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Abstract. A high-resolution (1/20°) global ocean general circulation model with Graphics processing units (GPUs) code 

implementations is developed based on the LASG/IAP Climate system Ocean Model version 3 (LICOM3) under 

Heterogeneous-compute Interface for Portability (HIP) framework. The dynamic core and physics package of LICOM3 are 15 

both ported to the GPU, and 3-dimensional parallelization is applied. The HIP version of the LICOM3 (LICOM3-HIP) is 42 

times faster than what the same number of CPU cores dose, when 384 AMD GPUs and CPU cores are used. The LICOM3-

HIP has excellent scalability; it can still obtain speedup of more than four on 9216 GPUs comparing to 384 GPUs. In this 

phase, we successfully performed a test of 1/20° LICOM3-HIP using 6550 nodes and 26200 GPUs, and at the grand scale, the 

model’s time to solution can still obtain an increasing, about 2.72 simulated years per day (SYPD). The high performance was 20 

due to putting almost all of computation processes inside GPUs, and thus greatly reduces the time cost of data transfer between 

CPUs and GPUs. At the same time, a 14-year spin-up integration following the phase 2 of Ocean Model Intercomparison 

Project (OMIP-2) protocol of surface forcing has been conducted, and the preliminary results have been evaluated. We found 

that the model results have little differences from the CPU version. Further comparison with observations and lower-resolution 

LICOM3 results suggests that the 1/20° LICOM3-HIP can not only reproduce the observations, but also produce much smaller 25 

scale activities, such as submesoscale eddies and frontal scales structures. 

1 Introduction 

Numerical models are a powerful tool for weather forecast and for climate prediction and projection. High-resolution 

atmospheric, ocean, and climate models remain significant scientific and engineering challenges because of the enormous 

computing, communication, and input/output (IO) involved. Kilometer-scale weather and climate simulation start to emerge 30 

recently (Schär et al., 2020). Due to the tremendous increase of computation cost, such models will only work with extreme-

scale high-performance computers and new technologies. 
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The global ocean general circulation models (OGCMs) are a fundamental tool for oceanography research, ocean forecast, and 

climate change research (Chassignet et al., 2019). The performance of such models is determined mainly by model resolution 

and sub-grid parameterization, as well as by surface forcing. Now, the horizontal resolution of global OGCMs has increased 35 

to about 5-10 km, which is also called eddy-resolving models. The increasing resolution will greatly improve the simulation 

of the western boundary currents, mesoscale eddies, fronts and jets, and the currents in narrow passages (Hewitt et al., 2017). 

Meanwhile, the ability of an ocean model in simulating the energy cascade (Wang et al., 2019), the air-sea interaction (Hewitt 

et al., 2017), and the ocean heat uptake (Griffies et al., 2015) will be improved with the increasing resolution. All these will 

effectively improve the performance of ocean models in terms of both simulation and prediction of the ocean circulation. 40 

Additionally, the latest numerical and observational results show that the much smaller eddies (sub-mesoscale eddies with a 

spatial scale of about 5-10 km) are not only crucial to the vertical heat transport in the upper-ocean mixed layer, but also 

significant to biological processes (Su et al., 2018). This raises a new challenge for the horizontal resolution of OGCMs, which 

also demands much more computing resources. 

Heterogeneous computing has become a development trend of high-performance computers. In the latest TOP500 45 

supercomputer list released in June 2020, Central Processing Unit (CPU) and Graphics Processing Unit (GPU) heterogeneous 

machines account for six of the top 10. After the super computing technics on GPU were provided by the NVIDIA Corporation, 

more and more ocean models applied these high-performance acceleration ways to conduct weather or climate simulations. 

Xu et al. (2015) developed POM.gpu, a full GPU solution based on the mpiPOM on a cluster and gained 6.8 times of energy 

reduction. Yashiro et al. (2016) deployed NICAM model on the TSUBAME supercomputer, and the model sustained a double-50 

precision performance of 60T Flops/s on 2560 GPUs. Yuan et al. (2020) developed a GPU version of a wave model with 2 

V100 cards, and obtained 10-12 times speedup than the 36 cores of CPU. Yang et al. (2016) implemented a fully implicit β-

plane dynamic model with 488m grid spacing on the TaihuLight system and achieving 7.95P Flops/s. Fuhrer et al. (2018) 

reported a 2-km regional Atmospheric General Circulation model (AGCM) test using 4888 GPU cards, and obtained 

simulation performance for 0.043 simulated years per wall clock day (SYPD). 55 

At the same time, the AMD company also provides their own GPU solutions. In general, AMD GPU uses Heterogeneous 

Compute Compiler (HCC) tools to compile codes; and they cannot use the Compute Unified Device Architecture (CUDA) 

development environments, which is supported by the NVIDIA GPU only. Therefore, due to the wildly used and numerous 

learning resources of CUDA, AMD developers have to study two kinds of GPU programing skills. AMD’s Heterogeneous-

compute Interface for Portability (HIP) is an open-source solution to deal with this problem. It provides a higher-level 60 

framework to contain these two types of lower-level develop environments, i.e., CUDA and HCC, simultaneously. The 

grammar of the HIP code is like that of the CUDA code and with a simple convert tool; the code can be compiled and run at 

CUDA and AMD architects, respectively. For the viewpoint of coding, the HCC/OpenACC is convenient for AMD GPU 

developers before the HIP is popular. Another reason is that CUDA GPU has more market share in the present. It is believed 

that more and more codes will be ported to the HIP in the future. However, almost no ocean models use the HIP framework 65 

so far. 
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The purpose of the study is to develop a high performance OGCM based on the LICOM3, which can be run on AMD GPU 

architecture using HIP framework. Here, we will not only focus on the best computing performance of the model, but also on 

its practical usage for research and operation purposes. Section 2 is the introduction of the LICOM3 model. Section 3 contains 

the main optimizing of the LICOM3 under the HIP. Section 4 covers performance analysis and model verification. Section 5 70 

is for discussion, and the conclusions is in Section 6. 

