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Abstract. This paper proposes a new method that combines checkpointing methods with error-controlled lossy compression for

large-scale high-performance Full-Waveform Inversion (FWI), an inverse problem commonly used in geophysical exploration.

This combination can significantly reduce data movement, allowing a reduction in run time as well as peak memory.

In the Exascale computing era, frequent data transfer (e.g., memory bandwidth, PCIe bandwidth for GPUs, or network) is

the performance bottleneck rather than the peak FLOPS of the processing unit.5

Like many other adjoint-based optimization problems, FWI is costly in terms of the number of floating-point operations,

large memory footprint during backpropagation, and data transfer overheads. Past work for adjoint methods has developed

checkpointing methods that reduce the peak memory requirements during backpropagation at the cost of additional floating-

point computations.

Combining this traditional checkpointing with error-controlled lossy compression, we explore the three-way tradeoff be-10

tween memory, precision, and time to solution. We investigate how approximation errors introduced by lossy compression of

the forward solution impact the objective function gradient and final inverted solution. Empirical results from these numerical

experiments indicate that high lossy-compression rates (compression factors ranging up to 100) have a relatively minor impact

on convergence rates and the quality of the final solution.
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1 Introduction

Full-waveform inversion (FWI) is an adjoint-based optimization problem used in seismic imaging to infer the earth’s subsurface

structure and physical parameters (Virieux and Operto, 2009). Here, a PDE describing the propagation of a wave is solved

repeatedly, while modifying the estimate of the physical properties of the system so that a simulated signal matches the signal

recorded in a physical experiment. The compute and memory requirements for this and similar PDE-constrained optimization20
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problems can readily push the world’s top supercomputers to their limits. Table 1 estimates the computational requirements of

an FWI problem on the SEAM Model (Fehler and Keliher, 2011). Although the grid-spacing and timestep interval depends on

various problem-specific factors, we can do a back-of-the-envelope calculation to appreciate the scale of FWI. To estimate the

number of operations per grid point, we use the acoustic anisotropic equation in a Tilted-Transverse Isotropic medium (Zhang

et al., 2011), which is commonly used today in commercial FWI. Such a problem would require almost 90 days of continuous25

execution at 1 PFLOP/s. The memory requirements for this problem are also prohibitively high. As can be seen in Table 1, the

gradient computation step is responsible for this problem’s high memory requirement, and the focus of this paper is to reduce

that requirement.

The FWI algorithm is explained in more detail in Section 2. It is important to note that despite the similar terminology, the

checkpointing we refer to in this paper is not done for resilience or failure recovery. This is the checkpointing from automatic-30

differentiation theory, with the objective of reducing the memory footprint of a large computation by trading recomputation

for storage. This checkpointing occurs completely in memory (i.e. RAM), and the discussion in this paper is orthogonal to any

issues around Disk Input/Output.

Description Number Peak Memory No. of Flops

Single grid point (TTI) 1 8 bytes 6300

Complete grid 1000× 1000× 1000 8GB 6.3× 1012

Forward propagation (timesteps) 10000 24GB 6.3× 1016

Gradient Computation 2 (FW+REV)1 80TB 1.26× 1017

Shots 10000 80TB 1.26× 1021

Optim. Iterations 20 80TB 2.52× 1022

Table 1. Estimated computational requirements of a Full-Waveform Inversion problem based on the SEAM model (Fehler and Keliher,

2011), a large scale industry standard geophysical model that is used to benchmark FWI. Note that real-world FWI problems are likely to

be larger. 1A gradient computation involves a forward simulation followed by a reverse/adjoint computation. For simplicity we assume the

same size of computation during the forward/adjoint pass.

1.1 FWI and other similar problems

FWI is similar to other inverse problems like brain-imaging (Guasch et al., 2020), shape optimization (Jameson et al., 1998),35

and even training a neural network. When training a neural network, the activations calculated when propagating forward along

the network need to be stored in memory and used later during backpropagation. The size of the corresponding computation

in a neural network depends on the depth of the network and, more importantly, the input size. We assume the input is an

image for the purpose of this exposition. For typical input image sizes of less than 500×500 px, the computation per data point

is relatively (to FWI) small, both in the number of operations and memory required. This is compensated by processing in40

mini-batches, where multiple data points are processed at the same time. This batch dimension’s size is usually adjusted to fill
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up the target hardware to its capacity (and no more). This is the standard method of managing the memory requirements of a

neural network training pipeline. However, for an input image that is large enough, or a network that is deep enough, it is seen

that the input image, network weights, and network activations together require more memory than available on a single node,

even for a single input image (batchsize = 1 ). We previously addressed this issue in the context of neural networks (Kukreja45

et al., 2019b). In this paper we address the same issue for FWI.

