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Abstract. Ecosystem models are often calibrated and /or validated against derived remote sensing data products ,
::::::
Canopy

:::::::
radiative

:::::::
transfer

::
is

:::
the

:::::::
primary

::::::::::
mechanism

::
by

::::::
which

::::::
models

:::::
relate

:::::::::
vegetation

:::::::::::
composition

::::
and

::::
state

::
to

:::
the

:::::::
surface

::::::
energy

:::::::
balance,

:::::
which

::
is
:::::::::

important
::
to

:::::
light-

::::
and

::::::::::::::::::
temperature-sensitive

:::::
plant

::::::::
processes

:::
as

::::
well

::
as
:::::::::::::

understanding
::::::::::::::
land-atmosphere

::::::::
feedbacks.

:::
In

::::::::
addition,

:::::::::
parameters

::
to
::::::

which
:::::::::
vegetation

:::::::
models

:::
are

::::::
known

::
to

:::
be

::::::
highly

:::::::
sensitive

::::
play

:::
an

:::::::::
important

:::
role

:::
in

::::::
canopy

:::::::
radiative

:::::::
transfer.

::::::::::
Calibration

:::
and

::::::::
validation

:::
of

::::::::
vegetation

:::::::
models

:::::
based

::
on

::::
their

:::::::::
shortwave

::::
(300

::
to

::::
2500

:
nm)

::::::::
radiative5

::::::
transfer

::::::
outputs

::::
can

::
be

::
an

::::::::
effective

::::::::
constraint

::
on

::
a

:::::
variety

:::
of

:::::
model

:::::::::
processes.

::::::::::
Importantly,

:::::::::
calibrating

::::::
against

:::::::
radiative

:::::::
transfer

::::::
outputs

::::::
allows

::::::
models

::
to

:::::::
directly

:::
use

:::::::
remote

::::::
sensing

::::::::::
reflectance

:::::::
products

:::::::
without

::::::
relying

:::
on

::::::
highly

::::::
derived

::::::::
products

:
(such

as MODIS leaf area index. However, these data products are generally based on their own models, )
:
whose assumptions

may not be compatible with those of the ecosystem model in question,
::
be

:::::::::::
incompatible

::::
with

::::
the

:::::
target

:::::::::
vegetation

::::::
model

and whose uncertainties are usually not well quantified. Here, we develop an alternative approach whereby we modify an10

ecosystem model to predict full-range, high spectral resolution surface reflectance, which can then be compared directly against

airborne and satellite data. Specifically, we coupled the two-stream representation of canopy radiative transfer in the Ecosystem

Demography model (ED2) with a leaf radiative transfer model (PROSPECT 5) and a simple soil reflectance model
::
to

::::::
predict

::::::::
full-range,

::::
high

:::::::
spectral

:::::::::
resolution

::::::
surface

:::::::::
reflectance

:::
that

::
is

:::::::::
dependent

::
on

:::
the

:::::::::
underlying

::::
ED2

::::::
model

::::
state. We then calibrated

this model against reflectance observations
::::::::
estimates

::
of

::::::::::::
hemispherical

:::::::::
reflectance

:::::::::
(corrected

:::
for

:::::::::
directional

::::::
effects)

:
from the15

NASA Airborne VIsible/InfraRed Imaging Spectrometer (AVIRIS) and survey data from 54 temperate forest plots in the

northeastern United States. The calibration successfully constrained the posterior distributions of model parameters related

to leaf biochemistry and morphology and canopy structure for five plant functional types. The
:::::
Using

::
a

:::::
single

::::::::
common

:::
set

::
of

:::::::::
parameters

::::::
across

::
all

:::::
sites,

:::
the

:
calibrated model was able to accurately reproduce surface reflectance and leaf area index

for sites with highly varied forest composition and structure, using a single common set of parameters across all sites. We20

conclude that having
:
.
::::::::
However,

:::
the

:::::::::
calibrated

:::::::
model’s

:::::::::
predictions

::
of

::::
leaf

::::
area

:::::
index

:::::
(LAI)

:::::
were

:::
less

::::::
robust,

:::::::::
capturing

::::
only

::::
46%

::
of

:::
the

:::::::::
variability

::
in

:::
the

:::::::::::
observations.

:::::::::
Comparing

:::
the

:::::
ED2

:::::::
radiative

:::::::
transfer

:::::
model

::::
with

::
a
::::::
similar

:::::
model

::::::::::
commonly

::::
used

::
in

::::::
remote

::::::
sensing

:::::::
studies

:::::::::::
(PRO4SAIL)

:::::::::
illustrated

::::::::
structural

:::::
errors

::
in

:::
the

:::::
ED2

::::::::::::
representation

::
of

:::::
direct

::::::::
radiation

::::::::::
backscatter
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:::
that

:::::::
resulted

::
in

:::::::::
systematic

::::::::::::::
underestimation

::
of

::::::::::
reflectance.

::
In

::::::::
addition,

:::
we

::::
also

::::::::
highlight

:::
that

::::
our

:::::::
specific

:::::::::::::
implementation

::
is

::::
only

::::
valid

:::
for

::::::::::::
hemispherical

:::::::::
reflectance

::::
data

::::::
(a.k.a.,

:::::::
albedo),

:::::::
whereas

:::::
most

::::::
surface

:::::::::
reflectance

::::::::
products

::::::
actually

::::::::
estimate

:::
the25

:::::::::
directional

:::::::::
reflectance

:::::
factor.

::::::::::
Fortunately,

:::
the

:::::::::::
assumptions

::::
and

:::::::::
parameters

::::
that

:::::
define

:::
our

::::::::::::
hemispherical

:::::::::
reflectance

:::::
model

::::
and

::::
many

::::::
others

::
in

:::
the

:::::::::
vegetation

::::::::
modeling

::::::::::
community

:::
are

::::::
readily

::::::::
adaptable

::
to
:::
the

:::::::::
prediction

::
of

::::::::::
directional

:::::::::
reflectance,

::::
and

:::
we

:::::::::
recommend

::::
that

:::::
these

:::::::::
adaptations

:::
be

::::::::::
incorporated

::::
into

:::
the

::::
next

:::::::::
generation

::
of

:::::::::
vegetation

:::::::
models.

:::
We

::::::::
ultimately

::::::::
conclude

::::
that

::::::
despite

::::
these

::::::::::
challenges,

:::::
using

:
dynamic vegetation models directly

:
to

:
predict surface reflectance is a promising avenue for

model calibration and validation using remote sensing data.30

Copyright statement. TEXT

1 Introduction

Dynamic vegetation models play a vital role in modern terrestrial ecology, and Earth science more generally. The terrestrial

carbon cycle is a major biogeochemical feedback in the global climate system (Heinze et al., 2019), and accurate predictions of

terrestrial carbon cycling rely on accurate representations of vegetation dynamics (Pacala and Deutschman, 1995). Vegetation35

also plays an important role in the water cycle and surface energy balance, with major climate implications (Bonan, 2008).

In addition, the distribution of tree species, the structure of plant canopies, and many other variables simulated by dynamic

vegetation models are also important predictors of biodiversity, making vegetation models an important tool for conservation

::::::::::
management (McMahon et al., 2011). Effective

::::::
Robust calibration and validation of model projections is therefore of broad

concern.40

Many previous efforts have used various data streams
::::
Past

:::::
efforts

:::
to calibrate or constrain dynamic vegetation model pa-

rameters and states
::::
used

:
a
:::::::

variety
::
of

::::
data

:::::::
streams. Among these data streams, remote sensing is particularly promising due

to its consistent measurement methodology and largely uninterrupted global coverage
:
in
::::::

recent
:::::::
decades. Data products de-

rived from remote sensing observations have been used to constrain
::::::
inform, among others,

::::::::
vegetation phenology (Knorr et al.,

2010; Viskari et al., 2015) ,
:::
and

:
absorbed photosynthetically-active radiation , and primary productivity (Peylin et al., 2016;45

Schürmann et al., 2016; Zobitz et al., 2014). However, there are issues with using derived remote sensing products to calibrate

vegetation models. The relationships between remotely sensed surface reflectance and vegetation structure and function are

complex and multifaceted. Simple polynomial relationships between spectral indices (e.g., Normalized Difference Vegetation

Index, NDVI; Enhanced Vegetation Index, EVI) and vegetation properties (e.g., leaf area index, LAI) are often confounded by

other ecosystem characteristics, including soil (Myneni and Williams, 1994) and snow (Zhang et al., 2020), or sensor config-50

uration (Fensholt et al., 2004). More sophisticated approaches for estimating vegetation properties based on physically-based

radiative transfer models face issues of equifinality, whereby many different combinations of vegetation and soil properties

can ultimately produce the same modeled surface reflectance (Combal et al., 2003; Lewis and Disney, 2007). Meanwhile, the

estimating quantities with more indirect relationships to surface reflectance, such as rates of primary productivity, requires a

2



number of assumptions about resource use efficiency and other factors (Running et al., 2004) that can introduce considerable55

uncertainty and bias into the estimates. Collectively, these issues help explain the large differences in estimates of surface char-

acteristics across different remote sensing instruments (Liu et al., 2018). Robust, pixel-level uncertainty estimates for remote

sensing data products would help alleviate some of these concerns, but such estimates are not widely available for most data

products.

One way to overcome these limitations of derived remote sensing data products while still leveraging the capabilities of60

remote sensing is to work with lower-level surface reflectance products.
::::::::
Although

:::::::::
generating

::::
these

::::::::::
reflectance

:::::::
products

::::
still

::::::
requires

::::::::
multiple

:::::::::
processing

:::::
steps,

::::
such

::
as

:::::::::::
atmospheric

:::::::::
correction,

:::::::::::::::
orthorectification,

:::
and

:::::::::
correction

:::
for

:::::::::
sun-sensor

::::::::
geometry

::::::
effects,

:::
all

::
of

:::::
these

:::::::::
processing

:::::
steps

:::::::
involve

::::::::::
significantly

::::::
fewer

::::::::::
assumptions

::::::
about

:::
the

::::::::::
relationship

::::::::
between

:::
the

::::::::
remotely

:::::
sensed

::::::
signal

:::
and

:::
the

:::::::
surface

:::::::
property

:::
or

:::::::::::
phenomenon

::
of

::::::
interest

::::
than

:::::::
derived

::::::::
products.

:
This can be accomplished by cou-

pling dynamic vegetation models with leaf and canopy radiative transfer models that simulate surface reflectance as a function65

of known surface characteristics (Knorr and Lakshmi, 2001; Nouvellon et al., 2001; Quaife et al., 2008). Such an approach

draws on decades of research on simulation of vegetation optical properties given their structural and biochemical character-

istics (Dickinson, 1983; Sellers, 1985; Verhoef, 1984; Lewis and Disney, 2007; Jacquemoud et al., 2009; Pinty et al., 2004;

Widlowski et al., 2007, 2015; Hogan et al., 2018) while avoiding the computational and conceptual challenges of inverse

parameter estimation in radiative transfer modeling (Combal et al., 2003; Lewis and Disney, 2007). Moreover, the ability to70

simulate dynamics of surface reflectance in response to changes in ecosystem properties is valuable even independently of its

utility for remote sensing data assimilation, as vegetation-induced changes in surface reflectance exert a strong influence on

climate .

However, externally coupling a
::::::
Instead

::
of

:::::::
coupling

::
a
:::::::
dynamic

:
vegetation model to a separate

::
an

:::::::
external canopy radiative

transfer modelis not always necessary to relate model predictions to surface reflectance, as land surface models have long75

included their own internal ,
:::
we

:::::::
propose

::
a
:::::
more

:::::
direct

::::::::
approach

::
of

:::::
using

::
a
:::::::::
vegetation

:::::::
model’s

::::
own

:::::::
internal

::::::::::::
representation

::
of canopy radiative transfercalculations

:
.
::::::::
Radiative

:::::::
transfer

::::::
models

::::
have

:::::
long

::::
been

:::
an

::::::::
important

::::::::::
component

::
of

::::
land

:::::::
surface

::::::
models (Dickinson, 1983; Sellers, 1985). These calculations are necessary to simulate impact of vegetation on surface energy

balance
::::::
Canopy

::::::::
radiative

:::::::
transfer

::
is

:::
the

:::::::
primary

:::::::::
mechanism

:::
by

::::::
which

::::::
models

:::::
relate

:::::::::
vegetation

:::::::::::
composition

:::
and

::::
state

:::
to

:::
the

::::::
surface

::::::
energy

:::::::
balance.

::::
This

::
is

::::::::
important

::
to

::::
both

:::
the

::::::
plants

:::::::::::::
themselves—as

:::::
many

::::
plant

:::::::::
processes

::::::::
(including

::::::::::
evaporation

::::
and80

::::::
enzyme

::::::::
kinetics)

:::
are

:::::::
sensitive

::
to

::::::::::
temperature

:
(?)

:::::
—and

::
to
:::

the
::::::

impact
:::

of
:::::
plants

:::
on

:::::
local,

:::::::
regional,

::::
and

:::::
global

:::::::
climate (Bonan,

2008)and to accurately model plant function, which is fundamentally driven by light
:
.
:::::::
Canopy

:::::::
radiative

:::::::
transfer

::::
also

:::::::
controls

:::
how

:::::
much

:::::
light

::
is

:::::::
available

:::
to

:::::
plants

:::
for

::::::::::::
photosynthesis

::::
and

::
is

::::::::
therefore

:
a
:::::::::
first-order

:::::
driver

::
of
:::::

plant
:::::::
function (Hikosaka and

Terashima, 1995; Robakowski et al., 2004; Niinemets, 2016; Keenan and Niinemets, 2016). Canopy radiative transfer plays

a particularly important role in
:
is

::::::::::
particularly

::::::::
important

::
to
:

the current generation of demographically-enabled dynamic veg-85

etation models, where differences in canopy radiative transfer representations and parametrizations
:::::::::
parameters

:
have major

impacts on predicted community composition and biogeochemistry (Loew et al., 2014; Fisher et al., 2018; Viskari et al.,

2019). To date, assimilation of remotely sensed surface reflectance calculated from a vegetation model’s own representation

of radiative transfer has been limited to only simple land surface models and has not been attempted for more complex

3



demographically-enabled vegetation models
::::::
Finally,

:::::::::
parameters

::
to

::::::
which

::::::::
vegetation

::::::
models

:::
are

::::::
known

::
to

::
be

::::::
highly

:::::::::::::::
sensitive—namely,90

::::
those

::::::
related

::
to

:::
leaf

:::::::::::
biochemistry

:::
and

:::::::
canopy

:::::::
structure (Dietze et al., 2014; Raczka et al., 2018; Shiklomanov et al., 2020a)

::::::
—play

::
an

::::::::
important

::::
role

::
in

::::::
canopy

:::::::
radiative

:::::::
transfer.

:::::::::
Therefore,

:::::::::
calibration

::::
and

::::::::
validation

::::::
against

::::::::
radiative

::::::
transfer

:::::::
outputs

:::
can

::
be

:::
an

::::::::
important

:::::
source

:::
of

::::::::
constraint

:::
on

:
a
::::::
variety

::
of

::::::
model

::::::::
processes.

Our previous work demonstrated that predictions of carbon cycling and community composition by the Ecosystem Demog-

raphy model, version 2 (ED2; Medvigy et al., 2009) are highly sensitive to changes in parameters related to canopy structure95

and radiative transfer (Viskari et al., 2019). In this study, we build on this work by calibrating and validating the ED2 model us-

ing remotely sensed surface reflectance. First, we couple the internal ED2 canopy radiative transfer model to the PROSPECT 5

leaf radiative transfer model (Feret et al., 2008) and the Hapke soil reflectance model (Verhoef and Bach, 2007) to allow ED2 to

predict surface reflectance spectra at 1 nm resolution across the complete visible-shortwave infrared (VSWIR) spectral region

(400 to 2500 nm). Second, we jointly calibrate this model at 54 sites in the US Midwest and Northeast where coincident veg-100

etation survey data and NASA Airborne Visible/Infrared Imaging Spectrometer-Classic (AVIRIS-Classic) surface reflectance

observations are available. We hypothesize that, with known stand composition and informative priors on foliar biochemistry,

calibration against airborne imaging spectroscopy will significantly constrain model parameters related to canopy structure.

Although the scope of our study is limited to the ED2 model, both the underlying size-and-age structure approximation of ED2

as well as many aspects of its canopy radiative transfer (e.g., two-stream approximation, treatment of leaf angles) are common105

to other land surface models (e.g., FATES; Koven et al., 2020), meaning the insights from this work more broadly applicable

in model vegetation modeling.

2 Methods

2.1 ED2 model description

The Ecosystem Demography version 2.2 (ED2) model simulates plot-level vegetation dynamics and biogeochemistry . By110

grouping individuals of (Moorcroft et al., 2001; Medvigy et al., 2009; Longo et al., 2019)
:
.
::::
ED2

:::
has

:
a
::::::::::::
fundamentally

::::::::::
hierarchical

::::::::
structure:

:::
The

:::::::::::
fundamental

::::
unit

:::
of

:::::::
analysis

::
is

::
a

::::
plant

::::::
cohort

:::
—a

::::::
group

::
of

:::::::::
individual

::::::
plants

::
of

:
similar size, structure, and

composition together into cohorts, ED2 is capable of modeling patch-level competition in a computationally efficient manner.

