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General Comments (overall quality): This manuscript uses remotely-

sensed surface reflectance observations to calibrate/constrain a series of
ecosystem parameters from the ED2-PROSPECT (EDR) model charac-

terizing the land surface at 54 forested sites related to leaf biochemistry, FER e e
canopy radiative transfer, and soil characteristics. An important innovation —
is the introduction of the radiative transfer model PROSPECT to the bio- Discussion paper

sphere model ED2 to provide an improved spectrally resolved simulation
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of surface reflectance. This is done, in part, to bring the observed surface
reflectance closer to what the model actually predicts, helping to reduce the
impact of observational uncertainty as well as more effectively constraining
multiple components of the model. The authors find that through the as-
similation of surface reflectance EDR can provide better simulations of the
surface reflectance spectra and leaf area. The findings suggest that this
approach could be used to better constrain surface energy balance as well
as overall ecosystem functioning. Given many other ecosystem models in-
clude a two-stream radiative approach they contend their results should be
widely applicable.

Scientific Questions/Issues: The authors bring up the issue of equifinality in
the introduction, which presents a challenge for this application in that the
surface reflectance can be a function of leaf biochemical properties, leaf
structure, and canopy and soil radiative transfer characteristics. To some
degree, equifinality was reduced in that the prior parameter distributions for
biochemical leaf properties were tightly restricted, and limited to the extent
the surface reflectance observations could influence them. In contrast the
canopy radiative transfer parameters and LAl (through SLA) were simulta-
neously being adjusted by the optimization. Was hoping the authors could
comment more about how equifinality of the surface reflectance influenced
their results.

We agree that the topic of equifinality in the relationship between surface reflectance
and canopy radiative transfer is worth additional discussion. We agree with the re-
viewer’s assessment that equifinality was reduced by using informative priors for the
leaf parameters. In addition, although not demonstrated here, another way to reduce
equifinality is through the ecophysiological mechanisms embedded in the model itself
— i.e., some combinations of model parameters and states that are consistent with a
given surface reflectance may be excluded because they imply ecologically unrealistic

C2

Printer-friendly version

Discussion paper


https://gmd.copernicus.org/preprints/
https://gmd.copernicus.org/preprints/gmd-2020-324/gmd-2020-324-AC1-print.pdf
https://gmd.copernicus.org/preprints/gmd-2020-324
http://creativecommons.org/licenses/by/3.0/

states in previous time steps or result in ecologically unrealistic outcomes in future time
steps. Incorporating this dynamic aspect is an important future direction of this study.

In our revision, we added the following text to the discussion:

Nevertheless, our analysis echoed some known challenges in canopy radiative trans-
fer modeling. One challenge is equifinality in the contributions of leaf biochemistry, leaf
morphology, and different aspects of canopy structure to canopy albedo, which means
that multiple variable and parameter combinations can produce very similar canopy
albedo responses. We mitigated the equifinality between leaf traits and canopy struc-
ture by using informative priors on leaf traits from an independent data source (Shiklo-
manov 2018). However, there is additional equifinality in the effects of the EDR canopy
structure parameters. For example, because the effective LAl used in EDR’s actual ra-
diative transfer calculations is defined as the product of “true” LAl and clumping factor,
and because LAl is, in turn, derived from multiple parameters (leaf biomass allometry,
specific leaf area), these parameters collectively cannot be independently determined
from reflectance data alone. At the same time, increasing the leaf orientation factor
(more horizontal, or “planophile”, leaf orientation) has a similar (although not identical)
effect to increasing LAl and clumping factor—namely, increasing canopy reflectance,
especially in the near-infrared. Collectively, these issues may help explain some of the
edge-hitting behavior (parameter distributions clustered at the ends of the distribution)
observed in our posterior estimates, and some of the bias in our LAl estimates.