2 LICOM3 model and experiments 

2.1 LICOM3 model 

In this study, the targeting model is LASG/IAP Climate system Ocean Model version 3 (LICOM3), which started to develop 

since the late 1980s (Zhang and Liang, 1989). Now the LICOM3 is the ocean model for two air-sea coupled models of the 75 

CMIP6, the Flexible Global Ocean-Atmosphere-Land System model version 3 with finite-volume atmospheric model 

(FGOALS-f3; He et al., 2020) and Flexible Global Ocean-Atmosphere-Land System model version 3 with grid-point 

atmospheric model (CAS FGOALS-g3; Li et al., 2020). The LICOM version 2 (LICOM2.0, Liu et al., 2012) is also the ocean 

model of the CAS Earth System Model (CAS-ESM, Zhang et al., 2020). The paper to fully describe the new features and 

baseline performances of LICOM3 is preparing. 80 

In recent years, the LICOM model was substantially improved based on the LICOM2.0 (Liu et al., 2012). There are three main 

aspects: First, the coupling interface of LICOM has been upgraded. Now the NCAR flux coupler version 7 is employed (Lin 

et al., 2016), in which the memory usage has been greatly reduced (Craig et al., 2012). That makes the coupler is suitable to 

apply to high resolution modelling.  

Second, both the orthogonal curvilinear coordinate (Murray, 1996; Madec & Imbard, 1996) and the tripolar grid have been 85 

introduced in the LICOM. Now, the two poles are at (65°E, 60.8°N) and (115°W, 60.8°N) for the 1° model, at (65°E, 65°N) 

and (115°W, 65°N) for the 0.1° model, and at (65°E，60.4°N) and (115°W, 60.4°N) for the 1/20° model of the LICOM. After 

that, the zonal filter in the high latitude, particularly in the northern hemisphere, has been completely eliminated, which greatly 

improve the scalability and efficiency of the parallel algorithm of LICOM3 model. In addition, the dynamic core of the model 

is also updated accordingly (Yu et al., 2018), including applying a new advection scheme for the tracer formulation (Xiao, 90 

2006) and a vertical viscosity for the momentum formulation (Yu et al., 2018). 

Third, the physical package has been updated, including introducing an isopycnal and thickness diffusivity scheme (Ferreira 

et al., 2005) and the vertical mixing due to internal tides breaking at bottom (St. Laurent et al., 2002). The coefficient of both 

isopycnal and thickness diffusivity set to 300 m2	s-1 as the depth is within the mixed layer or the water depth is shallower than 

60 m. The upper and lower boundary values of the coefficient are 2000 and 300 m2	s-1 , respectively. Additionally, the 95 

chlorophyll-depended solar shortwave radiation penetration scheme of Ohlmann (2003), the isopycnal mixing scheme (Redi, 
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1982; Gent & McWilliams, 1990) and the vertical viscosity and diffusivity schemes (Canuto et al. 2001; 2002) are employed 

in LICOM3. 

Both the low-resolution (1°) (Lin et al., 2020) and high-resolution (1/10°) (Li Y. et al., 2020) stand-alone LICOM3 are also 

involved in the OMIP-1 and OMIP-2; their outputs can be downloaded from websites. The performances of the two versions 100 

of LICOM3 comparing with other CMIP6 ocean models are shown in Tsujino et al., (2020) and Chassignet et al. (2020), 

respectively. The 1/10° version has also been applied to do short-term ocean forecast (Liu et al., 2020, under review). 

2.2 Configurations of models 

To investigate the GPU version, three configurations are employed in the present study. They are 1°, 0.1°, and 1/20°. Details 

of these models are listed in Table 1. The number of horizontal grid points for the three configurations are 360×218, 105 

3600×2302 and 7200×3920, respectively. The vertical levels for the low-resolution are 30, while they are 55 for the other two 

high-resolution models. From 1° to 1/20°, it increases the computational effort by about 8000 (20!) times (considering the 20 

times for decreasing the time step), plus the vertical resolution increase from 30 to 55, totally approximately 15000 times. The 

original CPU version of 1/20° with MPI parallel on Tianhe-1A only reached 0.31 SYPD using 9216 CPU cores. This will slow 

down the 10-year spin-up simulation of LICOM3 to more than one month, which is not practical for climate research. 110 

Therefore, such simulations are suitable for extreme-scale high-performance computers by applying the GPU version. 

Besides the differences in grid points, there are three main aspects that are different among three experiments, particularly 

between 1° version and the other two versions. First, the horizontal viscosity schemes are different: using Laplacian for 1° and 

biharmonic for both 1/10° and 1/20°. The viscosity coefficient is one order smaller for the 1/20° version than for the 1/10° 

version, namely, -1.0×109 m4/s for 1/10° vs -1.0×108m4/s for 1/20°. Second, although the forcing including dataset (JRA55-115 

do; Tsujino et al., 2018) and the bulk formula for the three experiments is all standard of the OMIP-2, the periods and temporal 

resolutions of the forcing fields are different: 6-hour data from 1958 to 2018 for the 1° version, and daily mean data in 2016 

only for both the 1/10° and 1/20° versions. Third, the 1° version is coupled with a sea ice model of the CICE4, via NCAR’s 

flux coupler version 7, while the two higher-resolution models are stand-alone, without a coupler or sea ice model. 

