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Abstract. The evaluation of models in general is a non-trivial task and can, due to epistemological and practical reasons, never

be considered as complete. Due to this incompleteness, a model may yield correct results for the wrong reasons, i.e. by a

different chain of processes than found in observations. While guidelines and strategies exist in the atmospheric sciences to

maximize the chances that models are correct for the right reasons, these are mostly applicable to full-physics models, such as

numerical weather prediction models. The Intermediate Complexity Atmospheric Research (ICAR) model is an atmospheric5

model employing linear mountain wave theory to represent the wind field. In this wind field atmospheric quantities such as

temperature and moisture are advected and a microphysics scheme is applied to represent the formation of clouds and precip-

itation. This study conducts an in-depth process-based evaluation of ICAR, employing idealized simulations to increase the

understanding of the model and develop recommendations to maximize the probability that its results are correct for the right

reasons. To contrast the obtained results from the linear-theory-based ICAR model to a full-physics model, idealized simula-10

tions with the Weather Research and Forecasting (WRF) model are conducted. The impact of the developed recommendations

is then demonstrated with a case study for the South Island of New Zealand. The results of this investigation suggest three mod-

ifications to improve different aspects of ICAR simulations. The representation of the wind field within the domain improves

when the dry and the moist Brunt-Väisälä frequencies are calculated in accordance to linear mountain wave theory from the

unperturbed base state rather than from the time-dependent perturbed atmosphere. Imposing boundary conditions at the upper15

boundary different to the standard zero gradient boundary condition is shown to reduce errors in the potential temperature and

water vapor fields. Furthermore, the results show that there is a lowest possible model top elevation that should not be undercut

to avoid influences of the model top on cloud and precipitation processes within the domain. The method to determine the low-

est model top elevation is applied to both the idealized simulations as well as the real terrain case study. Notable differences

between the ICAR and WRF simulations are observed across all investigated quantities such as the wind field, water vapor20

and hydrometeor distributions, and the distribution of precipitation. The case study indicates that the precipitation maximum

calculated by the ICAR simulation employing the developed recommendations is spatially shifted upwind in comparison to

an unmodified version of ICAR. The cause for the shift is found in influences of the model top on cloud formation and pre-

cipitation processes in the ICAR simulations. Furthermore, the results show that when model skill is evaluated from statistical

metrics based on comparisons to surface observations only, such an analysis may not reflect the skill of the model in capturing25

atmospheric processes like gravity waves and cloud formation.
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1 Introduction

All numerical models of natural systems are approximations to reality. They generate predictions that may further the under-

standing of natural processes and allow the model to be tested against measurements. However, the complete verification or

demonstration of the truth of such a model is impossible for epistemological and practical reasons (Popper, 1935; Oreskes5

et al., 1994). While the correct prediction of an observation increases trust in a model it does not verify the model, e.g. correct

predictions for one situation do not imply that the model works in other situations or even that the model arrived at the pre-

diction through what would be considered the correct chain of events according to scientific consensus. In contrast, a model

prediction that disagrees with a measurement falsifies the model, thereby indicating, for instance, issues with the underlying

assumptions. From a practical point of view, the incompleteness and scarcity of data, as well as the imperfections of observing10

systems place further limits on the verifiability of models. The same limitations apply to model evaluation as well. However,

evaluation focuses on establishing the reliability of a model rather than its truth.

These propositions include models employed in the earth sciences, such as coupled atmosphere-ocean general circulation

models, numerical weather prediction models and regional climate models. Those models approximate and simplify the world15

and processes in it by discretizing the governing equations in time and space and by modeling subgrid-scale processes with

adequate parametrizations (e.g. Stensrud, 2009). The applied simplifications are often the result of a trade-off between phys-

ical fidelity of the modeled processes and the associated computational demand. However, even with a firm basis in natural

laws, such models may generate results that match measured data but arrive at them through a causal chain differing from that

inferred from observations (“right, but for the wrong reason”; e.g. Zhang et al., 2013). Additionally, the reason for a matching20

result may even be found in unphysical artifacts introduced by the numerical methods of these models (e.g. Goswami and

O’Connor, 2010). In acknowledgment of the fundamental limitation of verification, models are evaluated rather than verified,

and best practices and strategies have been outlined to maximize the probability that the results obtained from a model are

correct for the right reasons (e.g. Schlünzen, 1997; Warner, 2011). Most of these criteria, however, apply to full physics-based

models such as regional climate models or numerical weather prediction models that are expected to model atmospheric pro-25

cesses comprehensively.

The Intermediate Complexity Atmospheric Research model (ICAR; Gutmann et al., 2016) employed in this study is intended to

be a simplified representation of atmospheric dynamics and physics over mountainous terrain. With a basis in linear mountain

wave theory, it is a computationally efficient alternative to full physics regional climate models such as the Weather Research-30

ing and Forecasting (WRF; Skamarock et al., 2019) model. Compared to simpler linear-theory-based models of orographic

precipitation (e.g. Smith and Barstad, 2004), ICAR allows for a spatially and temporally variable background flow, a detailed

vertical structure of the atmosphere and employs a complex microphysics scheme. However, for instance, precipitation in-
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duced by convection or enhanced by non-linearities in the wind field is not considered by ICAR but may be accounted for

with other methods (e.g. Jarosch et al., 2012; Horak et al., 2019). For such cases Schlünzen (1997) advises that a model has

to be assessed with respect to its limit of application. Therefore, a direct comparison to a full physics-based model is gen-

erally not sufficient for an evaluation of ICAR since ICAR is not intended to provide a full representation of atmospheric

physics. Furthermore, whether the results obtained from ICAR simulations are correct for the right reasons cannot be inferred5

from, for instance, precipitation measurements, alone. Similar spatial distributions of precipitation may result from a variety

of different atmospheric states. Therefore, the modelled processes yielding the investigated result need to be considered as well.

However, in the literature the evaluation efforts for ICAR so far focused mainly on comparisons to precipitation measure-

ments or WRF output. Gutmann et al. (2016) compared monthly precipitation fields for Colorado, USA, obtained from ICAR10

to WRF output and an observation-based gridded data set. While Gutmann et al. (2016) additionally performed idealized hill

experiments, these focused on the qualitative comparison of the vertical wind field and the distribution of precipitation between

ICAR and WRF. Bernhardt et al. (2018) applied ICAR to study changes in precipitation patterns in the European Alps in de-

pendence of the chosen microphysics scheme. Horak et al. (2019) evaluated ICAR for the South Island of New Zealand based

on multi-year precipitation time series from weather station data and diagnosed the model performance with respect to season,15

atmospheric background state, synoptic weather patterns and the location of the model top. By comparing to measurements,

Horak et al. (2019) observed a strong dependence of the performance of ICAR on the location of the model top, finding an op-

timal setting of 4.0km above topography that minimized the mean squared errors calculated at all weather stations. However,

the analysis of cross sections revealed numerical artifacts in the topmost vertical levels, suggesting these to be responsible for

the high model skill, thus rendering the model right for the wrong reason.20

This study aims to improve the understanding of the ICAR model and develop recommendations that maximize the probability

that the results of ICAR simulations, such as the spatial distribution of precipitation, are correct and caused by the physical

processes modelled by ICAR and not by numerical artifacts or any influence of the model top (correct for the right reasons).

For a given initial state, a correct representation of the fields of wind, temperature and moisture as well as of the microphysical25

processes are a necessity to obtain the correct distribution of precipitation. Therefore, simulations of an idealized mountain

ridge are employed to investigate and verify the respective fields and processes in ICAR. This study first analyses quantita-

tively and qualitatively how closely the ICAR wind and potential temperature fields match the analytical solution for the ideal

ridge and contrasts them to a WRF simulation to infer the aspects not captured by linear theory (Sect. 4.1). In a second step the

influence of the height of the model top and the upper boundary conditions on the microphysical cloud formation processes are30

quantified with a sensitivity study (Sect. 4.2 – 4.4). Thirdly, the differences in the hydrometeor and precipitation distribution

due to non-linearities and other processes not represented by linear theory are investigated in a comparison of ICAR to WRF

(Sect. 4.5). Finally, the impact of recommendations derived from the preceding steps on a real case are demonstrated (Sect.

4.6). The case study is conducted for the South Island of New Zealand and contrasted to the results of Horak et al. (2019). All

findings are discussed in Sect. 5 and the conclusions, including the recommendations, are summarized in Sect. 6.35
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2 ICAR Model

2.1 Model description

ICAR is an atmospheric model based on linear mountain wave theory (Gutmann et al., 2016). The input datasets required

by ICAR are a digital elevation model supplying the high-resolution topography h(x,y) and forcing data, i.e., a set of 4-D

atmospheric variables as supplied by atmospheric reanalysis such as ERA5 or coupled atmosphere-ocean general circulation5

models. The forcing data set represents the background state of the atmosphere and must comprise the horizontal wind com-

ponents (U ,V ), pressure p, potential temperature Θ and water vapor mixing ratio qv0.

ICAR stores all dependent variables on a 3-D staggered Arakawa C-grid (Arakawa and Lamb, 1977, pp.180-181) and em-

ploys a terrain-following coordinate system with constant grid cell height. In particular mass based quantities such as water10

vapor are stored at the grid cell center while the horizontal wind components u and v are stored at the centers of the west/east

or south/north faces of the grid cells and the vertical wind component w at the center of the top/bottom faces of each grid cell.

In contrast to dynamical downscaling models, ICAR avoids solving the Navier-Stokes equations of motion explicitly. In-

stead, ICAR calculates the perturbations to the horizontal background winds analytically for a given time step by employing15

linearized Boussinesq-approximated governing equations that are solved in frequency space with the Fourier transformation

(Barstad and Grønås, 2006). With the Fourier transform of, for example, the east-west wind perturbation u′ denoted as û the

perturbations to the horizontal wind field are

û(k, l) =
−m(σk+ ilf)iη̂

k2 + l2
and (1)

v̂(k, l) =
−m(σl+ ikf)iη̂

k2 + l2
(2)20

with the horizontal wavenumbers k and l, the Coriolis term f and the imaginary number i. The vertical wavenumber m, the

intrinsic frequency σ, and the fluid displacement η̂ are given by

η̂ = ĥeimz, (3)

m2 =
N2−σ2

σ2− f2
(k2 + l2), and (4)

σ = Uk+V l. (5)25

Here ĥ denotes the Fourier transform of the topography h(x,y), z the elevation and N the Brunt-Väisälä frequency. Note that

depending on whether a grid cell is saturated or not, either the moist, Nm (Emanuel, 1994), or dry Brunt-Väisälä frequency Nd

is employed in Eq. (4) and calculated as

N2
d = g

d lnθ

dz
and (6)

N2
m =

1

1 + qw

{
Γm

d

dz

[
(cp + clqw) lnθe

]
−
[
clΓm lnT + g

]dqw
dz

}
, (7)30
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with the acceleration due to gravity g, the temperature T , the potential temperature θ, the equivalent potential temperature

θe, the saturated adiabatic lapse rate Γm, the saturation mixing ratio qs, the cloud water mixing ratio qc and the total water

content qw = qs+ qc, and the specific heats at constant pressure of dry air and liquid water cp and cl. Note that ICAR employs

quantities from the perturbed state of the domain to calculate N even though in linear mountain wave theory N is a property

of the background state (e.g. Durran, 2015). Statically unstable atmospheric conditions (i.e., N2 < 0) in the forcing data are5

avoided by enforcing a minimum Brunt-Väisälä frequency of Nmin = 3.2× 10−4 s−1 throughout the domain.