That being said, one major advantage of the Bayesian calibration approach is that its
output is a joint posterior distribution that includes not only fully quantified uncertainties
for each parameter but also the variance-covariance matrix of each parameter. Equi-
finality in parameters would manifest as strong pairwise correlation between param-
eters in the posterior distribution. Examining this correlation matrix (attached Figure
1) shows that there are some parameter pairs with strong correlations, such as the
positive correlations between leaf and wood allometries for all PFTs except northern
pine, and the hypothesized negative correlation between the leaf allometry (LAl) and
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clumping factor, which was only observed for the early-successional hardwoods and
northern pines. However, these correlations mostly do not occur in the parameters that
exhibited strong edge-hitting behavior—namely, clumping and orientation factors for
mid- and late-successional hardwood PFTs. Strong correlations also occurred among
some of the PROSPECT parameters, and between PROSPECT and structural param-
eters, but contributed little to equifinality because the strong constraints on PROSPECT
led to overall small covariance terms. Finally, because our calibration captured all of
these covariances the presence of moderate equifinality did not preclude ecologically
meaningful parameter constraints or accurate predictions because these covariances
are being propagated into predictions. This is directly analogous to how a linear re-
gression can have a tight confidence interval, despite high correlations between the
slope and intercept, with that equifinality driving the characteristic hourglass shape of
a regression confidence interval.

As a follow up question to the equifinality question above — ED2 is a dy-
namic vegetation model with the ability to simulate competition amongst
cohorts thus providing a simulation of co-existing dominant PFTs. It wasn'’t
clear how well the simulation of cohort competition influenced the final dis-
tribution of PFTs and to what extent this matched the site level observed
vegetation state. Given that the parameter optimization was PFT specific,
the precise vegetation PFT distribution could have a large impact. Was the
PFT distribution prescribed?

In this study, the vegetation composition at each site (including the PFT distribution
and size-age structure) was prescribed in detail based on data from the NASA Forest
Forest Functional Types (FFT) field campaign. In our revision, we have clarified this
point in the first paragraph of “Site and data description”, and briefly revisited it in the
results in the context of future directions involving dynamic model simulations where
the PFT distribution is predicted with some uncertainty.
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Was there any attempt to withhold some site reflectance data and apply
the calibrated model parameters at those sites? It seems the optimized
surface reflectance simulations were performed at sites that were already
calibrated. The fact that the authors performed an across-site joint assim-
ilation may in part account for this, but was interested how the calibrated
parameters would perform at sites outside the calibration sites.

We acknowledge that cross-validation or out-of-sample validation are useful tests of
model performance, and in our revision, we recommend these activities as future di-
rections for this work. However as the reviewer points out, because our calibration
was joint across all sites, we did not feel that a separate validation at other sites not
used in the calibration was necessary. With 54 sites in our calibration, any single site
represents <2% of the data, and for a joint calibration without site random effects, we
have every reason to believe that the calibration is not overfitting to any individual site;
trying to fit any one site well would cause others to do worse (especially given the large
observed variability in forest structure) unless the EDR model structure was reason-
able and the parameters chosen were genuinely good choices. We have added this
information to our revised discussion.

It is known that radiative transfer models are challenged in simulating ev-
ergreen species in part because of the irregular and open space canopy
structure. Many of the figures in the supplement demonstrate stronger bi-
ases in simulated surface reflectance exist for evergreen sites as compared
to deciduous. Was hoping the authors could comment on this, and recom-

mendations for getting around this. Printer-friendly version

The reviewer brings up a great point about conifer canopies historically being harder Discussion paper
to capture. Although some conifer-dominated sites did demonstrate significant biases
in reflectance predictions, our analysis of reflectance bias by composition, structure,
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and spectral region (Figures A3 and A4) shows that these biases are not systematic
(though they may drive greater predictive variance). In our revision, we describe this
analysis in more detail in the Methods and Results.

Whereas leaf level biochemistry related parameters were well constrained
by the priors, many of the radiative transfer posterior parameters seemed to
be edge hitting parameters. To what extent do the authors believe this be-
havior was caused from structural error in canopy radiation transfer and/or
mismatch caused in part from radiation directionality differences between
the simulated and observed canopy reflectance? The authors devote a
considerable amount of general discussion regarding this topic, but don’t
directly address how this might have effected their own results.

In our revision, we added as appendices a parameter sensitivity analysis of EDR (at-
tached Figure 2) and an analysis comparing EDR to PRO4SAIL, a similar 1D two-
stream canopy radiative transfer model popular in the remote sensing community.
These analyses point to two likely explanations for the edge-hitting behavior of some
parameters. The first—described above—is equifinality in the effects of several struc-
tural parameters on LAl and canopy albedo.