Additionally, the two higher-resolution experiments employ the new HIP version of LICOM3 (i.e., LICOM3-HIP), while the 120 

low-resolution experiment does not, which was the CPU version of LICOM3 and also same as the version submitted to OMIP 

(Lin et al., 2020). We also listed all the important information in Table 1, such as the bathymetry data and the bulk formula, 

etc., though these items are similar in the three configurations. 

The spin-up experiments for two high resolution versions are both conducted for 14 years forced by daily JRA55-do dataset 

in 2016. The atmospheric variables include the wind vectors at 10-m, air temperature at 10-m, relative humidity at 10-m, total 125 

precipitation, the downward shortwave radiation flux, the downward longwave radiation flux, and the river runoff. According 

to the evolution of the kinetic energy, the models reach to a quasi-equilibrium state after more than 10 years of spin-up. The 

daily mean data are output for store and analysis. 
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2.3 Hardware and software environments of the testing system 

The two higher-resolution experiments were performed on a heterogeneous Linux cluster supercomputer, located at the 130 

Computer Network Information Center (CNIC) of the CAS, China. This supercomputer consists of totally 7000 nodes, with a 

1.9 Ghz X64 CPU of 32 cores on each node. Also, each node is equipped with 4 gfx906 AMD GPU cards with 16 GB memory. 

The GPU has 64 cores, totally 2560 threads on each card. The nodes of both partitions are interconnected through the high-

performance InfiniBand (IB) networks. The OpenMPI version 4.02 is employed for compiling, and the AMD GPU driver and 

libraries are rocm-2.9 integrated with HIP version 2.8. 135 

3 LICOM3 GPU code structure and optimization 

3.1 Introduction to HIP on an AMD hardware platform 

AMD’s HIP is a C++ runtime API and kernel language. It allows developers to create portable applications that can be run on 

AMD’s accelerators as well as on CUDA devices. The HIP provides an API for an application to leverage GPU acceleration 

for both AMD and CUDA devices. It is syntactically similar to CUDA, and most CUDA API calls can be converted in place 140 

the character “cuda” by “hip.” The HIP supports a strong subset of CUDA runtime functionality, and its open-source software 

is currently available on GitHub (https://rocmdocs.amd.com/en/latest/Programming_Guides/HIP-GUIDE.html). 

Now, some of the supercomputers install NVIDIA GPU cards, such as P100 and V100, and others install AMD GPU cards, 

for example AMD VERG20, etc.; hence, our HIP version LICOM3 can adapt and gain very high performance at different 

supercomputer centers, such as Tianhe-2 and AMD clusters. For coding on AMD GPU, our experience indicates that the HIP 145 

is a good choice for high-performance model development. The developed model ported to HIP can be used on both the AMD 

and NVIDIA GPU platforms. Meanwhile, the model version is easy to keep consistent and maintain. In the following, the 

successful simulation of LICOM3-HIP is confirmed to be adequate to employ HIP. 

Figure 1 demonstrates the HIP implementations to support different types of GPUs. Besides the differences in naming and 

including libraries, there are other differences between HIP and CUDA: 1) AMD Graphics Core Next (GCN) hardware “warp” 150 

size = 64; 2) device and host pointers allocated by HIP API use flat addressing (unified virtual addressing is enabled by default); 

3) dynamic parallelism not currently supported; 4) some CUDA library functions do not have AMD equivalents; and 5) shared 

memory and registers per thread may differ between AMD and NVIDIA hardware. Despite these differences, majority of the 

CUDA codes in applications can be easily translated to the HIP, and vice versa. 

Technical supports of CUDA and HIP also have some differences. For example, CUDA applications have some CUDA-aware 155 

MPI to do direct MPI communication between different nodes in the GPU space, but HIP applications have no such functions 

so far. We have to transfer data from GPU memory to CPU memory for exchanging data with other nodes, and then transfer 

them back to the GPU memory. 
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3.2. Core computation process of LICOM3 and C transitional version 

We tried to apply the LICOM on a heterogeneous computer about five years earlier, cooperating with the NVIDIA Corporation. 160 

The LICOM2 was adapted to NVIDIA P80 by OpenACC technical (Jiang et al., 2019). That was a convenient implementation 

of LICOM2-gpu using 4 NVIDIA GPUs to achieve 6.6 speedup compared to 4 Intel CPUs, but its speedup was not so good 

when further increasing the GPU number. 

This time we started from the CPU version of LICOM3. The code structure of LICOM3 includes four steps. The first step is 

the model setup; it involves MPI partition and ocean block distribution. The second stage is model initialization, which includes 165 

reading the input data and initialize the variables. The third stage is integration loops, the core computation of the model. Three 

explicit time loops, which are for tracer, baroclinic and barotropic steps, are in one model day. The outputs and final processes 

are included in the fourth step. 

Figure 2 shows the flowchart of LICOM3. The major processes in the model integrating step include solving baroclinic, 

barotropic and thermohaline equations; and are solved by the leapfrog or Euler forward scheme. There are seven individual 170 

subroutines, such as  “readyt”, “readyc”, “barotr”, “bclinc”, “tracer”, “icesnow”, and “convadj”. When the model finishes one 

day’s computation, the diagnostics and output subroutine will write out the predicted variables to files. The output files contain 

all the necessary variables to restart the model and for analysis. 

To obtain high performance, using the native GPU develop language is more efficient. In the CUDA develop forum, both 

CUDA-C and CUDA-Fortran are provided; for the HIP, however, the support for Fortran is not as good as that for C++. We 175 

plan to push all the core process codes into GPUs; hence, the Fortran codes of the seven major subroutines must be converted 

to HIP/C++. Due to the complexity and large number of lines in these subroutines (approximately 12000 lines Fortran code), 

also for making sure the converted C/C++ codes be correct, we rewrote them to C first, before finally converting them to HIP 

codes. 