Shot Data

Gradient

F (0) F (1) F (2) F (3) F (4) · · · F (n)

R(n)· · ·R(4)R(3)R(2)R(1)R(0)

Forward Computation (n≈ 10000)

Reverse Computation

8GB Lossy Checkpoint

Compression

Figure 1. An illustration of the approach presented in this paper. Checkpoints are compressed using lossy compression to combine lossy

compression and the checkpoint-recompute strategies.

Many algorithmic optimizations/approximations are commonly applied to reduce the computational load from the numbers

calculated in Table 1. These optimizations could either reduce the number of operations or the amount of memory required. In

this paper, we shall focus on the high memory footprint of this problem. One standard approach is to save the field at only the

boundaries and reconstruct the rest of the field from the boundaries to reduce the memory footprint. However, the applicability50

of this method is limited to time-reversible PDEs. In this work, we use the isotropic acoustic equation as the example. Although

this equation is time-reversible, many other variations used in practice are not. For this reason, we do not discuss this method

in this paper.

A commonly used method to deal with the problem of this large memory footprint is domain-decomposition over MPI,

where the computational domain is split into subdomains over multiple compute nodes to use their memory. The efficacy of55

this method depends on the ability to hide the MPI-communication overhead behind the computations within the subdomain.

For effective communication-computation overlap, the subdomains should be big enough that the computations within the

subdomain take at least as long as the MPI communication. This places a lower bound on subdomain size (and hence peak

memory consumption per MPI rank) that is a function of the network interconnect - this lower bound might be too large for

slow interconnects e.g. on cloud systems.60

Some iterative frequency domain methods, e.g. Knibbe et al. (2014), can alleviate the memory limit but are not competitive

with time-domain methods in the total time to solution.
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Hybrid methods that combine time-domain methods, as well as frequency-domain methods, have also been tried (Witte

et al., 2019). However, this approach can be challenging because the application code must decide the user’s discrete set of

frequencies to achieve a target accuracy.65

In the following subsections, we discuss three techniques that are commonly used to alleviate this memory pressure - namely

numerical approximations, checkpointing, and data compression. The common element in these techniques is that all three

solve the problem of high memory requirement by increasing the operational intensity of the computation - doing more com-

putations per byte transferred from memory. With the gap between memory and computational speeds growing wider as we

move into the exaflop era, we expect to use such techniques to increase moving forward.70

1.2 Approximate methods

There has been some recent work on alternate floating-point representations (Chatelain et al., 2019), although we are not aware

of this technique being applied to FWI. Within FWI, many approximate methods exist, including On-the-fly Fourier transforms

(Witte et al., 2019). However, it is not clear whether this method can provide fine-tuned bounds on the solution’s accuracy. In

contrast, other completely frequency-domain formulations can provide clearer bounds (van Leeuwen and Herrmann, 2014), but75

as previously discussed, this comes at the cost of a much higher computational complexity. In this paper, we restrict ourselves

to time-domain approaches only.

Another approximation commonly applied to reduce the memory pressure in FWI in the time domain is subsampling. Here,

the timestep-rate of the gradient computation (See equation 4) is decoupled from the timestep-rate of the adjoint wavefield

computation, with one gradient timestep for every n adjoint steps. This reduces the memory footprint by a factor of n, since80

only one-in-n values of the forward wavefield need to be stored. The Nyquist theorem is commonly cited as the justification

for this sort of subsampling. However, the Nyquist theorem only provides a lower bound on the error - it is unclear whether an

upper bound on the error has been established on this method. Although more thorough empirical measurements of the errors

induced in subsampling have been done before (Louboutin and Herrmann, 2015), we do a brief empirical study in Section 4.7

as a baseline to compare the error with our method.85

1.3 Checkpointing

Instead of storing the wavefield at every timestep during the forward computation, it is possible to store it at a subset of the

timesteps only. During the following computation that proceeds in a reverse order to calculate the gradient, if the forward

wavefield is required at a timestep that was not stored, it can be recovered by restarting the forward computation from the last

available timestep. This is commonly known as checkpointing. Algorithms have been developed to define the optimal check-90

pointing schedule involving forward, store, backward, load, and recompute events under different assumptions (Griewank and

Walther, 2000; Wang et al., 2009; Aupy and Herrmann, 2017). This technique has also been applied to FWI-like computations

(Symes, 2007).