The second explanation is a structural issue in the EDR model that leads it to sys-
tematically underestimate albedo, particularly for low solar zenith angles (sun directly
overhead). A detailed description of the issue is provided in Yuan et al. (2017). Briefly,
EDR (and the Sellers, 1985, model from which EDR is derived) defines direct radiation
backscatter as a function of the single-scattering albedo, which in turn is an integral in-
volving the leaf scattering phase function and leaf projected area function. The Sellers
(1985) analytical solution to this integral assumes a uniform scattering phase function,
which is appropriate for point scatterers but less so for horizontal surfaces like leaves.
The practical consequence of this assumption is a lower value of the direct radiation
backscatter and therefore a tendency to underestimate albedo, which is consistent with
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the results of our comparison of EDR and SAIL. Our EDR calibration is likely to be com-
pensating for this behavior via a preference for higher effective LAl values (i.e., higher
values of leaf biomass allometry and clumping factor) and more horizontal leaf distri-
butions (i.e., higher leaf orientation factor), both of which increase albedo. We have
added this information to our discussion.

The manuscript begins by justifying the inclusion of the PROSPECT model
in to ED2 to bring the model closer to the observations, to, in part help re-
duce the uncertainty of the observation that are assimilated into EDR. More
explanation on how the surface reflectance observational uncertainty was
quantified here, and what it represents, and to what extent overconfidence
in uncertainty may have led to the posterior edge hitting parameters.

As shown in equation 26, observation error in the reflectance data was not estimated
a priori based on the instrument itself, but was modeled as the residual error between
the model and the data, analogous to what is done for any linear or nonlinear regres-
sion model. A key difference, however, is that the error model accounts for the known
heteroskedasticity in spectral data (i.e., the size of the variance increases with the
magnitude of the reflectance). In terms of random spectral errors, there is no reason
to expect this variance to be overconfident for inferences made on these landscapes,
especially as the study sites were not all imaged on the same day under the same at-
mospheric conditions, though we’d agree that one might not want to apply this variance
to entirely different ecoregions. Furthermore, because the variance slope and intercept
are fit parameters, whose parametric uncertainty is being quantified and propagated,
this makes it even less likely that our uncertainty estimate is overconfident. That said,
the current approach does not formally account for any possible systematic errors in
the observations, which could have a more serious impact on inferences. However, we
would note that we are unaware of any derived data products that account for these
systematic errors either. Furthermore, in addition to the same uncertainties about
Cc7
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reflectance that we face, those products additionally contain numerous uncertainties
about model structure, parameters, and covariate data whose uncertainties are rarely
fully propagated, meaning that the alternative approach (calibration to derived data
products) is more likely to result in overconfidence in uncertainties than the approach
taken here. Along these lines we added a line to the Discussion about how accounting
for systematic data errors would be a useful future direction.

That said, we feel it is highly unlikely that overconfidence in surface reflectance es-
timates contributed to the edge-hitting behavior of some of our posteriors. Random
errors would not result in a systematic parameter bias and, given the long history of
the instrument and maturity of atmospheric correction approaches, any systematic er-
rors in AVIRIS are likely to be quite small relative to the structural uncertainty in ED2’s
RTM (i.e., biologically implausible parameters should not be necessary to capture ob-
servational data biases of the magnitude likely to be present).

Detailed Comments: Abstract and manuscript in general: Need more dis-
cussion on what we hope to gain by this. We don’t really care about surface
reflectance (although energy balance is important), but we do care about
how LAI, chlorophyll, pigments and water status influence ecosystem func-
tioning through carbon and water exchange. | think this needs to be em-
phasized more, and provide evidence that this sort of setup can accomplish
this.

We agree that additional emphasis on the implications of this work is warranted. In our
revisions, we emphasize several important implications in the abstract, introduction,
and discussion.

First, as you say, energy balance is important, and the contribution of vegetation to land

surface albedo is a critical mechanism by which vegetation influences regional and

global climate (Bonan 2008). Therefore, ensuring the accuracy of model simulations of
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albedo, including its sensitivity to vegetation structure and composition, is essential to
accurately projecting the effects of climate- and land use-driven changes to terrestrial
ecosystems on future climate.

Second, canopy radiative transfer directly affects many physiological, ecological, and
physical processes included in complex demographically-enabled vegetation models
like ED2 (Viskari et al. 2019). Light availability and absorption is a first-order control on
photosynthesis, and ability to survive under different light levels is an essential compo-
nent of a tree species’ position in forest succession. Meanwhile, temperature—which
is strongly influenced by albedo—directly affects the rates of both enzyme-kinetic phys-
iological processes and evaporation.

Finally, ED2 and similar models are highly sensitive to many of the leaf traits con-
strained by this analysis (e.g., Dietze et al. 2014; Raczka et al. 2018; Shiklomanov
et al. 2020). Given the large variability of these traits through space and time, remote
sensing is an essential data source for model parameterization, and our work provides
a useful approach for doing so.