A bit-reproducible climate model produces the exact same numerical results for a given precision, regardless of its execution 180 

setup, which includes the choice of domain decomposition, the type of simulation (continuous or restart), compilers, and the 

architectures executing the model (i.e., the same hardware and software conduct the same result). The C transitional version is 

bit-reproducible with F90 version of the LICOM3 (the binary output data are the same under Linux with “diff” command). 

This C transitional version becomes the starting point of HIP/C++ codes, and reduces the complexity of developing HIP version 

of the LICOM3. 185 

3.3. Optimization and tuning methods in LICOM3-HIP 

The unit of computation in LICOM3-HIP is horizontal grid point. For example, 1/20° corresponds to 7200×3920 grids. For 

convenience of MPI parallelism, the grids were united as blocks, that is, if Procx×Procy MPI processes are used in x and y 

directions, then each block has Bx×By grids, where Procx×Bx=7200 and Procy×By=3920. Each GPU process does 2-D or 3-D 
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computation in these Bx×By grids as the MPI process does. In practice, four lateral columns are added to Bx and By (two on 190 

each side, imt=Bx+4, jmt=By+4) for halo. Table 2 lists the frequently used block definitions of LICOM3. 

The original LICOM3 was written in F90. To adapt it to GPU, the Fortran/C hybrid programing is applied. As shown in Figure 

2, the codes are kept using F90 language before entering device-stepon and after stepon-out. The core computation processes 

within the stepons are rewritten by using HIP/C. Data structures in the CPU space remain the same as the original Fortran 

structures. The data commonly used by F90 and C are then defined by extra C including files and defined by “extern” type 195 

pointers in C syntax to reference to them. In the GPU space, newly allocated GPU global memories to hold the arrives 

correspond to those in the CPU space, and the HipMemcpy is called to copy them in and out. 

Seven major subroutines (include their sub-recurrent calls) are converted from Fortran to HIP. The sequences of the seven 

subroutines calls are maintained, but each subroutine is deeply re-coded in HIP to obtain the best performance. The data in the 

CPU space are 2-D or 3-D arrays; in the GPU space, we change them to 1-D arrays, which helps improve the data transfer 200 

speed between different GPU subroutines.  

The LICOM3-HIP is a two-level parallelism, each MPI process corresponding to an ocean block. The computation within one 

MPI process is then pushed into GPU. The latency of data copy between GPU and CPU is one of the bottlenecks for daily 

computation loops. To reduce the data copy time, all read-only GPU variables are allocated and copied at the initial stage. 

Some data copy is still needed in the stepping loop, e.g., MPI call in barotr.cpp. In fact, four subroutines call halo in each step, 205 

but the number of halo calls in “barotr” is more than 95% of all (Table 3); so we only use “barotr” subroutine to represent the 

halo communications. 

The computation block in MPI (corresponding to 1 GPU) is a 3-D grid; in HIP revision, the 3-D parallelism is implemented. 

This change adds extra parallel inside one block than the MPI solo parallelism (only 2-D). In order to adapt to this change, 

some optimizations are needed, such as increasing the global arrays to avoid data dependency. A demo of using temporary 210 

array to parallel the computation inside a block can be found in Figure 3. Figure 3a represents a loop of the original code in 

the k direction. Since the variable v(i,j,k) has dependence on v(i,j,k+1), it will cause error when the GPU threads are paralleled 

in the k direction. We then separate the variable into two HIP kernel computations. In the upper of Figure 3b, a temporary 

array vt is used to hold the result of f1(), and it can be GPU threads parallel in the k direction. Then, in the bottom of Figure 

3b, we use vt to do the computations of f2() and f3(); it can still be GPU threads parallel in the k direction. Finally, this loop of 215 

codes is parallelized. 

The parallel in GPU is more like shared memory program; the memory write conflicts occur in the advection computation of 

subroutine “tracer”. We change the if-else tree in this subroutine; hence, the data conflicts between neighboring grids are 

avoided, making the 3-D parallelism successful. Moreover, in this subroutine we use more operations to alternate the data 

movement to reduce the cache usage. Since the operation can be GPU threads parallelized and it will not increase the total 220 

computation time, the reduction of memory cache improves the final performance of this subroutine. 

A notable problem when the resolution is increased to 1/20° is that the total size of Fortran common blocks will be bigger 

beyond 2 GB. This change will not cause abnormal for C in the GPU space. But if the data are referenced by GPU process, the 
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system call in HipMemcpy will occur compile errors. In this situation, we should change the data structure of the original 

Fortran arrays from “static” to “allocatable” type. Since a GPU is limited to 16 GB GPU memory, the ocean block size in one 225 

block should not be too large. In practice, the 1/20° version starts from 384 GPUs (and it is regarded as the baseline for speedup 

here); if the partition is smaller than that value, sometimes the GPU memory insufficient errors will occur. Variable operations 

in CPU and GPU memory are at least one magnitude faster than the data transfer between GPU and CPU through 16X PCI-e. 

As shown in Fig. 4, we only pack the necessary data for halo operation from imt×jmt to 4(imt+jmt). This change reduces the 

data buffer size to (4/imt+4/jmt) of the original one. The larger imt and jmt are, the less the transfer data is. At 384 GPUs, this 230 

change saves about 10% of the total computation time. The change is valuable for the HIP since the platform has no CUDA-

aware MPI installed; otherwise, the halo operation can be done in the GPU space directly as POM.gpu does (Xu et al., 2015). 

3.4. Model I/O optimization 

The time cost for reading daily forcing from the disk is increased to 200 s in one model day after the model resolution is 

updated from 1° to 1/20°. This time is equivalent to the time of one step when 1536 GPUs are applied; hence, we must optimize 235 

it for more total speedup. The cause of low performance is due to the daily data reading and scattering to all nodes every model 

day; we then rewrite the data reading strategy and do parallel scattering for 10 different forcing variables. Finally, the time 

cost of input is reduced to about 20 s, which is 1/10 of the original one (shown below). 