In previous work, we introduced the open-source software pyRevolve, a Python module that can automatically manage the

checkpointing strategies under different scenarios with minimal modification to the computations code (Kukreja et al., 2018).95
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Figure 2. Schematic of the checkpointing strategy. Wall-clock time is on the horizontal axis, while the vertical axis represents simulation

time. The blue line represents forward computation. The dotted red line represents how the reverse computation would have proceeded after

the forward computation, had there been enough memory to store all the necessary checkpoints. Checkpoints are shown as the black dots.

The reverse computation under the checkpointing strategy is shown as the solid red line. It can be seen that the reverse computation proceeds

only where the results of the forward computation are available. When not available, the forward computation is restarted from the last

available checkpoint to recompute the results of the forward - shown here as the blue shaded regions.

For this work, we extended pyRevolve to integrate lossy compression. For details on the computational implementation of

lossy checkpoint compression, as well as a comparison of different compression algorithms based on their compression as well

as overheads, please refer to our previous publication (Kukreja et al., 2019a).

The most significant advantage of checkpointing is that the numerical result remains unchanged by applying this technique.

Note that we will shortly combine this technique with lossy compression which might introduce an error, but checkpointing100

alone is expected to maintain bitwise equivalence. Another advantage is that the increase in run time incurred by the recompu-

tation is predictable.

1.4 Data Compression

Compression or bit-rate reduction is a concept originally from signal processing. It involves representing information in fewer

bits than the original representation. Since there is usually some computation required to go from one representation to another,105

compression can be seen as a memory-compute tradeoff.

Perhaps the most commonly known and used compression algorithm is ZLib (from GZip) (Deutsch and Gailly, 1996). ZLib

is a lossless compression algorithm, i.e., the data recovered after compressing-decompressing is an exact replica of the original

data before compression. Although ZLib is targeted at text data, which is one-dimensional and often has predictable repetition,

other lossless compression algorithms are designed for other kinds of data. One example is FPZIP (Lindstrom et al., 2017),110

which is a lossless compression algorithm for multidimensional floating-point data.
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For floating-point data, another possibility is lossy compression, where the compressed-decompressed data is not exactly

the same as the original data, but a close approximation. The precision of this approximation is often set by the user of the

compression algorithm. Two popular algorithms in this class are SZ (Di and Cappello, 2016) and ZFP (Lindstrom, 2014).

Compression has often been used to reduce the memory footprint of adjoint computations in the past, including Weiser and115

Götschel (2012); Boehm et al. (2016); Marin et al. (2016). However, all these studies use hand-rolled compression algorithms

specific to the corresponding task - Weiser and Götschel (2012) focusses on parabolic equations, Boehm et al. (2016) focusses

on wave propagation like us, and Marin et al. (2016) focusses on fluid flow. All three use their own lossy compression algorithm

to compress the entire time history, and look at checkpointing as an alternative to lossy compression. In this paper we use a

more general floating-point compression algorithm - ZFP. Since this compressor has been extensively used and studied across120

different domains and has implementations for various hardware platforms - this lends a sense of trust in this compressor,

increasing the relevance of our work. None of the previously mentioned studies combine compression and checkpointing, as

we do here.

Cyr et al. (2015) performs numerical experiments to study the propagation of errors through an adjoint problem using

compression methods like PCA. However, they do not consider the combination of checkpointing and compression in a single125

strategy.

Floating-point can be seen as a compressed representation that is not entirely precise. However, the errors introduced by

the floating-point representation are already accounted for in the standard numerical analysis as noise. The errors introduced

by ZFP’s compression of fields are more subtle since the compression loss is pattern sensitive. Hence we tackle it empirically

here.130

1.5 Contributions

The last few sections discussed some existing methods that allow trade-offs that are useful in solving FWI on limited resources.

While checkpointing allows a trade-off between computational time and memory, compression allows a trade-off between

memory and accuracy. This work combines these three approaches into one three-way trade-off.

In previous work (Kukreja et al., 2019a), we have shown that it is possible to accelerate generic adjoint-based computations135

(of which FWI is a subset), by using lossy compression on the checkpoints. For a given checkpoint absolute error tolerance

(atol ), compression may or may not accelerate the computation. The performance model from Kukreja et al. (2019a) helps us

answer this question a priori, i.e., without running any computations.

In this work, we evaluate this method on the specific problem of FWI, specifically the solver convergence and accuracy.

