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Abstract 26 

Despite the high historical losses attributed to flood events, Canadian flood mitigation efforts have 27 

been hindered by a dearth of current, accessible flood extent/risk models and maps. Such resources 28 

often entail large datasets and high computational requirements. This study presents a novel, 29 

computationally efficient flood inundation modelling framework (“InundatEd”) using the height 30 

above nearest drainage-based solution for Manning’s equation, implemented in a big-data discrete 31 

global grid systems-based architecture with a web-GIS platform. Specifically, this study aimed to 32 

develop, present, and validate InundatEd through binary classification comparisons to recently 33 

observed flood events. The framework is divided into multiple swappable modules including: GIS 34 

pre-processing; regional regression; inundation model; and web-GIS visualization. Extent testing 35 

and processing speed results indicate the value of a DGGS-based architecture alongside a simple 36 

conceptual inundation model and a dynamic user interface.  37 
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Introduction:  38 

Globally from 1994 to 2013 flood events accounted for 43% of recorded natural disasters 39 

(Centre for Research on the Epidemiology of Disasters, 2016). Flooding is responsible for one 40 

third of natural disaster costs in Europe (Albano, Sole, Adamowski, Perrone, & Inam, 2018), while 41 

in Canada mean annual losses of $1-2 billion (CAD) are attributed to flood disasters (Oubennaceur 42 

et al., 2019). A 2013 flood in southern Alberta, costing over 1.7 billion dollars (CAD) in insured 43 

property damages, is the most expensive natural disaster in Canadian history (Stevens & Hanschka, 44 

2014). Rapid economic development and urbanization during the last few decades – particularly 45 

urban development in close proximity to Canadian waters following population expansions of the 46 

1950s-1960s – have increased the amount of exposure and in-turn the economic damages of flood 47 

events (Robert et al., 2003), making the availability of accurate, timely, and detailed flood 48 

information a critical information need (Pal, 2002). 49 

 Mitigating the considerable economic impact of flood events; the design of effective 50 

emergency response measures; the sustainable management of watersheds and water resources; 51 

and flood risk management, including the process of public flood risk education,  have long been 52 

informed by the practice of flood modelling, which aims to understand, quantify, and represent the 53 

characteristics and impacts of flood events across a range of spatial and temporal scales (Handmer, 54 

1980; Stevens & Hanschka, 2014; Teng et al., 2017, 2019; Towe et al., 2020). Flood modelling 55 

research has increased in response to such factors as predicted climate change impacts (Wilby & 56 

Keenan, 2012) and advancements in computer,  GIS (Geographic Information Systems), and 57 

remote sensing technologies, among others (Kalyanapu, Shankar, Pardyjak, Judi, & Burian, 2011; 58 

Vojtek & Vojteková, 2016; Wang & Cheng, 2007). Flood inundation modelling approaches can 59 

be broadly divided into three model classes: empirical; hydrodynamic; and simplified/conceptual. 60 

Empirical methods entail direct observation through methods such as remote sensing, 61 

measurements, and surveying, and have since evolved into statistical methods informed by fitting 62 

relationships to empirical data. Hydrodynamic models, incorporating three subclasses (one-63 

dimensional, two-dimensional, and three-dimensional), consider fluid motion in terms of physical 64 

laws to derive and solve equations. The third model class, simple conceptual, has become 65 

increasingly well-known in the contexts of large study areas, data scarcity, and/or stochastic 66 

modeling and encompasses the majority of recent developments in inundation modelling practices. 67 

Relative to the typically complex hydrodynamic model class, simple conceptual models simplify 68 
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the physical processes and are characterized by much shorter processing times (Teng et al., 2017, 69 

2019). A class of model which uses the output of a more complex model as a means of calibrating 70 

a relatively simpler model is also gaining popularity (Oubennaceur et al., 2019). While each class 71 

has contributed substantially to the advancement of flood risk mapping and forecasting practices, 72 

a consistent barrier has been the trade-off  between computer processing time and model 73 

complexity (Neal, Dunne, Sampson, Smith, & Bates, 2018), especially with respect to two-74 

dimensional and three-dimensional hydrodynamic models, which entail specialized expertise to 75 

derive and apply physical and fluid motion laws, require adequate data to resolve equations, and 76 

the computational resources to process the equations. Neal et al. (2018) summarized the proposed 77 

solutions to such challenges as relating to 1) modifications to governing equations or 2) code 78 

parallelization, with the latter informing the method proposed in Oubennaceur et al. (2019). With 79 

respect to 2D/3D hydrodynamic model code parallelization, Vacondio et al. (2017) listed two 80 

approaches: classical (Message Passing Interface) and Graphics Processing Units (GPUs). The 81 