The vertical wind speed perturbation w = w′ is calculated from the divergence of the horizontal winds u and v, where

u= U +u′ and v = V + v′, as

−∂w
∂z

=
∂u

∂x
+
∂v

∂y
(8)10

ICAR does solve the equations 1-8 for every grid cell in the ICAR domain separately and for every forcing time step as to allow

for a spatially and temporally variable background state. To make this task computationally viable, ICAR employs a lookup

table, see Gutmann et al. (2016) for details.

ICAR allows for the selection of different microphysics (MP) schemes. In this study an updated version of the Thompson15

MP scheme is employed (Thompson et al., 2008). It predicts mixing ratios for water vapor qv , cloud water qc, cloud ice qi, rain

qr, snow qs and graupel qg , from here on referred to as microphysics species, as well as the number concentrations for cloud

ice ni and rain nr. The Thompson MP scheme is a double moment scheme in cloud ice and rain and a single moment scheme

for the remaining quantities.

20

The microphysics species, ni, nr and θ are advected with the calculated wind field according to the advection equation (Gut-

mann et al., 2016):

∂ψ

∂t
=−

(
∂(uψ)

∂x
+
∂(vψ)

∂y
+
∂(wψ)

∂z

)
, (9)

where ψ denotes any of the advected quantities. At the lateral domain boundaries L located at nx = 0, nx =Nx, ny = 0 and

ny =Ny , where Nx and Ny are the number of grid points along the x and y direction, the value of ψ is given by the forcing25

data set and specified by a Dirichlet boundary condition as

ψ(x,y,z, t)
∣∣∣
(x,y)∈L

= ψF (x,y,z, t), (10)

with ψF as the respective quantity in the forcing data set temporally and spatially interpolated to the ICAR grid and model

time. At the upper boundary T where nz =Nz and Nz as the grid points along the z direction, a zero gradient Neumann

boundary condition is imposed:30

∂ψ(x,y,z, t)

∂z

∣∣∣
z∈T

= 0 (11)
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The initial conditions at t0 for the 3-D fields of all atmospheric quantities Ψ in the ICAR domain are prescribed by linearly

interpolating the corresponding field in the forcing dataset ΨF to the high-resolution ICAR domain:

Ψ(x,y,z, t0) = ΨF (x,y,z, t0). (12)

Note that capital Ψ denotes not only the advected quantities ψ but also p.

5

In linear mountain wave theory, the wind field is entirely determined by the topography and the background state of the

atmosphere (Sawyer, 1962; Smith, 1979) and, for a horizontally and vertically homogeneous background state, given by a set

of analytical equations (e.g. Barstad and Grønås, 2006). This formal simplicity is achieved by a number of simplifications such

as, for instance, neglecting the interaction of waves with waves, waves with turbulence or non-linear effects such as gravity

wave breaking, time-varying wave amplitudes or low-level blocking and flow splitting. Discussions of the limitations of linear10

theory resulting from this reduction of complexity can be found in the literature (e.g. Dörnbrack and Nappo, 1997; Nappo,

2012).

Note that since ICAR is based on the equations derived by Barstad and Grønås (2006) it currently neglects the reflection

of waves at the interface of atmospheric layers with different Brunt-Väisälä frequencies. Furthermore, it neglects the vertical15

increase of the amplitude of the wind field perturbations with drecreasing density. A full description of ICAR is given by

Gutmann et al. (2016).

2.2 Modifications to ICAR

The investigations described in this study were conducted with a modified version of ICAR 1.0.1. All modifications are publicly

available as download (Gutmann et al., 2020).20

2.2.1 Calculation of the Brunt-Väisäla frequency

From the initial state of θ and the microphysics species fields at t0 (see Eq. 12), ICAR calculates the (moist or dry, Eq. 6 and

7) Brunt-Väisälä frequency N for all model times tm smaller than the first forcing time tf1 . During each model time step, the

θ and microphysics species fields in the ICAR domain are modified by advection and microphysical processes. Therefore, for

model times tm > t0, θ and all the microphysics species q represent the perturbed state of the respective fields, denoted as25

θ = Θ + θ′ and (13)

q = q0 + q′. (14)

Note that in this notation, the perturbed water vapor field is denoted as qv , the background state water vapor field as qv0 and the

perturbation field as q′v . Consequently, during all intervals tfn ≤ tm < tfn+1
, where tfi are subsequent forcing time steps, N is

based on the perturbed states of potential temperature and the microphysics species at tfn . More specifically, all atmospheric30

variables ICAR uses for the calculation of N with Eqs. (6) and (7) are represented by the perturbed fields.
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However, in linear mountain wave theory N is a property of the unperturbed background state (e.g. Durran, 2015), an as-

sumption that is not satisfied by the calculation method employed by the standard version of ICAR. This study therefore

employs a modified version of ICAR that, in accordance with linear mountain wave theory, calculates N from the state of the

atmosphere given by the forcing data set if the corresponding option is activated. In the following, the modification of ICAR5

basing the calculation of N on the background state is referred to as ICAR-N, while the unmodified version, that bases the

calculation on the perturbed state of the atmosphere, is referred to as the original version (ICAR-O). If properties applying to

both versions are discussed, the term ICAR is chosen.

2.2.2 Treatment of the upper boundary in the advection numerics

ICAR imposes a zero gradient boundary condition (ZG BC) at the upper boundary on all quantities subject to numerical ad-10

vection, see Eq. (11). This section details how, particularly for the microphysics species, a ZG BC has the potential to cause

problems by e.g., triggering influx of additional water vapor into the domain. Due to its conceptual simplicity, the issue is

illustrated for the upwind advection scheme, which is the standard advection scheme employed by ICAR.

In the following the mass levels are indexed from 1 to Nz and the half levels bounding the k-th mass level are denoted as15

k− 1/2 and k+ 1/2. Note that the vertical wind components are calculated at half levels with Eq. (8) and that, in particular,

no boundary condition is required to determine w at the model top.

To arrive at the discrete equations of the upwind advection, the flux divergences ∂(uψ)/∂x, ∂(vψ)/∂y and ∂(wψ)/∂z on

the right hand side of Eq. (9) are discretized as, e.g., in Patankar (1980). The vertical flux gradient φz across mass level k at20

time step t due to downdrafts (wtk+1/2 < 0 and wtk−1/2 < 0) is then approximated by

φz =
∂(wψ)

∂z
≈ 1

∆z

(
ψtk+1w

t
k+1/2−ψ

t
kw

t
k−1/2

)
, (15)

with ∆z as the vertical grid spacing. The resulting value of ψ at mass level k at time step t+ 1 is calculated with an explicit

first-order Euler forward scheme as

ψt+1
k = ψtk −

∆t

∆z

(
ψtk+1w

t
k+1/2−ψ

t
kw

t
k−1/2

)
, (16)25

where ∆t denotes the length of the time step. At the upper boundary, where k =Nz with Nz being the number of vertical lev-

els, by default ICAR applies a zero gradient boundary condition to ψ by setting ψNz+1 = ψNz
. In case of downdrafts, ψNz

> 0

and vertical convergence in the wind field across the topmost vertical mass level (wNz+1/2 <wNz−1/2), this results in a neg-

ative vertical flux-gradient and an associated increase in ψ (see equation 16). If wNz+1/2 <wNz−1/2 persists for more than

one time step, the concentration of the quantity in the topmost vertical level will continue to increase until it is redistributed30

within the domain via advection or conversion into other microphysics species. As observed by Horak et al. (2019), this influx

of additional water therefore may cause numerical artifacts such as the formation of spurious clouds.
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While the effect described above is related to downdrafts at the model top, note that updrafts, on the other hand, may cause

moisture to be transported out of the domain, leading to a mass loss. However, for k =Nz and wtNz+1/2 > 0 and wtNz−1/2 > 0,

the discretization of the vertical flux divergence in Eq. (9) yields

∂(wψ)

∂z
≈ 1

∆z

(
ψtNz−1w

t
Nz−1/2−ψ

t
Nz
wtNz+1/2

)
. (17)5

Therefore, this issue cannot be addressed by applying different boundary conditions, since Eq. (17) does not depend on ψNz+1.

A solution to address both issues would potentially be to include a relaxation layer directly beneath the model top (see, e.g.

Skamarock et al., 2019). Within this relaxation layer vertical wind speeds would tend towards zero with decreasing distance to

the model top and perturbed quantities would be relaxed towards their value in the background state. Another potential solution10

is employed by full physics models such as the Integrated Forecasting System (IFS) of the European Center for Medium-Range

Weather Forecasts (ECMWF, 2018), the COSMO model (Doms and Baldauf, 2018) or the Weather Research and Forecasting

(WRF) model (Skamarock et al., 2019). These models place the location of the upper boundary at elevations high enough

where moisture fluxes across the boundary are negligible. While applying either treatment to ICAR is, in general, an option, it

is undesirable since both necessarily result in higher model tops and therefore would severely increase the computational cost15

of ICAR simulations. Hence, this study investigates whether the application of computationally cheaper alternative boundary

conditions is able to reduce errors caused by, e.g., the unphysical mass influx and loss described above. To this end additional

boundary conditions are added to the ICAR code with the option to apply different boundary conditions to different quantities

ψ. Furthermore this study assesses whether the lowest possible model top elevation necessary to avoid the model top’s impact

on the results can be chosen substantially below that of full-physics models without sacrificing the physical fidelity of the20

results.

3 Methods

To investigate ICAR with respect to the influence of the elevation of the upper boundary and the boundary conditions applied

to it, idealized numerical simulations and a real case study are conducted. Simulations are run with ICAR-O, ICAR-N and

WRF in order to assess to what degree ICAR simulations approximate the results of the analytical solution and a full-physics25

model. In addition, WRF is employed to infer differences due to non-linearities.

3.1 Simulation setup

Simulations in this study are conducted with version 1.0.1 of ICAR (ICAR-O) and version 4.1.1 of WRF. Additionally, a mod-

ification of ICAR-O, referred to as ICAR-N, where the Brunt-Väisälä frequency N is calculated from the background state

given by the forcing data set is employed. Note that ICAR-O, on the other hand, calculates N from the perturbed state of the30

atmosphere predicted by the ICAR-O. In the idealized simulations the forcing data set is represented by an idealized sounding
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while for the real case it is the ERA-Interim reanalysis. For idealized simulations a period of 18 hours is used for spinup and

the model output from t= 19h to t= 30h with an interval of 1h, is evaluated. The ICAR setup for the real case is described

in Horak et al. (2019).