To this end, we conduct an empirical study of:140

1. Propagation of errors when starting from a lossy checkpoint.

2. Effect of checkpoint errors on the gradient computation.

3. Effect of decimation/subsampling on the gradient computation.
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Figure 3. Schematic of the three-way tradeoff presented in this paper. With the use of checkpointing, it was possible to trade off memory

and execution time (the horizontal line). With the use of compression alone, it was possible to trade off memory and accuracy. The combined

approach presented in this work provides a novel three-way tradeoff.

4. Accumulation of errors through the stacking of multiple shots.

5. Effect of the lossy gradient on the convergence of FWI.145

The rest of the paper is organized as follows. Section 2 gives an overview of FWI. This is followed by a description of our

experimental setup in Section 3. Next, Section 4 presents the results, followed by a discussion in Section 5. Finally we present

our conclusions and future work.

2 Full Waveform Inversion

FWI is designed to numerically simulate a seismic survey experiment and invert for the earth parameters that best explain150

the observations. In the physical experiment, a ship sends an acoustic impulse through the water by triggering an explosion.

The waves created as a result of this impulse travel through the water into the earth’s subsurface. The reflections and turning

components of these waves are recorded by an array of receivers being dragged in tow by the ship. A recording of one signal
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sent and the corresponding signals received at each of the receiver locations is called a shot. A single experiment typically

consists of 10000 shots.155

Having recorded this collection of data (dobs), the next step is the numerical simulation. This starts with a wave equation.

Many equations exist that can describe the propagation of a sound wave through a medium - the choice is usually a trade-off

between accuracy and computational complexity. We mention here the simplest such equation, that describes isotropic acoustic

wave propagation:

m(x)
∂2u(t,x)

∂t2
−∇2u(t,x) = qs(t,x), (1)160

where m(x) = 1
c2(x) is the squared slowness, c(x) the spatially dependent speed of sound, u(t,x) is the pressure wavefield,

∇2u(t,x) denotes the laplacian of the wavefield and qs(t,x) is a source term. Solving Equation 1 for a given m and qs can

give us the simulated signal that would be received at the receivers. Specifically, the simulated data can be written as:

dsim = Pru = PrA(m)−1P>s qs (2)

where Pr is the measurement operator that restricts the full wavefield to the receivers locations, A(m) is the linear operator165

that is the discretization of the operator corresponding to Equation 1, and Ps is a linear operator that injects a localized source

(qs) into the computational grid.

Using this, it is possible to set up an optimization problem that aims to find the value of m that minimizes the difference

between the simulated signal (dsim) and the observed signal (dobs):

argmin
m

Φs(m) =
1

2
‖dsim−dobs‖22 . (3)170

This objective function Φs(m) can be minimized using a gradient descent method. The gradient can be computed as follows:

∇Φs(m) =

nt∑
t=1

u[t]vtt[t] = JT δd (4)

where u[t] is the wavefield from Equation 1 and vtt[t] is the second-derivative of the adjoint field (Tarantola, 1984). The adjoint

field is computed by solving an adjoint equation backwards in time. The appropriate adjoint equation is a result of the choice of175

the forward equation. In this example, we chose the acoustic isotropic equation (Equation 1), which is self-adjoint. However,

it is not always trivial to derive the adjoint equation corresponding to a chosen forward equation (Hückelheim et al., 2019).

This adjoint computation can only be started once the forward computation (i.e. the one involving Equation 1) is complete.

Commonly, this is done by storing the intermediate values of u during the forward computation, then starting the adjoint

computation to get values of v, and using that and the previously calculated u to directly calculate ∇Φs(m) in the same loop.180

This need to store the intermediate values of u during the forward computation is the source of the high memory footprint of

this method.
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The computation described in the previous paragraph is for a single shot and must be repeated for every shot, and the final

gradient is calculated by averaging the gradients calculated for the individual shots. This is repeated for every iteration of

the minimization. This entire minimization problem is one step of a multi-grid method that starts by inverting only the low185

frequency components on a coarse grid, and adding higher frequency components which require finer grids over successive

inversions.

3 Experimental setup

3.1 Reference Problem

We use Devito (Kukreja et al., 2016; Luporini et al., 2018; Louboutin et al., 2019) to build an acoustic wave propagation190

experiment. The velocity model was initialized using the SEG Overthrust model. This velocity model was then smoothed

using a Gaussian function to simulate a starting guess for a complete FWI problem. The original domain was surrounded by

a 40 point deep absorbing boundary layer. This led to a total of 287× 881× 881 grid points. This was run for 4000ms with

a step of 1.75ms, making 2286 timesteps. The spatial domain was discretized on a grid with a grid spacing of 20m, and the

discretization was 16th-order in space and second-order in time. We used 80 shots for our experiments with the sources placed195

along the x-dimension, spaced equally and just under the water surface. The shots were generated by modeling a Ricker source

of peak frequency 8Hz.