GPU-accelerated method has been shown to decrease execution times, while avoiding the use of 82 

supercomputers, for high-resolution, regional-scale flood simulations (e.g., Ferrari et al. (2020), 83 

Vacondio et al. (2017), Wang & Yang (2020), and Xing et al. (2019)). However, the GPU-84 

accelerated method is still limited in terms of the hardware requirement (specialized graphics 85 

cards), the use of uniform and/or non-uniform grids (Vacondio et al. (2017)), and the need for 86 

specific, specialized modelling programs to handle the input data required to solve complex 87 

hydrodynamic equations. The ongoing development of simple conceptual inundation models 88 

offers another avenue to handle limitations such as computation requirements and data scarcity, 89 

allowing areas poorly served by standard hydrodynamic modeling, to be provided with up-to-date 90 

flood extent maps and provided with platforms with which the public can view and interact with 91 

the simulated floods (Tavares da Costa, 2019). One such simple conceptual inundation model is 92 

the flood model based on Height Above Nearest Drainage (HAND) (Liu et. al 2018). Zheng et al. 93 

(2018) estimated the River Channel Geometry and Rating Curve Estimation Using HAND which 94 

gained interest from the community, industry, and government agencies. Afshari et al. (2017) 95 

showed that, while HAND-based flood predictions can overestimate flood depth, this method 96 

provides fast and computationally light flood simulations suitable for large scales and hyper-97 

resolutions. Although simple conceptual models using such methods as linear binary classification 98 

and Geomorphic Flood Index (Samela et al., 2017, 2018) have been, and continue to be, developed, 99 
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the combination of simple conceptual flood methods with big-data approaches remains largely 100 

uninvestigated (Tavares da Costa, 2019). 101 

 102 

 Recent advances in big data architectures may hold potential to retain enough model 103 

complexity to be useful while providing computational speedups that support widespread and 104 

system agnostic model development and deployment. There is an increasing need for examination 105 

of the potential of decision‐making through data-driven approaches in flood risk management and 106 

investigation of a suitable software architecture and associated cohort of methodologies (Towe et 107 

al., 2020).  108 

Discrete global grid systems (DGGS) are emerging as a data model for a digital earth 109 

framework (Craglia et al. 2012; Craglia et al., 2008). One of the more promising aspects of DGGS 110 

data models to handle big spatial data is their ability to integrate heterogeneous spatial data into a 111 

common spatial fabric. This structure is suitable for rapid model developments where models can 112 

be split into unit processing regions. Furthermore, with the help of DGGS the model can be ported 113 

to a decentralized big-data processing system and many computations can be scaled for millions 114 

of unit regions.  115 

The Integrated Discrete Environmental Analytics System (IDEAS) is a recently developed 116 

DGGS-based data model and modelling environment which implements a multi-resolution 117 

hexagon tiling data structure within a hybrid relational database environment (Robertson, 118 

Chaudhuri, Hojati, & Roberts,  2020). Notably, and in contrast to previous systems, the only 119 

special installation entailed by the DGGS-based data spatial model is a relational database. As 120 

such, DGGS-based data model can be ported to any software-hardware architecture as long as it 121 

supports a relational database system  The system exploits the hardware capability of the database 122 

itself which can potentially incorporate the following: GPU(s), distributed storage, and a cloud 123 

database.  124 

In this paper we employ the IDEAS framework for the efficient computation, simulation, 125 

analysis, and mapping of flood events for risk mitigation in a Canadian context. As such, the 126 

novelty of this study is twofold: 1) the contribution of the new DGGS-based big spatial data model 127 

to the field of flood modelling, and 2) the presentation of a web-interface which lets users compute 128 

the inundation on the fly based on input discharge for select Canadian regions where flood risk 129 

maps are either not publicly available or do not exist. Moreover, the properties and structure of the 130 
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DGGS-based spatial data model address a number of challenges and limitations faced by previous 131 

flood modelling approaches in the literature. For instance, it is modular, making it easy to switch 132 

between RFFA-based, HAND-based, or alternative models without sacrificing the consistency of 133 

the framework. Likewise, the method by which Manning’s n is calculated can be easily 134 

interchanged. Another novel aspect of this framework is the incorporation of Land Use Land Cover 135 

data in the estimation of the roughness coefficient Manning’s n instead of a constant value or a 136 

channel-specific value of Manning’s n as is typically used (Afshari et al., 2017; Zheng et al., 2018). 137 