The ideal case consists of an infinite ridge extending along the south-north direction in the domain and westerly flow. The5

horizontal grid spacings of ICAR and WRF are chosen as ∆x= ∆y = 2km with 404 grid points along the west-east axis and

open boundary conditions at the western and eastern boundaries. Since ICAR does not currently support periodic boundary

conditions, 104 grid points are employed along the south-north axis to minimize the influence of the boundaries on the domain

center. For ICAR, open boundary conditions are imposed at the southern and northern boundaries. WRF, on the other hand, just

uses three grid points along the south-north axis and periodic boundary conditions. The vertical spacing in ICAR simulations is10

set to ∆z = 200m, while the 26km high WRF domain is subdivided in 130 grid cells, resulting in an average vertical spacing

of approximately 200m. At the lower boundary ICAR and WRF employ a free-slip boundary condition. An implicit Rayleigh

dampening layer (Klemp et al., 2008) is applied to the uppermost 16km of the WRF domain, with a dampening coefficient of

0.3s−1. The model time step of ICAR is automatically calculated by ICAR to satisfy the Courant-Friedrichs-Lewy criterion

(Courant et al., 1928; Gutmann et al., 2016) and is approximately 40s while for WRF it is set to 2s.15

Idealized ICAR simulations are run for different model top elevations. The elevation of the upper boundary of the domain,

referred to as model top elevation ztop, is increased by adding additional vertical levels while keeping the vertical spacing

constant. The lowest model top is set at 4.4km while the highest is located at 14.4km with steps of 1km in between. The

lower end of the model top range reflects the lowest settings employed in preceding studies, such as Horak et al. (2019) where20

the optimal setting was determined at 4.0km or Gutmann et al. (2016) who set the top of the ICAR domain to 5.64km. An

additional simulation with ztop = 20.4km is conducted to serve as a reference simulation where the cloud processes within the

troposphere are not affected by the model top. The Thompson microphysics scheme as described in Sect. 2 is employed in all

models. The ICAR implementation of the Thompson MP was forked from WRF version 3.4. Preliminary tests were conducted,

showing that WRF 3.4 and WRF 4.1.1 yielded the same results for the default scenario, with only negligible differences. Ad-25

ditionally, the code of the Thompson MP implementation in ICAR and WRF 4.1.1 was reviewed and tested to ensure that

differences between the implementations did not affect the results. All input files and model configurations are available for

download (Horak, 2020).

3.2 Topographies and initial soundings

The topography is given by a Witch of Agnesi ridge defined by h(x) = hm
(
a2/(x2 + a2)

)
with a height of hm = 1km at30

the domain center at x= 0km and a half width at half maximum of a= 20km. Along the y-axis the ridge extends through

the entire domain. To investigate the influence of the topography, additional ICAR simulations for ridge configurations with

a= 20km and heights of 0.5km, 2km and 3km are conducted, as well as 1km high ridges with a= 10km, a= 15km,

a= 30km and a= 40km, respectively.

9



The vertical potential temperature profile of the base state Θ(z) is characterized by a potential temperature at the surface

of 270K, a constant Brunt-Väisälä frequency, N = 0.01s−1 and calculated by solving Eq. (6) for θ. The horizontal wind

components of the base state are chosen as U = 20m s−1 and V = 0m s−1, and the surface pressure as 1013hPa. For the

comparison of the ICAR and WRF wind fields to an analytical solution, dry conditions with RH = 0% are employed while5

otherwise saturated conditions with RH = 100% are prescribed throughout the vertical column at all heights. The sensitivity

to the base state is investigated by either varying U between 5m s−1 and 40m s−1 in steps of 5m s−1 or varying N between

0.005s−1 and 0.015s−1 with a step size of 0.0025s−1 for the 1km high and 20km wide ridge. An overview of the parameter

space covered by the simulations is given in Table 1. A particular combination of topography and sounding is referred to as

scenario.10

Table 1. Overview of the combinations of topographies and soundings (scenarios) used to initialize the idealized ICAR simulations. Here

hm denotes the ridge height, a the half width at half maximum of the ridge, U the west-east wind component of the base state, RH the

relative humidity, Nd the dry Brunt-Väisälä frequency of the base state, λz the vertical wavelength of the hydrostatic mountain waves for

dry conditions and ε the non-dimensional mountain height for dry conditions. The default scenario used, for instance, for the comparison of

ICAR to WRF is highlighted in bold.

hm (km) 0.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0 3.0

a (km) 20 10 15 20 20 20 20 20 20 20 20 20 20 20 20 20 20 30 40 20 20

U (ms−1) 20 20 20 20 5 10 15 20 20 20 20 20 20 25 30 35 40 20 20 20 20

RH (%) 100 100 100 100 100 100 100 100 100 0 100 100 100 100 100 100 100 100 100 100 100

Nd (s−1) 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.005 0.0075 0.01 0.01 0.0125 0.015 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

λz (km) 12.6 12.6 12.6 12.6 3.1 6.3 9.4 25.1 16.8 12.6 12.6 10.1 8.4 15.7 18.8 22 25.1 12.6 12.6 12.6 12.6

ε (1) 0.25 0.5 0.5 0.5 2 1 0.67 0.25 0.38 0.5 0.5 0.63 0.75 0.4 0.33 0.29 0.25 0.5 0.5 1 1.5

For the default scenario with the 1km high and 20km wide ridge and a background state with U = 20m s−1, N = 0.01s−1

and RH = 100%, the vertical wavelength of hydrostatic mountain waves is λz = 2πU/Nd = 12.6km and the non-dimensional

mountain height is ε= hmNd/U = 0.5. While the listed values for λz and ε are valid only for dry conditions, they are em-

ployed to summarize the basic characteristics of the background state. For the Witch of Agnesi ridge, the critical value for the

onset of wave breaking in a dry (unsaturated) atmosphere is εc = 0.85 (Miles and Huppert, 1969). Note that while a saturated15

atmosphere has been shown to increase the values of ε and εc (Jiang, 2003), wave breaking does not occur due to ε < εc.

Nonetheless other non-linear effects, such as wave amplification, cannot be completely neglected. The combination of this

sounding and topography is therefore suitable as an indicator of how well the ICAR solution approximates scenarios in which

non-linearities occur, a situation ICAR is very likely to encounter in real-world applications. To this end an ICAR-N simulation

is compared to a WRF simulation employing the same topography and sounding.20
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3.3 Analytical solution

ICAR calculates the perturbations to the horizontal background wind with Eq. (1) and Eq. (2) while the vertical wind speed

is calculated according to Eq. (8). Perturbations to the potential temperature and microphysics species fields, on the other

hand, result from advection and microphysical processes calculated with numerical methods. In ICAR-O this introduces a

time dependency for N and, in turn, for the wind field perturbations that depend on N as input variable. Furthermore, ICAR5

assembles the wind field with an algorithm that allows for a spatially variable background state (Gutmann et al., 2016). It is

therefore necessary to ascertain how well the exact analytical perturbations are reproduced by ICAR. This cannot be inferred

from a direct comparison to WRF since the wind field of the latter is influenced by non-linear processes not modeled by ICAR.

For the topography given in Sect. 3.2 linear-theory-based analytical expressions for the resulting perturbations to a horizontally

and vertically uniform background state have been derived as (e.g. Smith, 1979):10

u′(x,z) =A(z)N
asin(lz) +xcos(lz)

a2 +x2
, (18)

w′(x,z) =A(z)U
(x2− a2)sin(lz)− 2axcos(lz)

(a2 +x2)2
, (19)

θ′(x,z) =−A(z)
N2

g

acos(lz)−xsin(lz)

a2 +x2
Θ, (20)

with u′ as the perturbation to the horizontal background wind U , w′ the perturbation to the vertical wind speed, θ′ the per-

turbation to the background potential temperature Θ, g = 9.81m s−2 as the gravitational acceleration, l the Scorer parameter15

defined as l =N/U and A(z) as the elevation dependent amplitude of the perturbations. A(z) is given by

A(z) = hma
√
ρ(0)/ρ(z), (21)

where ρ is the height-dependent air density of the background state. However, since the underlying equations employed by

ICAR neglect the effect of wave amplification due to decreasing density with height, the term
√
ρ(0)/ρ(z) in equation (21) is

set to unity in the following.20

3.4 Boundary conditions at the model top

In this study the effect of the boundary conditions (BCs) imposed by ICAR at the upper boundary of the simulation domain is

investigated. To this end several alternative BCs to the existing zero gradient boundary condition are added to the ICAR code,

their abbreviations, mathematical formulation and their numerical implementation are summarized in Table 2. All BCs consti-

tute Neumann BCs except for the zero value Dirichlet BC. Per default ICAR imposes a ZG BC at the model top to all quantities,25

corresponding to the assumption that, e.g. the mixing ratio of hydrometeors qhyd above the domain is the same as in the topmost

vertical level. A ZV BC imposed on, e.g., qhyd avoids any advection from outside of the domain into it. The CG, CF and CFG

BCs assume that either the gradient, flux or flux gradient of ψ, respectively, remains constant at the model top, representing

different physical situations. The respective discretizations of the equations given in Table 2 then determine the value of ψNz+1.

30
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For this study, options to the ICAR code are added which allow the application of different BCs to water vapor, potential

temperature and the hydrometeors (cloud water, ice, rain, snow and graupel) respectively, herein after referred to as a set of

boundary conditions. To indicate which BCs were applied to what group in a specific model run, the runs are labeled with a

three digit code, see Table 3. The first digit indicates the BC imposed on θ, the second digit the BC imposed on qv and the third

digit the BC imposed on qhyd, which encompass all remaining MP species (qc, qi, qr, qs and qg). The number ID associated5

with each BC is listed in Table 2. In this notation, for instance, 014 denotes a simulation imposing a zero gradient BC to θ, a

constant gradient BC to qv , and a constant flux gradient BC to the hydrometeors qhyd.

The ten combinations of BCs tested in the sensitivity study are listed in Table 3. While a much larger set of combinations

of BCs exists, physically not meaningful BC combinations, such as a zero value BC imposed on potential temperature, were10

ruled out beforehand. Additionally, to reduce the parameter space further, a preliminary study was conducted to exclude sets

of BCs that yielded results with distinctly higher errors than the standard zero gradient BC.

Table 2. Overview of all types of boundary conditions that were imposed at the model top of ICAR in the sensitivity study. The table lists

the ID number, the abbreviation used in this study, the full name and equation of the BC evaluated at z = ztop, and the resulting equation for

ψNz+1 required to calculate the flux at the top boundary of the domain in equation (16). Note that the zero gradient BC is a special case of

the constant gradient BC and that the constant c is chosen as ψNz −ψNz−1. Due to the upwind advection scheme each BC is only applied if

wNz < 0.

ID abbreviation boundary condition ψNz+1

0 ZG zero gradient ∂ψ
∂z = 0 ψNz

1 CG constant gradient ∂ψ
∂z = c max(0, 2ψNz

−ψNz−1)

2 ZV zero value ψ = 0 0

3 CF constant flux ∂(wψ)
∂z = 0

wNz−1

wNz
ψNz

4 CFG constant flux gradient ∂2(wψ)
∂z2 = 0 1

wNz
(2ψNz−1wNz−1−ψNz−2wNz−2)

12



Table 3. Combinations of BCs tested in the sensitivity study with idealized simulations. Each column represents a combination of three

BCs used in a specific simulation. Each digit of the three digit code refers to the ID number of a specific BC listed in Table 2 that was

applied to one of the three quantities listed in the rows below. For all combinations of BCs, simulations for all of the topographic settings

and background conditions listed in Table 1 were performed.

quantity BC combination

code 000 011 111 114 113 014 044 141 142 133

θ ZG ZG CG CG CG ZG ZG CG CG CG

qv ZG CG CG CG CG CG CFG CFG CFG CF

qhyd ZG CG CG CFG CF CFG CFG CG ZV CF

3.5 Evaluation

All evaluations conducted in this study focus on cross-sections along the west-east axis of the domain, oriented parallel to the

background flow. Since ICAR does not currently support periodic boundary conditions, the ICAR domain is extended along

the south-north axis to minimize influences from the boundaries (see Sect. 3.1). Additionally, for ICAR the four centermost

west-east cross sections from the south-north axis in the domain are averaged and the average is found as representative of the5

domain center in preliminary tests (not shown). In WRF the central west-east cross section from the south-north axis is used.

The effect of the Brunt-Väisälä frequency calculation method is investigated with a comparison of the u′ and w′ fields ob-

tained from ICAR-N and ICAR-O simulations to the fields given by the analytical expressions in equations (18) and (19).