Line 1: Remove ‘derived’. The fact that they are ‘data products’ and not
‘observations’ gets across the point.

While we agree that “data products” should imply a difference from observations, treat-
ment of remote sensing data products as true observations without accounting for un-
certainties or biases is widespread in the Earth science community. Therefore, we
think it is important to emphasize that these products are derived.

Line 5: ‘compared against airborne and satellite data’ Technically, this is
still data and not observations in that even reflectance data requires RTM
models, | believe. But it is more direct relationship
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We agree that additional nuance is required here (especially when also considering
reviewer T. Quaife’s comments). Therefore, we have revised this section to capture the
fact that although these data are still derived (processing steps include atmospheric
correction and orthorectification), they rely on fewer assumptions (especially about the
land surface), have fewer processing steps, and therefore are closer to observations.

Line 23: add ‘to’ calibrate or constrain
We have revised this accordingly.

Line 25: | know exactly what you mean by ‘constrain’, but could you use
‘calibrate’ or ‘inform’ in this context?

We have replaced “constrain” with “inform”.

Line 32: “More sophisticated approaches for estimating vegetation prop-
erties based on physically-based radiative transfer models face issues of
equifinality, whereby many different combinations of vegetation and soil
properties can ultimately produce the same modeled surface reflectance
(Combal et al., 2003; Lewis and 35 Disney, 2007).” This is important | think
—and raises a key point for this analysis — is there not equifinality when try-
ing to constrain leaf structure vs. leaf status? | would think equifinality could
be a problem here, and | think you need to acknowledge this and how you
might address this — Strong priors? Demonstration that surface reflectance
can tease apart these two things. ..

Please see our above response about equifinality.
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Line 52: Awkward topic sentence. Simplify “Some land surface models
already include there own ...that allowd for a more direct comparison to
remotely sensed surface reflectance.”

We have revised this sentence according to the reviewer’s suggestion.

Line 57:"Canopy radiative transfer plays a particularly important role in the
current generation of demographically-enabled dynamic vegetation mod-
els, where differences in canopy radiative transfer representations and
parametrizations have major impacts on predicted community composition
and biogeochemistry (Loew et al., 2014; Fisher et al., 2018; Viskari et al.,
2019).” Seems weird to word it this way. Isn’t it the other way around,
community composition and biogeochemistry impact the RTM?

It is true that composition and structure impacts the RTM, but all of these studies show
that the opposite is true as well! These studies illustrate that because the RTM deter-
mines the overall energy balance of the ecosystem and the distribution of light within
the canopy, RTM formulation and parameters profoundly impact the predicted biogeo-
chemical fluxes and vegetation dynamics. For example, Viskari et al. (2019) show that
uncertainties in canopy RT can cascade and impact a number of associated processes,
including photosynthesis, energy balance, internal competition, and demography. We
have revised the sentences here to more clearly and explicitly convey this idea.

Line 72: “. .. will significantly constrain model parameters related to canopy
structure.” So the goal all along was to constrain canopy structure with
surface reflectance, not necessarily foliar biochemistry? Maybe talk a bit Discussion paper
more about the differences in sensitivity of surface reflectance to canopy

structure vs foliar biochemistry.

C11

Printer-friendly version


https://gmd.copernicus.org/preprints/
https://gmd.copernicus.org/preprints/gmd-2020-324/gmd-2020-324-AC1-print.pdf
https://gmd.copernicus.org/preprints/gmd-2020-324
http://creativecommons.org/licenses/by/3.0/

Our objective was to evaluate which parameters could be constrained. The list of
candidate parameters included parameters related to both structure and biochemistry.
However, we hypothesized that, because of the informative priors on foliar biochem-
istry, the constraint would be relatively greater for canopy structural parameters (as
stated here).

Per our earlier responses, we have included an additional parameter sensitivity anal-
ysis of EDR and discussion thereof. We have also added more text on the issue of
equifinality to the introduction and discussion.

Section 2.3: Can you provide a sense of scale? For example for the 54
sites, what spatial range was the inventory data taken, and what spatial
resolution did AVIRIS cover? Trying to get a feel for spatial mismatch,
etc. Were sites chosen because they were rather homogeneous for cer-
tain PFTs?