In terms of the tradeoff between model complexity and computation power, the IDEAS framework 138 

uses an integer-based addressing system which makes it orders of magnitude more efficient than 139 

that of other, more traditional spatial data models. This, in turn, benefits any and all spatial 140 

computations associated with flood modelling. Finally, whereas most major spatial computations 141 

entail specialized software/code, in the DGGS-based method the spatial relationship is embedded 142 

in the spatial-data model itself. Thus, the spatial relationships need not be considered beyond the 143 

use of certain rules of the spatial-data model. The overall efficiency and versatility provided by a 144 

DGGS framework can benefit the field of flood risk mapping, which uses the spatial distribution 145 

of simulated floods to identify vulnerable locations.  146 

Access to flood risk maps can build the capacity of individuals to make informed and 147 

sustainable investment and residence decisions in an age of climate concern and environmental 148 

change (Albano et al., 2018). The current state of public knowledge of flooding risks is 149 

unsatisfactory, with an estimated 94% of 2300 Canadian respondents in highly flood-prone areas 150 

lacking awareness of the flood-related risks to themselves and their property, per a 2016 national 151 

survey (Calamai & Minano, 2017; Thistlethwaite, Henstra, Brown, & Scott, 2018; Thistlethwaite, 152 

Henstra, Peddle, & Scott, 2017). Calls for better transparency and access to reliable flood risk 153 

maps and data with which to improve public awareness and understanding of flood risks is in line 154 

with a contemporary trend toward more open and reproducible environmental models 155 

(Gebetsroither-Geringer, Stollnberger, & Peters-Anders, 2018). There is an opportunity to utilize 156 

big data architectures and recent developments in flood inundation modelling and risk assessment 157 

technologies to make flood risk information, based on best flood modelling practices, more 158 

accessible. 159 

The aim of this paper is threefold: 1) propose a simple conceptual inundation model 160 

implemented in big-data architecture; 2) test the model and its results through comparison to 161 
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known extents of previous flood events; and 3) present the resultant flood maps via an open source, 162 

interactive web application. 163 

 164 

2. Methods 165 

 166 

2.1 Overview 167 

The modelling component of InundatEd incorporated four general stages: 1) GIS pre-processing; 168 

2) flood frequency analysis and regional regression; 3) the application of the catchment integrated 169 

Manning’s Equation; 4) upscaling the model to a discrete global grid systems data model. Sections 170 

2.2.1 to 2.2.4 describe stages 1-4 respectively. 171 

 The second component of InundatEd’s development was the design of a Web-GIS 172 

interface, described in Section 2.3, which liaises with and between the big data architecture, the 173 

flood models’ outputs as defined by user inputs, and FEMA’s Hazus depth-damage functions 174 

(Nastev & Todorov, 2013) (Section S1). Section 2.4 subsequently links the Web-GIS interface 175 

conceptually to previous sections by providing a summary of InundatEd’s system structure and its 176 

operation. Finally, simulated flood extents using InundatEd’s methodology were compared to the 177 

extents of observed,  historical flood extent polygons within the Grand River watershed and the 178 

Ottawa River watershed, provided respectively by the Grand River Conservation Authority and 179 

Environment Canada. The comparison and testing process is described in Section 2.5. 180 

 181 

 182 

2.2. Modelling 183 

 184 

2.2.1 – Stage 1: GIS Pre-processing 185 

 186 

The following GIS input data were obtained from Natural Resources Canada for the Grand River 187 

and Ottawa River watersheds and cropped to their respective drainage areas of 6,800 square 188 

kilometres (Li et al., 2016) and 146,000 square kilometers (Nix, 1987): Digital Elevation Models 189 

(Canada Centre for Mapping and Earth Observation, 2015); river network vector shapefiles 190 

(Strategic Policy and Innovation Centre, 2019); and Land Use Land Cover (LULC) (Canada 191 