Non-linear effects on the wind field are investigated by a comparison of ICAR to WRF. Differences between the models’ and10

the analytical solution are quantified with the bias B and the mean absolute error MAE (MAE, Wilks, 2011b, chap. 8). Since

WRF uses a different model grid than ICAR, WRF fields are linearly interpolated to the ICAR grid for this comparison.

For the evaluation in this study the mixing ratios of the microphysics species are assigned to three groups. Water vapor qv ,

suspended hydrometeors qsus = qc + qi and precipitating hydrometeors qprc = qr + qs + qg . The total mass of water vapor Qv ,15

suspended hydrometeors Qsus and precipitating hydrometeors Qprc is calculated as

Q(t) = V

Nx∑
i=0

Nz∑
j=0

ρij(t)qij(t), (22)

where Nx and Nz are the horizontal and vertical number of grid cells respectively, V the grid cell volume, qij(t) the mixing

ratio of the respective hydrometeor species and ρij(t) the density of dry air within the grid cell. Note that in contrast to WRF

the grid cell volume in ICAR is constant and all vertical levels have the same height ∆z.20

The sensitivity of the physical processes simulated by ICAR-N to the elevation of the upper boundary and the imposed bound-
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ary conditions (BCs) is inferred from the total mass of the MP species in the cross-section and the spatial distribution of

potential temperature, the MP species and the 12-h accumulated precipitation P12h. Except for P12h all quantities are averaged

over the 12 hour period after a spinup of 18h when an approximately steady state is reached. P12h is the precipitation accumu-

lated over the same period.

5

Differences in the spatial distribution of time-averaged quantities ψ̄, P12h and time-averaged total mass of the MP species

Q̄ with respect to the reference simulation are quantified with the sum of squared errors (SSE). The SSE is calculated between

ICAR simulations with different values of ztop and the reference simulation employing the default zero gradient BCs at the

upper boundary where ztop is zmax = 20.4km. This model top is high enough so that cloud processes within the troposphere

are not affected by the model top. The SSE is calculated over all vertical levels defined in both simulations as10

SSE(ψ,ztop,BCs) =

Nx∑
i=0

Nz∑
j=0

(
ψ̄ij(ztop,BCs)− ψ̄ij(zmax)

)2
. (23)

Here ψ̄ij(ztop,BCs) is the time averaged value of a quantity ψ in an ICAR simulation at grid point (i, j) with the model

top at ztop and the set of upper BCs, and ψ̄ij(zmax) is the value of a quantity at the same location in the reference sim-

ulation with ztop = zmax. For 12-hour accumulated precipitation a one-dimensional version of equation (23) with the sum-

mation only along the x-axis is employed while for total mass no summation is necessary and only the squared difference15

(Q̄(ztop,BCs)− Q̄(zmax))2 is calculated. The SSE is preferred over the mean squared error (MSE) since different model top

settings result in different domain sizes, potentially favoring simulations with higher model tops due to the larger area that the

errors are averaged over. While, conversely, the SSE tends to favor smaller domains, lower SSEs obtained for simulations with

higher model tops are then a stronger indicator that increasing the model top effectively reduces errors.

20

To quantify the improvement of one simulation, with a set of boundary conditions BCs and model top ztop, over another by

choosing a different set of boundary conditions, BCs′, at the upper boundary or another model top elevation z′top, the reduction

of error (RE) measure is employed (Wilks, 2011a, chap. 8). It is given by

RE(ψ) = 1−
SSE(ψ, z′top, BCs′)
SSE(ψ, ztop, BCs)

. (24)

This way, RE can be interpreted as a percentage improvement due to the alternative choice of z′top or BCs′ over the original25

settings ztop and BCs, with RE = 0 corresponding to no improvement and RE = 1 corresponding to a complete removal of

errors.

To characterize the effect of increasing the model top elevation on the SSE while keeping the set of boundary conditions

unchanged, RE is evaluated for increasing values of z′top between 4.4km and 14.4km with ztop = 4.4km and BCs = BCs′ in30

Eq. (24). The resulting RE values then are equivalent to the percentage change of the SSEs achieved by increasing ztop in com-

parison to the lowest tested model top setting. Similarly, to investigate the effect of an alternative set of boundary conditions,
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RE is evaluated for ztop = z′top and BCs 6= BCs′. Here the resulting RE values quantify the percentage improvement of the SSEs

achieved by changing the imposed boundary conditions at the upper boundary while leaving the model top elevation unchanged.

The quantity zmin(ψ,BCs) is introduced which defines the model top elevation for a given set of boundary conditions BCs

and parameter ψ for which RE exceeds 95% for the first time and remains above that threshold for ztop ≥ zmin. In preliminary5

studies the 95% threshold value was found as a suitable indicator for reaching a saturation in error reduction (not shown). The

lowest possible model top elevation Zmin is then calculated as the maximum of zmin(ψ,BCs) for all quantities ψ and a particular

combination of boundary conditions BCs. However, θ is excluded since this study focuses mainly on hydrometeors. Nonethe-

less any relevant error in θ influences the MP fields and the distribution of precipitation, thereby directly affecting Zmin. In this

context Zmin can then be interpreted as the lowest possible model top elevation such that the cloud and precipitation processes10

in the domain are sufficiently independent from influences of the model top.

3.6 Case study

To investigate the effects of the suggested modifications to ICAR on the distribution of precipitation for a real world applica-

tion, a case study is conducted for the Southern Alps on the South Island of New Zealand located in the southwestern Pacific

Ocean. Furthermore, the procedure to identify the lowest possible model top elevation Zmin, as described in Sect. 3.5, is ap-15

plied to this real case scenario and the result compared to the optimal model top elevation of 4km found by Horak et al. (2019)

for this region. In their study the model top elevation was chosen as the elevation that led to the lowest mean squared errors

between simulated and measured 24-h accumulated precipitation for eleven sites in the Southern Alps. Section 4.6 additionally

investigates whether this seemingly optimal result, as suggested by the lowest mean squared errors, was achieved due to the

low model top potentially influencing the microphysical processes within the domain and the calculation of N being based on20

the perturbed fields. To this end the hydrometeor and precipitation distribution along cross sections through the Southern Alps

are compared.

To maintain comparability to Horak et al. (2019), the ICAR simulations for ICAR-O and ICAR-N are forced with the ERA-

Interim reanalysis (ERAI, Dee et al., 2011) instead of the more recent ERA5 reanalysis. For the ICAR-O simulation the model25

top is set to 4km, the elevation that was identified as seemingly optimal in Horak et al. (2019) and ZG BCs are applied to

θ and all microphysics species (BC code 000). For the ICAR-N simulation Zmin is determined for the day of the case study

as described in Sect. 3.5 by conducting multiple simulations with model tops between 5–20km. A ZG BC is imposed on the

potential temperature field to avoid numerical instabilities arising for a CG BC due to strongly stratified atmospheric layers

and a CG BC is imposed on the microphysics species (BC code 011). The remaining setup for ICAR-O and ICAR-N, such as30

the forcing data set and the model domain have been described in detail in Horak et al. (2019).

The case study focuses on the 6 May 2015 LT (local time), a day with stably stratified large-scale northwesterly flow through-

out the troposphere impinging on the Southern Alps over a 24-h period. Upstream of the South Island, ERAI exhibits a 24-h
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averaged relative humidity of more than 80% in the lowest 2km of the atmosphere, an averaged moist Brunt-Väisäla frequency

of 0.012s−1, a mean near-surface temperature of 16.5o C and a mean specific humidity at the surface of 11g kg−1.

4 Results

4.1 Comparison to the analytical solution

Figure 1 shows the horizontal and vertical perturbations to the background state, as well as the isentropes of the perturbed po-5

tential temperature field as calculated with the analytical solution based on linear theory and simulated with ICAR-N, ICAR-O

and WRF up to an elevation of 15km. ICAR-N and ICAR-O simulations were run with ztop = 20.4km and zero gradient

boundary conditions (BC code 000). The simulations are conducted for a 2-D ridge and the default scenario with the modifi-

cation that RH = 0% (see Sect. 3.2).

10

Generally, the horizontal west-east and the vertical perturbations to the background state calculated by ICAR-N reproduce

those obtained from the analytical expressions well (cf. Fig. 1a-b and Fig. 1e-f). The range of values of u′ in ICAR-N is

−8.4m s−1 to 8.2m s−1 compared to the −10.0m s−1 to 10.0m s−1 derived from the analytical expression. While, for the

north-south perturbations, the analytical solution yields v′ = 0m s−1, ICAR-N calculates an average magnitude of 0.02m s−1.

The minimum and maximum of v′ are −1.6m s−1 and 1.5m s−1 respectively, localized in close proximity to the western and15

eastern domain boundaries. Along the domain center v′ lies between −0.5m s−1 and 0.5m s−1. For w′, values obtained with

ICAR-N lie between ±1.1m s−1 as opposed to ±1.0m s−1 for the analytical solution. The mean absolute error (MAE) in

relation to the analytical solution of u′ is 0.9m s−1, which corresponds to 11% of the absolute perturbation maximum. For w′

the MAE is 0.027m s−1 or 2% of the absolute perturbation maximum. This indicates a smaller error in the w′ field in ICAR-N

in contrast to the u′ field. In comparison to the analytical fields (Fig. 1a) the u′ field in ICAR-N exhibits slightly lower values20

of u′, particularly visible in the region where u′ < 0m s−1 from approximately 8km upward, resulting in higher horizontal

wind speeds in this region (Fig. 1b). The isentropes in ICAR-N are overall very similar to those calculated analytically (see

Fig. 1a-b), yielding an MAE of 0.26K.

The wind and potential temperature fields simulated by ICAR-O (Fig. 1c, g) exhibit clear differences to the analytical so-25

lution, especially above an elevation of about 6km. The deterioration increases with elevation and is clearly visible from

approximately z = 8km upward, particularly for w′ (Fig. 1g) but still well pronounced for u′ and the isentropes (Fig. 1c). This

is reflected in slightly elevated MAEs in comparison to ICAR-N with 1.0m s−1 in u′, 0.034m s−1 in w′ and 0.32K in θ. The

reason for the relatively small difference to the MAEs of ICAR-N is that the MAE calculation across the entire cross section

averages out the large deviations in the small spatial area around the topographical ridge at the center.30

WRF is not expected to perfectly reproduce the analytical solution due to the occurrence of non-linearities for the chosen

non-dimensional mountain height of ε= 0.5 and the amplification of perturbations due to the decrease in density with height.
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Furthermore, the occurrence of partial wave reflections from the model top is not entirely mitigated despite the careful selection

of a damping layer (see Sect. 3.1). However, the WRF simulation serves as an indicator to what degree ICAR is able to capture

the results obtained with a full-physics model. As expected, the WRF simulation shows a larger deviation from the analytical

wind field (cf Fig. 1a, e with Fig. 1d, h). The amplitudes in the perturbation fields in WRF are larger and exhibit the elevation

dependence indicated by Eq. (21). For w′, for instance, the amplitude increases by 0.7m s−1 from 4km to 10km, resulting in5

an increased orographic lift compared to ICAR. The range of observed values for u′ is −14.8m s−1 to 14.6m s−1 and values

of w′ lie between−1.7m s−1 and 2.4m s−1. These larger maximum values in comparison to the analytical solution can mainly

be attributed to the amplification of the perturbations due to the exponential decrease in density with height. For instance, at the

elevation of the w′ maximum (Fig. 1h), the pressure has dropped to about one third of the surface pressure. According to the

pressure amplification term in Eq. (21) this increases the amplitude by a factor of 1.7. The remaining difference of 0.7m s−1 is10

most likely caused by wave amplification due to non-linearities and wave reflections at the damping layer. However, the general

characteristics of the perturbation fields, such as the periodicity of the perturbations with elevation and the approximate loca-

tion of the positive and negative perturbations, are similar to that of their corresponding analytical counterparts. The increase

in the amplitude of the perturbations due to the exponential decrease in density with height continues up until approximately