The FWI experiments were run on Azure’s Kubernetes Service, using the framework described in (Zhang et al., 2021). Each

cloud worker instance processed only one shot at a time, although there were 20 cloud worker instances running in parallel.

The processing of each shot started by reading shot data previously written to Azure Blob Storage, straight to the cloud worker200

instance. This was followed by a long gradient computation step (approximately 10 minutes). Due to this, we posit that file

input/output did not play a role in the experiments discussed here.

Following the method outlined in Peters et al. (2019), we avoid inverse crime by generating the shots using a variation of

Equation 1 that includes density, while using Equation 1 for inversion. The gradient was scaled by dividing by the norm of the

original gradient in the first iteration. This problem solved in double precision is what we shall refer to as the reference problem205

in the rest of this paper. Note that this reference solution itself has many sources of error, including floating-point arithmetic

and the discretization itself.

As can be seen in Section 2, there is only one wavefield in the isotropic acoustic equation, the pressure field, which is called

u in the equations. This is the field we compress in all of the experiments. The lossy-compression algorithm accepts a-priori a

value for absolute error tolerance (atol ) and is expected to respect this tolerance during the compression-decompression cycle.210

We verify this as part of our experiments. Note that the word absolute is used here from the point-of-view of the compression -

we are choosing an absolute value of error tolerance. The absolute value of acceptable error will probably change for waves of

different amplitudes. Peak Signal to Noise Ratio can be used to calibrate the results here across different pressure amplitudes.
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3.2 Error metrics

LetF (i, j,k) be the original field (i.e. before any compression/loss), andG(i, j,k) be the field recovered after lossy compression215

of F (i, j,k), followed by decompression. We report errors using the following metrics:

PSNR : Peak Signal to Noise Ratio, we define this as:

PSNR (dB) = 10log10
R2

MSE
, (5)

where R is the range of values in the field to be compressed, and MSE is the mean squared error between the reference

and the lossy field. More precisely,220

MSE =
1

mnp

p∑
k=0

n∑
j=0

m∑
i=0

[F (i, j,k)−G(i, j,k)]2, (6)

and R= max(F (i, j,k))−min(F (i, j,k)).

Angle : We treat F (i, j,k) and G(i, j,k) as vectors and calculate the angle between them as follows:

cosθ =

−→
F ·
−→
G∥∥∥−→F ∥∥∥ ·∥∥∥−→G∥∥∥ (7)

Error Norms : We also report some errors by defining the error vector E(i, j,k), as F (i, j,k)−G(i, j,k), and reporting L2225

and L∞ norms of this vector.

4 Results

4.1 Evolution of compressibility

To understand the evolution of compressibility, we compress every timestep of the reference problem using the same compres-

sion setting and report on the achieved compression factor as a function of the timestep.230

This is shown in Figure 4. It can be seen that in the beginning the field is highly compressible since it consists of mostly

zeros. The compressibility is worst towards the end of the simulation when the wave has reached most of the domain.

Therefore we pick the last timestep as the reference for further experiments. A 2D cross section of this snapshot is shown in

Figure 5. Figure 6 shows a histogram of pressure values in order to give us an idea of the absolute pressure amplitude present in

the wavefield being compressed. This plot can be used to give context to the absolute error tolerances in the rest of the results.235

4.2 Direct compression

To understand the direct effects of compression, we compressed the reference wavefield using different absolute tolerance

(atol ) settings and observed the errors incurred as a function of atol . The error is a tensor of the same shape as the original

field and results from subtracting the reference field and the lossy field. Figure 7 shows the Peak Signal-to-Noise Ratio achieved

for each atol setting. Figure A1 in the appendix shows some additional norms for this error tensor.240
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We pick the last time step as the reference field for further experiments.