:::
age,

::::
and

::::::
species

:::::::::::
composition

::::::::
(grouped

::::
into

::::
plant

:::::::::
functional

::::::
types,

::::::
PFTs).

::
A

:::::
group

:::
of

::::::
cohorts

::::
with

::
a
::::::::
common

::::::::::
disturbance

::::::
history

::::
(i.e.,

:::
time

:::::
since

:::
last

::::::::::
disturbance)

:::::::::
constitutes

::
a

::::
patch

:
,
:::
and

:
a
:::::
group

:::
of

::::::::
co-located

:::::::
patches

::::::::::
experiencing

:::
the

:::::
same

::::::::::::
meteorological115

::::::::
conditions

:::::::::
constitute

:
a
:::
site

:
.
::
At

:::
the

::::::
spatial

::::
scale

:::
of

:::
this

:::::
work

:::
(60

:
x
::::
60m

:::::
plots;

:::
see

:::::::
Section

::::
2.3),

:::
we

::::::
assume

::::
one

::::
patch

:::
per

::::
site.

:

Relevant to this work, ED2 includes a multi-layer canopy radiative transfer model that is a generalization of the two-layer

two-stream radiative transfer scheme in CLM 4.5 (Oleson et al., 2013), which in turn is derived from Sellers (1985).
::
At

:::::
every

::::
time

::::
step,

:::
this

::::::
model

::::::::
simulates

:::
the

::::::::::::::
bi-hemispherical

:::::::::
reflectance

::::::
(BHR;a

::::
.k.a.,

::::::::
“intrinsic

::::::
surface

:::::::
albedo”

::
or

::::::::
“blue-sky

::::::::
albedo”;

:::
see Schaepman-Strub et al. 2006)

::
as
::

a
:::::::
function

:::
of

:::
that

::::
time

:::::
step’s

:::::::::
vegetation

:::::::::::
composition

:::
and

:::::::
canopy

::::::::
structure. A complete120

description of the model derivation is provided in the supplementary information of Longo et al. (2019), but for completeness,

we provide an abbreviated description below: .
:
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Our core spatial unit of analysis is a patch—a group of plants with a common disturbance history (time since last disturbance).

Each patch contains n cohorts—groups of plants of the same plant functional type (PFT) and size class. The full canopy

radiation profile in ED2 is defined by a vectorX that contains two fluxes—upward (F ↑,i125

2.1.1
::::::::
Radiative

::::::::
transfer

::::::::::
parameters

:::::::::
Two-stream

::::::::
radiative

:::::::
transfer

::::::
theory (Meador and Weaver, 1980)

::::::
defines

:::
the

::::::
change

::
in
::::::::

radiative
::::
flux

:::::::
through

:
a
:::::::
medium

:::
in

::::
terms

:::
of

::::::::::::::::::::::
hemispherically-integrated

::::::
upward

::::
(F ↑i ) and downward (F↓,i) —for each cohort i, plus a downward flux from the

atmosphere (F↓,sky) and an upward flux from the ground (F↑,ground)surface (total size 2n+ 2)
:::
F ↓i )

::::::::
radiative

:::::
fluxes

::::
via

:::
the

::::::::
following

::::::
system

::
of

:::::::::
differential

::::::::
equations

:::::::::
(adapting

::
the

::::::::
notation

::
of Yuan et al. 2017

:
):130

− dF ↑i
dx

=−(ai + γi)F
↑
i︸ ︷︷ ︸

Interception

+ γiF
↓
i︸ ︷︷ ︸

Diffuse scatter

+ siF
�
i︸ ︷︷ ︸

Direct backscatter

(1)

dF ↓i
dx

=−(ai + γi)F
↓
i︸ ︷︷ ︸

Interception

+ γiF
↑
i︸ ︷︷ ︸

Diffuse scatter

+ s′iF
�
i︸ ︷︷ ︸

Direct scatter

(2)

ED2 solves this vector using the following matrix equation:

where M is a (2n+ 2)× (2n+ 2) coefficient matrix and Y is a 2n+ 2 vector. The full form of Y is as follows:

Here, aground is the albedo of the ground under the canopy and SWsky is the incident shortwave hemispherical flux from135

the sky; both are exogenous inputs to the model. Si is the
::::
where

:::
dx

:::::::::
represents

:::
the

::::::
vertical

::::::
change

::
in
:::
the

::::
total

:::::
plant

::::
area

:::::
index

:::::::::
(combined

:::
area

:::
of

:::::
leaves

::::
and

::::::
woody

:::::::::
elements),

:
a
::::::::

describes
::::::::::

absorption
::
of

::::::
diffuse

::::::::
radiation,

::
γ

::::::::
describes

::::::::
scattering

:::
of

::::::
diffuse

::::::::
radiation,

:
s
::::
and

::
s′

:::::::
describe

:::
the

::::::
upward

::::
and

:::::::::
downward

::::::::
scattering

::
of
:

direct (“beam”) radiationat layer i, and is calculated in a

loop as follows:

with Sn+1 as
:
,
:::
and

::::
F�i :

is
:
the incident direct solar flux at the top of the canopy (i= n+ 1), an exogenous input

::
(or

::::::::
“beam”)140

:::::::
radiative

::::
flux

:
at
:::::::
canopy

::::
layer

:
i.

Other coefficients are backscatter of direct (r(ψ)i, given zenith angle ψ) and diffuse (ri) radiation, interception of direct

(tau(ψ)i) and diffuse (taui) radiation, and absorption (αi). Derivations of these coefficients are given later in this section.

::::::::
Following

:
Sellers (1985),

:::
the

::::::::::
coefficients

:::::
above

:::
are

:::::::
defined

::
as

:::::::
follows:

The coefficient matrix M is a sparse, tridiagonal matrix145

ai + γi = [1− (1−βi)]
1

µ̄i
(3)

γi = βiωi
1

µ̄i
(4)

si =
1

µ�i
ωiβ0,i (5)

s′i =
1

µ�i
ωi (1−β0,i) (6)
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:::::
where

::̄
µi::

is
:::
the

::::::
optical

:::::
depth

::::
per

:::
unit

:::::
plant

::::
area

:::::
index

:::
for

::::::
diffuse

::::::::
radiation,

:::
βi :

is
::::

the
::::::::::::
backscattering

:::::::::
coefficient

:::
for

::::::
diffuse150

::::::::
radiation,

::
ωi::

is
::::

the
::::::::
scattering

:::::::::
coefficient

:::
for

:::::::
diffuse

::::::::
radiation,

:::
µ�i ::

is
::::

the
::::::
optical

:::::
depth

:::
per

::::
unit

:::::
plant

::::
area

:::::
index

:::
for

::::::
direct

::::::::
radiation,

:::
and

:::
β0 :

is
:::
the

::::::::::::
backscattering

:::::::::
coefficient

:::
for

:::::
direct

::::::::
radiation.

:

:::
For

:
a
:::::
given

:::::::
incident

:::::::
radiation

:
(i.e., zero elements everywhere except the diagonal and first-order off-diagonal elements) ; for

example, for n= 3
::::
solar

::::::
zenith)

:::::
angle

:
θ
::::
and

:::
leaf

::::::::::
orientation

::::
angle

:::
ϕ,

:::
the

::::::
optical

:::::
depth

:
is
:::::::
defined

::
as:

µ(θ,ϕ) =
cos(θ)

G(θ,ϕ)
(7)155

For i= 1,2,3...nwhere n is the number of cohorts, them terms are defined as follows
:::::
where

:::::::
G(θ,ϕ)

::
is

:
a
:::::::
function

:::::::::
describing

::
the

::::::::
projected

::::
leaf

::::
area.

:::::::::
Following Goudriaan (1977),

::::
this

:::::::
function

:::
can

::
be

::::::::::::
approximated

:::
as:

G(θ,ϕ)≈G∗(θ,χi) = φ1,i +φ2,i cos(θ) (8)

φ1,i = 0.5− 0.633χi− 0.33χ2
i (9)

φ2,i = 0.877− (1− 2φ1,i) (10)160

:::::
where

::
χ

::
is

:::
the

:::
leaf

::::::::::
orientation

:::::
factor

:::
—a

::::::::::
PFT-specific

:::::::::
parameter

::::::
whose

:::::
values

:::::::::::
theoretically

:::::
range

::::
from

::
-1

::::::::
(vertical

::::::
leaves)

::::::
through

::
0

::::::::::::::::::
(randomly-distributed

:::
leaf

:::::::
angles)

::
to

:
1
:::::::::
(horizontal

:::::::
leaves),

:::
but

::
in

:::::::
practice

:::
are

::::::::
restricted

::
to

::::::::::::::
−0.4≤ χ≤ 0.6.

:::
For

:
a
:::::
given

::::
solar

::::::
zenith

:::::
angle

::::
(θs),:::

the
::::::
optical

:::::
depth

::
for

:::::
direct

:::::::::
radiation,

:::
µ�i ,

::
is

::::::
defined

:::
as:

µ�i = µ(θs,χi) =
cos(θs)

G∗(θs,χi)
(11)

Canopy optical property coefficients are derived as follows
:::
The

::::::
optical

:::::
depth

::::
for

::::::
diffuse

::::::::
radiation,

:::
µ̄i,::

is
:::::::

defined
:::
as

:::
the165

::::::
integral

::
of

::::::::
equation

:
7
::::
over

:::
all

:::::
zenith

::::::
angles:

Following , forward- (ν

µ̄i =

π
2∫

0

cos(θ)

G∗(θ,χi)
dθ =

1

φ2,i

[
1 +

φ1,i
φ2,i

ln
φ1,i

φ1,i +φ2,i

]
(12)

::::::::
Following

:
Sellers (1985),

::::::
diffuse

:::::::::
scattering

::
(ω) and backscattering (ω)

::
β)

::::::::::
coefficients of canopy elements (leaves or stems)

are defined as a function of those elements’ reflectance (R) and transmittance (T ; wood transmittance is assumed to be zero).170

(We use index p to refer to PFT and p(i) to refer to the PFT of cohort i).

ωi,leaf =Rp(i),leaf +Tp(i),leaf (13)

ωi,wood =Rp(i),wood (14)
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βi,leaf =
1

2ωi
[Ri,leaf +Ti,leaf + (Ri,leaf −Ti,leaf)J(χi)] (15)

βi,wood =
1

2ωi
[Ri,wood +Ri,woodJ(χi)] (16)175

where χ is the leaf orientation factor parameter, defined such that −1 is perfectly vertical leaves, 1 is perfectly horizontal

leaves, and 0 is randomly distributed leaf angles. Both of these quantities
::::
J(χi):::::::

captures
:::
the

:::::
effect

::
of

::::
leaf

:::
and

::::::
branch

:::::::::
inclination

:::
and

::
is

:::::::::::
approximated

::
as

:::::::::
(similarly

::
to Oleson et al. 2013

:
):

J(χi) =
1 +χi

2
(17)

::::
Both

::
ω

:::
and

::
β
:
are calculated independently for leaves and wood , and then averaged based on the relative effective area of180

leaves (Li) and wood (Wi) within a canopy layer.

ωi = ωi,leaf
Li

Li +Wi
+ωi,wood(1− Li

Li +Wi
) (18)

βi = βi,leaf
Li

Li +Wi
+βwood(1− Li

Li +Wi
) (19)

To account for non-uniform distribution of leaves within a canopy, ED2 has a PFT-specific clumping factor (q) parameter

that serves as a scaling factor on leaf area index. Therefore the effective leaf area index (L) is related to the true leaf area index185

(LAI) by:

Li = LAIi× qp(i) (20)

The leaf area of a cohort (LAIi) is calculated as a function of leaf biomass (Bleaf,i, kgC plant−1), specific leaf area (SLAp,

m2 kgC−1), and stem density (nplant, plants m−2):

LAIi = nplant,iBleaf,iSLAp(i) (21)190

In turn, Bleaf,i is calculated from cohort diameter at breast height (DBHi, cm) according to the following allometric equa-

tions:

Bleaf,i = b1Blp(i)DBH
b2Blp(i)
i (22)

where b1Blp(i) and b2Blp(i) are PFT-specific parameters. The wood area of a cohort (WAIi) is calculated directly from

DBH according to a similar allometric equation:195

WAIi = nplant,ib1Bwp(i)DBH
b2Bwp(i)
i (23)
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where b1Bwp(i) and b2Bwp(i) are PFT-specific parameters.

The directional extinction coefficient (K(ψ)p)—closely related to the inverse optical depth for
::::::::::::
Backscattering

::
of

:
direct

radiation (µ0,p) —can be expressed as
:::
β�i )

::
is

:::::::
defined

::
as

:
a
:::::::
function

::
of

::::::
single

::::::::
scattering

::::::
albedo,

::::::::
(αs(θs)):

β�i =
µ̄i +µ�i
µ̄i

αs(θs) (24)200

whereG(ψ)p describes the mean projection per unit leaf area (or “relative
:::::
Single

::::::::
scattering

::::::
albedo

:::::::
(αs(θs))

::
is

::
in

:::
turn

:::::::
defined

::
as

::
an

:::::::
integral

::::
over

::
all

::::::::::
illumination

::::::
angles

::::
(ϑ),

::::::::
following Sellers (1985)

:
:

αs(θs) = ω

π
2∫

0

Γ(θs,ϑ)cos(ϑ)

G(θs,ϕ)cos(θs) +G(ϑ,ϕ)cos(ϑ)
sin(ϑ)dϑ (25)

Γ(θ,ϑ) =G(θ,ϕ)G(ϑ,ϕ)P (θ,ϑ) (26)
π
2∫

−π2

P (θ,ϑ)G(ϑ,ϕ)sin(ϑ)dϑ= 1 (27)205

:::::
where

:::::::
P (θ,ϑ)

:
is
:::

the
:::::::::

scattering
:::::
phase

:::::::
function

::::
that

::::::
defines

:::
the

::::::
relative

:::::::
fraction

:::
of

:::::::
scattered

::::
flux

::
in

:::
any

::::::::
direction

:::::::
relative

::
to

::
the

:
projected leaf area ”) in direction ψ.

As in CLM 4.5 and , the leaf angle distribution function and parameterization used in ED2 is based on
:
in

::::
that

::::::::
direction

(Dickinson, 1983).
:::::::::::

Substituting
:::::::
G=G∗

::::::::
(equation

:::
8),

::::
and

::::::::
assuming

::::::::
uniform

::::::::
scattering

:::::
(i.e.,

::::::::::::
P (θ,ϑ) = 1

4π ,
:::
and

:::::::::
therefore,

::::::::::::::
Γ(θ,ϑ) = G(θ,ϕ)

2 ;
:::
see

:::::::
detailed

:::::::::
discussion

::
of

:::::
these

::::::::::
assumptions

:::
in Yuan et al. 2017

:
)
:::::
gives

:::
the

::::::::
following

:::::::::
analytical

:::::::
solution

::
to210

:::
this

::::::
integral:

αs,i(θ) =
ωi

2
(
1 +φ2,iµ

�
i

) [1− φ1,iµ
�
i

1 +φ2,iµ
�
i

ln

(
1 + (φ1,i +φ2,i)µ

�
i

φ1,iµ
�
i

)]
(28)

2.1.2
:::::::
Solution

:::
for

:::
the

::::::::::
multi-layer

:::::::
canopy

::
In

::::
ED2,

:::
the

:::::
direct

::::::::
radiation

::::::
profile,

::::
F�i ,

::
is

::::::::
governed

::
by

::::::::::
exponential

::::::
decay,

::::::::
following

:::::
Beer’s

:::::
Law:

:

Coefficients φ1,p and φ2,p are also used to define the inverse optical depth for diffuse radiation per unit plant area (µ̄p)215

(subscript p is omitted from the next three equations for convenience) :

F�i = F�i+1 exp

(
−TAIi

µ�i

)
(29)

F�n+1 = F�sky (30)

:::::
where

::::
F�sky::

is
:::
the

:::::::
incident

:::::
direct

::::::::
(“beam”)

:::::::
radiation

::::
from

:::
the

:::::::::::
atmosphere,

:
a
:::::::::
prescribed

:::::
input;

:::
and

:::::
TAIi ::

is
::
the

::::
total

:::::
plant

::::
area

:::::
index,

::::::
defined

::
as
:::
the

::::
sum

::
of

::::::::
effective

:::
leaf

::::
area

:::::
index

::::
(Li;:::::::

equation
:::
20)

::::
and

:::::
wood

:::
area

:::::
index

::::::
(WAI)220
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The beam backscatter (or “upscatter” ) coefficient for direct radiation, β0, is defined as
:::
For

:
n
:::::::
cohorts,

:::
the

:::
full

::::::
diffuse

:::::::
canopy

:::::::
radiation

::::::
profile

::
in

::::
ED2

::
is
:::::::
defined

::
by

::
a
:::::
vector

:::
A

::
of

::::
size

::::::
2n+ 2

:::
that

:::::::
contains

:::
the

:::::::
upward

::::
(F ↑i )

::::
and

:::::::::
downward

::::
(F ↓i )

::::::::
radiative

:::::
fluxes

:::
for

:::::
every

:::::::::
“interface”

::::::::::
immediately

:::::
below

::::::
cohort

:
i
:
;
::::::::
therefore,

::::::
F ↑(n+1)::::::

refers
::
to

:::
the

::::::
upward

::::::
diffuse

::::::::
radiative

:::
flux

:::::
from

:::
the

:::
top

::
of

:::
the

::::::
canopy

:::::::
towards

:::
the

::::::::::
atmosphere

::::
(the

:::::::
quantity

::::
used

::
to

::::::::
calculate

:::
the

:::::::
albedo),

::::::
F ↓(n+1):::::

refers
:::

to
:::
the

:::::::::
downward

::::::
diffuse

:::::::
radiative

::::
flux

::::
from

:::
the

::::::::::
atmosphere

::::
into

:::
the

:::
top

::
of

:::
the

:::::::
canopy,

:::
F ↑1 :::::

refers
::
to

:::
the

:::::::
upward

::::::
diffuse

:::::::
radiative

::::
flux

::::
from

:::
the

:::::::
ground225

:::
into

:::
the

::::::
canopy

:::::
layer

::
of

:::
the

:::::::
shortest

::::::
cohort,

::::
and

:::
F ↓1 :::::

refers
::
to

:::
the

::::::::
downard

::::::
diffuse

:::::::
radiative

::::
flux

::::
from

::::
the

::::::
canopy

::::
layer

:::
of

:::
the

::::::
shortest

::::::
cohort

:::::::
towards

:::
the

::::::
ground.