15km (not shown) above which the dampening effects of the damping layer become increasingly noticeable.15
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Figure 1. Vertical cross-sections of the horizontal perturbation wind component u′ (top row) and vertical perturbation wind component w′

(bottom row) calculated analytically (left column) and calculated by ICAR-N (second column), ICAR-O (third column) and WRF (right

column). The vertical wavelength of a two-dimensional hydrostatic mountain wave λz is indicated by the dash-dotted horizontal line, the

dotted curve shows the 0m s−1 countour line and the solid black contour lines show the isentropes. For panel (a) and (e), where the pertur-

bation field is evaluated on constant height levels starting at z = 0m, the topography is indicated by the dashed curve as to not obscure the

perturbation field. All simulations are conducted for a 2-D ridge with hm = 1km and a= 20km and a background state with U = 20m s−1,

Nd = 0.01s−1 and RH= 0%.
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4.2 Sensitivity to the set of upper boundary conditions

Figures 2a-e show the reduction of error (RE) achieved for ICAR-N simulations for a given model top elevation ztop by ap-

plying different upper boundary conditions than the ICAR default (BC code 000). RE values are largest when a CG BC is

chosen for θ (Fig. 2a), more dependent on ztop for qv (Fig. 2b) and smallest for the remaining quantities (Fig. 2c-e) with similar

results for all tested topographies and the respective time averaged total masses Qv , Qsus and Qprc (not shown). Most tested5

BC combinations reduce the error in at least one of the investigated quantities, but generally not for all, with the exception of

the combinations 141 and 142. However, in case of qsus, qprc and P12h no improvements for any BC combination are observed

once ztop > 4.4km (Fig. 2c-e). The water vapor field shows improvements for all BCs except for a CF BC, with the largest REs

found for a CG BC imposed on qv . For the hydrometeors and P12h the improvement at the lowest model top setting of 4.4km

is only found if a CFG BC is applied to water vapor and either a CG, ZV or CFG to qhyd, otherwise the RE is approximately zero.10

The choice of an alternative BC over the standard ZG BC has the largest potential for a reduction of error when (i) the

grid cells of the uppermost vertical level coincide with regions of vertical convergence where w < 0 and dw/dz < 0 and (ii)

the vertical flux gradients φz in these regions are negative (see Sect. 2.2.2). Note that this particularly requires ψ > 0. For

potential temperature, in case of the specified sounding, all conditions are always satisfied in some region no matter at what15

elevation the model top is chosen, see Figure 3a where the vertical flux gradient of the potential temperature divided by the

local potential temperature, given by φ̃z(θ) = φz(θ)/θ, is shown. Consequently θ exhibits the largest reductions of error across

all values of ztop with only a small dependence on ztop (see Fig. 2a). For water vapor, as shown in Fig. 2b, RE as a function of

ztop exhibits two peaks, the first at ztop = 4.4km, and a second peak at ztop = 11.4km with a minimum in between. Here the

exponential decay of qv with height results in comparatively small values for φz(qv) above an elevation of 4km (not shown).20

However, φ̃z(qv) still exhibits minima and maxima at higher elevations due to the periodicity of the vertical velocity field (see

Fig. 3b). At the locations of these minima und maxima of φ̃z(qv) the relative error introduced by a boundary condition can

therefore be large as well. In case of qv , as shown in Fig 3b, the model top of a simulation with ztop = 11.4km would coincide

with a downdraft region of strong vertical convergence and negative φ̃z(qv) close to the domain center, implying strong water

vapor flux convergence. The same situation occurs for ztop = 4.4km albeit in a region with a lower value of φ̃z(qv) and weaker25

vertical convergence. Therefore, the local change in qv due to a mass influx caused by the boundary condition is comparatively

small, resulting in a lower relative error. Note that for simulations with 4.4km< ztop < 11.4km the vertical convergence in

downdraft regions at the model top is weaker and φ̃z(qv) is lower. Therefore, as shown in Fig. 2b, the RE achieved for qv

exhibits two peaks where the RE is high for the lowest model top setting at 4.4km, exhibits a maximum at ztop = 11.4km and

is low otherwise.30
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Figure 2. The reduction of error (RE) in dependence of the chosen combination of boundary conditions (x-axis, see Table 3 for the key to the

BC combination code) for (a) potential temperature θ, (b) water vapor qv , (c) suspended hydrometeors qsus, (d) precipitating hydrometeors

qprc and (e) the 12-h precipitation sum P12h. Note that overbars denote the temporal average of the respective quantity over 12 hours following

18 hours of model spinup. REs were calculated between an ICAR-N simulation with an alternative set of boundary conditions imposed at

the upper boundary and an ICAR-N simulation employing the standard zero gradient boundary condition (BC code 000), both run with the

same model top elevation ztop (indicated by line color). All simulations are conducted for the default scenario.
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Figure 3. The normalized vertical flux gradient of (a) potential temperature and (b) water vapor (see text for further description). The values

are calculated from an ICAR-N simulation at t= 30h with ztop = 20.4km and ZG BCs (000) for the default scenario. The contour lines

indicate the vertical convergence (dw/dz < 0s−1) in regions were w < 0m s−1. Here the violet contour lines represent stronger and the

teal contour lines weaker vertical convergence in the range between −4.5 · 10−4 s−1 and 0s−1 spaced in increments of 0.9 · 10−4 s−1. The

red contour line indicates where w = 0ms−1. In panel (b) grey and black lines additionally indicate the location of the model top for

ztop = 4.4km and ztop = 11.4km, respectively.

For the investigated scenarios, altering the boundary condition applied to θ has only a negligible effect on the microphysics

species fields and P12h. This is observed, for instance, for simulations 011 and 111 where the BC applied to θ was changed

from a ZG to CG while the BCs imposed on the MP species remained the same: Both BC settings lead to very similar RE

values for the MP species (Fig. 2b-d) and P12h (Fig. 2e) despite the RE drop observed for θ (Fig. 2a). This is due to the location

of the errors that are introduced with the standard ZG BC on θ. As shown in Fig. 4, for simulations with higher model tops5

these are mainly confined to the topmost kilometer of the model domain. If ztop is set high enough these deviations therefore do

not affect the cloud processes below. A potential reason for this behavior is that air that is either too warm or cold, depending

on the error introduced by the BC, is advected into the topmost vertical level. From there it is redistributed by vertical and

horizontal advection until an equilibrium is reached, effectively confining the introduced errors to the topmost vertical levels of

the domain. While the results indicate that a CG BC effectively reduces errors in θ, it is found to be problematic for atmospheres10

with stronger stratifications. For the 1-km high and 20-km wide Witch of Agnesi ridge and a background state of RH = 100%,

U = 20m s−1 and N ≥ 0.0175s−1, ICAR-N simulations began to exhibit numerical instabilities. These were triggered by the

CG BC causing the upper levels of the model domain to heat up, an issue not observed for the ZG BC (not shown).
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Figure 4. The mean absolute error (MAE) of potential temperature in ICAR-N simulations employing ZG BCs (000) with different model

top settings ztop in dependence of the elevation above ground (x-axis). The MAE is calculated with respect to a reference simulation with

ztop = 20.4km and ZG BCs (000). All simulations are conducted for the default scenario.

Figure 5a-b shows that the model top elevation necessary for a RE of 95%,zmin(ψ,BCs), is essentially constant and therefore

independent of the imposed BCs for all investigated quantities except for potential temperature. Imposing a CG BC on θ at the

upper boundary lowers zmin(Θ,BCs) from 12.4km to 9.4km. Similar results are found for ICAR-N simulations conducted for

the other tested topographies (not shown). To reduce the parameter space in the following analysis, and since the results for

each BC combination are very similar, the idealized simulations from here on focus on CG BCs imposed at the model top (BC5

code 111). This combination is chosen over the others for its computational simplicity, the larger REs observed for θ and qv ,

as well as the potential to reduce zmin(θ,BCs) in the idealized simulations.
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Figure 5. The panels show the minimum model top elevation zmin(ψ,BCs) necessary to reduce the error by 95% for (a) water vapor qv ,

suspended hydrometeors qsus, precipitating hydrometeors qprc, potential temperature θ and the 12-hour precipitation sum P12h and (b) the

total mass of water vapor Qv , suspended hydrometeors Qsus and precipitating hydrometeors Qprc, respectively in dependence of the set of

upper boundary conditions. The ICAR-N simulations are run for the default scenario.

4.3 Sensitivity to the model top elevation

As shown in Fig. 6a-g, for most investigated quantities the reduction of error (RE) increases monotonously with the model

top elevation ztop for all tested topographies. Once the threshold of 95% is exceeded, further increases in ztop correspond to

distinctly lower increases in RE. However, non-monotonic exceptions exist as, for instance, the total mass of water vapor Qv5

shown in Fig. 6e. HereQv exhibits a local maximum at ztop = 5.4km, before dropping to lower values that eventually converge

towards RE = 1. This is a direct consequence of the influence of the model top on the cloud processes within the domain, which

for the investigated scenarios is particularly pronounced for suspended hydrometeors qsus. For ICAR-N simulations conducted

for the default scenario (BC code 111) with increasing values of ztop, Fig. 7a shows the cloud boundary of suspended hydrom-

eteors. Here it is defined as the contour line where qsus = 10mg kg−1. While the upwind cloud adjacent to the ridge occupies a10

large region in the simulations with the lowest model tops, it initially shrinks with increasing ztop until a minimum extension is

reached at ztop = 7.4km. After this minimum the cloud increases in size with higher ztop. The extension of a smaller secondary

cloud upwind of the ridge decreases in size similarly before it vanishes completely for ztop ≥ 8.4km. Conversely, downwind of

the ridge at an elevation of approximately 6km to 9km a larger cloud forms only for ztop ≥ 6.4. Altogether, the total mass of

suspended hydrometeors, shown in Fig. 7b, initially decreases with increasing ztop until a local minimum at 6.4km is reached.15

In the simulation with this model top elevation, less water vapor is converted into suspended hydrometeors qsus, leading to a

local maximum of Qv at ztop = 6.4km (Fig. 7b). This particular behavior is found independently of the imposed boundary

conditions and results in the same cloud boundaries as shown in Fig. 7a. If a different Witch of Agnesi ridge configuration is

employed, the same shrinking of the qsus cloud occurs with increasing ztop, however, in these simulations the cloud boundaries
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differ from those in Fig. 7a (not shown).

Note that the spread of RE in dependence of ztop (Fig. 6) for qsus, Qv , Qsus and P12h is mainly caused by scenarios that

generate clouds with large vertical extensions. To better approximate the microphysical processes in the scenarios, and the re-

sulting distribution of precipitation, higher model tops are required, leading to the observed spread. This affects, in particular,5

Qv , Qsus and Qprc since missing vertical levels may significantly impact the total masses. In addition, note that while total

masses are always compared to the respective mass found in the reference simulations, qv , qsus and qprc can only be compared

within the vertical extent simulated by the simulation with the lower model top.