As indicated, the core-process time cost is about 200s using 1536 GPUs. The output (65 GB data in binary format) of one 

model day needs about 250 s; it is also beyond the GPU computation time for one step. We modify the subroutine to a parallel 240 

version, and it decreases the data write time to 70 s on the test platform (this also depends on system I/O performance). 

4 Model performance 

4.1. Model performance in computing 

Performing kilometer-scale and global climatic simulation is an challenging task (Palmer, 2014; Schär et al., 2020). As Fuhrer 

et al. (2018) pointed out, the SYPD is a useful metric to evaluate model performance for a parallel model (Balaji et al., 2017). 245 

Because a climate model often needs to be run at least 30-50 years for each simulation, 0.2-0.3 SYPD will need too much time 

to finish the experiment. The common view is that at least 1-2 SYPD is an adequate entrance for a realistic climate study. It 

also depends on the time scale in a climate study. For example, for 10-20-year simulation, 1-2 SYPD seems acceptable, and 

for 50-100 year simulation, 5-10 SYPD is better. NCEP weather prediction system throughput standard is 8 minutes to finish 

one model day, which is equivalent to 0.5 SYPD.  250 

Figure 5 illustrates the I/O performance of LICOM3-HIP, comparing the performances of computation processes. When the 

model applies 384 GPUs, the I/O costs 1/10 of the total simulation time (Figure 5a). While the scale increases to 9216 GPUs, 

the I/O time increases, but is still smaller than the GPU’s step time (Figure 5b). The improved LICOM3 I/O totally costs about 

50-90 s (depends on scales), especially the input remains stable (Figure 5c) while scale increases. This optimization of I/O 
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maintains that the LICOM3-HIP 1/20° runs well at all practice scales for a realistic climate study. To analyze the purely parallel 255 

performance, the I/O time has been cut off from the total simulation time in the results of the follow-up tests. 

Figure 6 shows the SYPD at various parallel scales. The baseline (384) of GPUs could achieve 42 times speedup than that of 

the same number of CPU cores. Sometimes, we also count the overall speedup, which is 384 GPUs in 96 nodes versus the total 

3072 CPU cores in 96 nodes. We can get the overall performance speedup of 384 being about 6-7 times. The figure also 

indicates that for all scales, the SYPD keeps increasing. At the scale of 9216 GPUs, the SYPD first goes beyond 2, and that is 260 

seven times of the same CPUs result. A quasi-whole machine (26200 GPUs, 26200×65=1703000 cores totally, one process 

corresponds to one CPU core plus 64 GPU cores) result indicates it can still obtain an increasing SYPD to 2.72. 

Figure 7 depicts the real times and speedups of difference GPUs computation. The green line in Figure 7a is the function of 

stepon time cost; it decreases while the GPU number increases. The blue curve of Figure 7a shows the increasing of speedup 

with the increasing of the GPU scale. Despite the speedup increase, the efficiency of the model decreases. At 9216 GPUs, the 265 

model efficiency starts under 20%; and for more GPUs (19600 and 26200), the efficiency is flattened to about 10%. The 

efficiency decreasing is mainly caused by the latency of data copy in and out to the GPU memory. For economical 

consideration, 384-1536 scale is a better choice for realistic modeling studies. 

Figure 8 depicts the time cost of seven core subroutines of LICOM3-HIP. We find that the top four most time cost subroutines 

are “barotr,” “tracer,” “bclinc,” and “readyc”; and the other subroutines totally cost only about 1% of the whole computation 270 

time. When 384 GPUs are applied, the “barotr” costs about 50% of the total time (Figure 8a), which solves the barotropic 

equations. When GPUs are increased to 9216, time cost for each of the subroutines is decreased, but the percentage of 

subroutine “barotr” is increased to 62% (Figure 8b). As mentioned above, the phenomenon can be interpreted by the calling 

of halo in “barotr” being more than the other subroutines; hence, the memory data copy and communication latency make it 

slower. 275 

4.2. Model performance in climate research 

To test if the HIP version of the LICOM meets the requirement of numerical precision for scientific usage, the daily mean sea 

surface height (SSH) fields of CPU and HIP versions’ simulations are compared using the results from 1/20° experiments on 

a particular day, March 1st of the 4th model year (Figures 9a, b). The general SSH spatial patterns of the two are very similar 

visually. The significant differences are only found in very limited areas, such as in the eddy rich regions near strong currents 280 

or high-latitude areas (Figure 9c); in most places, the difference values fall into the range between -0.1 and 0.1 cm. Because 

the hardware is different and the mathematical operation sequence of the HIP codes is not always the same as that for the 

Fortran version, the HIP and CPU versions are not identical byte by byte. Therefore, it is hard to verify the correctness of the 

results from the HIP version. Usually, the ensemble method is employed to evaluate the consistency of two model runs (Baker 

et al., 2015). Considering the unacceptable computing and storage resources, besides the differences between the two versions, 285 

we here simply compute Root Mean Square Errors (RMSEs) between the two versions, which is only 0.18 cm, much smaller 
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than the spatial variation of the system, which is 92 cm (about 0.2%). That indicates the results of LICO3-HIP are generally 

acceptable for research. 