:::
To

:::::
derive

:::::
each

::
of

::::
these

::
F
::::::

terms,
::::
ED2

::::
uses

:::
the

::::::::
following

:::::::::
analytical

:::::::
solution

:::
for

::::::::
equations

:
2
:::
and

::
1
::::
(see Longo et al. 2019

:
,
::::::
Section

::::
S12,

:::
for

::
a

:::
full

:::::::::
derivation):

F ↓i = x(2i−1)γ
+
i exp(−λiTAI) +x(2i)γ

−
i exp(+λiTAI) + δ+ exp

(
−TAIi

µ�i

)
(31)

F ↑i = x(2i−1)γ
−
i exp(−λiTAI) +x(2i)γ

+
i exp(+λiTAI) + δ− exp

(
−TAIi

µ�i

)
(32)230

where as(ψ) is the single scattering albedo coefficient, defined as (subscript p dropped for simplicity)
::
xi::

is
::
a

:::::
vector

:::
of

::::::::::
wavelength-

:::
and

:::::::::::::
cohort-specific

:::::::::
unknowns,

:::
and

:::
the

:::::::::
remaining

:::::
terms

:::
are:

:

γ±i =
1

2

(
1±

√
1−ωi

1− (1− 2βi)ωi

)
(33)

δ±i =
(κ+±κ−)µ�2i
2
(
1−λ2iµ

�2
i

) (34)

λ2i =
[1− (1− 2βi)ωi] (1−ωi)

µ̄2
i

(35)235

κ+i =−
[

1− (1− 2βi)ωi
µ̄i

+
1− 2βi

µ�i

]
ωiF

�
(i+1)

µ�k
(36)

κ−i =−
[

(1− 2βi)(1−ωi)
µ̄i

+
1

µ�i

]
ωiF

�
(i+1)

µ�k
(37)

:::
The

:::::::
problem

::
of

:::::::
solving

:::
for

::
xi::

in
::::::::
equations

:::
31

:::
and

:::
32

:::
can

::
be

::::::
written

:::
as

:
a
::::::
matrix

:::::::
equation:

Sx= Y (38)

(For simplicity, as here is equivalent to as
ω in equation3.15, where ω is the leaf backscatter.)240

The transmissivity of
:::::::::::::::::::::::::
x= (x1,x2, . . . ,x2n+1,x2n+2),

::::::::::::::::::::::::::::
y =

(
y1,y2, . . . ,y(2n+1),y(2n+2)

)
,
:::
and

::
S
::
is

:
a layer to direct radiation

for solar zenith angle ψ (τ(ψ)i)is given by
::::::::::::::::
(2n+ 2)× (2n+ 2)

:::::::::
tridiagonal

::::::
matrix.

:::
To

::::
solve

::::
this

:::::
matrix

::::::::
equation,

:::::
ED2

::::::
defines

::
the

:::::::::
following

::::::::
boundary

::::::::::
conditions:

::
At

::::
the

:::
top

::
of

:::
the

:::::::
canopy

::::::::::
(i= n+ 1),

:::::::::::::
F ↓(n+1) ≡ F

↓
sky,

:::
the

:::::::
incident

::::::
diffuse

::::
flux

:::::
from

:::
the

:::::::::
atmosphere

::
(a

:::::::::
prescribed

::::::
input);

::::::::::::
TAI(n+1) = 0;

::::::::::
µ̄(n+1) = 1;

:::::::::
ω(n+1) = 1

:::
(no

::::::::::
absorption);

::::
and

:::::::::::::::::
β(n+1) = β�(n+1) = 0

:::
(no

:::::::::
scattering;
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::
all

:::::::
radiance

::
is

:::::::::::
transmitted).

::
At

:::
the

::::::
bottom

::
of

:::
the

::::::
canopy

::::::
(i= 1),

:::
we

::::::::
re-define

:::
the

::::::
ground

::::::::
scattering,

:::
ωg ,

:::::
based

:::
on

:
a
:::
soil

::::::::
radiative245

::::::
transfer

::::::
model

:::::::
(Section

::::
2.2).

::::
With

:::::
these

::::::::
boundary

:::::::::
conditions,

:::
the

::::::::
elements

::
of

::
S

:::
are

:::::
given

:::
by:

S1,1 =
(
γ−1 −ωgγ+

)
exp(−λ1TAI1)

S1,2 =
(
γ+1 −ωgγ−

)
exp(+λ1TAI1)

S(2i,2i−1) = γ+i

S(2i,2i) = γ−i

S(2i,2i+1) =−γ+(i+1) exp(−λ(i+1)TAI(i+1))

S(2i,2i+2) =−γ−(i+1) exp(+λ(i+1)TAI(i+1))

S(2i+1,2i−1) = γ−i

S(2i+1,2i) = γ+i

S(2n,2n+1) =−γ+(n+1) exp(−λ(n+1)TAI(n+1))

S(2n,2n+2) =−γ−(n+1) exp(+λ(n+1)TAI(n+1))

(39)

where TAIi is the total plant area index (sum of effective leaf area index, Li, and wood area index, Wi) .
:::
and

:::
the

::::::::
elements

::
of

:
y
:::
are

:::::
given

:::
by:

:
250

y1 = ω0F
�
1 −

(
δ−1 −ωgδ

+
1

)
exp

(
−TAI

µ�1

)
y(2i) = δ+(i+1) exp

(
−

TAI(i+1)

µ�(i+1)

)
− δ+i

y(2i+1) = δ−(i+1) exp

(
−

TAI(i+1)

µ�(i+1)

)
− δ−i

y(2n+2) = F ↓sky− δ
+
(n+1)

(40)

::::::
Finally,

:::
the

::::::
surface

::::::
albedo

:::
(ρ)

::
is

::::::
defined

:::
as

:::
the

::::::
fraction

:::
of

:::
the

::::
total

:::::::
radiative

::::
flux

:::::::
incident

::
on

:::
the

:::::::
canopy

:::::::::::
(F�sky +F ↓sky)

::::
that

:
is
::::::::
reflected:

:

ρ=
F ↑(n+1)

F�sky +F ↓sky
(41)255
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2.2 ED2-PROSPECT coupling

By default, ED2 performs
::
the

:
canopy shortwave radiative transfer calculations for

:::::::
described

::
in

:
two broad spectral regions

::::
bands:

visible (400–700 nm) and near-infrared (700–2500 nm). For each of these regions, ED2 has user-defined prescribed
:
,
::::::::::
PFT-specific

leaf and wood reflectance and transmittance for each PFT
:::::
values, and calculates soil reflectance as the average of constant wet

and dry soil reflectance values weighted by the relative soil moisture (0 = fully dry, 1 = fully wet). In this study, we modified260

ED2 to perform the same canopy radiative transfer calculations but in 1 nm increments across the range 400–2500 nm. We

then simulated leaf reflectance and transmittance using the PROSPECT 5 leaf RTM, which has the following five parameters:

Effective number of leaf mesophyll layers (N, unitless, >= 1), total chlorophyll content (Cab, µg cm−2), total carotenoid content

(Car, µg cm−2), water content (Cw, g cm−2), and dry matter content (Cm, g cm−2) (Feret et al., 2008). For wood reflectance,

we used a single representative spectrum—the mean of all wood spectra from Asner (1998), resampled to 1 nm resolution—265

for all PFTs. For soil reflectance
::::::::
scattering

::::
(ωg), we used the simple Hapke soil submodel used in the Soil-Leaf-Canopy RTM

(Verhoef and Bach, 2007), whereby soil reflectance is the average of prescribed wet and dry soil reflectance spectra weighted

by a relative soil moisture parameter (%soil, unitless, 0–1). The final coupled PROSPECT-ED2 canopy radiative transfer model

(hereafter known as “EDR”) has 12 parameters for each PFT— 5 parameters for PROSPECT, specific leaf area, two parameters

each for the leaf and wood allometries, and clumping and orientation
:::
(q)

:::
and

:::
leaf

::::::::::
orientation

:::
(χ) factors—and one site-specific270

parameter—the relative soil moisture (Table
:
1).

::::
EDR

::::::
shares

:::::
many

::::::::::
assumptions

::::
and

:::::::
internal

::::::::::
coefficients

::::
with

:::::
SAIL

:
(Verhoef, 1984; Verhoef and Bach, 2007)

:
,
:
a
:::::::
canopy

:::::::
radiative

::::::
transfer

::::::
model

:::
that

::
is

::::::
popular

::
in
:::
the

::::::
optical

::::::
remote

::::::
sensing

::::::::::
community

:::
due

::
to

:::
its

:::::
ability

::
to

:::::::
simulate

::::
both

::::::::::::
hemispherical

:::
and

:::::::::
directional

:::::::::
reflectance.

::::::
Unlike

::::::
EDR’s

::::::::
vertically

::::::::::::
heterogeneous

:::::::
canopy,

::::
SAIL

:::::
takes

::::
only

:
a
:::::
single

:::::::::::
homogenous

::::::
canopy

:::::
layer

::
as

::
an

:::::
input,

::::::
which

::::::::
precludes

:
a
:::::
valid

::::::::::
comparison

::
of

:::
the

:::
two

:::::::
models’

::::::::::
simulations

:::
for

::::
real

::::::::::::
heterogeneous

::::
sites.

::::::::::::
Nevertheless,

::
to275

:::
help

:::::::
identify

:::::::
possible

::::::::
structural

:::::
issues

::::
with

:::::
EDR,

::::
and

::
to

::::::
explore

:::::::::
differences

::::::::
between

:::::::::::
hemispherical

::::
and

:::::::::
directional

:::::::::
reflectance

:::::::
streams,

:::
we

::::::::
compared

::::
the

::::::::::
sensitivities

::
of

:::::
EDR

::::
and

:::::
SAIL

::
to

::::
LAI

::::
and

::::
solar

::::::
zenith

::::::
angles

:::
for

::
a

::::::::::
single-layer

::::::::::::
homogeneous

::::::
canopy.

:

2.3 Site and data description

For model calibration, we selected 54 sites from the NASA Forest Functional Types (FFT) field campaign that contained280

plot-level inventory data (stem density, species identity, and diameter at breast height, DBH) coincident with observations

of the NASA Airborne Visible/Infrared Imaging Spectrometer-Classic (AVIRIS-Classic).
:
A

:::
full

::::::::::
description

::
of

::::
this

::::::
dataset

::
is

:::::::
provided

::
in

:
Singh et al. (2015).

:::::::
Briefly,

::::
each

:::
site

::::::::
consisted

:::
of

:
a
:::
60

::
×

::
60

:::
m

::::::
transect

::::::
within

::::::
which

:::::
forest

::::::::
inventory

::::
data

:::::
(stem

::::::
density,

::::::
species

:::::::
identity,

::::
and

:::::::
diameter

::
at

:::::
breast

::::::
height,

:::::
DBH)

:::::
were

::::::::
collected. These sites are located in the United States Upper

Midwest, northern New York, and western Maryland
::::::
(Figure

::
1), and include stands dominated by either evergreen or deciduous285

trees and spanning a wide range of structures, from dense groups of saplings to sparse groups of large trees (Figure ??).
::
2).

:

:::
For

:::
this

:::::
study,

:::::::
because

:::
our

::::
goal

::::
was

::::
only

::
to

:::::::
calibrate

:::
the

::::
ED2

:::::::
canopy

:::::::
radiative

:::::::
transfer

:::::::::
parameters

:::
and

:::
not

::
to
::::::::
evaluate

::::
ED2

:::::::::
predictions

::
of

:::::::::
vegetation

::::::::
dynamics,

:::
we

:::::::::
prescribed

:::
the

::::::::
vegetation

:::::::::::
composition

:
at
:::::
each

:::
site

:::::
based

::
on

:::
the

::::::::
inventory

::::
data

::::::::
described

11



Figure 1. Sites selected for
:::
Map

::
of
::::

sites
::::
used

::
in
::::

this analysis,
:
.
::::
Sites

:::::
shown

:
in “stand structure” (main figure) and geographic (inset)

space
:::::
Figure

:
6
:::
are

:::::
labeled.

:::::
above.

:
We grouped the tree species in these sites into five different PFTs as defined by ED2: Early successional hardwood,

northern mid-successional hardwood, late successional hardwood, northern pine, and late successional conifer. The mappings290

of tree species onto these PFTs are provided as a CSV-formatted table in the file inst/pfts-species.csv in the source

code repository for this project (see Code and Data Availability section).

AVIRIS-Classic measures directional surface reflectance
:::
the

:::::::::
directional

:::::::
radiance

::
of

:
a
::::::
surface

:
from 365 to 2500 nm at approx-

imately 10 nm increments. However, because of
:::::::::::
Atmospheric

::::::::
correction

:::::::
routines

:::
use

::::
this

::::
level

::
1

:::::::
radiance

::::::
product

:::
to

:::::::
estimate

::
the

:::::::
surface

:::::::::
reflectance

::::::::::
(technically,

:::::::::::::::::::::
hemispherical-directional

:::::::::
reflectance

:::::
factor,

::::::
HDRF,

:::::
sensu Schaepman-Strub et al. 2006

::::
)—a295

:::::::
quantity

:::
that

::
is

::
(in

::::::
theory)

:::::::::::
independent

::
of

::::::::::
illumination

:::::::::
conditions

:::
and

:::::::
therefore

::::
can

::
be

::::
more

:::::::
directly

::::::
related

::
to

:::::::
intrinsic

:::::::
physical

::::::::
properties

::
of

:::
the

:::::::
surface.

::::
For

:::
this

::::::
study,

::
in

:::::::
addition

::
to

:::
the

::::::::
standard

::::::::::
atmospheric

:::::::::
correction

:::
and

:::::::::::::::
orthorectification

:::::::::
conducted

::
by

::::::
NASA

::::
JPL,

:::
the

:::::::
AVIRIS

::::
data

:::::
were

::::
also

:::::::::
cross-track

:::::::::::
illumination

::::::::
corrected

:::
and

:::::::::::::::
BRDF-corrected,

::::::::
following

:::
the

:::::::::
procedure

::
of Lucht et al. (2000).

:::::::
Briefly,

:::
this

::::::
BRDF

:::::::::
correction

::::::::
estimates

::::::::
“intrinsic

::::::
surface

::::::::::::
albedo”—the

:::::::
quantity

::::
that

::
is

::::::::
simulated

:::
by

::::::::::
EDR—from

:::::::::
directional

::::::::::
reflectance

::::
data

:::::::
through

:::::::::
application

:::
of

::
a

:::::::::
polynomial

:::::::::::::
approximation

::
to

:::
the

::::::::
Ross-Li

::::::::::::
semiempirical300

:::::
BRDF

::::::
model.

::::
The

::::
full

:::::::
AVIRIS

:::::::::
processing

:::::::
pipeline

::::
for

:::
the

:::::::
AVIRIS

::::
data

:::::::::
(including

:::
the

::::::
BRDF

:::::::::::::
approximation)

:::
we

:::::
used

::
is

::::::::
described

::
in Singh et al. (2015)

:
.