0 5 10 15 20
X (km)

0

2

4De
pt

h 
(k

m
)

0.0100
0.0075
0.0050
0.0025

0.0000
0.0025
0.0050
0.0075
0.0100

Pr
es

su
re

Figure 5. A 2D slice of the last time step of the reference solution. The wave has spread through most of the domain. The values in this

figure have been thresholded to ±0.01 for easy visualization. For pressure amplitudes, see Figure 6.
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Figure 6. A histogram of pressure values in the wavefield shown in Figure 5. These values can be used to give context to the absolute error

tolerances used in the rest of the experiments.
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Figure 7. Direct compression: We compress the wave field at the last time step of the reference solution using different atol settings and

report the Peak Signal to noise ratio (PSNR) achieved. Higher PSNR is lower error. The PSNR is very high for low absolute error tolerance

(atol ) and drops predictably as atol is increased. See Figure A1 for more metrics on this comparison.

12



4.3 Forward propagation

Next, we ran the simulation for 550 steps and compressed the field’s final state after this time. We then compress and decom-

press this through the lossy compression algorithm, getting two checkpoints - a reference checkpoint and a lossy checkpoint.

We then restarted the simulation from step 550, comparing the progression of the simulation restarted from the lossy checkpoint

vs. a reference simulation that was started from the original checkpoint. We run this test for another 250 timesteps.245

Figure 8 shows the evolution of the PSNR between wavefields at corresponding timesteps as a function of the number of

timesteps evolved. There is a slight initial drop followed by essentially constant values for the 250 timesteps propagated. This

tells us that the numerical method is robust to the error induced by lossy compression and the error does not appear to be

forcing the system to a different solution.
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Figure 8. Forward propagation: We stop the simulation after about 500 timesteps. We then compress the state of the wavefield at this point

using atol = 10−6. We then continue the simulation from the lossy checkpoint and compare with the reference version. Here we show the

error as PSNR. In these plots, higher is better, and lower implies more error. The PSNR dropped slightly over the first few timesteps and then

remains essentially constant after.

4.4 Gradient computation250

In this experiment, we do the complete gradient computation, as shown in Figure 1 - once for the reference problem and

for a few different lossy settings. We measured the error in the gradient computation as a function of atol , using the same

compression settings for all checkpoints.

In Figure 9, we report the error between the reference gradient and the lossy gradient as PSNR (See Section 3.2 for defini-

tion). The PSNR remains unchanged until an atol of 10−6, and even at its lowest, is at a very high value of 80.255
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Figure 9. Gradient computation: In this experiment we carry out the full forward-reverse computation to get a gradient for a single shot,

while compressing the checkpoints at different atol settings. This plot shows the PSNR of reference vs lossy gradient as a function of atol on

the lossy checkpoints. We can see that the PSNR remains unchanged until about atol = 10−6 and is very high even at very high values of

atol .
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Figure 10. Gradient computation: Angle between the lossy gradient vector and the reference gradient vector (in radians) vs atol (left) and

vs compression factor (right). If the lossy gradient vector was pointing in a significantly different direction as compared to the reference

gradient, we could expect to see that on this plot. The angles are quite small. The number of timesteps do not affect the result by much. The

results are also resilient to increasing atol up to 10−2. Compression factors of over 100x do not seem to significantly distort the results either.
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In Figure 10, we look at the same experiment, but through a different metric. Here we report the angle between the reference

gradient vector and the lossy gradient vector. We see that the error remains constant at a very small value of 5× 10−4 radian

up to atol = 10−2. This same plot also shows that the number of timesteps do not appear to change the error by much (for a

constant number of checkpoints).

In Figure 11, we report the error as L∞ and L2 norms, with respect to achieved compression factor. This makes it easier to260

compare with the subsampling strategy presented later (See Figure 19).
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Figure 11. Gradient error: L∞ (left) and L2 (right) norms of the gradient error as a function of the achieved compression factor (CF). It can

be seen that error is negligible in the range of CF up to 16. Figure 19 repeats a part of these results to aid comparison with the subsampling

strategy.

We also repeated the gradient computation for different number of checkpoints. Fewer checkpoints would apply lossy com-

pression at fewer points in the calculation, while the amount of recomputation would be higher. More checkpoints would

require less recomputation, but would apply lossy compression at more points during the calculation. Figure 12 shows the

results of this experiment. We see that the PSNR is largely dependent on the value of atol , and does not change much when265

the number of checkpoints is changed by two orders of magnitude.

It can be seen from the plots that the errors induced in the checkpoint compression do not propagate significantly until the

gradient computation step. In fact, the atol compression setting does not affect the error in the gradient computation until a

cutoff point. It is likely that the cross-correlation step in the gradient computation is acting as an error-correcting step since the

adjoint computation continues at the same precision as before - the only errors introduced are in the values from the forward270

computation used in the cross-correlation step (the dotted arrows in Figure 1).
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Figure 12. Gradient error: In this plot we measure the effect of varying number of checkpoints on the error in the gradient. We report PSNR

of lossy vs reference gradient as a function of number of checkpoints, for four different compression settings.