Centre for Remote Sensing, 2019). Figure 1 shows the input Digital Elevation Model with 192 

elevation values given in metres, and the dams and gauging stations used in this study. The 193 



 

8 
 

resolution of the DEM and LULC data is 30m x 30m. The vertical accuracy of the DEM is 0.34 m 194 

± 6.22 m, i.e., 10 m at the 90% confidence level. The vertical datum used is the Canadian Geodetic 195 

Vertical Datum of 2013 (CGVD2013). The stations used for station-level discharge comparison 196 

are labeled in Figure 1. The uncertainty in the vertical dimension affects the slopes of individual 197 

pixels, the upslope contributing area, and can potentially affect the quality of extracted hydrologic 198 

features (Lee et al., 1992, 1996;  Liu, 1994; Ehlschlaeger and Shortridge, 1996).  Hunter and 199 

Goodchild (1997), while investigating the effect of simulated changes in elevation at different 200 

levels of spatial autocorrelation on slope and aspect calculations, indicated the importance of a 201 

stochastic understanding of DEMs. The Monte Carlo method (Fisher 1991) could potentially shed 202 

some light on this kind of uncertainty. However, in our case it was beyond the focus of our study 203 

and we considered the vertical uncertainty small enough to not affect our large-scale flood 204 

modeling simulations. The remaining GIS input data is shown in Supplementary Figure S1. Very 205 

small networks, independent of the higher-order channels, were deleted from both regions. ArcGIS 206 

Desktop’s Raster Calculator tool was used to burn the river network vector into the DEM to ensure 207 

the consistency of the river network between the dem delineated and observed. TauDEM (Terrain 208 

Analysis Using Digital Elevation Models) (Tarboton, 2005), an open-source tool for hydrological 209 

terrain analysis, was then used to determine drainage directions and drainage accumulation  210 

(Tarboton & Ames, 2004) within the watersheds of interest. Each watershed’s drainage network 211 

was then established in TauDEM by defining a minimum threshold of two square kilometres on 212 

the contributory area of each pixel for the Grand River watershed and ten square kilometres for 213 

the Ottawa River watershed. Separately, a value of Manning’s n was determined for each 30 x 30 214 

metre pixel of the study areas based on land use/ land cover attributes (Comber & Wulder, 2019). 215 

To this end, the input LULC classes (Canada Centre for Remote Sensing, 2019) within the study 216 

watersheds were mapped to the nearest class of the similar land cover classes documented in Chow 217 

(1959, Table 5-6) and Brunner (2016, Figure 3-19), from which the respective values of Manning’s 218 

n were used. Table 1 provides the utilized input LULC classes, their respective description 219 

provided by NRCAN, and the employed n values. Height Above Nearest Drainage (HAND) 220 

(Rahmati, Kornejady, Samadi, Nobre, & Melesse, 2018; Garousi‐Nejad, Tarboton, Aboutalebi, & 221 

Torres‐Rua, 2019) was also calculated in TauDEM with reference to the DEM and derived 222 

drainage network. Figure 2a provides a visual overview of this stage of the modelling component.  223 

 224 
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2.2.2. Stage 2: Regional Regression and Flood Frequency Analysis 225 

Perhaps one of the most popular methods of flood frequency analysis is the index flood 226 

approach - a regional regression model based on annual maximum discharge data (Dalrymple, 227 

1960; Hailegeorgis & Alfredsen 2017). A variant of the index flood approach, which entails flood 228 

frequency analysis, has been employed  to understand the characteristics of flood behavior at the 229 

global level (Smith et. al., 2014).  At regional scale Burn 1997 has discussed the catchment 230 

procedure essential to undertake the flood frequency analysis. Faulkner et. al. (2016) devised the 231 

procedure to estimate the design flood levels  using the available station data. Regional 232 

hydrological frequency analysis at ungauged sites is also studied by few researchers (Desai and 233 