:::::::
Because

::
of

:
unrealistic values in the shortwave infrared spectral region (>1300 nm) in the AVIRIS observations (likely

caused by faulty atmospheric correction), we only used observations from 400 to 1300 nm for model calibration and validation.

Following Shiklomanov et al. (2016), we used the relative spectral response functions of AVIRIS-Classic to relate the 1 nm305

EDR predictions to the 10 nm AVIRIS-Classic measurements.
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Figure 2.
:::::
Stand

:::::::
structure

:::
and

:::::::::
composition

:::::::::::
characteristics

::
of

::::
sites

::::::
selected

:::
for

::::::
analysis.

::::
The

:::::
dashed

:::
line

::
is

:
a
:::::
forest

:::::::::
self-thinning

:::::
curve (c.f.,

Zeide, 2010)
::::::::::
parameterized

::::
based

:::
on

::
an

::::::
analysis

::
of

:::
US

:::::
Forest

::::::
Service

::::
Forest

::::::::
Inventory

:::
and

:::::::
Analysis

::::
(FIA)

::::
data

::
(T.

:::::::
Andrews,

::::::::::
unpublished

:
).

:::::
Colors

::::::
indicate

:::::::
dominant

::::
PFT,

::::::::
calculated

::
as

:::
the

:::
PFT

::::::::::
contributing

::::
most

::
to

:::
site

:::
total

::::
stem

:::::::::::::
density-weighted

:::::::
diameter

::
at

:::::
breast

:::::
height,

:::::
DBH.

::::
Sites

:::::
shown

:
in
::

in
:::::
Figure

::
6
::
are

:::::::
labeled.

:::
For

::::
each

::::::::::::::
AVIRIS-Classic

:::::::::::
observation,

:::
we

::::::::
retrieved

:::
the

:::::
solar

::::::
zenith

:::::
angle

:::::::
directly

::::
from

::::
the

::::::::
flightline

::::::::
metadata

::::::
where

::::::::
available,

:::
and

::::::::
calculated

::
it
:::::
based

::
on

:::
the

::::
local

::::
time

::::
and

:::::::
position

:
if
::::
not.

::
In

:::::::
addition,

:::
we

:::::::
retrieved

:::
the

::::::
relative

:::::::
fraction

::
of

::::::
diffuse

:::
vs.

:::::
direct

:::::::
incident

:::::::
radiation

:::::
from

:::
the

:::::
hourly

::::::::::
MERRA-2

::::::::::::
meteorological

:::::::::
reanalysis

:::::::
(GMAO

:::::
2015)

:::
for

:::::
each

:::::::::::
observation’s

:::::::
location

:::
and

::::
time

::::::::
(rounded

::
to

:::
the

::::::
nearest

:::::
hour).

:
310

2.4 Model calibration

To estimate EDR parameters from AVIRIS observations, we used a Bayesian approach that builds on our previous work at the

leaf scale (Shiklomanov et al., 2016). For a parameter vector Θ and matrix of observations X, the typical form of Bayes’ rule

is given by:

P (Θ|X)︸ ︷︷ ︸
Posterior

∼ P (X|Θ)︸ ︷︷ ︸
Likelihood

P (Θ)︸ ︷︷ ︸
Prior

(42)315
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Rather than performing a separate calibration at each site, we performed a single joint calibration across all sites. Therefore,

our overall likelihood (P (X|Θ)) was the product of the likelihood at each site (P (Xs|Θ), for site s):

P (X|Θ) =
∏
s

P (Xs|Θ) (43)

The likelihood at each site s is based on how well EDR predicted surface reflectance
:::::
albedo

:
(Rpred,s) matches that site’s

observed AVIRIS surface reflectance
:::::
albedo

:
(Xs) given the known forest composition at that site (comps) and the current320

estimate of the overall parameter vector. Similar to Shiklomanov et al. (2016), we assumed a normally-distributed
:::
the residual

error between predicted and observed reflectance . However, to
:::::::
followed

:
a
::::::::::
multivariate

:::::::
normal

:::::::::
distribution

::::::::::::
(MvNormal):

:

P (Xs|Θ) = MvNormal(Xs|Rpred,s,Σs) (44)

:::::
where

::
Σ

::
is

:::
the

:::::::
residual

::::::::::::::::
variance-covariance

:::::::
matrix. Shiklomanov et al. (2016)

:::::::
assumed

::
Σ

::::
was

:
a
::::::::
diagonal

::::::
matrix

::::
with

:::
the

::::
same

:::::::
residual

:::::::
variance

:::
for

:::
all

::::::::
elements.

:::
For

:::
this

::::::
study,

::
we

:::::
made

::::
two

::::::::
important

:::::::
changes

::
to

::::
this

:::::::::::
methodology:

:::::
First,

::
to

:
account325

for the large differences in the range of feasible reflectance values in different wavelength regions (for vegetation, reflectance in

the 400-700
:::::::
400–700

:
nm range is typically much lower than in the 700-1400

::::::::
700–1400

:
nm range), we used a heteroskedastic

error model where the residual variance
:::::::
standard

::::::::
deviation

::::
(σs):was a linear function of the predicted reflectance (

:::::::
R(pred,s)

with slope m and intercept b).
:
.
:::::::
Second,

::
to

:::::::
account

:::
for

:::::::::::::
autocorrelation

:::
in

:::::::::::
hyperspectral

::::::
bands,

:::
we

::::::::
replaced

:::
the

::::::::
diagonal

::::::
residual

:::::::::
covariance

::::::
matrix

::::
with

:::
an

::::::
order-1

::::::::::::
autoregressive

:::::::
(AR-1)

:::::::::
covariance

::::::
matrix.

:::::::::::
Collectively,

::::
these

::::
two

:::::::
changes

:::::::
produce330

::
the

:::::::::
following

:::::::::
calculation

:::
for

::
Σ:

:

σs =mRpred,s + b (45)

Σs = σs%
Hσs (46)

:::::
where

::
H

::
is

:
a
::::::
matrix

:::::::::
describing

:::
the

:::::::
distance

:::::::
between

:::::
bands

:::
(0

::
on

:::
the

::::::::
diagonal,

:::::::::
increasing

:::::::
regularly

::::::
toward

:::
the

:::::::
corners)

::::
and

:
%
::
is

:::
the

:::::
AR-1

::::::::::::
autocorrelation

:::::::::
parameter.

:::
To

:::::::
simplify

:::
the

:::::::
inversion

:::::::::
procedure,

:::
we

::::
first

:::::::::
performed

::
the

::::::::
inversion

:::::
using

:
a
::::::::
diagonal335

:::::::::
covariance

:::::
matrix

::::
(i.e.,

::::::
%= 0),

::::
then

:::::::::
calculated

:::
the

::::
mean

::
%
::::
from

:::
the

::::::::
residuals

::
of

:::
this

:::
fit,

:::
and

::::
then

::::
used

:::
this

:::::::
average

::::
value

:::::::
(0.700)

::
for

:::
our

:::::
final

::::::::
inversion.

In addition, to mitigate sampling issues related to EDR’s saturating response to increasing total LAI
::::::
(Figure

:::
A1), we added an

additional term to our likelihood that assigns a fixed lognormal probability distribution (with parameters 1 and 0.5, respectively)

to
::::::
uniform

::::::::::
probability

:::::::::
distribution

::::
over

:::
the

:::::
range

:
0
::
to

:::
10

::
to the EDR predicted LAI for a given site (LAIpred,s). The

:
In
::::::::
practice,340

:::
this

::::
term

::::::
causes

:::
any

:::::::::
parameters

:::::::
resulting

::
in

::::
total

::::
LAI

::::::
greater

::::
than

::
10

::
to

::
be

:::::::::::
immediately

:::::::
rejected,

:::
but

:::
has

::
no

:::::
effect

:::
on

:::::::::
parameters

::::
with

::::
LAI

:::::
values

::::
less

::::
than

:::
10.

::::
The

::::::::
maximum

:::::
value

:::
of

::
10

::::
was

:::::::
selected

::
as

::
a
:::::::::
reasonable

:::::
upper

::::::
bound

::
on

:::::::::
temperate

:::::::::
deciduous

:::
and

::::::::
evergreen

::::::
forests

::
in
::::

our
:::::
study

::::::
region.

:::
By

::::::::::
comparison,

:::
the

::::::
global

::::::::
maximum

::
of

:::::::
MODIS

::::
LAI

::::::::
estimates

::
is
::::::::
between

:
6
::::
and

::
7,

::::::::
depending

:::
on

:::::::::
collection

::::
(with

:::::
most

::::::
values

:::
less

::::
than

:::
5; Fang et al. 2012; Yan et al. 2016

:
).
::
A

::::::
global

:::::::
database

:::
of

::::
field

::::
LAI
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:::::::::::
measurements

:
(Iio et al., 2014)

:::::::
contains

:::::
values

:::
as

::::
high

::
as

::::
23.5

:::
for

:::::::::
evergreen

::::::
conifer

::::
trees

::::
and

::::
12.1

:::
for

:::::::::
deciduous

::::::::
broadleaf345

::::
trees,

:::
but

:::::
these

:::
are

:::::::
extreme

:::::::
values,

:::
and

:::
our

:::::::::
maximum

::
of
:::

10
::
is

::
at

:::::
least

:
3
::::::::
standard

::::::::
deviations

:::::
away

:::::
from

:::
the

:::::
mean

:::::
value

:::
for

::::::::
evergreen

::::::
conifer

:::
and

:::::::::
deciduous

::::::::
broadleaf

:::::
trees.

:::
The

::::
final

:
expression for the site-specific likelihood is therefore:

Rpred,s,LAIpred,s = EDR(Θ|comps) (47)

P (Xs|Θ) = MvNormal(Xs|Rpred,s,Σ) Uniform(LAIpred,s|0,10) (48)350

Therefore, our parameter vector Θ consists of the following (summarized in Table 1): 10 EDR parameters per PFT—5

parameters for the PROSPECT 5 model (N, Cab, Car, Cw, Cm) and 5 EDR parameters related to canopy structure (q, χ, SLA,

b1Bl, b1Bw)— , 1 parameter per site (relative soil moisture, %soil,s ::
ψs), and the residual slope (m) and intercept (b). (With 5

PFTs and 54 sites, this means that Θ has length (10× 5) + 54 + 2 = 106).

For priors on the PROSPECT 5 parameters and SLA, we performed a hierarchical multivariate analysis (Shiklomanov et al.,355

2020b) on PROSPECT 5 parameters and direct SLA measurements from (Shiklomanov, 2018, Chapter 3). For priors on the

leaf biomass allometry parameters, we fit a multivariate normal distribution to allometry coefficients from Jenkins et al. (2003,

2004) using the PEcAn.allometry package (https://github.com/pecanproject/pecan/tree/develop/modules/allometry). For

the clumping factor, we used a uniform prior across its full range (0 to 1), and for the leaf orientation factor, we used a weakly

informative beta distribution re-scaled to the range (−1,1) and centered on 0.5 (Table 1).360

To alleviate issues with strong collinearity between the allometry parameters and the specific leaf area, we fixed the allometry

exponent parameters (b2Bl and b2Bw) to their prior means for each PFT. Doing so dramatically improved the stability of the

inversion algorithm and the accuracy of the results.

We fit this model using the Differential Evolution with Snooker Update (“DEzs”) Markov-Chain Monte Carlo (MCMC)

sampling algorithm (ter Braak and Vrugt, 2008) as implemented in the R package BayesianTools (Hartig et al., 2019). We365

ran the algorithm using 8
:
3 independent chains for as many iterations as required to achieve convergence, assessed according

to a Gelman-Rubin Potential Scale Reduction Factor (PSRF) diagnostic value of less than 1.1 for all parameters (Gelman and

Rubin, 1992).

2.5 Analysis

To assess the extent to which AVIRIS-Classic observations were able to constrain parameter estimates, we compared the prior370

and posterior distributions for all parameters. To evaluate the performance of the calibrated model, we compared the posterior

credible and predicted 95% intervals of EDR-predicted spectra against the AVIRIS observations at each site. We
::::::::
examined

::
the

::::::::
residuals

:::::::
between

:::::
EDR

::::::::
predicted

:::
and

:::::::
AVIRIS

::::::::
observed

:::::::::
reflectance

:::::
across

:::
all

::::
sites

::::::
pooled

:::::::
together,

::::
and

::::::::
evaluated

:::::::
whether

:::::::
residuals

::::::
varied

::::::::::::
systematically

::::
with

:::
site

:::::::::::
composition

::
or

::::::::
structure

::
by

:::::::::
separating

::::
sites

:::::
based

:::
on

:::
the

::::::::
dominant

::::
PFT

::::::::::
(calculated

::
as

:::
the

::::
PFT

::::
with

:::
the

::::::
largest

:::::::::::::::

∑
iDBHinplant,i ::

at
::::
each

:::::
site),

:::::
mean

:::::
DBH,

::
or

:::::
mean

:::::
stem

:::::::
density.

:::
We

:
also compared the EDR-375

predicted LAI against field observations at each site
:
,
::::
both

:::::
across

:::
all

::::
sites

:::::::
together

::::
and

:::::
within

:::
the

::::::
above

:::
site

::::::
groups

:::::
based

:::
on
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Table 1. EDR parameters and prior distributions

Type Name Description Unit Prior

Leaf RTM parameters

(1 per PFT)

N Effective number of leaf mesophyll layers unitless MvNormal(µ,Σ)1

Cab Total leaf chlorophyll content µg cm−2 MvNormal(µ,Σ)1

Car Total leaf carotenoid content µg cm−2 MvNormal(µ,Σ)1

Cw Leaf water content g cm−2 MvNormal(µ,Σ)1

Cm Leaf dry matter content g cm−2 MvNormal(µ,Σ)1

Canopy RTM parameters

(1 per PFT)

SLA Specific leaf area kgm−2 MvNormal(µ,Σ)1

q Canopy clumping factor unitless Uniform(0,1)

χ Leaf orientation factor unitless 2×Beta(18,12)− 1

b1Bl Leaf biomass allometry base unitless LogNormal(ml,sl)
2

b1Bw Wood biomass allometry base unitless LogNormal(mw,sw)
2

Other parameters %soil,s ::
ψs Relative soil moisture content at site s unitless Uniform(0,1)

a
:
m

:
Residual slope unitless Exponential(1)

b Residual intercept unitless Exponential(10)

1 PFT-specific multivariate normal distribution fit to PROSPECT parameters and SLA from Shiklomanov (2018), chapter 3.
2 PFT-specific results from Bayesian fits of allometric equations to allometry data from Jenkins et al. (2003, 2004) using the PEcAn.allometry package.

::::::::::
composition

:::
and

::::::::
structure. To evaluate goodness-of-fit and additive and multiplicative biases, we used an ordinary least squares

regression of mean observed vs. posterior mean predicted LAI.

3 Results

Model calibration improved the precision of most PFT-specific parameter estimates, including
:::::::
estimates

:::
of

:::
leaf

:
parameters380

whose prior distributions were informative
::::::
already

::::::::::::
independently

::::::::::
constrained

::
by

:::
an

::::::
earlier

:::::::
analysis

:
(Figure 3).

::::::
Across

:::
all

::::::::::
PFT-specific

::::::::::
parameters,

:::
the

::::::::
posterior

::::
95%

:::::::
credible

::::::
interval

::::
(CI)

::::
was,

:::
on

:::::::
average,

::::
10%

:::
the

::::
size

::
of

:::
the

:::::
prior

:::::::
credible

:::::::
interval.

:::
The

:::::
most

::::::::::
constrained

:::::::::
parameters

:::
on

::::::
average

:::::
were

:::::
EDR

::::::
canopy

::::::::
structure

:::::::::::::::::
parameters—namely

:::
the

:::::
wood

:::::::
biomass

:::::::::
allometry

::::
(<1%

:::
of

:::::
prior

:::
CI),

::::
leaf

:::::::
biomass

:::::::::
allometry

:::::
(1%),

::::
leaf

:::::::::
orientation

::::::
factor

:::::
(8%),

::::
and

::::::::
clumping

:::::
factor

:::::::
(9%)—

:::::
while

:::
the

:::::
least

:::::::::
constrained

::::::::::
parameters

::::
were

:::::
those

:::::::
related

::
to

::::
leaf

::::::::::
morphology

::::
and

:::::::::::::::::::
biochemistry—namely,

::::::::
effective

:::::::
number

::
of

::::
leaf

::::::
layers385

:::::
(19%),

:::::
total

::::::::
chlorphyll

:::::::
content

::::::
(16%),

::::
total

:::::::::
carotenoid

::::::
content

::::::
(15%),

:::::::
specific

:::
leaf

::::
area

::::::
(13%),

:::
dry

::::::
matter

::::::
content

::::::
(11%),

::::
and

:::
leaf

:::::
water

::::::
content

::::::
(11%).

:::
By

::::
PFT,

:::
the

::::::
largest

:::::::
average

::::::
relative

::::::::
constraint

::::
was

:::
for

::::
early

:::::::::
hardwood

::::
(7%)

:::
and

:::
the

:::::::
smallest

:::::::
relative

::::::::
constraint

:::
was

:::
for

::::
late

::::::::
hardwood

:::::
(14%

::
of

:::::
prior

:::
CI).

