will be proposed for predictions of the hydroclimatic extreme events, 

and a relationship between the TPO and the RMO indexes will also be investigated.  As discussed in Section 

3, the Rocky Mountain LST/SUBT effect will be the focus of LS4P Phase II (LS4P-II).   
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The LS4P research has revealed some severe deficiencies in current land models in 690 

preserving the land memory.  In many models, the force-restore method (Deardorff, 1978; 

Dickinson, 1988; Xue et al., 1996b) is used to represent subsurface heat transfer and soil thermal 

status. This simple method produces adequate diurnal and seasonal cycles of surface temperature 

and thus has been widely used by many land models for decades.  However, its severe deficiency 

in keeping the soil memory is apparent in recent studies (Liu et al., 2020, Li et al., 2021).  We have 695 

found that excessively shallow soil depths along with simplified parameterizations of subsurface 

heat transfer are acting to limit the soil memory effect in many models, especially in cold regions. 

An innovative approach has been developed for the land model initialization that can help maintain 

the monthly LST/SUBT anomaly.  The LS4P’s finding on why ESMs have difficulty to maintain 

the LST anomaly, and its proposed approach to help solving the issue should be a significant 700 

contribution from the LS4P project to improve the S2S prediction.  We also hope to have more 

studies to explore the causes of this deficiency from different aspects further.  

LS4P focuses on process understanding and predictability.  Since the current start-of-the-

art models are unable to properly produce the observed surface temperature anomaly andas well 

as theis corresponding anomaly-induced dynamic as well asand the associated physical processes 705 

in their simulations, the bias correction in post-processing (, a method that has been used for some 

simulation studiesy), is unable to generate these processes to help our understanding and will not 

be considered in the LS4P project.  However, we encourage/welcome different approaches to 

tackle this issue, and for compareison with the approach that we presented in this study. 

One issue that hampers the application of the LST/SUBT approach for S2S prediction is 710 

data availability.  The TPE has conducted comprehensive measurements over the high mountain 

Tibetan Plateau areas, which include a plateau-scale observation network plus intensive networks at 

more local scales: these data consist in boundary-layer observations, land surface and deep soil layer 

measurements.  These measurements have provided invaluable information to support the 

establishment of the LS4P and to foster further model development and the possible causes of land 715 

memory .memory. Currently, such comprehensive measurements over high mountain areas are 

still lacking across the globe.  GEWEX has been planning for more measurements that are related 

to land/atmosphere interactions (Boone et al., 2019; Wulfmeyer et al., 2020; Schneider and van 

Oevelen, 2020).  We hope that the results from LS4P will demonstrate the substantial role of high mountain 
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surface conditions on global climate and atmospheric circulation, and therefore stimulate more initiatives to 720 

increase land/atmosphere interaction measurements over high mountain regions. 

LS4P will complete the Phase I tasks at the end of 2020. A special issue in Climate Dynamics hads 

been initiated in late 2020 to report various LS4P research results and other S2S prediction research results 

that should help increase the understanding and predictions of land-induced forcing and atmosphere 

interactions on droughts/floods and heatwaves.  We plan to kick-off the LS4P-II in the summer or later of 725 

2021 with a workshop at the Earth System Science Interdisciplinary Center (ESSIC), University of 

Maryland, College Park, USA.  This workshop will summarize the phase I activity and design working tasks 

for the LS4P-II.   Phase I focuses on the Case 2003.  In the following ensuing LS4P activity, more cases will 

be tackled, which will further improve our assessment on the ESM’s predictability that linksed to 

LST/SUBT. 730 

Although the land has a lower heat capacity and less moisture compared to the oceans, the 

land surface has a much stronger response to changes in surface net radiation at diurnal, sub-

seasonal, and seasonal scales compared to oceans. This is particularly true in high elevation areas, 

which could provide a useful source for predictability at these scales.  LS4P intends to improve the 

S2S precipitation prediction through a better representation of land surface processes in the current 735 

generation of ESMs and aims to make a fundamental contribution in advancing S2S prediction through 

proper initialization of LST/SUBT in high mountain regions.  The LS4P approach proposes a new front 

in S2S prediction to complement other existing approaches. We hope activities and results from LS4P-

I can provide a prototype approach to raise further scientific questions and open a new gateway for more 

studies with various approaches to better understand the roles of different forcing and internal dynamics in 740 

S2S predictability along with identifying the relevant mechanisms. 

 