In response to this and Reviewer T. Quaife’s comments, we have elaborated on the
methods behind the data used in this analysis. Specifically, each of the 54 sites here
consisted of a 60 x 60 m transect within which forest inventory data were collected.
AVIRIS-Classic data were extracted as the average of a 3x3 pixel array (each pixel is
15-20m, depending on aircraft altitude) centered on the site transect center, resulting in
a single composite spectrum for the 60 x 60 m area. Additional details on the sampling
methodology are described in Singh et al. (2015) and references therein.

Figure 1: Was a little surprised to see many sites so close to Lake Superior.
No issues with interference from nearby water reflectance?

Although sites do appear very close to Lake Superior in the map we provide, all sites
are sufficiently inland (several kilometers) that contributions from water reflectance of
C12
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nearby pixels can safely be assumed to be negligible. In the revision, this figure has
been broken up into two figures

Line 200: Could you provide a bit more explanation of what including
the EDR predicted LAI term within your probability function accomplishes?
EDR response becomes saturated to LAl so is this an artificial way to ac-
count for increased reflectance?

Yes, the LAI penalty in the likelihood function accounts for the saturating effect of in-
creasing LAl on reflectance. This effect is not unique to EDR—rather, it is a well-known
consequence of the exponential extinction of light through a medium, following Beer’s
Law. Therefore, a canopy with an unrealistically high LAl like 15 has virtually the same
reflectance as a canopy with a high but more feasible LAI like 6 (all else being equal),
and therefore a likelihood calculation that does not penalize excessively high LAl values
would consider both outcomes equally likely.

We have added additional text to this effect to the methods, and have added the
attached figure to the supplement demonstrating the saturating effect of LAl on re-
flectance.

Line 227: So, to evaluate the model you compared the EDR-spectra against
the AVIRIS observations at sites that were used to calibrate the model?
Was there any attempt to withhold some site data and apply the calibrated
model at those sites?

As we stated in our main response, because our calibration was joint across all sites,
we did not feel that a separate validation at other sites not used in the calibration was
necessary.

Line 232: Can you quantify what ‘informative’ means
C13
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We have clarified this sentence to say these are “leaf parameters whose prior distri-
butions were already independently constrained by an earlier analysis”. These prior
distributions are shown in Figure 2.

Line 233: | cannot see in figure where PROSPECT N parameter is?

In our experience, labelling PROSPECT’s “N” parameter as such is confusing to read-
ers unfamiliar with PROSPECT because it suggests leaf nitrogen content. Therefore,
we prefer the more explicit name “# mesophyll layers”. We have revised the methods
and results text in a few places to clarify this.

Section 3 Results: Although Figure 2 was very informative, | found the Re-
sults section in general, relatively vague, perhaps some sense of % reduc-
tions in 95% credible interval.

We have revised the results to include more precise statistics, including the suggested
relative reductions in the width of the 95% credible interval. For example, relative to the
prior, posterior credible intervals were 19% to 58% as wide for clumping factor, 14%
to 78% as wide for leaf orientation factor, and 1% to 10% as wide for leaf biomass
allometry.

Figure 2: Hopefully, the authors comment on some of the apparent edge-
hitting parameters specifically related to canopy RTM parameters such as
leaf orientation, canopy clumping and water. | worry that the information
from the relatively strong and defensible leaf biochemistry prior parame-
ters leading to relatively self contained and PFT differentiated posteriors for
the leaf biochemistry parameters is lost or made irrelevant due to biases be-
tween model simulated and observed surface reflectance that are corrected
C14
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by fitting’ the RTM parameters. The context of this manuscript doesn't in-
dicate how sensitive the surface reflectance is for the suite of parameters
calibrated here. .. perhaps included in one of cited manuscripts.

We added text to the results section highlighting the edge-hitting behavior for wood
biomass allometry, canopy clumping, and leaf orientation. We also added figures show-
ing the sensitivity of EDR to the relevant parameters in this figure to the supplementary
information.

For wood biomass allometry, the edge-hitting behavior approaching zero is consis-
tent with the typically small-to-negligible contribution of aboveground woody elements
(stems and branches) to reflectance of dense canopies during the growing season
(Banskota et al 2015). However, these woody elements are a large biomass sink, so
constraining wood allometry parameters is important. We have added text to the dis-
cussion about the importance of constraining wood allometry, the limitations of doing
so using canopy reflectance alone, and additional analytical (e.g., via known covari-
ance with other parameters) or observational (e.g., leaf-off optical, LiDAR, radar, in
situ) constraints that should be explored.