Ouarda 2021).  234 

The index flood approach was used to derive the discharges by return period at sub-235 

catchment outlets. The model includes two sections: a) a relationship between index flood and 236 

contributory upstream area for each hydrometric station and each subcatchment outlet (regional 237 

regression); and  b) a flood frequency analysis to estimate the quantile values of the 238 

departures,with a departure defined as discharge at given station divided by the index flood of 239 

that same station). The index flood approach entails the following assumptions: a) the flood 240 

quantiles at any hydrometric site can be segregated into two components – an index flood and 241 

regional growth curve (RGC); b) the index flood at a given location relates to the (sub)catchment 242 

characteristics via a power-scaling equation, either in a simpler case which considers only 243 

upstream contributory area or in a more complex case which incorporates land use/ land cover, 244 

soil, and climate information; and c) within a homogeneous region the departure/ratio between 245 

the index flood and discharge at hydrometric sites yields a single regional growth curve which 246 

can relate the discharge and return period (Hailegeorgis & Alfredsen, 2017).   247 

Per assumption a) (the flood quantiles at any hydrometric site can be segregated into two 248 

components – an index flood and regional growth curve (RGC)), the index flood at each 249 

hydrometric station is required. To this end, annual maximum discharge values (m³s-1) were 250 

extracted within R (R Core Team, 2019) at hydrometric stations maintained by Environment 251 

Canada within the Grand River and Ottawa River watersheds (HYDAT) (Hutchinson, 2016). 252 

Only stations with a period of record >= 10 years of annual maximum discharge (England et al. 253 

(2018); Faulkner, Warren, & Burn (2016)) were maintained (n = 32 and n = 54 respectively for 254 

the Grand River watershed and the Ottawa River watershed). The minimum, median, and 255 
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maximum periods of record for the Grand River watershed were 12, 50, and 86 years, 256 

respectively. Periods of record for the Ottawa River watershed ranged from a minimum of 10 257 

years to a maximum of 58 years with a median of 36 years. A median annual maximum 258 

discharge value (Q̃) was then calculated for each hydrometric station. As discussed in 259 

Hailegeorgis & Alfredsen (2017), although the index flood is generally the sample mean of a set 260 

of annual maximum discharge values, index floods have also been evaluated based on the sample 261 

median (eg. Wilson et al., 2011) at the suggestion of Robson & Reed (1999).  Finally, the index 262 

flood values (Q̃) were used to normalize the observed annual maximum discharge values (Q) at 263 

their respective station, resulting in a set of values designated as Qi, such that Qi = Q/ Q̃.   264 

With respect to regional regression and assumption b) of the index flood method, a 265 

generalized linear model was applied to relate log10 transformed Q̃ values to log10 transformed 266 

upstream area values at each hydrometric station. The generalized linear model assumed an 267 

ordinary least squares error distribution. The results of the generalized linear model for each 268 

watershed allowed for the calculation of previously unknown Q̃ values for each subcatchment 269 

outlet. In a more complex model (Fouad et. al. 2016), other catchment characteristics such as land 270 

use/land cover, geology, etc. could be used. However, in the case of the proposed model the 271 

correlations between the calculated and observed index floods, on the sole basis of discharge 272 

records and a linear model relating upstream area, were high as discussed in the Results section. 273 

Thus, the simpler method was used to estimate index floods and to relate index flood to 274 

contributory area at hydrometric stations and subcatchment outlets. Thus, the regional regression 275 

model derived a relationship between index flood (Q̃) and upstream contributory area for each 276 

hydrometric station s or sub-catchment outlet. The relationship between index flood at station i or 277 

at a subcatchment outlet (𝑄�̃�
)  (median of annual maximum discharge) and upstream contributory 278 

area (𝐴𝑠) is given by:  279 

�̃�𝑠 = 𝑎𝐴𝑠
𝑐  (1) 280 

where 𝑎 is the index flood discharge response at a unit catchment outlet (or at a hydrometric 281 

station) and 𝑐 is the scaling constant. We took the logarithm of Equation (1) on both sides - a 282 

procedure used in noted in Hailegeorgis & Alfredsen (2017) as used in Eaton, Church, & Ham 283 

(2002) - yielding a linear relationship which was solved using the Ordinary Least Squares approach 284 

(Haddad et al. (2011). 285 
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With respect to assumption c) of the index flood method, which assumes that a regional 286 

growth curve can be applied to a homogenous area as outlined above, we attempted to fit a 287 

distribution to the ratio of the annual maximum discharge values at each station to the 288 

corresponding index flood. Hailegeorgis and Alfredsen (2017) discussed a regionalization 289 

procedure which ensures the homogeneity of the station-level data over any region. However, due 290 

to the limited availability of the discharge data we avoided such sub-sampling and carried out the 291 

index flood method at the entire watershed scale (Faulkner, Warren, & Burn 2016). This, however, 292 

has impacted the upper quantiles of the flood estimation when comparing to the station level data 293 