:

For leaf traits, PFT rankings of the posterior estimates largely followed the relative positions of the priors. The ,
::::::
though

:::::
there

::::
were

:
a
::::
few

:::::::::
exceptions.

:::
In

::::
both

:::
the

::::
prior

::::
and

::::::::
posterior,

:::
the

::::::::
estimated effective number of leaf layers (

::::::::
mesophyll

::::::
layers

::::::
(a.k.a.,390

PROSPECT N parameter) was higher for needleleaved than broadleaved PFTs, with the highest value for northern pine and the
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Figure 3. Marginal prior (pre-calibration; grey) and posterior (post-calibration; black) distributions of PFT-specific parameters related to leaf

biochemistry and canopy structure. Distributions are shown as violin plots (rotated and mirrored kernel density plots). PFTs are abbreviated as

follows: EH:Early Hardwood; MH:North Mid Hardwood; LH:Late Hardwood; NP:Northern Pine; LC:Late conifer.
::::
Leaf

:::
and

::::
wood

:::::::
biomass

:::::::
allometry

:::::
panels

:::
are

:::::
clipped

::
at

:::
0.2

::
to

::::::
facilitate

:::::::::::
differentiation

::
of

:::::::
posterior

::::::::::
distributions.
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lowest value for mid hardwood. Estimated total chlorophyll contents (Cab) were similar across all
::::::::
Similarly,

::::::
specific

::::
leaf

::::
area

:::::
(SLA)

::::
was

:::::
lower

::
in

::::::
conifer

::::
than

::::::::
broadleaf PFTs, with the highest values for early and mid Hardwood followed closely by late

:::::
lowest

:::::
value

:::
for

:::
late

:::::::
conifer,

:
a
::::::
higher

:::::
value

::
for

::::::::
northern

::::
pine

::::::
(despite

::
a
::::::
similar

:::::
prior),

::::
and

:::::
higher

::::::
values

::::
still

::
in

:::
mid

:
hardwood

and late conifer, and the lowest values for northern pine. Estimates of leaf total carotenoid
::::::::
hardwood

::::
and

:::
the

::::::
highest

:::::
value

:::
for395

::::
early

:::::::::
hardwood.

:::::::::
Estimated

::::
total

::::::::::
chlorophyll

:::::::
contents

:
(
:::
Cab

:
)
:::::
were

:::::::
similarly

::::
high

:::
for

:::
all

:::::::::
hardwood

::::
PFTs

:::
in

::::
both

:::
the

::::
prior

::::
and

::::::::
posterior,

:::
but

:::::::
posterior

::::::::
estimates

:::
for

:::
late

::::::
conifer

::::
and

:::::::
northern

::::
pine

::::
were

::::::
lower.

:::::::
Posterior

::::::::
estimates

:::
of

::::
total

:::::::::
carotenoid

:::::::
contents

(Car) , water
::::
were

:::::
lower

::
in

::::
early

::::
and

:::
mid

:::::::::
hardwood

:::
and

::::::::
northern

:::
pine

::::
and

:::::
higher

:::
in

:::
mid

:::::::::
hardwood

:::
and

:::
late

:::::::
conifer.

::::::::
Posterior

:::::::
estimates

:::
of

:::
leaf

::::::
water

::::::
content

:
(Cw)

:::
were

::::
low

:::
for

:::::
early

::::::::
hardwood

::::
and

:::::::
northern

:::::
pine

:::
and

::::
high

:::
for

:::::
mid-

:::
and

::::
late

:::::::::
hardwood

:::
and

:::
late

:::::::
conifer;

:::::
these

::::::::::
differences

::::
were

:::::::
despite

:::::::
strongly

::::::::::
overlapping

:::::
priors

::::::
across

:::
all

:::::
PFTs.

::::::::
Posterior

::::::::
estimates

:::
of

:::
leaf

::::
dry400

:::::
matter

:::::::
content

:
(
:::
Cm)

:::::
were

::::::
lowest

:::
for

::::
mid-

::::
and

:::
late

:::::::::
hardwood,

::::::
higher

:::
for

:::::
early

:::::::::
hardwood

:::
and

:::::::
northern

:::::
pine, and dry matter

contents (Cm) had distributions that overlapped for all PFTs, though the central tendency of late conifer was slightly higher

than other PFTs for all three traits. Finally, estimated specific leaf area (SLA) was highest in early hardwood, followed by late

hardwoodand mid hardwood, and was comparably low for northern pine and late conifer
::::::
highest

:::
for

:::
late

:::::::
conifer,

:::::
again

::::::
despite

:
a
:::::::
strongly

::::::::::
overlapping

::::
prior

::::::
across

::
all

:::::
PFTs.405

Compared to leaf traits, canopy structural traits had less informative (and PFT-agnostic) priors
:
,
:::
and

:::
the

:::::::
posterior

:::::::::::
distributions

:::::::
exhibited

:::::
some

::::::::::
differences

::::::
across

:::::
PFTs.

::::::::
Posterior

::::
leaf

:::::::
biomass

::::::::
allometry

::::::
(b1Bl)

:::::::::
estimates

::::
were

::::::
lowest

::
in

:::::
early

:::::::::
hardwood

:::
and

:::::::
northern

:::::
pine,

::::::
higher

:::
for

:::
late

:::::::
conifer,

:
and were more constrained by the calibration. Although the estimated parameter

distributions were still mutually overlapping in most cases, the constraint did suggest differences between PFTsfor some

parameters. For example, leaf orientation factors and , to a lesser extent, canopy clumping factors and leaf biomass allometry410

parameters (b1Bl) were higher for
::::::
highest

:::
for

::::
late-

::::
and

:::
mid

:::::::::
hardwood.

::::::::
Posterior

:::::
wood

:::::::
biomass

:::::::::
allometry

:::::::
(b1Bw)

::::::::
estimates

::::
were

::::::
lowest

:::
for

::::
early

:::::::::
hardwood

::::
and

:::
late

:::::::
conifer,

::::::
slightly

::::::
higher

::
in
:

mid- and late-successional broadleaved PFTs than other

PFTs. Meanwhile, northern pine had the lowest leaf biomass allometry parameters and clumping and orient factors, and the

highest wood biomass allometry parameter (b1Bw) . Calibration provided only limited constraint on
:::
late

:::::::::
hardwood,

::::
and

::::::
highest

::
for

::::::::
northern

::::
pine.

::::::::
Posterior

::::::
canopy

::::::::
clumping

::::::
factor

::
(q)

::::::::
estimates

:::::
were

::::::::
clustered

::
at

::
or

::::
near

::
its

:::::
upper

:::::
limit

::
of

::
1

::::
(i.e.,

::::::::
exhibited415

:::::::::::
“edge-hitting

:::::::::
behavior”)

:::
for

::::
early

::::
and

:::
mid

:::::::::
hardwood,

:::::
were

:::::::
slightly

:::::
lower

::
in

:::
late

:::::::::
hardwood

:::
and

::::::::
northern

::::
pine,

::::
and

::::::
lowest

::
in

:::
late

::::::
conifer.

::::::::
Posterior

::::
leaf

:::::::::
orientation

:::::
factor

:::
(χ)

::::::::
estimates

::::
were

::::::
lowest

:::::
(near

::::
zero,

:::::::::
indicating

::::::::
randomly

:::::::::
distributed

:::
leaf

:::::::
angles)

::
for

::::::::
northern

::::
pine,

::::::
higher

::::::
(more

:::::::::
horizontal

::::::
leaves)

:::
for

:::::
early

:::
and

::::
mid

:::::::::
hardwoods

::::
and

::::
late

::::::
conifer,

::::
and

:::::::
highest

::
(at

:::
the

::::::
upper

::::
limit

::
of

::::
0.6)

::
for

::::
late

:::::::::
hardwood.

::::::
Finally,

:::
the

:::::::::
calibration

::::
was

::::
able

::
to

:::::::
constrain

:
site-specific soil optical properties , with posterior

estimates that were typically almost as wide as the uninformative prior distributions for all but a few specific
:::::
across

:::
all sites420

(Figure A4).

The accuracy and precision of EDR simulated spectra relative to AVIRIS observations varied across sites (Figures 6, 4,
::
4,

::
5,

::
6,

and A5). The largest differences between observed and predicted reflectance were in the near-infrared region, particularly from

775 to 1100
:::
On

:::::::
average,

::::
EDR

::::::
tended

::
to

:::::::::
accurately

::::::
(within

:::::
0.01)

::::::::
reproduce

::::::::::
reflectance

::
in

:::
the

:::::::
400–750

:
nm , while predictions

in the visible rangeagreed well with observations in all but a few cases. That said,
::::
range,

:::::::::::
underpredict

:::::::
AVIRIS

::::::::::
reflectance425

::
by

::::
0̃.02

::
in
::::

the
::::::::
750–1100

:
nm

:::::
range,

::::
and

::::::::::
overpredict

:::::::
AVIRIS

:::::::::
reflectance

:::
by

::::
0̃.03

::
in

:
the EDR predictive interval overlapped

18



Figure 4. (Left) Comparison
::::::::
Differences

:
between AVIRIS observed (black) and EDR predicted (mean prediction in green, 95% posterior

predictive interval in gray)
::::
mean surface reflectance for

::
by

:::
site.

:::::
Each

:::
thin

::::
gray

:::
line

::
is a sample of sites used in the calibration

:::::::::
site-specific

::::::
AVIRIS

:::::::::
observation. (Right) Histogram of stem diameter at breast height (DBH) by plant functional type (

:::
Top

:::
left

::::
panel

:::::
shows

:::::
results

:::::
across

::
all

::::
sites,

:::
and

:::::::
remaining

:::::
panels

:::::
group

::::
sites

:::::::
according

::
to

:::::::
dominant PFT ) at .

:::::
Within

::::
each

:::::
panel,

:::
blue

::::::
shading

:::::
shows the corresponding

::::::
25–75%

::::::
quantile

::::
range

:::
and

:::
the

::::
thick

::::
black

:::
line

::
is
:::
the

::::::
median

::
by

::::::::
wavelength

:::
for

:::
that

::::::
specific

:
site.

observationsin all but a few individual cases (Figure A5) , suggesting that our estimates of model uncertainty are realistic. We

:::::::::
1100–1300

:
nm

:::::
range.

::::::::
However,

::::
only

:::
the

:::::
latter

:::::::
behavior

::::
was

:::::::::
consistent

:::::
across

:::::
sites;

:::::
below

:::::
1100 nm

:
,
::::
sites

:::::::::
dominated

::
by

::::
any

:::
PFT

::::::
could

::::
have

::::
low,

::::::::
accurate,

::
or

::::
high

::::::::
estimates

:::::::
relative

::
to

:::
the

:::::::
AVIRIS

:::::::::::
observations.

:::
The

::::
only

::::::::
consistent

::::
bias

:::::::::
(expressed

:::
as

::::::::::
interquartile

:::::
range

::
in

::::
bias

:::
not

::::::::::
overlapping

:::::
zero)

:::
we

:::::::
observed

:::::
with

::::::
respect

::
to

::::
PFT

::::
was

::
an

::::::::::::
underestimate

::
of

::::::::::
reflectance

::
in

:::
the430

::::::::
750–1100

:
nm

:::::
range

::
for

::::::::
northern

:::::
pine;

::::::::
otherwise,

:::
we

:
did not observe any consistent patterns in mismatch between

:::::::
AVIRIS

observed and EDR predicted reflectance with respect to tree size, stem density, or composition (Figures 5
::
and

:::
A6–A15).

:::
The

::::
EDR

::::::::
posterior

::::::::
predictive

:::::::
interval

:::::::::
overlapped

:::::::
AVIRIS

:::::::::::
observations

::
in

:::
all

:::
but

::
a

:::
few

:::::::::
individual

:::::
cases

::::::
(Figure

:::::
A5),

:::::::::
suggesting

:::
that

:::
our

::::::::
estimates

::
of

::::::
model

:::::::::
uncertainty

:::
are

::::::::
realistic.
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Figure 5. Difference
::::::::
Differences

:
between AVIRIS observed and EDR predicted (

::::::
posterior

::::::::
predictive mean ) site surface reflectance . One

line per
::
by siteand observation is shown (some sites had multiple observations),

:::::::
averaged

:::::
across

:::::::::
wavelength

::::::
regions.

:::
Sites

:::
are

::::::
grouped

:::
by

:::::::
dominant

::::
PFT,

::
as

:
in
::::::

Figure
:
4.
::::
Note

:::
the

::::::::
differences

::
in
:::
the

:
y
::::
axis

::::
scale

:::::
across

:::::
panels.

:

Figure 6.
:
(
:::
Left)

::::::::::
Comparison

::::::
between

:::::::
AVIRIS

:::::::
observed

:::::
(black)

::::
and

::::
EDR

:::::::
predicted

:::::
(mean

::::::::
prediction

::
in

:::::
green,

::::
95%

:::::::
posterior

::::::::
predictive

:::::
interval

::
in
:::::

gray)
::::::
surface

::::::::
reflectance

:::
for

:
a
:::::::::::
geographically

::::::
(Figure

:::
1),

::::::::::::
compositionally,

::::
and

::::::::
structurally

::::::
(Figure

::
2)
:::::::::::

representative
::::::
sample

::
of

:::
sites

::::
used

::
in

::
the

:::::::::
calibration.

:
(
::::
Right

:
)
::::::::
Histogram

::
of

:::
stem

:::::::
diameter

::
at

:::::
breast

:::::
height

:::::
(DBH)

::
by

::::
plant

::::::::
functional

::::
type

:::::
(PFT)

:
at
:::
the

:::::::::::
corresponding

:::
site.
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Figure 7. EDR predictions of
:::::::::
site-specific

:::
true

:
leaf area index (LAI) compared to observed values.

::::::::
Horizontal

::::
error

:::
bars

:::
are

:::::::
posterior

::::
95%

:::::::
predictive

:::::::
intervals.

::::::
Vertical

::::
error

::::
bars

::
are

:::::
mean

::
±

:
1
:::::::
standard

:::::::
deviation

::
of

::
the

:::::::
observed

::::::
values.

::::::
Dashed

:::
line

:::::
shows

::
the

:::
1:1

::::::::::
relationship,

:::
and

::::
solid

:::
line

:
is
::
a

:::::::::
least-squares

:::::::
predicted

:::
vs.

:::::::
observed

::::::::
regression

:::
with

:::
the

:::::::
equation

:::::
marked

::
in
:::
the

::::
upper

:::
left

::::::
corner.

:::::
Points

::
are

::::::
colored

::::::::
according

:
to
::::::::
dominant

::::
PFT,

:::::::
calculated

::
as

::
in

:::::
Figure

::
4.

Figure 8.
:::
Bias

::
in
::::

leaf
:::
area

:::::
index

:::::
(LAI)

::::::::
predictions

::::
from

::::::::
calibrated

::::
EDR

::::::
relative

::
to

::::::::::
observations,

::
as

::
a
::::::
function

::
of
:::

site
:::::

mean
:::::::
diameter

::
at

::::
breast

:::::
height

::::::
(DBH).

::::
Sites

:::
are

::::::
grouped

::::::::
according

:
to
::::::::

dominant
::::
PFT,

::::
same

::
as

::
in

:::::
Figure

::
4.
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Figure 9.
:::::
Same

::
as

:::::
above,

:::
but

::
as

:
a
::::::
function

::
of

:::::
mean

::
site

::::
stem

::::::
density.

:

Leaf area index predicted from calibrated EDR parameters captured 43
::
46% of the variability in the observations (Figure 7).435

The observed vs. predicted line had a slope of 0.37
:::
0.35

:
and an intercept of 2.80

::::
3.09, indicating that EDR calibration underpre-

dicted
:::
true

:
LAI on average but overexagerrated across-site LAI variability .

::::::::::
exaggerated

:::
LAI

:::::::::
variability

:::::
across

:::::
sites.

::
In

:::::::
general,

::::
EDR

::::::
tended

::
to

:::::::::::
underpredict

:::
LAI

::
at
:::::::::::
high-density

::::
sites

::::
with

:::
low

:::::
mean

:::::
DBH

:::
and

::::::::::
overpredict

::::
LAI

::
at

::::::::::
low-density

::::
sites

::::
with

::::
high

::::
mean

:::::
DBH

::::::::
(Figures

:
8
::::
and

:::
9).

:::
The

:::::
trend

::::
with

:::::
mean

:::::
DBH

::::
was

::::::::
generally

::::
true

::::::
across

::
all

:::::
PFTs

:::
but

::::
was

:::::
most

::::::::::
pronounced

:::
for

::::
early

:::::::::
hardwood-

::::
and

:::
late

:::::::::::::::
conifer-dominated

::::
sites

:::::::
(Figure

:::
8),

:::::
while

:::
the

::::
trend

::::
with

:::::
stand

::::::
density

::::
was

::::
most

::::::::::
pronounced

:::
for

::::
late440

:::::::::::::::
conifer-dominated

::::
sites

::::::
(Figure

:::
9).