The results show that the total masses of the microphysics species alone are not sufficient to determine whether the pro-10

cesses within the domain are influenced by the model top. In other words, the spatial distribution of these quantities needs to be

taken into account as well. Conversely, even though the error in the distribution of qsus is reduced by at least 95% once a model

top elevation of 7.4km is employed, the same occurs for the total mass Qsus only at ztop = 10.4km (cf Fig. 6b, f). Therefore,

both measures, the distribution of a quantity and its total mass, are necessary to reliably determine whether the cloud formation

processes within the domain is independent from influences of the model top. Overall the results show that for the default sce-15

nario a lowest possible model top elevation of Zmin = 10km is required for ICAR-N to represent cloud processes undisturbed

from the influence of the upper boundary of the domain. Furthermore, the value of Zmin is found to depend strongly on the

particular scenario simulated, with values ranging from 8km–14km.
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Figure 6. The reduction of error (RE) in dependence of ztop evaluated for the time averaged distribution of (a) water vapor qv , (b) suspended

hydrometeors qsus, (c) precipitating hydrometeors qprc, (d) 12-h precipitation sum P12h and the time averaged total masses of (e) water vapor

Qv , (f) suspended hydrometeors Qsus and (g) precipitating hydrometeors Qprc. The colored curves show RE(ztop) of the respective quantity

in the ICAR-N simulations conducted for the default scenario, while the gray curves indicate the RE of simulations for the other scenarios.

The ICAR-N simulations imposed CG BCs on all quantities at the upper boundary (BC code 111). The black dashed line shows the 95% RE

threshold.
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Figure 7. Panel (a) shows the boundary of a suspended hydrometeor cloud defined by the qsus = 10mg kg−1 contour line for ICAR-N

simulations with different model top elevations after 30 hours of simulation. Panel (b) shows the mean total mass of the microphysics species

in ICAR-N simulations in dependence of ztop normalized with their respective mass in a reference simulation with ztop = 20.4km. The

ICAR-N simulations are run for the default scenario with CG BCs imposed on all quantities at the upper boundary (BC code 111).
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4.4 The lowest possible model top elevation

This section investigates how the lowest possible model top elevation Zmin depends on ridge height hm and width a, as well

as the background state employed in the ICAR-N simulations. Note that Zmin is defined as the maximum of zmin(ψ,BCs) and

thereby represents the model top elevation required for a 95% reduction of error in all quantities (except θ) for a given set

of boundary conditions (BC code 111 in the following). For a background state with U = 20m s−1 and N = 0.01m s−1 the5

results indicate a weak dependence of Zmin on the ridge height, with higher Zmin for higher ridges (Fig. 8a). The dependency

of Zmin on the width of the ridge, on the other hand, exhibits no distinct pattern (Fig. 8b).

For a Witch of Agnesi ridge with hm = 1km and a= 20km, Zmin exhibits a clear dependence on the background state as

shown in Fig. 8c. In the following, the background state is characterized by the vertical wavelength of the resulting mountain10

wave in dry conditions, given by λz = 2πU/Nd. Note that the characteristics of the results remained unchanged (not shown)

even if instead of Nd the mean moist Brunt-Väisälä frequency Nm in the lowest kilometer of the atmosphere (e.g., Jiang,

2003) is employed to calculate λz . In Fig. 8c λz is varied either by keeping Nd = 0.01s−1 constant and varying U or by fixing

U = 20m s−1 and varying Nd. Figure 8c shows that Zmin decreases with increasing vertical wavelength. A potential reason

for this behavior is that lower λz correspond to a higher number of periods of up- and downdrafts within the troposphere. This15

increases the likelihood that the model top passes through a region with convergent downdrafts and a negative vertical flux

gradient φz , thereby triggering the mass-influx mechanism outlined in Sect. 2.2.2. At high enough model top elevations all

quantities (except for θ) and in turn φz(ψ) eventually tend towards zero and any influence of the model top on the cloud and

precipitation processes in the model domain becomes negligible. For longer vertical wavelengths another effect could come

into play. Here model top elevations at approximately λz/2 may become feasible due to the minimum of the vertical wind20

speeds at this height. For wavelengths larger than approximately 10km the results are similar and do not depend on whether

the longer wavelength is obtained by an increase in U or by decreasingNd while keeping the other variable constant. However,

they exhibit clear differences at shorter wavelengths. While, at shorter wavelengths, Zmin decreases gradually as λz increases

due to increasing U , the decrease in Zmin is distinctly steeper if the longer wavelength is obtained by loweringNd. The majority

of the steeper decrease is explicable with the CG boundary condition chosen for θ, which causes numerical instabilities for25

Nd ≥ 0.0175s−1.
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ridge width with constant ridge height of 1km and (c) vertical wavelength λz of hydrostatic mountain waves where λz is adjusted either

by changing U or Nd for a ridge with hm = 1km and a= 20km. The ICAR-N simulations are conducted with CG BCs imposed on all

quantities (BC code 111).

4.5 Comparison to WRF

This section compares the spatial distribution of water vapor qv , suspended hydrometeors qsus, precipitating hydrometeors qprc

and 12-h sum of precipitation P12h calculated by ICAR-N to the corresponding fields in WRF. ICAR-N imposes CG BCs (111)

and employs a model top elevation of ztop = 10.4km. This is the lowest possible model top elevation Zmin required for a 95%

reduction of error in all quantities for the chosen set of BCs determined for the default scenario. The distributions of qv , qsus5

and qprc are investigated after 30 hours of simulation time, while P12h is investigated between 19 and 30 hours of simulation

time. The comparison aims to highlight the differences that may be expected between an ICAR-N and WRF simulation due to

the tradeoff between physical fidelity and model performance. The scenario is chosen such that the wind field is expected to

exhibit non-linearities.

4.5.1 Water vapor and hydrometeors10

With respect to water vapor ICAR-N is drier upwind of the topographical ridge and wetter downwind in comparison to WRF

(see Fig. 9a-c). The regions with this dry and wet bias extend up to an elevation of approximately 6km in which, up to 200km

upwind of the ridge, ICAR-N exhibits slightly stronger updrafts than WRF. This stronger orographic lift in ICAR-N yields a

higher conversion rate of water vapor to hydrometeors. On the other hand, above the ridge the downdrafts calculated by WRF

are of a higher magnitude than those predicted by ICAR-N, see Fig. 10c and d. Here, WRF advects drier air from higher eleva-15

tions to lower levels. Hence, the two large regions in ICAR-N exhibiting a dry and wet bias in qv respectively are likely caused

by the differences in the wind field. Additionally, a small region with a wet bias close to the ridge slope on the windward side

is presumably caused by microphysical conversion processes (Fig. 10c). Here the stronger orographic lifting in WRF leads to
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a higher microphysical conversion rate of qv to hydrometeors, thereby resulting in the observed wet bias of ICAR-N in terms

of qv . Above the downwind slope of the ridge and up to approximately 100km downwind, the downdrafts in WRF are still

stronger than in ICAR-N. This potentially causes an increased conversion of hydrometeors to qv by evaporation, resulting in the

dry bias of ICAR-N in this region. This low level dry bias is likely increased by ICAR-N, overall, extracting more precipitation

from the moist atmosphere than WRF (see Sect. 4.5.2).5

Clear differences between the ICAR-N and WRF simulations are observed for suspended hydrometeors. While the approximate

shape of the windward cap cloud (Fig. 9d and e) shows similarities, the mixing ratios calculated by ICAR-N are approximately

one tenth of those in WRF (see Fig. 9f). Furthermore, the main constituent of the cap cloud in ICAR-N is ice qi, while it is

liquid water qc in WRF (not shown).10

The majority of precipitating hydrometeors in ICAR-N are observed windward of the topographical ridge, extending over

most of the upwind slope (Fig. 9g). In WRF, on the other hand, the distribution of qprc is centered above the ridge and extends

farther downwind than upwind (Fig. 9h). In both models the majority of qprc consists of snow qs (not shown). However, WRF

additionally predicts non-negligible amounts of graupel qg up to 20km upwind of the ridge (not shown). Altogether, for precip-15

itating hydrometeors (Fig. 9i) ICAR-N is wetter on the windward slope but drier above the ridge and the downwind slope. This

is caused by a combination of two factors: (i) The higher vertical wind speeds above the windward slope of the topographical

ridge predicted by WRF lead to lower effective falls speeds of the hydrometeors (see Fig. 10d); (ii) Higher horizontal wind

speeds additionally contribute to a larger horizontal drift of qprc and precipitation spill-over in WRF (see Fig. 10b and, for a

basic estimation of the drift distances, Sect. 4.5.2).20

28



0

2

4

6

8

10
el

ev
at

io
n 

(k
m

)

   276 K   

   282 K   

   288 K   

   294 K   

(a) ICAR-N

   276 K   

   282 K   

   288 K   

   294 K   

   300 K   

water vapor qv
(b) WRF (c) ICAR-N - WRF

0

2

4

6

8

10

el
ev

at
io

n 
(k

m
)

   276 K   

   282 K   

   288 K   

   294 K   

(d) ICAR-N

   276 K   

   282 K   

   288 K   

   294 K   

   300 K   

suspended hydrometeors qsus
(e) WRF (f) ICAR-N - WRF

400 200 0 200 400
distance to ridge (km)

0

2

4

6

8

10

el
ev

at
io

n 
(k

m
)

   276 K   

   282 K   

   288 K   

   294 K   

(g) ICAR-N

400 200 0 200 400
distance to ridge (km)

   276 K   

   282 K   

   288 K   

   294 K   

   300 K   

precipitating hydrometeors qprc
(h) WRF

400 200 0 200 400
distance to ridge (km)

(i) ICAR-N - WRF

0
2
5
15
35
90
200
500
1200
3000

(m
g 

kg
1 )

0
2
5
15
35
90
200
500
1200
3000

(m
g 

kg
1 )

120

60

0

60

120

(m
g 

kg
1 )

0
4
8
15
30
60
120
250
500

(m
g 

kg
1 )

0
4
8
15
30
60
120
250
500

(m
g 

kg
1 )

400

200

0

200

400

(m
g 

kg
1 )

0
4
8
20
40
80
160
350
700

(m
g 

kg
1 )

0
4
8
20
40
80
160
350
700

(m
g 

kg
1 )

240

120

0

120

240

(m
g 

kg
1 )

Figure 9. Mixing ratios (color contours) of water vapor (top row), suspended hydrometeors (middle row) and precipitating hydrometeors

(bottom row) calculated with ICAR-N (left column), WRF (center column) and the difference between ICAR-N and WRF (right column)

after 30 hours of simulation. The isentropes of ICAR-N and WRF are shown as gray contour lines with 3K increments. The direction of the

background flow is from left to right. Note that the scaling of the contours for all quantities is non-linear to reveal details in the respective

distributions. ICAR-N and WRF simulations are conducted for the default scenario with ICAR-N imposing CG BCs on all quantities at the

upper boundary (BC code 111).
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Figure 10. Perturbations of the horizontal wind component u′ (top row) and vertical wind componentw′ (bottom row) calculated by ICAR-N

with ztop = 10.4km (left column) and WRF (right column). The dotted curve shows the 0m s−1 countour line and the black lines indicate

the isentropes. Both simulations are run for the default scenario with ICAR-N imposing CG BCs on all quantities at the upper boundary (BC

code 111).