For canopy clumping, we observed the edge-hitting behavior primarily for mid- and
late-hardwood PFTs in the direction of no clumping. In EDR, clumping factor appears
only as a scaling factor on LAl—namely, EDR defines the effective LAI, eLAl, as the
product of LAl and clumping factor, and the main radiative transfer calculations use
eLAl to quantify the depth of vegetation. This makes the clumping factor parameter
highly confounded with LAI (i.e., a two-fold increase in LAl is perfectly compensated
by a two-fold decrease in clumping factor). The edge hitting behavior of clumping
factor at its maximum—1.0—suggests the tendency of the calibration for these PFTs
to prefer larger leaf area indices, which we also see in the leaf biomass allometry.
As mentioned in our earlier response, this may be compensating for a tendency of
EDR to underestimate albedo (increasing LAl tends to increase albedo). Moreover,
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it is expected that dense, mature hardwood PFTs would trend toward a less-clumped
canopy compared with a more open, clumped evergreen needle-leaf canopy.

For leaf orientation, we primarily observe edge-hitting behavior approaching the most
horizontal leaf orientation for the late conifers and mid- and late-hardwoods. As men-
tioned in the earlier response, and as with LAl above, this may be compensation for
EDR’s tendency to under-predict albedo.

Finally, the leaf water parameters are not truly edge-hitting but do show a consistent di-
rectional shift with the AVIRIS data suggesting a higher leaf water content than the prior
leaf-level data. This is perhaps not surprising as retrieval of canopy water content with
hyperspectral data, and specifically AVIRIS, has been one of the most widely-utilized
methods in the literature (e.g. Gao and Goetz, 1995; Clevers et al., 2010). In this case,
our parameter distributions for EWT suggest that given the time of year when the im-
agery was collected the vegetation tended toward higher canopy moisture conditions,
likely given this was during the peak of the growing season, and peak greenness and
neither year had any indication of lower than normal precipitation or drought.
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Figure 3: A map would be helpful with site codes provided. Perhaps a
zoomed in map that demonstrates where these sites are spatially? Also is
the stem diameter plot on the right simulated or observed? In fact, doesn’t
that have a large impact on the assimilation, the PFT distribution and stem
diameter distribution?aAT has it been demonstrated that ED2 can properly
simulate the competition of PFTs at the site providing the correct vegetation
state, such that the parameter optimization reflects the observed vegetation
state ?? Or has the vegetation state been prescribed in this case?

We have split up the original Figure 1 into two separate figures: one showing a larger
map with sites labelled (attached Figure 3) and one showing the density vs. diame-
ter plot (updated to include a self-thinning curve based on T. Andrews, unpublished;
attached Figure 4).

As stated in the main response, the vegetation composition at each site (including
the PFT distribution and size-age structure) was prescribed in detail based on NASA
Forest Functional Types (FFT) campaign field data. In this figure’s caption, we have
clarified that these are the observed stand structures.

Zeide, B. (2010). Comparison of self-thinning models: an exercise in reasoning. Trees,
24,1117-1126. https://doi.org/10.1007/s00468-010-0484-z

Figure 5: “The observed vs. predicted line had a slope of 0.37 and an inter-
cept of 2.80, indicating that EDR calibration underpredicted LAl on average
but overexagerrated across-site LAl variability.” What do you attribute this
clear structure in residuals between observed-simulated LAI?
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We agree the clear mismatch between predicted and observed LAl was not given suf-
ficient attention in our original draft. We have incorporated the following analysis into
our revision:

EDR tended to underpredict LAI at sites with lower mean DBH and overpredict LAI at
sites with higher mean DBH (attached figure). However, there was no relationship be-
tween LAl bias (predicted - observed) and stand density, proportion of conifer PFTs, or
bias in predicted reflectance (figures attached). Breaking the LAl bias down based on
PFT site dominance shows that the bias was most pronounced in sites dominated by
Early Hardwood and Northern Pine trees (attached figure). Based on these results, we
conclude that the LAl bias can be attributed to an underestimation of the leaf biomass
allometry parameter, as both Early Hardwood and Northern Pine PFTs had relatively
low estimates of the leaf biomass allometry parameter. In part, this may be a con-
sequence of site sampling: both Early Hardwood- and Pine-dominated sites skewed
towards stands with low DBH, where sensitivity to changes in the allometry parameter
are relatively low. For pine sites, the challenges with modeling conifer radiative transfer
(see earlier responses) likely also played a part. Overall, this analysis reiterates the
importance of evaluating models against multiple distinct variables—after all, none of
these biases would have been apparent from looking at the reflectance simulations
alone.