(Section 3.1). The selection of a suitable probability distribution model – a common tool in 294 

hydrologic modelling studies (Langat et al., 2019; Singh, 2015)-for use in a watershed where the 295 

flow has been modified due to human impact – whether via development of built up areas, 296 

agriculture, road building, resource extraction activities such as forestry and mining, or flow 297 

abstraction in terms of dams and weirs is a fundamental step of the analysis process and must 298 

account for disturbance-related changes to the extreme value characteristics of the flow. 299 

Sometimes, natural hydrologic peaks, such as the spring freshet, are exacerbated by antecedent 300 

conditions such as large snowpacks and frozen soils, resulting in substantial flood events. While 301 

solutions to this problem have been proposed in the literature, artificial abstraction fundamentally 302 

changes the extreme value characteristics of the flow, thereby hindering the usability of most 303 

distributional forms (Kamal et. al. 2017).  304 

Many researchers have tried to address this problem by putting explicit assumptions on 305 

types of non-stationarity affecting the river discharge and are able to devise a closed mathematical 306 

formulation which enables the parametric distributions to handle such non-stationarity. However, 307 

such methods typically entail knowledge of the specific design return periods of individual flood 308 

prevention structures (Salas & Obeysekera, 2014), many of which are absent in our case. To 309 

circumvent this problem, we used a non-parametric approach for the regional growth curve (RGC), 310 

which requires no fundamental sample characteristics. Thus, modified flood records and limited 311 

information notwithstanding, flood frequency estimation is possible using the index flood 312 

approach. Per assumption c) of the index flood method, a log-spline non-parametric approach was 313 

taken to model a RGC (Stone, Hansen, Kooperberg, & Truong, 1997) for each study watershed. 314 

Specifically, the index flood values (Q̃) were used to normalize the observed annual maximum 315 

discharge values (Q) at their respective station (Qi = Q/ Q̃). The Qi values (n= 1487 and n = 1248 316 
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for the Ottawa River watershed and the Grand River watershed, respectively) were then fitted to a 317 

logspline distribution for their respective watershed. The discharge quantiles (Qr) were extracted 318 

for the following return periods (T, years):  1.25, 1.5, 2.0, 2.33, 5, 10, 25, 50, 100, 200, and 500. 319 

The return periods were first converted to a cumulative distribution function: 320 

Finally, flood quantile estimations were calculated for each return period as shown below: 321 

𝑄𝑇
𝑖 = 𝑄�̃�𝑞𝑇 (2) 322 

such that T is a specified return period in years;  𝑄𝑇
𝑖  is a quantile estimate of discharge for the 323 

specified return period T (years) at a specified station i (or a subcatchment outlet); 𝑄�̃�
 is the “index 324 

flood” at the same station i (or at the same sub-catchment outlet); i = 1,2,…,N where N =32 for 325 

the Grand River watershed or N= 54 for the Ottawa River watershed; and 𝑞𝑇 is the regional growth 326 

curve as described above. Figure 2b provides a visual accounting of the regional regression and 327 

flood frequency analysis methodology described in this section.  328 

Some of the limitations of this framework include the long-term flow records and 329 

homogenous stations required for the creation of regional regression models. A dearth of long-330 

term data affects flood magnitude computations specifically for the upper quantiles (5T rule, 331 

Section 3.1).  332 

 333 

2.2.3 Stage 3: Catchment Integrated Manning’s Equation 334 

Manning’s formula (Song et. al., 2017) is widely used to calculate the velocity and subsequently 335 

the discharge of any cross-section of an open channel. The Manning’s equation is given in SI units 336 

by: 337 

𝑄 =
1

𝑛
 𝑅ℎ

2

3  𝐴 𝑆
1

2   (3) 338 

such that Q is discharge in cubic metres per second, A represents the cross-sectional area, n is a 339 

roughness coefficient, Rh is the hydraulic radius, and S represents slope (fall over run) along the 340 

flow path. Despite its widespread use, robustness, and relative ease of use, Manning’s Equation 341 

has an inherent problem which comes from the uncertain orientation of cross-sections. To mitigate 342 

this problem, we integrated Manning’s Equation along the drainage lines within the catchment, 343 