4.5.2 Precipitation

Figure 11a illustrates that P12h on the windward slope is substantially higher in ICAR-N than in WRF and, conversely, ICAR-N

is drier along the leeward slope. This corresponds well to the distribution and shape of the precipitating hydrometeors above

the windward and leeward slope (see Fig. 9g and h) and the differences of qprc between ICAR-N and WRF (see Fig. 9i). The

precipitation maximum predicted by ICAR-N is approximately 25mm and lies 6km upwind of the ridge peak in comparison5

to the 32mm maximum in WRF, which lies 4km upwind of the ridge (Fig. 11a). The median of P12h, however, is located

upwind of the ridge peak in ICAR-N and downwind in WRF, separated by a distance of 20km (see Fig. 11b). Integration along

the cross section shows that 63% of ICAR-N precipitation falls out upwind of the domain center while for WRF, on the other

hand, it is only 43%.

10

The distribution of precipitation in ICAR-N is asymmetric with a gradual increase until the maximum is reached and a steeper

30



decrease after that. While in WRF P12h is asymmetric as well, the distribution exhibits a very steep increasing slope ending in a

distinct peak that is followed by a decreasing slope comparable to the decrease of P12h in ICAR-N. In WRF snow and graupel

contribute to P12h, while the precipitation in ICAR-N is solely composed of snow. The graupel shower predicted by WRF is

localized within a 30km region centered approximately 10km upwind of the ridge and causes the distinct peak observed in

the distribution of precipitation in WRF (Fig. 11a).5

The maximum of accumulated snow in WRF is 48mm and the median of the distribution is shifted downstream by 22km

in relation to the median of the precipitation distribution in ICAR-N, which is solely snow. The difference is mainly due to

the different wind fields of ICAR-N and WRF. In the following a fall speed for snow in stagnant air of −1m s−1 is assumed

for the ICAR-N and WRF simulations alike. Starting 1km above the orography, the effective fall speeds in ICAR-N and WRF10

are −0.75m s−1 and −0.25m s−1 respectively, based on an average w′ above the upwind slope of the ridge of 0.25m s−1

in ICAR-N and 0.75m s−1 in WRF (see Fig. 10c-d). In combination with an approximate average horizontal wind speed of

17.5m s−1 in ICAR-N and 21m s−1 in WRF (Fig. 10a-b) this results in a difference in the resulting horizontal drift of 19km,

which fits the observed difference in the medians of the accumulated snow precipitation distribution well. Hence, the discrep-

ancy in the precipitation distribution appears to be mainly caused by an underestimation of the perturbation velocities in ICAR.15

The absence of graupel in ICAR-N compared to WRF can be traced to the MP scheme and is a result of the atmospheric

conditions it encounters. The Thompson MP predicts graupel formation if riming growth exceeds the depositional growth of

snow (Thompson et al., 2004). While the necessary atmospheric conditions are easily satisfied in WRF, the cloud water mixing

ratio in ICAR-N is too low to initiate sufficient riming growth (see Fig. 9d). However, no clear indication for the underlying20

cause of the large difference in the cloud water mixing ratios between ICAR-N and WRF is found.
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Figure 11. (a) 12-h accumulated total precipitation P12h along the cross-section for ICAR-N (solid blue curve) and WRF (solid red curve).

Additional curves indicate the contribution of graupel (dotted orange curve) and snow (dashed orange curve) to the total precipitation of

WRF. ICAR-N total precipitation consists solely of snow, i.e. rain and graupel are zero in this specific simulation. (b) topography along the

cross-section with vertical blue and red lines indicating the locations of the medians of the total precipitation distribution of ICAR-N and

WRF respectively. Both models are run for the default scenario while ICAR-N imposes CG BCs on all quantities at the upper boundary (BC

code 111).

4.6 Case study

The previous sections have demonstrated that (i) the Brunt-Vaisälä frequency needs to be diagnosed from the background

stratification in order to model a realistic perturbation flow field with ICAR, that (ii) it further requires a minimum model top

elevation (which is dependent on the orography and the atmospheric background state) and that (iii) a combination of ZG/CG

BCs (BC codes 011 and 111) are optimal to be used at the top of the ICAR model domain. The effects of these suggested5

modifications to ICAR on a real world application are investigated with a case study conducted for the Southern Alps on the

South Island of New Zealand located in the southwestern Pacific Ocean (Fig. 13a).

The Southern Alps are a mountain range approximately 800km long and 60km wide. They are oriented southwest-northeast

and extend from approximately 41o S to 46o S, with approximately 97% of the crest line lying above an elevation of 1500m m.s.l.10

(meters above mean sea level) and the highest peaks rising above 3000m m.s.l.. The mean precipitation regime in the humid
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and maritime climate on the South Island of New Zealand is strongly influenced by the orography of the Southern Alps. The

prevailing westerly and north-westerly winds advect moist air against the topographic barrier, leading to a precipitation max-

imum of approximately 14m yr−1 along its western flanks in close proximity to the alpine ridge. While the western coast on

average receives 5m yr−1, the plains east of the alpine ridge receive at most 1m yr−1 due to the precipitation shadow of the

Southern Alps (Griffiths and McSaveney, 1983; Henderson and Thompson, 1999).5

For this region two ICAR-O and one ICAR-N simulations are conducted. ICAR-O calculates the Brunt-Väisälä frequency

N based on the perturbed state of the atmosphere and imposes ZG BCs to all quantities (BC code 000). The model tops are

set to 4km (ICAR-O4km) and 15.2km (ICAR-O15.2km), respectively, where the lower elevation was determined as optimal in

Horak et al. (2019) by comparing 24-h accumulated precipitation to observations. ICAR-N, on the other hand, calculates N10

from the forcing data set and imposes a zero gradient BC on the potential temperature field and constant gradient BCs on the

microphysics species (BC code 011). The lowest possible model top elevation Zmin with an acceptably low error is determined

by applying the method outlined in Sect. 3.5 based on multiple ICAR-N simulations with model top elevations between 5km–

20km (Fig. 12). The resulting value of Zmin is found at 15.2km, which is in stark contrast to the value of 4km in Horak et al.

(2019). This indicates that the cloud formation processes in the ICAR-O simulation with the low model top elevation are likely15

unphysical and strongly disturbed by the model top.
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Figure 12. The reduction of error RE of the simulations for the South Island of New Zealand for (a) the total mass of the MP species in the

domain and (b) the distribution of the MP species and precipitation in dependence of the model top elevation ztop. ICAR-N imposes a ZG

BC on the potential temperature field and constant gradient BCs on the microphysics species (011). The dashed horizontal line indicates the

95% RE threshold used to determine Zmin and the dashed vertical line shows at which model top this threshold is exceeded for all quantities.

The resulting patterns of P24h for ICAR-N and the ICAR-O simulations on the South Island of New Zealand are shown in

Fig. 13b, Fig. 13c and Fig. 13e, respectively while the differences between ICAR-N and ICAR-O are shown in Fig. 13d

and Fig. 13f. Overall the precipitation patterns produced by ICAR-N and both ICAR-O simulations are very similar with

a maximum approximately at the western flanks of the Southern Alps. However, while ICAR-N and ICAR-O4km produce20
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similar precipitation maxima, albeit shifted spatially upwind in ICAR-N, the maximum amount is lower in ICAR-O15.2km

(compare Fig. 13b, Fig. 13c and Fig. 13e). ICAR-N is clearly dryer in regions above 1000m m.s.l. and downwind of the alpine

range when compared to ICAR-O4km (Fig. 13d). This is still observed in comparison to ICAR-O15.2km, although to a lesser

extent (Fig. 13f). Conversely, ICAR-N generates the majority of its precipitation in close proximity to the coast and, compared

to both ICAR-O simulations, is wetter in the regions upwind of the western slopes of the Southern Alps (Fig. 13d and 13f).5

The reason for ICAR-O4km producing precipitation further downwind than ICAR-N can be found in the cross-sections of

hydrometeor distributions shown in Fig. 14.
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Figure 13. (a) The South Island of New Zealand study domain with the horizontal wind field at the 500hPa level and the location of the

vertical cross section (red line), (b) P24h pattern for ICAR-N with ztop = 15.2km and a ZG BC imposed on θ and CG BCs imposed on the MP

species (BC code 011), (c) P24h pattern for ICAR-O with ztop = 4km imposing ZG BCs (BC code 000), (d) difference in 24-h accumulated

precipitation P24h between ICAR-N and ICAR-O4km, (e) P24h pattern for ICAR-O with ztop = 15.2km imposing ZG BCs (BC code 000),

(f) difference in 24-h accumulated precipitation P24h between ICAR-N and ICAR-O15.2km on the 6 May 2015 LT. Panels (b)-(f) additionally

show the 1000mm.s.l. contour line of the topography.
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Clear differences can be observed in the distributions of qsus (Fig. 14a and c) - note, e.g., the distinct maximum of qsus above

the initial topography peak in ICAR-O4km which is almost entirely absent in ICAR-O15.2km and ICAR-N. These qsus maxima

occur in the topmost levels of the ICAR-O4km domain and suggest that the ZG BC overestimates the moisture content of the

atmospheric column and artificially introduces additional water in the domain (as outlined in Sect. 2.2.2). This leads to the

formation of artificial clouds downwind of approximately 169.8o E. Furthermore this indicates that the formation of these ar-5

tificial clouds can be mitigated just by increasing the model top elevation. Note that in ICAR-N (Fig. 14c) the cloud formation

is confined to a region upwind of 169.8o E.

Furthermore, this artificial cloud in ICAR-O4km near the model top generates precipitating hydrometeors that extend far-

ther to the lee of the alpine crest compared to ICAR-O15.2km and ICAR-N (Fig. 14d - f). ICAR-O15.2km, additionally, exhibits10

a considerably lower amount of precipitating hydrometeors compared to ICAR-O4km and ICAR-N (Fig. 14e). While ICAR-N

produces more precipitation overall and is wetter than ICAR-O4km on the initial ramp of the western slope of the alpine range

(up to approximately 169.8o E in Fig. 14i), ICAR-O4km is wetter downwind, yielding higher amounts of precipitation at the

peak and the first leeward slope (Fig. 14i). The distribution of P24h ICAR-O15.2km is similar to that of ICAR-O4km but with

lower amounts and a lesser extent downwind (Fig. 14i). Note that ICAR-O4km produces clouds in the topmost model levels15

even farther downstream as well (Fig. 14a), however, they do not generate precipitating hydrometeors during the investigated

period. Note that for this case study the effect of raising the model top elevation is mainly the removal of artificial clouds in the

topmost model levels (compare Fig. 14a and b) and a weakening of the updrafts upwind of the initial peak in the topography

(not shown), yielding a lower concentration of qprc (compare Fig. 14d and e). Calculating the Brunt-Väisälä frequency from

the atmospheric background state instead of the perturbed state of the domain, on the other hand, results in stronger updrafts20

and increased amounts of qprc and P24h (compare Fig. 14e and f, as well as Fig. 14h and i).

These results strongly indicate that the low model top setting of 4km employed in Horak et al. (2019) is inadequate to al-

low for a correct representation of the cloud and precipitation processes within the domain despite the relatively high skill

found for ICAR-O4km in their study. Therefore, the results additionally demonstrate that when model skill is evaluated with25

statistical metrics based on surface observations alone (Horak et al., 2019), it does not necessarily reflect the skill of the model

in correctly representing atmospheric processes such as gravity waves and associated cloud formation. Hence, it seems that the

underestimation in precipitation near the crest and to its lee of an ICAR simulation with reasonably high model top compared

to WRF (Fig. 9) is partly compensated in an ICAR simulation with a too low model top (ICAR-O4km in Fig. 14) by spuri-

ous effects introduced by the upper boundary conditions. Note that this seeming improvement is not due to a more realistic30

representation of cloud formation processes.
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Figure 14. Cross-sections along the South Island of New Zealand (line A-B in Fig. 13a) for an ICAR-O simulation (ztop = 4.0km, BCs

000, left column), an ICAR-O simulation (ztop = 15.2km, BCs 000, middle column) and an ICAR-N simulation (ztop = 15.2km, BCs 011,

right column). The panels show the 24-h averaged mixing ratio of suspended hydrometeors qsus (top row), precipitating hydrometeors qprc

(second row), and the 24-h accumulated precipitation as well as the difference in precipitation between ICAR-N and the respective ICAR-O

simulation (bottom row).