Line 258-270: | like the overview explanation of bringing observations
closer to models or alternatively bring models closers to the observations.
In the end, it’s a bit of semantics, especially for using information from satel-
lites we will always need some sort of transfer function or forward operator
to convert from what a satellite observes and what a model predicts. | don’t
think one way or the other should take precident. The advantage in your
approach, however, is the potential for the observed surface reflectance
to constrain multiple model components, whether that be leaf structure or
biochemistry or water status. | think that is potentially extremely valuable
C18

Printer-friendly version

Discussion paper


https://gmd.copernicus.org/preprints/
https://gmd.copernicus.org/preprints/gmd-2020-324/gmd-2020-324-AC1-print.pdf
https://gmd.copernicus.org/preprints/gmd-2020-324
http://creativecommons.org/licenses/by/3.0/

although | am not sure it has been demonstrated, yet, that this is the case.
| feel more could be ‘learned’ about what information surface reflectance
could provide if you could prescribe the LAl and PFT-distribution in ED2,
then you could really get a grasp on what it can inform, leaf biochemistry?
Within-canopy RTM parameters? Etc.

We disagree that the difference between bringing models closer to observations and
vice-versa is a purely semantic one — the fact that all observations need some trans-
formation does not mean that all transformations are the same. Instead, we argue that
comparing model output to a highly derived data product (e.g., MODIS GPP) is closer
to a model intercomparison than a model validation, since generating those data prod-
ucts invariably requires their own models (whether statistical or process-based) that
make specific assumptions about different processes, often very different assumptions
than the model the products are compared with. Thus it’s often really an “apples to
oranges” comparison. In other words, in addition to the “shared” observational uncer-
tainties (e.g. atmospheric correction, instrument calibration) that are present in both
approaches, derived data products include numerous additional assumptions and un-
certainties that are avoided in a spectra-to-spectra comparison. Meanwhile, as you
point out, the approach of bringing models closer to observations is advantageous pre-
cisely because of the model's emergent covariance across many disparate variables
rooted in specific assumptions about biophysical and ecological processes. In practice,
for an observation operator that is almost entirely disconnected from the model (for ex-
ample, if we just took the total LAl from ED2 and used a standalone RTM like SAIL to
simulate the reflectance), we agree that there’s relatively little advantage relative to a
derived product, but the more tightly an observation operator is integrated into a model
(as in our analysis, where canopy RTM parameters and outputs are used elsewhere in
EDZ2), the greater its value.

To address this, we have significantly revised the discussion to (1) more explicitly high-
light the kinds of assumptions typically made in remote sensing data product genera-
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tion; and (2) to discuss the relative advantage of building models with remote sensing-
friendly observation operators, especially when such operators are tightly integrated
with other processes in the model. For the latter, we now discuss some future directions
for ED2 and optical remote sensing specifically, such as using the PROSPECT leaf
model to couple the model’s representations of plant hydraulics (for leaf water content)
and shade-driven trait plasticity (for leaf structure and pigmentation) to canopy radiative
transfer. Similar approaches that leverage the model’s internal RTM can also be ap-
plied to other remotely-sensed data, such as lidar (canopy structure), radar/microwave
(structure and water content), thermal (canopy traits and water use), and fluorescence
(photosynthetic traits). Indeed, this paper is an important first step towards the ultimate
goal of leveraging internally-consistent process-based models to make joint inferences
across multiple remotely-sensed data constraints simultaneously.

But, as you brought up in the introduction, this brings up equifinality issues.
Not so much in this case for your leaf biochemistry parameters because of
strong priors, but it does seem to be the case for canopy RTM parameters
and predicted LAI (SLA). | think you need to caveat or address this concern.

We agree that equifinality between canopy structure and leaf biochemistry in general,
and the specific ways that canopy structure is represented in EDR, are concerns that
warrant further discussion. As we stated in the introduction, and as you point out in
your review, an effective way to address equifinality is by incorporating prior informa-
tion that can constrain the parameters. In this study, we showed that external infor-
mative priors on leaf biochemistry parameters are effective. Other data—for instance,
observations of canopy structure from active remote sensing (LiDAR, radar) or in situ
measurements—could help alleviate some of the other issues with our results. More-
over, if our approach was applied in dynamic model simulations, the internal logic of the
model’s dynamics of leaf biochemistry and canopy structure would provide additional
constraint on the possible parameter space, which is an explicit future goal.
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We have elaborated on all of these points in the revised discussion.