To evaluate the preliminary results of the global 1/20° simulation from LICOM3-HIP, the sea surface temperature (SST) of 

the GPU version is compared with the observed SST (Figure 10). Because the LICOM3-HIP experiments are forced by the 290 

daily mean atmospheric variables in 2016, we also compare the outputs with the observation data of 2016. Here, the 1/4° 

Optimum Interpolation Sea Surface Temperature (OISST) is employed for comparison and the simulated SST is interpolated 

to the same resolution as the OISST’s. We find that the global mean values of SST are close to each other, but with a slight 

warming bias, 18.49°C for observations vs 18.96°C for the model. The spatial pattern of SST in 2016 is well reproduced by 

LICOM3-HIP. The spatial Standard Deviation (STDs) of SST are 11.55°C for OISST and 10.98°C for LICOM3-HIP. The 295 

RMSE of LICOM3-HIP against the observation is only 0.84°C. 

With increasing horizontal resolution of the observation, we now know that mesoscale eddies are ubiquitous in the ocean with 

the spatial scale of 100-300 km. The rigorous eddies usually occur along major ocean currents, such as the Kuroshio and its 

Extension, the Gulf Stream and the Antarctic Circumpolar Current (Figure 11a). The eddies also capture more than 80% of the 

kinetic energy of the ocean, estimated using the satellite data (e.g., Chelton et al., 2011). Therefore, these mesoscale eddies 300 

must be solved in the ocean model. To resolve eddies of the global ocean, the horizontal resolution of a numerical model must 

be higher than 1/10°, but that cannot resolve the eddies in the high latitude and shallow waters (Hallberg, 2013). Therefore, 

higher resolution is required to resolve the eddies globally. It is clear that the EKE for the 1° version is low, even in the areas 

with strong currents, while the 1/10° version can reproduce most of the eddy-rich regions in the observation. The EKE is 

increased when the resolution is further enhanced to 1/20°, indicating much more eddy activities are resolved. 305 

5 Discussion 

5.1. Application of ocean climate model beyond 10000 GPUs 

Table 4 summaries detailed features of some published GPU version models. We can find that various programing methods 

have been implemented for different models. A near-kilometer atmospheric model using 4888 GPUs was reported as a large-

scale example of weather/climate studies. With the development of supercomputing, the horizontal resolution of ocean 310 

circulation models will keep on increasing, and much more sophisticated physical processes will also be developed. The 

LICOM3-HIP has a larger scale not only in terms of grid size but also in terms of final GPU numbers. 

We successfully performed a quasi-whole machine (26200 GPUs) test, and the results indicate the model obtained an 

increasing SYPD (2.72). Actually, the application of an ocean climate model beyond 10000 GPUs is not easy because the 

multi-nodes plus multi-GPUs running requires that the network connection, PCI-e and memory speed, and input/output storage 315 

systems all work well and are in their best performances. The three most occur errors when running LICOM3-HIP are MPI 

hardware errors, CPU memory access errors, and GPU hardware errors. Let’s suppose that the probability of an individual 
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hardware (or software) error to occur is 10-5. Along with the MPI (GPUs) scale increasing, the total error rate is increased; and 

once a hardware error occurs, the model simulation will fail.  

When 384 GPUs are applied, the success rate within one hour can be expressed as %1-384×10-5&
3
=98.85%, and the failure rate 320 

is then 1-%1-384×10-5&
3
=1.15%. Applying this formula, we can obtain the failure rate corresponding to 1000, 10000, and 

26200 GPUs. The results are listed in Table 5. As shown in Table 5, in the middle scale (i.e., 1000 GPUs are used) three 

failures will happen through 100 runs; when the scale increases to 10000 GPUs, 1/4 of them will fail. The 10-5 error probability 

also indicates that 10000 GPUs task cannot run 10 continues hours on average. If the success time restriction decreases, the 

model success rate will increase. For example, within 6 minutes, the 26200 GPUs task success rate is 325 

%1-26200×10-6&
3
=92.34%, and its failure rate is 1-%1-26200×10-6&

3
=7.66%. 

5.2. Energy to solution 

We also measured energy to solution here. A simulation normalized energy (E) has been employed here as a metric. The 

formula is as follows: 

E = TDP × N × 24/SYPD	330 

where TDP is the Thermal Design Power, N is the computer nodes used, and SYPD/24 equals the simulated years per hour. 

So, the smaller the E value, the better, which means that we can get more simulated years within limited power supply. To 

calculate the value of E, we estimated the TDP of 1380 W for a node on the present platform (1 AMD CPU and 4 GPUs), and 

290 W for a reference node of INTEL (2 INTEL 16-core CPUs). We only include the TDP of CPUs and GPUs here. 

Based on the above power measurements, the energy cost of simulations are shown in Table 6 in MWh per Simulation Year 335 

(MWh/SY). The energy costs for the 1/20° LICOM3 simulations running on CPUs and GPUs are comparable when the 

numbers of the MPI processors are within 1000. The energy costs of LICOM3 at 1/20° running on 384 (768) GPUs and CPUs 

are about 6.234 (7.661) MWh/SY and 6.845 (6.280) MWh/SY, respectively. But the simulation speed of LICOM3 on GPU is 

much faster than that on CPU, about 42 times for 384 processors and 31 times for 768 processors. When the number of MPI 

processors is beyond 1000, the value of E for GPU becomes much larger than that for CPU. This indicates the GPU is not fully 340 

loaded from this scale. 

6 Conclusions 

The GPU version of LICOM3 under HIP framework has been developed in the present study. The dynamic core and physic 

packages are both ported to the GPU, and 3-D parallelization is applied. The new model has been implemented and gained 

good accelerating rate on a Linux cluster with AMD GPU cards. This is also the first time an ocean general circulation model 345 

is fully applied on a heterogeneous supercomputer using the HIP framework. 
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Based on our test using the 1/20° configuration, the LICOM3-HIP is 42 times fast than the CPU dose, when 384 AMD GPUs 

and CPU cores are used. The LICOM3-HIP has good scalability, it can still obtain speedup of more than four on 9216 GPUs 

comparing to 384 GPUs. The SYPD, which is equilibrium to the speedup, keeps on increasing as the number of GPUs 

increases. We successfully performed a quasi-whole machine test, which was 6550 nodes and 26200 GPUs, using 1/20° 350 

LICOM3-HIP on the supercomputer, and at the grand scale, the model can still obtain an increasing SYPD of 2.72. The 

modification or optimization of the model also improves the performances of 10 and 100 km, although we did not analyze 

their performances in this article.  