4.5 Stacking

After gradient computation on a single shot, the next step in FWI is the accumulation of the gradients for individual shots by

averaging them into a single gradient. We call this stacking. In this experiment we studied the accumulation of errors through

this stacking process. Figure 13 shows the error in the gradient computation (compared to a similarly processed reference275

problem) as a function of the number of shots.

This plot shows us that the errors across the different shots are not adding up and the cumulative error is not growing with

the number of shots - except for the compression setting of atol = 10−1, which is chosen as an example of unreasonably high

compression.

4.6 Convergence280

Finally, we measure the effect of an approximate gradient on the convergence of the FWI problem. In practice, FWI is run

for only a few iterations at a time as a fine-tuning step interspersed with other imaging steps. Here we run a fixed number of

FWI iterations (30) to make it easier to compare different experiments. To make this a practical test problem, we extract a 2D

slice from the original 3D velocity model and run a 2D FWI instead of 3D. We compare the convergence trajectory with the

reference problem and report. For reference, Figure 14 shows the known true velocity model for this problem. Figure 15 shows285

the final velocity model after running a reference FWI for 30 iterations. Figure 17 shows the final velocity model after running

FWI with compression enabled at different atol settings - also for 30 iterations.

16



0 2 4 6 8

0

0.5

1

·10−2

shots

A
ng

le
w

ith
pe

rf
ec

tg
ra

di
en

t(
ra

di
an

s)
atol = 10−1

atol = 10−4

atol = 10−8

atol = 10−16

Figure 13. Shot stacking: The gradient is first computed for each individual shot and then added up for all the shots. In this experiment we

measure the propagation of errors through this step. This plot shows that while errors do have the potential to accumulate through the step -

as can be seen from the curve for atol = 10−1, for compression settings that are useful otherwise, the errors do not accumulate significantly.

Figure 14. True model used for FWI
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Figure 15. Reference solution for the complete FWI problem. This is the solution after running reference FWI for 30 iterations

Figure 16 shows the convergence trajectory - the objective function value as a function of the iteration number. We show

this convergence trajectory for 4 different compression settings. It can be seen that the compressed version does indeed follow

a very similar trajectory as the original problem.290
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Figure 16. Convergence: As the last experiment, we run complete FWI to convergence (up to max 30 iterations). Here we show the con-

vergence profiles for atol = 10−1 (left) and atol = 10−2 (right) vs the reference problem. The reference curve is so closely followed by the

lossy curve that the reference curve is hidden behind.
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Figure 17. Final image after running FWI atol = 10−1. It is visually indistinguishable from the reference solution in Figure 15.

Figure 18. Final image after running FWI atol = 10−2. It is visually indistinguishable from the reference solution in Figure 15.

4.7 Subsampling

As a comparison baseline, we also use subsampling to reduce the memory footprint as a separate experiment and track the

errors. Subsampling is another method used to reduce the memory footprint of FWI, often used in industry. The method is set

up so that the forward and adjoint computations continue at the same time stepping as the reference problem. However, the

gradient computation is now not done at the same rate - it is reduced by a factor f. We plot results for varying f.295

Figure 19 shows some error metrics as a function of the compression factor f .

Comparing Figure 19 with Figure 11, it can be seen that the proposed method produces significantly smaller errors for

similar compression factors.
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Figure 19. Subsampling: We set up an experiment with subsampling as a baseline for comparison. Subsampling is when the gradient

computation is carried at a lower timestepping than the simulation itself. This requires less data to be carried over from the forward to the

reverse computation at the cost of solution accuracy so is comparable to lossy checkpoint compression. This plot shows the angle between

the lossy gradient and the reference gradient versus the compression factor CF (left) and L2 norm of gradient error versus the compression

factor CF (right) for this experiment. Compare this to the errors in Figure 11 that apply for lossy checkpoint compression.