:::
For

:::::::
identical

:::::::::
canopies,

:::::
EDR

::::::::::
consistently

::::::::
predicted

::::::
lower

::::::::::::
hemispherical

:::::::::
reflectance

:::::
than

::::::::::
PRO4SAIL

::::::
(Figure

::::
10).

:::::
This

::::::::
difference

::::
was

:::::
most

::::::::::
pronounced

:::::
when

:::
the

::::
sun

:::
was

:::::::
directly

::::::::
overhead

::::::::
(θs = 0◦;

:::::::::::
cos(θs) = 1)

::::
and

:::::::
declined

:::::
with

:::::::::
increasing

::::
solar

::::::
zenith

:::::
angle.

::::
For

::::
solar

::::::
zenith

::::::
angles

::::::
typical

::
of

::::
our

:::::
study,

:::::::::
(θs ≈ 30◦;

::::::::::::::
cos(θs) = 0.85)

::::
EDR

::::::::::::
hemispherical

::::::::::
reflectance

:::::::::
predictions

::::
were

::::
very

:::::
close

::
to

::::::::::
PRO4SAIL

:::::::::
directional

:::::::::
reflectance

:::::::::
predictions

::::
over

::
a
::::
wide

:::::
range

::
of

::::
LAI

::::::
values

::::::
(Figure

:::::
A16).

:
445

4 Discussion

Calibrating and validating vegetation models using optical remote sensing data typically involves
::
has

::::::::
typically

::::::::
involved de-

rived data products (e.g., MODIS GPP) that rely on their own models; in other words, “bringing the observations closer to the

models”. In this study, we presented an alternative approach whereby we
:
“bring the models closer to the observations

:
” by train-
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Figure 10.
::::::::::
Comparison

::
of

::::
EDR

:::
and

::::::::
PRO4SAIL

:::::::
(labelled

::
as

::::::
“SAIL”

:::
for

:::::::::
conciseness)

:::::::::
predictions

::
of

::::::::
reflectance

:::
for

:::::::
identical,

::::::::::
single-cohort

::::::
canopies

:::
as

:
a
:::::::

function
:::

of
::::
solar

:::::
zenith

:::::
angle

::::
(θs).

::::::
These

:::::::::
simulations

:::
use

:::::::
identical

::::::::::
PROSPECT

:::
and

:::::::
canopy

:::::::
structure

:::::::::
parameters,

::
a

::::::::::
nadir-viewing

::::::
sensor,

:::
and

:::
LAI

::
of

::
3.

:::
For

:::::
EDR,

::
we

:::
use

::
a

::::
single

::::::
cohort

:::
with

::::
LAI

::
of

:
3
::::::::
prescribed

:::::::
directly.

::::::
“SAIL:HR

:
”
::
is

::
the

::::::::::::
“hemispherical

:::::::::
reflectance”

::::::::
(“blue-sky

:::::::
albedo”),

::::::::
calculated

:::
(as

::
in

::::
EDR)

:::
as

::
the

:::::::
average

::
of

:::::::::::::::::::
directional-hemispherical

:::::
(DHR)

::::
and

::::::::::::
bi-hemispherical

::::::
(BHR)

::::::::
reflectance

::::::
streams

:::::::
weighted

::
by

::
the

:::::
direct

:::
sky

::::::
fraction

:::
(0.9;

::::
same

:::::
value

:::
used

:::
for

:::::
EDR).

:::::::
Similarly,

::::::
“SAIL:DR

:
”
::
is

::
the

:::::::::
“directional

::::::::::
reflectance”,

:::::::
calculated

:::::::::
analogously

::::
from

:::
the

::::::::::
bi-directional

::::::
(BDR)

:::
and

:::::::::::::::::::
hemispherical-directional

:::::
(HDR)

::::::::
reflectance

:::::::
streams.

::::::::
Individual

::::
SAIL

:::::
fluxes

:::
are

:::::
shown

:::
with

:::::
dotted

:::::
lines.

ing a vegetation model to simulate full-range hyperspectral surface reflectance as observed
:::
that

::
is
::::::
closer

::
to

:::
the

::::::::::::
measurements450

::::
made

:
by optical remote sensing instruments. We

:::::
argue

:::
this

::
is
::

a
:::::
more

::::::::::
generalized

::::::::
approach,

:::
as

:::::
many

::::::::
dynamic

:::::::::
vegetation

::::::
models

::::::
already

:::::::
contain

::::
their

::::
own

:::::::
internal

:::::::::::::
representations

::
of

:::::::
canopy

:::::::
radiative

:::::::
transfer

::::
and

::::
thus

:::
can

:::
be

::::::::
modified

::
to

:::::::
provide

::::::
outputs

:::
that

::::
can

:::::
mimic

::::::
optical

::::::
remote

:::::::
sensing

::::
(i.e.,

::::
can

::
be

::::
used

::
as

::::::::
“satellite

::::::::::
simulators”

::
to

:::::::
connect

:::::::::
underlying

:::::
model

:::::
state

::
to

:::::::
emergent

:::::::::::
reflectance).

:::
We

:
then demonstrated how this approach could be used to calibrate the model against airborne imag-

ing spectroscopy data from AVIRIS-Classic. We found that such calibration reduced uncertainties in parameters related to455

leaf biochemistry and canopy structure, even for parameters with well-informed priors (Figure 3). Moreover, we found that

that the calibrated model was able to reproduce observed surface reflectance
:::::
albedo

:
(Figures 6 and 4) and leaf area index

(Figure 7)
:
4,
::
5,
:::

6,
:::
and

::::
A5) reasonably well across large number of structurally, compositionally, and geographically diverse

sites (Figure ??
::::::::::::
geographically

::::::
(Figure

:::
1),

::::::::::
structurally,

::::
and

:::::::::::::
compositionally

:::::::
(Figure

::
2)

::::::
diverse

:::::
sites.

::::::::
However,

:::
the

:::::::::
calibrated

:::::
model

:::::::::::::
underpredicted

::::
LAI

::
at

::::
sites

::::
with

::::::
mostly

:::::
small

::::
trees

::::
and

:::::::::::
overpredicted

::::
LAI

::
at
:::::

sites
::::
with

::::::
mostly

::::
large

:::::
trees

:::::::
(Figures

::
7460

:::
and

:
8).
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Compared to previous similar efforts that have coupled vegetation models to external canopy radiative transfer models (Knorr

and Lakshmi, 2001; Nouvellon et al., 2001; Quaife et al., 2008), our work is novel because it uses a canopy radiative transfer

formulation that already exists inside the model itself. This reduces the number of new assumptions and variables we have

to introduce and increases the extent to which constraint on canopy radiative transfer parameters propagates to other related465

processes in the model. For example, to couple the Geometric Optic Radiative Transfer (GORT) model to the Data Assimilation

Linked Ecosystem Carbon (DALEC) model, had to assume a relationship between the GORT-predicted foliage area volume

density and DALEC-predicted foliar biomass, which required introducing an additional fixed parameter (grams of leaf carbon

per leaf area) present in neither model.
:
(Viskari et al., 2019)

:
. More importantly, in such a coupling

::
an

:::::::
external

:::::
RTM, the

only way that observed reflectance constrains the model is through the foliar biomass, and additional information from the470

reflectance on canopy structure is confined to the GORT
:::::::
external

::::
RTM

:
parameters. By contrast, in our

::::::
internal

::::
RTM

:
approach,

parameters and states in the shortwave canopy radiative transfer submodel also influence other model processes, including

thermal radiative transfer, micrometeorology,
::::::::::::
photosynthesis,

::::::::::
respiration, and competition (Longo et al., 2019), with profound

consequences for model predictions of ecosystem fluxes and composition (Viskari et al., 2019).

::
In

:::
this

:::::
study,

:::
the

:::::::::
vegetation

:::::::::::
composition

::
at

::::
each

:::
site

:::::::::
(including

:::
the

::::
PFT

::::::::::
distribution

:::
and

:::::::
size-age

::::::::
structure)

::::
was

:::::::::
prescribed475

::
in

::::
detail

:::::
based

:::
on

::::::::
inventory

::::
data.

::::
This

:::::::
allowed

::
us

::
to

:::::
focus

:::
the

:::::::::
calibration

::
on

::::::
model

:::::::::
parameters

::::::
related

::::::
canopy

:::::::
radiative

:::::::
transfer

:::::
model

::::::::::
parameters.

::::::::
However,

::::
ED2

::
is

:
a
:::::::
dynamic

:::::::::
vegetation

::::::
model

:::::
whose

::::
core

:::::::
purpose

::
is

::
to

::::::
predict

::::
how

::::::::
vegetation

:::::::::::
composition

:::
and

::::::::
structure

:::::
evolve

:::::::
through

:::::
time.

:::
An

::::::::
important

::::::
future

::::::::
direction

::
of

::::
this

::::
work

::
is
::
to
::::::::

evaluate
::::
such

::::::::
dynamic

::::
ED2

::::::::::
simulations

:::::
where

:::::::::
vegetation

::::::::::
composition

:::
and

::::::::
structure

:::
are

::::::::
predicted

::::
with

::::
some

::::::::::
uncertainty.

::
In
::::::
doing

::
so,

:::::
there

::
is

::
an

::::::::::
opportunity

::
to

::::::
further

::::::
tighten

:::
the

:::
link

::::::::
between

::::::
canopy

::::::::
radiative

:::::::
transfer

:::
and

:::::
other

:::::::::
ecosystem

:::::::::
processes.

:::
For

::::::::
example,

:::
the

:::::::::::
PROSPECT

::::
leaf

:::::
water480

::::::
content

::::::::
parameter

::
(
::
Cw

:
)
:::::::
provides

::
a
:::::::
physical

::::
link

:::::::
between

:::
leaf

::::::
optical

:::::::::
properties

:::
and

:::::::::
hydraulics

:::
and

:::::
could

::::::::
therefore

::
be

:::::
used

::
to

:::::::
constrain

::::::
ED2’s

:::::::
recently

::::::::
developed

::::::::
dynamic

:::::::::
hydraulics

::::::
module

:
(Xu et al., 2021).

:

::::
With

::
54

:::::
sites

::
in

:::
our

:::::::::
calibration,

::::
any

:::::
single

::::
site

::::::::
represents

:::::
< 2%

:::
of

:::
the

::::
data,

:::
and

:::
for

::
a
::::
joint

:::::::::
calibration

:::::::
without

:::
site

:::::::
random

::::::
effects,

:::
we

::::
have

:::::
every

::::::
reason

::
to

::::::
believe

::::
that

:::
the

:::::::::
calibration

::
is

:::
not

:::::::::
overfitting

::
to

::::
any

::::::::
individual

::::
site.

::::::
Trying

::
to

::
fit

::::
any

:::
one

::::
site

:::
well

::::::
would

:::::
cause

::::::
others

::
to

::
do

::::::
worse

:::::::::
(especially

:::::
given

:::
the

:::::
large

::::::::
observed

::::::::
variability

:::
in

:::::
forest

::::::::
structure;

::::::
Figure

::
2)

::::::
unless

:::
the485

::::
EDR

::::::
model

:::::::
structure

::::
was

:::::::::
reasonable

:::
and

:::
the

::::::::::
parameters

::::::
chosen

::::
were

:::::::::
genuinely

::::
good

:::::::
choices.

::::
We

:::::::
therefore

::::
did

:::
not

:::::::
perform

::
an

::::::::
in-sample

:::::
cross

:::::::::
validation,

:::
as

:::
we

:::::::
believed

:::
the

::::::
benefit

:::
of

:::::
doing

::
so

::::::
would

::
be

::::
low

:::::::
relative

::
to

:::
the

::::
high

::::::::::::
computational

:::::
cost.

::::
That

::::
said,

:::
we

::::::::
recognize

::::
that

::::::::::::
out-of-sample

::::::::
validation

::
is
::
a
:::::
useful

::::
test

::
of

:::::
model

::::::::::::
performance,

:::
and

:::
we

::::::::::
recommend

::::::::::
performing

:::::::::::
out-of-sample

:::::::::
validation

::
in

::::::
similar

::::::
studies

::
in

:::
the

::::::
future.

The canopy radiative transfer model in ED2 is derived from the two-stream model of Sellers (1985) and adapted to a multi-490

level canopy. Similar versions of this two-stream formulation are present in other land surface models, including CLM (Oleson

et al., 2013), SiB (Baker et al., 2008), Noah (Niu et al., 2011), tRIBS-VEGGIE (Ivanov et al., 2008), IMOGEN (Huntingford

et al., 2008), and JULES (Best et al., 2011). Although the exact parameterization and implementation differs across these

models, the similarity of the underlying conceptual framework
:::
and

::::::::
radiative

:::::::
transfer

::::::::::
coefficients means that our approach

should be directly transferable to all of these modelsas well.495
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One limitation of
:::::::::::
Nevertheless,

:::
our

:::::::
analysis

:::::::
echoed

::::
some

:::::::
known

:::::::::
challenges

::
in

::::::
canopy

::::::::
radiative

:::::::
transfer

:::::::::
modeling.

::::
One

::::::::
challenge

::
is

:::::::::
equifinality

::
in
:::

the
::::::::::::

contributions
::
of

:::
leaf

::::::::::::
biochemistry,

:::
leaf

:::::::::::
morphology,

::::
and

:::::::
different

:::::::
aspects

::
of

::::::
canopy

::::::::
structure

::
to

::::::
canopy

::::::
albedo,

::::::
which

::::::
means

:::
that

::::::::
multiple

:::::::
variable

:::
and

:::::::::
parameter

:::::::::::
combinations

::::
can

:::::::
produce

::::
very

::::::
similar

:::::::
canopy

::::::
albedo

::::::::
responses

:
(Lewis and Disney 2007

:
;
:::::::
Figures

:::::::
A1–A3).

::::
We

::::::::
mitigated

:::
the

::::::::::
equifinality

:::::::
between

::::
leaf

::::
traits

::::
and

::::::
canopy

::::::::
structure

::
by

:::::
using

::::::::::
informative

:::::
priors

::
on

::::
leaf

:::::
traits

::::
from

::
an

:::::::::::
independent

::::
data

:::::
source

:
(Shiklomanov, 2018)

:
.
::::::::
However,

::::
there

::
is
:::::::::
additional500

:::::::::
equifinality

::
in

:::
the

::::::
effects

::
of

:::
the

::::
EDR

::::::
canopy

::::::::
structure

:::::::::
parameters.

:::
For

::::::::
example,

:::::::
because

:::
the

:::::::
effective

::::
LAI

::::
used

::
in

::::::
EDR’s

:::::
actual

:::::::
radiative

::::::
transfer

::::::::::
calculations

::
is
:::::::
defined

::
as

:::
the

::::::
product

::
of

::::::
“true”

:::
LAI

::::
and

::::::::
clumping

:::::
factor

::::::::
(equation

::::
20),

:::
and

:::::::
because

:::
LAI

:::
is,

::
in

::::
turn,

::::::
derived

:::::
from

:::::::
multiple

:::::::::
parameters

::::
(leaf

::::::::
biomass

::::::::
allometry,

:::::::
specific

:::
leaf

:::::
area;

:::::::
equation

::::
21),

:::::
these

:::::::::
parameters

::::::::::
collectively

:::::
cannot

:::
be

::::::::::::
independently

:::::::::
determined

::::
from

:::::::::
reflectance

::::
data

::::::
alone.

::
At

:::
the

:::::
same

::::
time,

:::::::::
increasing

:::
the

:::
leaf

:::::::::
orientation

:::::
factor

::::::
(more

:::::::::
horizontal,

::
or

::::::::::::
“planophile”,

:::
leaf

::::::::::
orientation)

::::
has

::
a

::::::
similar

::::::::
(although

::::
not

::::::::
identical)

:::::
effect

:::
to

:::::::::
increasing

::::
LAI

:::
and

:::::::::
clumping505

:::::::::::::
factor—namely,

:::::::::
increasing

::::::
canopy

:::::::::
reflectance,

:::::::::
especially

::
in

:::
the

:::::::::::
near-infrared

::::::
(Figure

::::
A3).

:::::::::::
Collectively,

:::::
these

:::::
issues

::::
may

::::
help

::::::
explain

:::::
some

::
of

:
the two-stream canopy radiative transfer approach in the context of remote sensing is the absence of any

angular information in the output. More precisely, the quantity simulated by EDR is the bi-hemispherical reflectance (BHR),

whereas the atmospherically-corrected AVIRIS-Classic quantity is closest to the hemispherical-directional reflectance factor

(HDRF) . Under specific sun-sensor geometries and atmospheric and illumination conditions, canopy reflectance
::::::::::
edge-hitting510

:::::::
behavior

:::::::::
(parameter

:::::::::::
distributions

:::::::
clustered

::
at
:::

the
:::::

ends
::
of

:::
the

::::::::::
distribution)

::::::::
observed

::
in

:::
our

::::::::
posterior

::::::::
estimates

:::::::
(Figure

::
3),

::::
and

::::
some

::
of

:::
the

::::
bias

::
in

:::
our

::::
LAI

::::::::
estimates

::::::
(Figure

:::
7).