The efficiency of model decreases with the increasing number of GPUs. At 9216 GPUs, the model efficient starts under 20% 

against 384 GPUs; and when the number of GPUs reaches or exceeds 20000, the efficiency is only about 10%. Based on our 355 

test of kernel functions, the decreasing efficiency was mainly caused by the latency of data copy in and out to the GPU memory 

in solving the barotropic equations, particular for the number of GPUs larger than 10000. 

Using the 1/20° configuration of LICOM3-HIP, a 14-year spin-up integration was conducted. Because the hardware is different 

and the mathematical operation sequence of GPU codes is not always the same as that of the Fortran version, the GPU and 

CPU versions cannot be identical byte by byte. But, the comparison between GPU and CPU versions of LICOM3 shows that 360 

the differences in most places are very small, indicating that the results from LICOM3-HIP can be used for practical research. 

Further comparison with the observation and the lower-resolution results suggest that the 1/20° configuration of LICOM3-HIP 

can not only reproduce the observed results, but also produce much more smaller scale activities. 

The eddy-resolving ocean circulation model, which is a fundamental platform for oceanography research, ocean forecast, and 

climate prediction and projection, can simulate the variations of the circulations, temperature, salinity, and sea level with 365 

spatial scale larger than 15 km and temporal scale from diurnal cycle to decadal variability. As mentioned above, 1-2 SYPD 

is a good entrance for a realistic model used for climate research. More practical GPU scale range for realistic simulation is 

around 384-1536 GPUs. At these scales, the model still has 0.5-1.22 SYPD. Even if we decrease the loops in “barotr” procedure 

to 1/3 of the original in the spin-up simulation, the performance will achieve 1-2.5 SYPD for 384-1536 GPUs. This 

performance will satisfy 10-50-year scale climate studies. Besides, this version can be definitely used for short-term ocean 370 

prediction in the future. 

Besides, the block size 36×30×55 (1/20° setup, 26200 GPUs) is not a large computation task for one GPU. Since one GPU has 

64 cores totally 2560 threads, if a subroutine computation is 2-D, the operation in each thread is too small. Even for the 3-D 

loops, it is still not big enough to load the whole GPU. This indicates that it will gain more speedup when the LICOM resolution 

is increased to the kilometer level. The LICOM3-HIP codes are now written for 1/20°, but they are kilometer-ready GPU 375 

codes. 

There are still potential to further increase the speedup of LICOM3-HIP. Now, the bottleneck is in the high-frequency data 

copy in and out to the GPU memory in the barotropic part of the LICOM3. Unless the HIP-aware MPI is supported, the latency 

of data transfer between CPU and GPU cannot be totally overcome. So far, we can only try to reduce the time consumed 

through decreasing the frequency or magnitude of the data copy, and even modifying the method to solve the barotropic 380 
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equations. Additionally, using the single precision within the time integration of LICOM3 might be another solution. The 

mixing precision method has been already tested by using an atmospheric model, and an average gain in computational 

efficiency by approximately 40% (Váňa et al., 2017). We would like to test these methods in the future. 

Code availability 

The model code (LICOM3-HIP V1.0) along with the dataset and a 100km case can be downloaded from the website 385 
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Figure 1: The schematic diagram of the comparison of coding on AMD and NVIDIA GPU in three levels. 

  535 

#include “hcc.h”

Portable HIP C++ (Host & Device Code)

AMD GPU

hipcc nvcc

NVIDIA GPU

#include “cuda.h”Code
level

Compiler 
level

Hardware
level

https://doi.org/10.5194/gmd-2020-323
Preprint. Discussion started: 10 December 2020
c© Author(s) 2020. CC BY 4.0 License.



 

19 
 

 
Figure 2: LICOM3 computation flowchart with GPU (HIP device). The red line indicates whole block data transfer between host 
and GPU, while blue line means only transferring lateral data of a block. 
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Figure 3: The code using temporary arrays to avoid data dependency. 
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Figure 4: The lateral packing (only transfer 4 rows and 4 columns data between GPU and CPU) method to accelerate halo. (a) In 
the GPU space, where central (gray) grids are unchanged; (b) transferred to the CPU space, where black grids mean no data; (c) 545 
after halo with neighbours; and (d) transfer back to the GPU space. 
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Figure 5: (a) The 384 GPUs, (b) 9216 GPUs, the I/O ratio in total simulation time for 1/20° setup, (c) the changes of I/O times versus 
different GPUs. 550 
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Figure 6: Simulation performances of AMD GPU versus Intel CPU core for LICOM3 (1/20°). Unit: SYPD. 
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Figure 7: (a) Computation time (green) and speedup (blue), and (b) parallel efficiency (orange) at different scales for stepon of 
LICOM3-HIP (1/20°). 
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Figure 8: The seven core subroutines’ time cost percentage for (a) The 384 GPUs and (b) 9216 GPUs. (c) the subroutines’ time cost 
at different scales of LICOM3-HIP (1/20°). 
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Figure 9: Daily mean simulated sea surface height for (a) CPU and (b) HIP versions of LICOM3 at 1/20° on March 1st of the 4th 565 
model year. (c) The difference between the two versions (HIP minus CPU). Units: cm. 
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Figure 10: (a) Observed annual mean sea surface temperature in 2016 from Optimum Interpolation Sea Surface Temperature 570 
(OISST); (b) simulated annual mean SST for the LICOM3-HIP at 1/20° during the model years 0005-0014. Units: °C. 
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Figure 11: (a) Observed annual mean eddy kinetic energy (EKE) in 2016 from AVISO. Simulated annual mean SST in 2016 for the 
LICOM3-HIP at (b) 1°, (c) 1/10°, and (d) 1/20°. Units: cm2/s2. 575 
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Table 1: Configurations of LICOM3 model used in the present study. 