5 Discussion

The results highlight that a more accurate representation of the wind fields is obtained only when the Brunt-Väisälä frequency,

in accordance with linear mountain wave theory, is calculated from the unperturbed background state of the atmosphere (ICAR-

N) rather than from the perturbed state (ICAR-O). The remaining differences of the wind fields in ICAR-N to the analytical5
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solution may be attributable to two causes: Firstly, to solve the governing equations ICAR numerically calculates the Fourier

Transform of the topography h(x,y) in the domain. In cases where h(x,y) is not constant along the domain boundaries or

where it exhibits discontinuities within the domain, this approach gives rise to numerical artifacts (see the Gibbs phenomenon,

e.g., Arfken et al., 2013), introducing errors into the perturbed fields. Note that for a 2-D ridge as employed in this study

h(x,y) = h(x). Therefore, while h(xw) = h(xe) = const, with xw and xe the x-coordinate of the western and eastern domain5

boundary, respectively, h(x) 6= const along the northern or southern domain boundary. This results in an average value of v′ of

0.02m s−1 instead of the expected 0m s−1 and therefore slightly altered values of u′ and w′ in comparison to the results from

linear theory. These issues may be reduced by, for instance, filtering the topography accordingly or by adding a buffer around

the domain (Florinsky, 2016). Additional research is necessary to determine which filtering methods or modifications to the

topography are best suited to preprocess digital elevation models for ICAR. Secondly, ICAR solves for w′ according to Eq. (8)10

and only analytically calculates u′ and v′.

ICAR is intended as a computationally frugal alternative to full physics models, in principle allowing for very low model

top elevations. While employing a low model top to take advantage of the associated computational cheapness is tempting,

increased efficiency should not come at the cost of the physical fidelity of the model. The results in this study clearly show15

that there is a lowest possible model top elevation Zmin that ensures that the physical processes within the domain are not

influenced by the model top. Boundary conditions imposed on qv and the hydrometeors at the upper boundary are found not to

influence the value ofZmin for the investigated parameter space despite potentially mitigating errors in the potential temperature

and water vapor fields. In particular, the cloud formation and precipitation processes within the domain are shown to almost

exclusively depend on the model top elevation ztop and not on the chosen set of boundary conditions, and only stabilize for20

ztop ≥ Zmin. It seems unlikely that any boundary condition is able to accurately represent the effect of cloud and precipitation

processes above the model domain and the resulting interaction with the corresponding processes in the model domain (e.g.

the seeder-feeder mechanism). Therefore, in order to capture all relevant cloud and precipitation processes, it is recommended

that the vertical extension of the domain should at the very least encompass the entire troposphere. Altogether these results

highlight that model top elevations within the troposphere, as employed by past studies, are to be avoided (e.g., Gutmann et al.,25

2016; Horak et al., 2019; Alonso-Gónzalez et al., 2020).

This study strongly suggests that no general value for Zmin is applicable to all possible scenarios with the results exhibit-

ing large differences between the idealized simulations and the real case study. For the tested parameter space, including the

real case, Zmin mainly depends on the background state and the height of the topography. The dependence on the background30

state, characterized by the vertical wavelength λz = 2πU/Nd of the hydrostatic mountain wave, shows that overall larger λz

result in smaller Zmin and, conversely, smaller λz in larger Zmin. The dependence of Zmin on the background state is explicable

with the horizontal wind speed U and the Brunt-Väisälä frequency N affecting the location, amount and magnitude of the

up- and downdrafts in the domain. Similarly, Zmin depends on ridge height due to the generally stronger up- and downdrafts

triggered by higher topographies, see Eq. (19). However, note that the dependence on the ridge height is weak compared to the35
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dependence on the background state.

The determination of Zmin considers all MP species with respect to their time averaged spatial distribution and the time av-

eraged total mass within the cross-section as well as the 12-hour (P12h, idealized simulations) or 24-hour (P24h, real case

simulations) precipitation sum along the cross-section. Note that potential temperature θ is indirectly included in determining5

Zmin since errors in the θ field influence the cloud formation and precipitation processes. However, this study shows that errors

in the θ field introduced by the zero gradient boundary condition are mainly localized in the topmost vertical levels (Fig. 4),

which correspond to approximately the uppermost 1km to 2km of the domain, and result in only a negligible influence on

cloud formation processes in the tested parameter space. While a constant gradient boundary condition reduces the errors in

the potential temperature field, the default zero gradient boundary condition is a suitable alternative for θ provided ztop is high10

enough. This can be ensured by, for instance, employing the method to determine Zmin described in this study.

A comparison between ICAR-N and WRF simulations conducted for the same topography and sounding reveals substantial

differences in the spatial distributions of qv , qsus and qprc as well as the resulting P12h. These differences are mainly attributable

to additional effects included in the WRF but not the ICAR-N wind field, such as non-linearities and the amplification of the15

perturbations due to the density decreasing with height. However, not all reasons for the differences could be identified, results

remain inconclusive as to why ICAR-N mainly produces cloud ice while it is cloud water in WRF. Overall, both models predict

distinctly different events to occur: A snow shower with the majority of snow falling upwind of the ridge in ICAR-N and a snow

and graupel shower in WRF with the largest portion precipitating leeward of the ridge. While these results are obtained for one

particular sounding they indicate that the linearization of the wind field has the potential to significantly alter the distribution20

of precipitation in a study domain. This could have drastic consequences for the results of studies relying on ICAR to provide

precipitation fields for, i.e. applications in hydrology or glaciology. Future work could implement and investigate whether the

amplification of perturbations (see Eq. 21) due to the vertical density gradient yields ICAR-N results closer to those of WRF.

Another conceivable avenue for future investigations in that regard could be the implementation and evaluation of a set of

linear wave equations derived from the anelastic equations into ICAR-N.25

For strongly stratified atmospheric conditions, a constant gradient BC was found to cause numerical stability issues in the

idealized and real case simulations alike. Future studies could investigate further BC options that might allow a better approx-

imation of the potential temperature profile: Such approaches might, for instance, (i) analytically diagnose θ for the vertical

level above the model top and then apply the corresponding values as a Dirichlet BC or (ii) prescribe the potential temperature30

from the corresponding height in the forcing data set as Dirichlet BC at the model top in ICAR. Another possible venue for

future research that aims to mitigate the influence of the upper boundary could be the implementation of a relaxation layer di-

rectly underneath the model top. In this layer perturbed quantities could, as they approach the model top, gradually be relaxed

towards their background state values, while w is relaxed towards zero.

35
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The case study investigates the effect of the proposed modifications to ICAR on a real world application for the South Island

of New Zealand. It reveals that these modifications shift the distribution of precipitation upwind, leading to dryer conditions

in the alpine range but wetter coastal regions. The method for the determination of Zmin presented in this study does not rely

on tuning to measurements and may therefore be employed for every region in the world for which a suitable digital elevation

model and atmospheric forcing data are available. Furthermore, the method ensures that for ztop = Zmin the cloud formation5

processes within the domain are independent from influences of the model top and that only the absolutely necessary amount

of vertical levels is used in the simulations. This preserves as much of the computational efficiency of ICAR as possible with-

out sacrificing additional physical fidelity. However, the extension of the method to determine Zmin to longer study periods,

compared to the 24 hours of the case study, and a larger variety of background states is not trivial and outside the scope of

this study. If a substantial amount of simulations for different background states is required to determine Zmin the associated10

computational cost may outweigh the gain of employing the lowest possible number of vertical levels for the entire study

period. Therefore, future research could investigate variations of the Zmin determination employed in this study. For instance,

a focus on the background states most frequent during each season, or on background states with shorter vertical wavelengths

(resulting in higher values of Zmin) to find upper bounds for Zmin may drastically reduce the required number of simulations.

15

With regards to the case study, the unmodified version of ICAR (ICAR-O) is found to produce enhanced precipitation in

the alpine range due to artifacts (heightened mixing ratios of hydrometeors) in the topmost vertical levels in the horizontal

vicinity of topographical peaks. This additionally caused the very low model top elevation found with the method employed

in Horak et al. (2019): At each alpine weather station on the South Island of New Zealand Horak et al. (2019) calculated a

mean squared error (MSE) between the simulated and measured precipitation accumulated over 24h (P24h) at alpine sites.20

The artifacts in the topmost vertical levels of ICAR-O (with ztop = 4.4km) lead to an increase in precipitation at these alpine

sites in comparison to ICAR-N or, as noted by Horak et al. (2019), to ICAR-O simulations with higher model top elevations.

Since all ICAR-O simulations generally underestimate precipitation amounts at alpine weather stations on the South Island of

New Zealand, and overshooting of measured values does mostly not occur, the higher amounts of P24h for the simulation with

ztop = 4.4km then lowered the calculated MSE. Even though the atmospheric processes in the ICAR-N simulation are more25

correctly represented in comparison to ICAR-O, the lower amount of P24h at the alpine sites would result in a higher MSE.

Therefore, even though the calculated MSEs were lowest for a model top setting at 4km, the seemingly correct results were

produced for the wrong reasons. This additionally exemplifies why comparisons to isolated measurements alone cannot deter-

mine whether the model results are correct for the correct reason. Only a detailed consideration of the underlying processes

can be the basis for such a conclusion.30

6 Conclusions

The key findings and recommendations based on the extensive process-based evaluation of ICAR are summarized in the

following:
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– There is a minimum possible model top elevation Zmin to produce physically meaningful results with ICAR. If the model

top elevation is lower, cloud formation and precipitation processes within the domain are affected by the model top.

– Results show that, in order to avoid spurious influences of the upper boundary to the microphysical processes within the

domain, Zmin should be at least as high as the tropopause but may be required even higher in other situations.

– Determining an exact value for Zmin from comparisons to precipitation measurements may yield results in closer agree-5

ment to these measurements but potentially for the wrong reasons (i.e., model artifacts).

– The method described in this study to determine Zmin may be applied to idealized simulations and real cases alike. This

was demonstrated as proof of concept.

– While most of the tested boundary conditions (in comparison to the default zero gradient boundary condition) are suit-

able to reduce the errors in the water vapor and potential temperature fields, no tested combination of these boundary10

conditions results in a lower value for Zmin.

– Model skill, when inferred only from comparisons to surface observations, does not necessarily reflect the model skill in

representing atmospheric processes.

– The representation of the wind field in ICAR is improved by ensuring that the Brunt-Väisälä frequency is calculated from

the background state of the atmosphere provided by the forcing data. Note that the current version of ICAR employs the15

perturbed state of the domain.

This study highlights the importance of a process-based in-depth evaluation not only with respect to ICAR but for models

in general. Particularly for regional climate models (RCMs) and numerical weather prediction (NWP) models, the results of

the case study demonstrate a potential pitfall when model parameters are inferred solely from comparisons to measurements,

potentially leading to situations for which model results are more prone to be right but for the wrong reasons. With the increas-20

ing complexity of RCMs and NWPs, ICAR could provide a computationally frugal framework to study and better understand

singular model components. This would allow for a process-based evaluation of, e.g., MP schemes or advection schemes,

contributing to the development and improvement of RCMs and NWPs.
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