Lines 286-310: It seems like you are pointing out sources of structural er-
ror within the radiative transfer of EDR or, to the extent, mismatch between
what EDR simulates vs. what AVIRIS-Classic observes. Could this help
explain why the calibration caused some posterior RTM parameters to be
edge-hitting against the bounds of the priors? Also, this work was in part
motivated by being better able to quantify the uncertainty in the surface
reflection observations, but | am not sure | saw a clear explanation of the
uncertainty that was used or provided for the AVIRIS and how was this
quantified. It seems parameters have the potential to be overfit, if the ob-
servation uncertainty is not realistically quantified. May have missed this.

See earlier responses.

Line 320: Really it's the power to upscale that remote sensing products
provide. However, this comes at a cost, they ‘observe’ reflected radiation
from the land surface which indirectly characterizes things that we care
about like, like leaf biochemistry, albedo etc.

We agree the reflectance data collected by passive optical remote sensing are af-

fected by many different surface features and processes, often in confounding ways,

which makes them challenging to use in isolation. Fully leveraging the power of remote

sensing requires additional sources of information from both in situ data and the under-

standing of biophysical and ecological processes embedded in our vegetation models. Printer-friendly version
We have revised this text and expanded this text accordingly.

Discussion paper
Line 326: ‘accurately reproduce surface reflectance and leaf area in-

dex’ | think this is a bit of an overstatement, especially because the fig-
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ures demonstrate systematic mismatch between the optimized surface re-
flectance and observed reflectance (figure 3), and strong residual error
structure in LAI (Figure 5). Perhaps this approach provided ‘improved’ re-
flectance and LAl is better wording.

We agree that we overstated our LAl prediction accuracy here, and have revised this
text to temper our conclusions accordingly. However, as we pointed out in earlier com-
ments, although our reflectance predictions were not perfect everywhere, the quanti-
tative analysis of surface reflectance revealed no systematic biases by PFT or stem
density.

Line 330: | think you also need to say where this work can lead aAT
this is of interest for those that are concerned with ecosystem function-
ing and that this could provide improved estimates of both biomass and
land-atmosphere carbon and water exchange. Also some discussion of
the differences between evergreen and deciduous forests would be help-
ful. Generally RTM’s have more difficulty with more open canopy evergreen
species and not really discussed in this manuscript.

Our significantly revised discussion (see earlier comments) includes much more text
on ways that ED2 (and other vegetation models) can be further enhanced to better take
advantage of passive optical and other remote sensing techniques. In addition, to ad-
dress this comment specifically, we have added several sentences to the conclusions
about the role of better-constrained vegetation models in improved estimates and un-
derstanding of biomass and vegetation-atmosphere interactions. Finally, earlier in the
discussion, we have added a few sentences about known the challenges with canopy
radiative transfer modeling in conifer species, though again, our results did not show
any systematic biases in reflectance predictions by plant functional type.
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Appendix:

Figure A2: What would be really helpful is to use the same color-coding in
Figure A1 to show deciduous vs evergreen sites. Also this brings about the
question —why did you choose the sites that you did to put in the manuscript
itself?

Figures A5-A13 provide the requested breakdown of plots by PFT composition. For the
main figure, we selected sites that, collectively, span the geographic, stand-structure,
and PFT composition space of our study. We have added this information to the Fig-
ure 3 caption, highlighted these plots in our site map, and mention this in the revised
Results section.

Figure A3: This sort of gets at the hardwood vs conifer performance as well.
| think it would be helpful to comment on this distinction in performance
within the results/discussion.

As mentioned above, we have added additional text about our analysis of performance
by PFT to the methods, results, and discussion. As this figure clearly shows, there is
no systematic bias in reflectance simulations for conifer species.

Figure A13: This is also a very compelling figure that gets at the increased
bias in spectra for conifer. Worth discussing in main manuscript.

See earlier comments about this. We note that even this figure shows no systematic
bias—three sites have underpredicted reflectance (AK06, AK60, OFO1), two sites
have overpredicted reflectance (MNO2, MNO04), and the remaining 3 sites have
relatively accurate reflectance predictions (BH02, SFO1, SF04).
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Please also note the supplement to this comment:
https://gmd.copernicus.org/preprints/gmd-2020-324/gmd-2020-324-AC1 -
supplement.pdf

Interactive comment on Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-324,
2020.
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