::
In

::::::
future

:::::
work,

:::
we

::::::
suggest

:::::::::
combining

:::
our

::::::::
approach

::::
with

:::::::::
additional

:::::
kinds

::
of

::::::
remote

::::::
sensing

::::::::::::
measurements

:::::::
capable

::
of

:::::::
directly

::::::::::
constraining

:::::
these

::::::::
structural

::::::::::
parameters

::::
such

::
as

:::::::::
waveform

:::::::
LiDAR

::::::
(which

:::
can

::::::
provide

::
a
:::::
robust

:::::::::
constraint

::
on

:::
the

::::::
canopy

::::::::
structural

:::::::
profile; Ferraz et al. 2020

:
)
::
to

::::::
reduce

::::::::::
equifinality.

::::
That

:::::
being

::::
said,

:::
one

::::::
major

::::::::
advantage

::
of

:::
the

::::::::
Bayesian

:::::::::
calibration

::::::::
approach

::
is
::::
that

::
its

::::::
output

::
is

:
a
::::
joint

::::::::
posterior

::::::::::
distribution515

:::
that

:::::::
includes

:::
not

::::
only

:::::
fully

::::::::
quantified

:::::::::::
uncertainties

:::
for

::::
each

:::::::::
parameter

:::
but

::::
also

:::
the

::::::::::::::::
variance-covariance

::::::
matrix

:::::
across

:::
the

::::
full

::
set

::
of

::::::::::
parameters.

::::::::::
Equifinality

::
in

:::::::::
parameters

::::::
would

:::::::
manifest

::
as

::::::
strong

:::::::
pairwise

:::::::::
correlation

:::::::
between

:::::::::
parameters

::
in

:::
the

::::::::
posterior

::::::::::
distribution.

:::::::::
Examining

::::
this

:::::::::
correlation

::::::
matrix

::::::
shows

:::
that

:::::
there

:::
are

:::::
some

:::::::::
parameter

::::
pairs

:::::
with

:::::
strong

:::::::::::
correlations,

::::
such

:::
as

::
the

:::::::::::
hypothesized

::::::::
negative

::::::::::
correlations

:::::::
between

:::
leaf

::::::::
allometry

::::
and

::::::::
clumping

:::::
factor

::::::
across

::::
some

:::::
PFTs

::::::
(Figure

::::::
A17).

::::::::
However,

::::
these

::::::::::
correlations

:::
do

:::
not

:::::
occur

::
in

::
all

::::::::::
parameters

:::
that

::::::::
exhibited

:::::::::::
edge-hitting

:::::::
behavior.

::::
For

:::::::
instance,

:::::::::
clumping

:::::
factor

::::::::
exhibited520

::::::::::
edge-hitting

:::::::
behavior

:::::
only

:::
for

:::::
early-

::::
and

:::::::::::::::
mid-successional

:::::::::
hardwood

:::::
PFTs

::::::
(Figure

:::
3),

::::
but

:::
the

::::::::::::
corresponding

::::::::::
correlation

:::::::::
coefficients

:::::
were

:::::::
positive

:::
and

::::
near

:::::
zero,

::::::::::
respectively,

:::::
while

::::::
strong

:::::::
negative

::::::::::
correlations

:::
for

:::
the

:::::
other

:::::
PFTs

:::
did

:::
not

::::::
result

::
in

::::::::::
edge-hitting

::::::::
posteriors

:::::::
(Figure

:::::
A17).

::::::::
Similarly,

:::
the

::::::::::
edge-hitting

::::
leaf

:::::::::
orientation

:::::
factor

::::::::
posterior

:::
for

:::
late

:::::::::
hardwood

::::::
(Figure

:::
3)

:::
had

::::::::
near-zero

:::
(or,

::
in

::::
one

::::
case,

::::::::
positive)

::::::::::
correlations

::::
with

::
all

:::::
other

:::::::::
parameters

:::::::
(Figure

:::::
A17).

:::::
Strong

::::::::::
correlations

::::
also

::::::::
occurred

:::::
among

:::::
some

:::
of

:::
the

:::::::::::
PROSPECT

::::::::::
parameters,

::::
and

:::::::
between

:::::::::::
PROSPECT

:::
and

:::::::::
structural

::::::::::
parameters,

:::
but

::::::::::
contributed

::::
little

:::
to525

:::::::::
equifinality

:::::::
because

:::
the

::::::
strong

:::::::::
constraints

:::
on

::::::::::
PROSPECT

:::
led

::
to

::::::
overall

:::::
small

:::::::::
covariance

:::::
terms

:::::::
(results

:::
not

:::::::
shown).

:::::::
Finally,

::::::
because

::::
our

:::::::::
calibration

:::::::
captured

:::
all

::
of

:::::
these

::::::::::
covariances,

:::
the

::::::::
presence

::
of

::::::::
moderate

::::::::::
equifinality

:::
did

:::
not

:::::::
preclude

:::::::::::
ecologically

:::::::::
meaningful

:::::::::
parameter

:::::::::
constraints

::
or

:::::::
accurate

:::::::::
predictions

:::::::
because

::::
these

::::::::::
covariances

:::
are

:::::
being

:::::::::
propagated

::::
into

::::::::::
predictions.

::::
This

:
is
:::::::
directly

:::::::::
analogous

::
to

::::
how

:
a
:::::
linear

:::::::::
regression can have a significant angular dependence, especially in sparse or structurally

complex canopies . However, in simulations of black spruce canopy BHR and HDRF under different conditions, find differences530
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of no more than 2% between these quantities in
::::
tight

::::::::::
confidence

:::::::
interval,

::::::
despite

::::
high

:::::::::::
correlations

:::::::
between

:::
the

:::::
slope

::::
and

:::::::
intercept,

:::::
with

:::
that

::::::::::
equifinality

::::::
driving

:::
the

:::::::::::
characteristic

::::::::
hourglass

:::::
shape

::
of

::
a
::::::::
regression

::::::::::
confidence

:::::::
interval.

::::
EDR

::::::
tended

::
to

::::::::::
underpredict

::::
LAI

::
at

::::::::::
high-density

::::
sites

::::
with

:::
low

:::::
mean

:::::
DBH

:::
and

:::::::::
overpredict

::::
LAI

::
at

::::::::::
low-density

::::
sites

::::
with

::::
high

::::
mean

:::::
DBH

:::::::
(Figures

::
7,

::
8,

:::
and

:::
9).

:::
The

::::::::::
relationship

:::::::
between

:::::
DBH

:::
and

::::
LAI

::
is

:::::::::
controlled

:::::::
primarily

:::
by

:::
the

:::
leaf

:::::::
biomass

:::::::::
allometry,

:::::
which

::
in

:::::
EDR

::
is

:::::
fixed

::
at

:::
the

::::
PFT

:::::
level

::::::::
(equation

::::
22).

::::
This

:::::
fixed

::::::::::
relationship

::::::::
neglects

:::
the

::::::
known

:::::
inter-

::::
and

:::::::::::
intra-specific535

::::::::
variability

::
in

::::
tree

::::::::
allocation

::::::::
strategies

:
(Forrester et al., 2017; Dolezal et al., 2020)

:
.
:::
For

::::::::
example, Forrester et al. (2017)

::::
show

:::
that

:::
the

::::::::::
relationship

::::::::
between

:::::
DBH

:::
and

:::::
foliar

:::::::
biomass

::
is
::::::::::

modulated
::
by

::::
tree

::::
age,

:::::
stand

:::::::
density,

:::
and

:::::::
climate

::::::::
variables,

:::::
none

::
of

:::::
which

:::
are

:::::::::
accounted

:::
for

::
in the 650–670 region, which are smaller than the width of the predictive uncertainty intervals in

our results for the same wavelengths (Figure
:::
ED2

::::::::
allometry

::::::::
routines.

::::
This

:::::::::
variability

::::
can

::
be

:::::::::::
incorporated

:::::::
directly

:::
into

:::::
ED2

::
by

:::::::
making

::::::::
allometry

:::::::::
parameters

::::::::
dynamic

::::::::
functions

::
of

:::::
some

::
of
::::

the
:::::::::::::
aforementioned

:::::::::
covariates,

::
or

:::::::::
indirectly

:::
via

::::::::::
hierarchical540

:::::::::
calibration

:::::::
whereby

:::::
model

::::::::::
parameters

::::
vary

:::::
across

::::
sites

:
(Dietze et al., 2008).

:::::::
Overall,

:::
this

:::::::
analysis

::::::::
reiterates

:::
the

::::::::::
importance

::
of

::::::::
evaluating

:::::::
models

::::::
against

:::::::
multiple

:::::::
distinct

:::::::::::::
variables—after

:::
all,

::::
none

:::
of

::::
these

::::::
biases

:::::
would

:::::
have

::::
been

::::::::
apparent

::::
from

:::::::
looking

:
at
:::
the

::::::::::
reflectance

:::::::::
simulations

::::::
alone.

:::
Our

:::::::
analysis

::::
also

:::::::
revealed

::::
some

::::::::
structural

:::::
issues

::::
with

:::::
EDR

::::
itself.

:::::
EDR

::::::::::
consistently

::::::::
predicted

:::::
lower

:::::::::::
hemispherical

:::::::::
reflectance

:::
than

:::::
SAIL

:::::::
(Figures

:::
10

:::
and

:::::
A16).

::::
This

:::::::::
difference

:::
can

::
be

::::::::
attributed

::::::::
primarily

::
to

:::::::::
differences

::
in
::::
how

::::
each

::::::
model

::::::
defines

:::
the

:::::
direct545

:::::::
radiation

::::::::::
backscatter

::::::::
coefficient

::
in
:::
the

::::::::
radiative

::::::
transfer

::::::::
equation.

::
A

:::::::
detailed

:::::::::
description

::
of

:::
the

::::::::::
discrepancy

::
is

:::::::
provided

::
in

:
Yuan

et al. (2017).
:::::::
Briefly,

::::
EDR

:::::
(and

:::
the Sellers 1985

:::::
model

::::
from

::::::
which

::::
EDR

::
is
:::::::
derived)

:::::::
defines

:::::
direct

:::::::
radiation

::::::::::
backscatter

::
as

::
a

:::::::
function

::
of

:::
the

:::::::::::::
single-scattering

::::::
albedo

::::::::
(equation

::::
24),

:::::
which

::
in

::::
turn

::
is

:
a
::::::::::
challenging

::::::
integral

::::::::
involving

:::
the

:::
leaf

:::::::::
scattering

:::::
phase

:::::::
function

:::
and

:::
leaf

::::::::
projected

::::
area

:::::::
function

::::::::
(equation

::::
25).

::::
The

::::::::
analytical

:::::::
solution

::
to

:::
this

:::::::
integral

::
in

::::
EDR

::::::::
(equation

:::
28)

:::::::
assumes

::
a

::::::
uniform

:::::::::
scattering

:::::
phase

::::::::
function,

:::::
which

::
is

:::::::::
appropriate

:::
for

:::::
point

::::::::
scatterers

:::
but

::::
less

::
so

:::
for

:::::::::
horizontal

:::::::
surfaces

:::
like

::::::
leaves.

::::
The550

:::::::
practical

:::::::::::
consequence

::
of

:::
this

:::::::::
assumption

::
is
::
a

::::
lower

:::::
value

::
of

:::
the

:::::
direct

::::::::
radiation

:::::::::
backscatter

:::
and

::::::::
therefore

:
a
:::::
lower

::::::
albedo,

::::::
which

:
is
:::::::::
consistent

::::
with

:::
the

::::::
results

::
of

:::
our

:::::::::
sensitivity

:::::::
analysis.

::::
This

:::::::::::::
underestimation

:::
of

:::::
albedo

:::::::::
described

:::::
above

::::
may

:::
also

::::
help

:::::::
explain

::
the

:::::::::::
edge-hitting

:::::::
behavior

::
in
::::
our

:::::::
posterior

:::::::::::
distributions

::::::
(Figure

:::
3)

::
as

::::
well

::
as

:::
the

::::::::
relatively

::::
low

:::::::
accuracy

:::
of

:::
our

::::
LAI

::::::::
estimates

::::::
(Figure

:::
7).

::::::::::
Specifically,

:::
our

:::::
EDR

:::::::::
calibration

::::
may

::
be

:::::
trying

::
to

::::::::::
compensate

:::
for

:::::::::::::
underestimated

::::::
albedos

:::
via

::
a
:::::::
tendency

::
to
::::::
prefer

:::::
higher

::::::::
effective

:::
LAI

::::::
values

::::::
(which

::::::
results

::
in

::::::
higher

:::::
values

::
of

:::
the

::::
leaf

:::::::
biomass

::::::::
allometry

::::
and

::::::::
clumping

:::::
factor

:::
for

::::
some

::::::
PFTs;555

:::
e.g.,

:::::
early

:::
and

::::
mid

::::::::
hardwood

::::
and

:::::::
northern

::::
pine

::
in

::::::
Figure

::
3)

:::
and

:::::
more

::::::::
horizontal

::::
leaf

::::::::::
distributions

::::
(i.e.,

::::::
higher

::::
leaf

:::::::::
orientation

:::::
factor;

::::
e.g.,

:::
late

:::::::::
hardwood

::
in

::::::
Figure

::
3),

::::
both

:::
of

:::::
which

:::::::
increase

::::::
albedo

:::::::
(Figures

::::::::
A1–A3).

:::::::::
Meanwhile,

:::
the

:::::
SAIL

::::::::
definition

:::
of

:::::
direct

:::::::::
backscatter

::
is

:
a
:::::
more

::::::
simple

:::::::
function

::
of

:::
leaf

:::::::::
scattering,

:::
leaf

:::::
angle

::::::::::
distribution,

::::
and

::::::
canopy

::::::
optical

:::::
depth

:::
that

::::
also

:::::::
produces

::
a

::::
more

:::::::
accurate

::::::
albedo

:::::::
estimate

:
(Yuan et al., 2017)

:
.
:::::
Given

::::
that

:::::::::::::
underestimating

::::::
albedo

:::
can

::::
have

:::::::::
significant

::::::::::::
consequences

:::
for

:::
the

::::::::::
biological,

:::::::::
ecological,

::::
and

:::::::
physical

::::::::::
predictions

::
of

:::::
ED2 6)(Viskari et al., 2019)

:
,560

:::::::::::
incorporating

:::
this

:::
fix

:::
into

:::
the

::::
ED2

:::::::
canopy

::::
RTM

::
is
:::
an

::::::::
important

:::::
future

::::::::
direction

::
of

:::
our

:::::
work.

::::::::
However,

:::::
doing

:::
so

::
is

::::::
outside

:::
the

:::::
scope

::
of

:::
this

:::::
work

:::::::
because

:
it
::::::
would

::::::
require

::::::::::
propagating

:::
the

:::::::
different

::::::::::
coefficients

:::::::
through

:::
the

:::::::
complex,

:::::::::::::::::::
multiple-canopy-layer

::::::
solution

:::
of

::::
EDR

:::::::
(Section

::::::::
2.1.2)—a

:::::::::
non-trivial

::::
task.

:

:
A
:::::::::
significant

::::::
caveat

::
to

:::
the

::::::
broader

::::::::::
application

::
of

:::
our

::::::::
approach

::
is

:::
that

:::::
there

::
is

:
a
:::::
subtle

:::
but

:::::::::
significant

:::::::::
difference

:::::::
between

:::
the

:::::::
physical

:::::::
quantity

:::::
EDR

::::::
predicts

::::
and

:::
the

:::::::::
quantities

:::::::
typically

:::::::::
measured

::
by

::::::
optical

::::::
remote

::::::::
sensing.

::::::::::
Specifically,

:::::
EDR

:::::::
predicts565
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::
the

::::::::::::
hemispherical

::::::::::::::
reflectance—the

::::
ratio

::
of
:::::

total
:::::::
radiation

:::::::
leaving

:::
the

::::::
surface

::
to

:::
the

:::::
total

:::::::
radiation

:::::::
incident

:::::
upon

:::
the

:::::::
surface,

::::::::
integrated

::::
over

:::
all

:::::::
viewing

::::::
angles

:::::
(a.k.a,

:::::::::
“blue-sky

::::::::
albedo”).