5 Discussion

The results indicate that significant lossy compression can be applied to the checkpoints before the solution is adversely300

affected. This is an interesting result because, while it is common to see approximate methods leading to approximate solutions,

this is not what we see in our results - the solution error doesn’t change much for large compression error. This being an

empirical study, we can only speculate on the reasons for this. We know that in the proposed method, the adjoint computation

is not affected at all - the only effect is in the wavefield carried over from the forward computation to the gradient computation

step. Since the gradient computation is a cross-correlation, we only expect correlated signals to grow in magnitude in the305

gradient calculation and when gradients are stacked. The optimization steps are likely to be error-correcting as well since even

with an approximate gradient (atol > 10−4), the convergence trajectory and the final results do not appear to change much -

indicating that the errors in the gradient might be canceling out over successive iterations. There is even the possibility that

these errors in the gradient act as a regularization (Tao et al., 2019). This is likely since we know from Diffenderfer et al. (2019),

that ZFP’s errors are likely to smoothen the field being compressed. We also know from Tao et al. (2019) that ZFP’s errors are310

likely to be (close-to) normally distributed with 0 mean, which reinforces the idea that this is likely to act as a regularizer. We

only tried this with the ZFP compression algorithm in this work. ZFP being a generic floating-point compression algorithm,

is likely to be more broadly applicable than application-specific compressors. This makes it more broadly useful for Devito,

which was the DSL that provided the context for this work. Some clear choices for the next compressors to try would be SZ
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(Di and Cappello, 2016) - which is also a generic floating-point compression library, and the application-specific compressors315

from Weiser and Götschel (2012); Boehm et al. (2016); Marin et al. (2016). A different compression algorithm would change:

– the error distribution,

– the compression/decompression times, and

– the achieved compression factors.

Based on the experiments from Tao et al. (2019), we would expect the errors in SZ to be (nearly) uniformly distributed320

with a 0 mean. It would be interesting to see the effect this new distribution has on the method we describe here. If a new

compressor can achieve higher compression factors than ZFP (for illustration), in less compression/decompression time than

ZFP, then it will clearly speed up the application relative to ZFP. In reality, the relationship is likely to be more complex, and the

performance model from Kukreja et al. (2019a) helps compare the performance of various compressors on this problem without

running the full problem. The number of checkpoints has some effect on the error - more checkpoints incur less error for the325

same compression setting - as would be expected. Since we showed the benefits of compression for inversion, the expected

speedup does not depend on the medium that varies between iterations from extremely smooth to very heterogeneous. While

we focused on acoustic waves in this work for simplicity, different physics should not impact the compression factor due to the

strong similarity between the solutions of different wave equations. However, different physics might require more fields in the

solution - increasing the memory requirements, while also increasing the computational requirements. Whether this increase330

favours compression or recomputation more depends on the operational intensity of the specific wave equation kernel. The

choice of misfit function is also not expected to impact our results since the wavefield does not depend on the misfit function.

A more thorough study will, however, be necessary to generalize our results to other problem domains such as computational

fluid dynamics that involve drastically different solutions.

Our method accepts an acceptable error tolerance as input for every gradient evaluation. We expect this to be provided as335

part of an adaptive optimization scheme that requires approximate gradients in the first few iterations of the optimization, and

progressively more accurate gradients as the solution approaches the optimum. Such a scheme was previously described in

Blanchet et al. (2019). Implementing such an adaptive optimizer and using it in practice is ongoing work.

6 Conclusions and Future Work

In the preceding sections, we have shown that using lossy compression, high compression factors can be achieved without340

significantly impacting the convergence or final solution of the inversion solver. This is a very promising result for the use of

lossy compression in FWI. The use of compression in large computations like this is especially important in the exascale era,

where the gap between computing and memory speed is increasingly large. Compression can reduce the strain on the memory

bandwidth by trading it off for extra computation - this is especially useful since modern CPUs are hard to saturate with low

OI computations.345
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In future work, we would like to study the interaction between compression errors and the velocity model for which FWI is

being solved, as well as the source frequency. We would also like to compare multiple lossy compression algorithms e.g., SZ.

Code and data availability. The data used was from the Overthrust model, provided by SEG/EAGE (Aminzadeh and Brac, 1997). The code

for the scripts used here (Kukreja, 2020), the Devito DSL (Luporini et al., 2020), and pyzfp (Kukreja et al., 2020) is all available online

through Zenodo.350

22



23



Appendix A: Additional Results

A1 Direct compression
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Figure A1. Direct compression: On the top, L∞ norm of error versus atol . This plot verifies that ZFP respects the tolerance we set. On

the bottom, L1 norm of error versus atol . From the difference in magnitude between the L∞ plot and this one, we can see how the error is

spread across the domain.
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A2 Gradient Computation
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Figure A2. Gradient computation: L∞ norm of gradient error versus atol (left) and L2 norm of gradient error versus atol . It can be seen that

the error stays almost constant and very low up to a threshold value of 10−4
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