Experiment LICOM3-CPU (1°) LICOM3-HIP （1/10°） LICOM3-HIP（1/20°） 

Horizontal 

grid spacing 

1° (110 km in longitude, 

about 110 km at equator, and 

70 km at mid-latitude) 

1/10° (11 km in longitude, 

about 11 km at equator, and 

7 km at mid-latitude) 

1/20° (5.5 km in 

longitude, about 5.5 km at 

equator, and 3 km at mid-

latitude) 

Grid point 360×218 3600×2302 7200×3920 

North Pole 
(65°E, 60.8°N)  and (115°W, 

60.8°N) 

(65°E, 65°N) and 

(115°W, 65°N) 

(65°E, 60.4°N) and 

(115°W, 60.4°N) 

Bathymetry 

data 
ETOPO2 Same Same 

Vertical 

coordinates 
30 𝜂	levels 55 𝜂	levels 55 𝜂	levels 

Horizontal 

viscosity 

Laplacian 

A2=3000 m2/s 

Biharmonic (Fox-Kemper 

& Menemenlis, 2008) 

A4=-1.0×109m4/s 

Biharmonic (Fox-

Kemper & Menemenlis, 

2008) A4=-1.0×108m4/s 

Vertical 

viscosity 

Background viscosity of 

2×10-6m2/s  with the upper 

limit of 2×10-2m2/s 

Background viscosity of 

2×10-6m2/s with the upper 

limit of 2×10-2m2/s 

Background viscosity of 

2×10-6m2/s  with the 

upper limit of 2×10-2m2/s 

Time steps 
120/1440/1440 for 

barotropic/baroclinic/tracer 

6s/120s/120s for 

barotropic/baroclinic/tracer 

3s/60s/60s for 

barotropic/baroclinic/trac

er 

Bulk Formula Large & Yeager (2009) Same Same 

Forcing data 
JRA55_do, 1958-2018, 

6 hourly 

JRA55_do, 2016, 

daily 

JRA55_do, 2016, 

daily 

Integration 

period 
61 years / 6 cycles 14 years 14 years 

Mixed layer 

scheme 
Canuto et al (2001, 2002) Same Same 

Isopycnal 

mixing 

Redi (1982); 

Gent & McWilliams (1990) 
Laplacian Laplacian 
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Bottom drag Cb=2.6×10-3 Cb=2.6×10-3 Cb=2.6×10-3 

Surface wind-

stress 
Relative wind stress Same Same 

SSS restoring 
20 m/year; 50 m/30 days for 

sea ice region 
Same Same 

Advection 

scheme 

Leapfrog for momentum; two 

step preserved shape 

advection scheme for tracer 

Same Same 

Time stepping 

scheme 

Split-explicit Leapfrog with 

Asselin filter (0.2 for 

barotropic; 0.43 for 

baroclinic; 0.43 for tracer) 

Same Same 

Sea ice Sea ice model of CICE4 Not coupled Not coupled 

Ref. Lin et al. (2020) This paper This paper 
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Table 2: Block partition for 1/20° setup. 

GPUs Bx×By imt×jmt 

384 600×124 604×128 

768 600×62 604×66 

1536 300×62 304×66 

3072 150×62 154×66 

6144 100×62 104×66 

9216 75×62 79×66 

19600 36×40 40×66 

26200 36×30 40×34 

 580 

  

https://doi.org/10.5194/gmd-2020-323
Preprint. Discussion started: 10 December 2020
c© Author(s) 2020. CC BY 4.0 License.



 

32 
 

Table 3: The number and ratio to the total number of calls of halo in LICOM3 subroutines. 

Subroutine Calls Percentage 

barotr 122 95.2% 

bclinc 3 2.4% 

readyc 1 0.8% 

tracer 2 1.6% 

 

  

https://doi.org/10.5194/gmd-2020-323
Preprint. Discussion started: 10 December 2020
c© Author(s) 2020. CC BY 4.0 License.



 

33 
 

 585 
Table 4: Some GPU versions of weather/climate models. 

Model Language Max. Grids Max GPUs Year and references 

POM.gpu CUDA-C 1922×1442×51 4 (K20X) 2015 (Xu et al., 2015) 

LICOM2 OpenACC 360×218×30 4 (K80) 
2019 (Jiang et al., 

2019) 

FUNWAVE CUDA-Fortran 3200×2400 2 (V100) 
2020 (Yuan et al., 

2020) 

NICAM OpenACC 56×56km×160 2560 (K20X) 
2016 (Yashiro et al., 

2016) 

COSMO OpenACC 346×340×60 4888 (P100) 
2018 (Fuhrer et al., 

2018) 

LICOM3 HIP 7200×3920×55 26200 (gfx906) 2020 (This paper) 

 

  

https://doi.org/10.5194/gmd-2020-323
Preprint. Discussion started: 10 December 2020
c© Author(s) 2020. CC BY 4.0 License.



 

34 
 

Table 5: Success and failure rates of different scales for one wall clock hour simulation. 

GPUs Success Failure 

384 98.85%  
1000 97.02% 2.98% 

10000 72.90% 27.10% 

26200 40.19% 59.81% 

 590 

1.15%
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