:::
On

:::
the

:::::
other

:::::
hand,

::::::
optical

::::::
remote

:::::::
sensing

::::::::
platforms

::::::::
typically

:::::::
measure

:::
the

:::::::::
directional

:::::::::
reflectance

::::::::::
factor—the

::::
ratio

::
of
::::::

actual
::::::::
radiation

:::::::
reflected

:::
by

:
a
:::::::
surface

::
to

:::
the

::::::::
radiation

:::::::
reflected

:::::
from

::
an

::::
ideal

::::::
diffuse

:::::::::
scattering

::::::
source

::::
(e.g.,

::
a

:::::::::
Spectralon

:::::::::
calibration

::::::
panel)

::::::
subject

::
to

:::
the

:::::
same

::::::::::
illumination,

:::
in

:
a
:::::::
specific

:::::::
viewing

:::::::
direction

:
(Schaepman-Strub et al., 2006)

:
.
:::::
These

:::
two

::::::::
quantities

:::
are

::::::::::
numerically

:::::::::
equivalent

::::
only

::
for

:::::
ideal

:::::::::
Lambertian

:::::::
surfaces

:::
or,570

::
for

::::::::::::::
non-Lambertian

:::::::
surfaces,

:::::
under

::::::
specific

:::::::::
sun-sensor

::::::::::
geometries.

::::::::
However,

:::::::::
vegetation

::::::::::::
canopies—the

::::
focus

::
of

::::
this

:::::::::
study—are

:::::
known

::
to
:::::::

exhibit
:::::::::
reflectance

::::
with

::::
very

:::::
strong

:::::::
angular

:::::::::::
dependence,

::
so

:
a
::::::::::
comparison

::
of

:::::::
canopy

:::::::::::
hemispherical

::::::::::
reflectance

::::
with

:
a
:::::::
remotely

::::::
sensed

:::::::::
directional

::::::::::
reflectance

:::::
factor

::
is

::::::
invalid.

:::
Our

:::::::
specific

:::::::
analysis

::
is

:::::
valid

::::::::::
because—as

:::::::::
described

::
in

:::
the

::::::::
Methods

:::::::
(Section

::::::::
2.3)—we

:::::
used

:::::::
AVIRIS

::::
data

:::
that

:::::
were

::::
also

::::::::::::::
BRDF-corrected,

:::::::
whereby

:::
the

:::::::::
directional

:::::::::
reflectance

::::::::
estimates

::::
from

:::
the

::::::::::
atmospheric

:::::::::
correction

::::::
process

:::::
were

::::::
further

::::::::
converted575

::
to

::::::::
estimates

::
of

::::::::::::
hemispherical

:::::::::
reflectance

:::
via

:
a
::::::::::
polynomial

::::::::::::
approximation

:::
of

:::
the

:::::::
Ross-Li

:::::::::::
semiempirical

::::::
BRDF

::::::
model (Lucht

et al., 2000).
::::::::

Another
::::::
dataset

::::
that

:::::
would

:::::
have

::::
been

:::::
valid

:::
for

:::
our

:::::::
analysis

::::::
(albeit,

::::
one

::::
with

:::::
much

:::::
lower

::::::
spatial

::::
and

:::::::
spectral

:::::::::
resolution)

:
is
:::
the

:::::::
MODIS

::::::
albedo

:::::::
product

:::::::::
(MOD43),

:::::
which

:::::
takes

::::::::
advantage

::
of

:::
the

:::::::
angular

::::::::
sampling

::
of

:::
the

:::::::
MODIS

:::::::::
instrument

::
to

:::::::
quantify

:::
the

::::::
surface

::::::
BRDF

::::::::::::
characteristics

:::
and

::::::::
therefore

:::::
more

:::::::
precisely

::::::::
estimate

:::
the

:::::
albedo

:
(Wang et al., 2004; Schaaf and

Wang, 2015)
:
.
::::::::
However,

:::
our

::::::::
approach

:::
as

::::::::
described

::::
here

::::::
would

:::
not

::
be

:::::
valid

:::
for

:::
the

::::::
surface

::::::::::
reflectance

:::::::
products

::::::::
produced

:::
by580

:::::::::::
nadir-viewing

::::::::::
instruments

::::
such

::
as

::::::::
Landsat,

:::::::::
Sentinel-2,

::
or

::::
most

:::::::
airborne

:::::::::
platforms,

::
at

::::
least

:::::::
without

::::::::
additional

:::::::::
processing

:::::
steps

::
on

:::
the

:::::
data,

::
or,

:::::::::
preferably,

:::::::::::
modification

::
of

:::
the

::::::::::
underlying

:::::::
radiative

:::::::
transfer

::::::
models

:::
to

:::::
allow

::
for

::::
the

::::::::
prediction

:::
of

:::::::::
directional

:::::::::
reflectance.

::::::::::
Fortunately,

:::
the

:::::::::::
assumptions

:::
and

:::::::::
parameters

::::
that

::::::::
comprise

:::::::::
two-stream

::::::::
radiative

::::::
transfer

:::::::
models

:::
like

:::::
EDR

:::
and

:::
its

:::::
parent

::::::
model (Sellers, 1985)

:::
are

::::::
readily

::::::::
adaptable

::
to

:::::::::
prediction

::
of

:::::::::
directional

::::::::::
reflectance.

:::
For

::::::::
example,

:::
the

:::::
SAIL

:::::
model

:
(Ver-

hoef, 1984; Verhoef and Bach, 2007)
:::::::
—which

:::::::
predicts

::::
both

::::::::::::
hemispherical

::::
and

:::::::::
directional

::::::::::
reflectance,

:::
and

::::::
which

:::
has

::
a

::::
long585

::::::
history

::
of

::::::::
successful

::::::::::
application

::
to

::::::
remote

:::::::::::::
sensing—makes

:::
the

:::::
same

::::::
general

::::::::::
assumptions

::
as
:::::
EDR

:::
and

::::
even

::::::
shares

:::::
many

::
of

:::
the

:::::::::
underlying

:::::::::
coefficients

:
(Yuan et al., 2017)

:
.
:::::::::::
Alternatively,

::::
land

::::::
surface

::::::
models

:::
can

::::
take

::::::::
advantage

::
of
::::::
recent

:::::::
advances

::
in
::::::::
radiative

::::::
transfer

::::::
theory

::
to

:::::::
improve

::::
their

::::::::
accuracy

:::::::
without

:::::::::
significant

::::::::::::
computational

::::::
penalty

:
(e.g., Hogan et al., 2018). Moreover, the

lower altitude and narrow field-of-view of the AVIRIS-Classic instrument used in this study mean that all observer zenith angles

are effectively nadir orvery close, Finally, multiple versions of the two-stream approximation developed over the last 20 years590

have been validated against reflectance from more complex 3D ray-tracing simulations and remotely sensed observations, and

none have identified treatment of angular effects as the primary source of uncertainty . We therefore conclude that additional

computational and conceptual challenges (as well as parameter uncertainties) associated with treatment of angular effects in

similar models are unwarranted.

A related issue is the missing or simplistic treatment of two- and three-dimensional heterogeneity in canopy structure in595

EDR. For one, the treatment of leaves as infinitely small elements randomly distributed through the canopy space—a common

feature of all two-stream approximations—neglects complex realities of the canopy light environment such as gaps and self-

shading. In EDR, self-shading is handled via the clumping factor parameter, which functions as a scalar correction on the leaf

area index (Equation 20). A key feature of EDR design is its representation of multiple co-existing plant cohorts competing

for light within a single patch; however, horizontal heterogeneity and competition between these cohorts is ignored. Improved600
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representation of lateral energy transfer can improve the accuracy of simulations of the canopy light environment, and recent

theoretical advances show that this can be accomplished without a significant loss in computational performance (Hogan et al.,

2018). Treatment of horizontal competition also plays an important role in the outcomes of competition for light between

different plants (Fisher et al., 2018). A useful avenue for development and parameterization of these models is comparison to

more sophisticated and realistic three-dimensional representations of radiative transfer (e.g. Widlowski et al., 2007), which are605

themselves too computationally demanding to be coupled to ecosystem models, but from which empirical distributions and

response functions could be derived and against which the behavior of simpler models could be evaluated.

5 Conclusions

Remote sensing observations are unrivaled in their spatial completeness and extent, notably extending to regions like the tropics

and high latitudes that are relatively undersampled but have a disproportionate impact on the global climate system (Schimel610

et al., 2015) and/or global biodiversity (Jetz et al., 2016). At the same time, satellite time series provide multidecadal records

with relatively high temporal frequency, which have tremendous utility for calibrating model projections of past ecological

dynamics (Kennedy et al., 2014; Pasquarella et al., 2016). Used in combination with other emerging data sources, including

global trait databases and eddy covariance measurements, remote sensing can be a transformative force in ecosystem ecology.

In this paper, we showed that using a vegetation model to directly simulate surface reflectance is a promising approach for615

calibrating and validating models against remotely sensed observations. To do this, we modified the ED2 dynamic vegetation

model to predict full-range hyperspectral
:::::::::::
hemispherical

:
surface reflectance and then calibrated this modified model against

airborne,
::::::::::::::
BRDF-corrected

:
imaging spectroscopy data. The calibration successfully constrained the distributions of model pa-

rameters related to canopy structure and leaf biogeochemistry for five plant functional types for five plant functional types

characteristic of temperate forests of the northeastern United States. The calibrated model was able to accurately reproduce620

surface reflectance and leaf area index
:::::::
observed

::::::
surface

:::::::::
reflectance for sites with highly varied forest composition and structure

, using a single common set of parameters (i.e., not site-specific parameters). Although our study focused only on the
::::::::
However,

::
the

:::::::::
calibrated

:::::
model

::::::::
predicted

::::
leaf

:::
area

:::::
index

::::::
values

:::
that

:::
did

:::
not

:::::
agree

::::
well

::::
with

::::::::::
observations

::::
and

:::
had

::::::::
parameter

::::::::
estimates

::::
that

:::::::
exhibited

:::::::::::
edge-hitting

::::::::
behavior,

::::
both

::
of

:::::
which

:::::::
suggest

::::::::
structural

::::::
issues

::
in

:::
the

::::::
model.

::::::::::
Comparison

::::::
against

::
a
::::::
canopy

::::::::
radiative

::::::
transfer

::::::
model

:::::::::
commonly

::::
used

::
in
::::

the
::::::
remote

::::::
sensing

::::::::::
community

:
(PRO4SAIL, Verhoef and Bach, 2007)

::::::::
suggested

:::
that

::::
our625

:::::
model

::::
may

::
be

::::::::::::
systematically

:::::::::::::
underpredicting

::::::
surface

:::::::
albedo.

:::::
Given

:::
the

:::::
direct

:::
role

::::::
albedo

:::::
plays

::
in

:::
the

::::::
canopy

::::
light

:::
and

:::::::
thermal

::::::::::
environment

::
in ED2model, the ,

::::
this

:::
bias

:::::
could

::::
have

:::::::::
significant

::::::::::
downstream

:::::::::::
consequences

:::
for

::::
ED2

:::::::::
predictions

:::
of

:::::::::::
physiological

:::
and

:::::::::
ecological

::::::::
processes.

::::
We

:::::::
therefore

::::::::::
recommend

:::::::::
structural

:::::::
changes

::
to

:::
the

::::
ED2

::::::
canopy

::::::::
radiative

:::::::
transfer

:::::
model

::
to
:::::::
resolve

:::
this

::::
bias,

:::
and

::::::::::
recommend

:::::::::
calibrating

:::
the

:::::::
updated

::::::
model

::::::
against

:::::::
remotely

::::::
sensed

::::::
surface

::::::::::
reflectance,

::
as

:::
we

:::::::::::
demonstrated

:::::
here.

:::
We

:::
note

::::
that

:::
the basic structure and assumptions of the ED2 canopy radiative transfer scheme are shared by many other vegeta-630

tion models, so we expect that our approach has high transferability
:::
both

:::
this

:::::
issue

:::
and

:::
our

:::::::::::::::
recommendations

:::
for

:::::::
resolving

::
it

:::
are

:::::
highly

::::::::::
transferable

:
within the vegetation modeling community.

::::
More

:::::::::
generally,

::
we

::::::::::
recommend

:::
the

:::::::::::
development

::
of

:::::::::
additional
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::::::::::
“observation

:::::::::
operators”

::::::
similar

::
to
::::
ours

:::
for

:::::
other

::::::
classes

::
of

:::::::
remote

::::::
sensing

:::::
data,

::::
such

::
as

:::::::
thermal,

::::::::::
microwave,

::::
and

:::::::
LiDAR,

::
in

::::
ED2

:::
and

:::::
other

:::::::
dynamic

:::::::::
vegetation

::::::
models

::
to

:::::
allow

:::::
these

::::::
models

::
to

::::
take

:::
full

:::::::::
advantage

::
of

::::::
remote

::::::
sensing

:::::::::::
observations.

:

Code and data availability. All of the code and data required to reproduce this study are publicly available via an Open Science Framework635

(OSF) project, located at https://osf.io/b6umf/.

Appendix A: Supplementary figures

Figure A1. Site-specific relative soil moisture
:::::::

Sensitivity
::
of

::::
EDR

::::::::
predicted

::::::::::
hemispherical

::::::::
reflectance

::
to
::::

true
:::
leaf

:::
area

:::::
index (0 = dry, 1 =

wet
:::
LAI)posterior estimates. Sites are sorted in order

::::
These

:::::::::
simulations

:::::
assume

::
a
::::::::::
single-cohort

:::::
canopy

::::
with

:::::::
effective

::::::
number of increasing

weighted evergreen
:::::::
mesophyll

:::::
layers

:::::::
N = 1.4,

::::
total

:::::::::
chlorophyll

::::::
content

::::::::
Cab= 40,

::::
total

::::::::
carotenoid

::::::
content

::::::::
Car = 10,

:::
leaf

:::::
water

::::::
content

:::::::::
Cw = 0.01,

:::
leaf

:::
dry

:::::
matter

::::::
content

::::::::::
Cm= 0.01,

:::::::
clumping

:::::
factor

:::::
q = 1,

::::
leaf

::::::::
orientation

:::::
factor

:::::
χ= 0,

::::::::::::
cos(θs) = 0.85,

::::
and

:::
soil

:::::::
moisture

fraction
::::::
ψ = 0.5.
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Figure A2.
::::
Same

::
as

:::::
above

::
but

::::
with

::::
LAI

::::
fixed

:
to
::
3
:::
and

::::::
varying

:::::::
clumping

:::::
factor

:::
(q).
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Figure A3.
::::
Same

::
as

:::::
above,

:::
but

:::::
instead

::::::
varying

:::
leaf

:::::::::
orientation

::::
factor

::::
(χ).
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Figure A4.
::::::::::
Site-specific

:::::
relative

:::
soil

:::::::
moisture

::
(0

:
=
:::
dry,

::
1

:
=
:::
wet)

:::::::
posterior

::::::::
estimates.

::::
Sites

::
are

:::::
sorted

::
in

::::
order

::
of

:::::::
increasing

:::::::
weighted

::::::::
evergreen

::::::
fraction.

32



Figure A5. Comparison between AVIRIS observed (black) and surface reflectance for each site used in the calibration. Sites are sorted

in order of decreasing mean difference between observed and EDR predicted reflectance (largest underestimates first, largest overestimates

last).
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Mean reflectance bias (EDR predicted - observed) for each by spectral region and dominant plant functional type (PFT). PFTs are

abbreviated as follows: EH:Hardwood; MH:Mid Hardwood; LH:Hardwood; NP:Pine; LC:conifer

Figure A6. Mean reflectance bias (EDR predicted -
:
−

:
observed) for each by spectral region and dominant plant functional type (PFT)

as a function of site stem density. PFTs are abbreviated as follows: EH:Early Hardwood; MH:North Mid Hardwood; LH:Late Hardwood;

NP:Northern Pine; LC:Late conifer
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Figure A7. EDR predicted vs. observed spectra and species composition for the first quartile of sites by DBH.
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Figure A8. As above, but for the second quartile of sites by DBH.
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Figure A9. As above, but for the third quartile of sites by DBH.
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Figure A10. As above, but for the fourth quartile of sites by DBH.
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Figure A11. As above, but for sites where Early Hardwood trees had the largest mean DBH.
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Figure A12. As above, but for sites where Mid Hardwood trees had the largest mean DBH.
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Figure A13. As above, but for sites where Late Hardwood trees had the largest mean DBH.
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Figure A14. As above, but for sites where Pine trees had the largest mean DBH.
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Figure A15. As above, but for sites where Late Conifer trees had the largest mean DBH.
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Figure A16.
::::
Same

::
as

:::::
Figure

:::
10,

::
but

::::::
varying

::::
leaf

:::
area

::::
index

:::::
(LAI)

:::
and

:::::
fixing

::::::::::::
cos(θs) = 0.85,

:
a
:::::
typical

:::::
value

::
for

:::
our

:::::
study.
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Figure A17.
:::::::
Posterior

::::::::
correlation

:::::
matrix

:::
for

:::::::::
PFT-specific

:::::::::
parameters.

::::
Note

:::
that

::::
only

:::::::::
correlations

::::::
among

::::::::
parameters

:::::
within

:::
the

::::
same

::::
PFT

::
are

:::::::::
shown—the

:::
full

:::
106

::
×
:::
106

::::::::::
dimensional

::::::::
correlation

:::::
matrix

::
is

::
far

:::
too

::::
large

::
to

:::::
display

::
in
:::
this

::::::
format.
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