accounting for the slope of each grid cell to yield bed area and derived the stage-discharge 344 

relationship. This strategy uses hydrological terrain analysis, discussed previously in Section 2.2.1, 345 

to determine the Height Above Nearest Drainage (HAND) of each pixel (Rodda, 2005; Rennó et 346 
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al., 2008). The HAND method determines the height of every grid cell to the closest stream cell it 347 

drains to. In other words, each grid cell’s HAND estimation is the water height at which that cell 348 

is immersed. The inundation extent of a given water level can be controlled by choosing all the 349 

cells with a HAND less than or equal to the given level. The water depth at every cell can then be 350 

calculated as the water level minus the HAND value of the corresponding cell. The relevance of 351 

HAND to the field of flood modelling has been demonstrated in the literature (Rodda, 2005, Nobre 352 

et al., 2016). Its documented use notwithstanding, HAND’s potential applications to the depiction 353 

of stream geometry information and to the investigation of stage-discharge connections have not 354 

been well investigated. Hydraulic methods of discharge calculation typically entail hydraulic 355 

parameters derived from the known geometry of a channel. The knowledge of a channel’s cross 356 

sectional design is a requirement for many one-dimensional flood routing models, for instance the 357 

one-dimensional St. Venant equation (Brunner, 2016). The requirement of the cross-section being 358 

perpendicular to the flow direction makes it an implicit problem and also dependent on the choice 359 

of cross-section position as well as the distance at which the points are taken on the cross-section. 360 

In the current practice of hand designing it makes it subjective and draws substantial uncertainty 361 

in the inundation simulation. Alternatively, HAND-based models do not explicitly solve the 362 

Manning’s equation at individual cross-section, but rather solve for a catchment averaged version 363 

of it, by considering a river as a summation of infinite cross-sections. As such, the inherent 364 

uncertainty is avoided. However, the simplistic HAND-based model struggles to simulate proper 365 

inundation extent in case of complex conditions such as meandering main channels and 366 

confluences (Afshari et. al. 2017). This model doesn’t capture the dynamic flow characteristics 367 

such as backwater effects created by flood mitigation structures. Therefore, users have to be 368 

cautious in such cases. 369 

The conceptual framework for implementing HAND to estimate the channel hydraulic 370 

properties and rating curve is as follows: for any reach at water level h, all the cells with a HAND 371 

value <  h compose the inundated zone F(h), which is a subarea of the reach catchment. The water 372 

depth at any cell in the inundated zone F(h) is the difference between the reach-average water level 373 

h and the HAND of that cell, HANDc, which can be represented as: depth = HANDc-h. Since a 374 

uniform reach-average water level h is applied to check the inundation of any cell within the 375 

catchment, the inundated zone F(h) refers to that reach level. The water surface area of any 376 
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inundated cell is equal to the area of the cell Ac. This case study uses 30 metre x 30 metre grid 377 

cells, thus in this case Ac = 900 m2. The channel bed area for each inundated cell is given by  378 

𝐴𝑠 = 𝐴𝑐√(1 + 𝑠𝑙𝑜𝑝𝑒2) (4) 379 

where slope is the surface slope of the inundated pixel expressed as rise over run or inverse tangent 380 

of the slope angle. This equation approximates the surface area of the grid cell as the area of the 381 

planar surface with surface slope, which intersects with the horizontal projected area of the grid 382 

cell. The flood volume of each inundated pixel at a water depth of h can be calculated as Vc (h)=Ac 383 

(h-HANDc). If the reach length L is known, the reach-averaged cross section area for each pixel is 384 

given by Ai=Vc/L. Similarly, the reach-averaged cross section wetted perimeter for each inundated 385 

pixel Pi(h)= As/L. Therefore, the hydraulic radius for each inundated pixel is given by Ri=Ai/Pi. 386 

Therefore, we can estimate the reach-averaged cross-section area 𝐴 = ∑𝑖 𝐴𝑖, perimeter 𝑃 =387 

∑𝑖 𝑃𝑖, and hydraulic radius R= 𝐴/𝑃 for the entire flooded area.  We compared the composite 388 

Manning’s n (Chow, 1959; Flintham & Carling, 1992; Pillai, 1962; Tullis, 2012) from 7 different 389 

methods: the Colebatch method; the Cox method; the Horton Method; the Krishnamurthy Method; 390 

the Lotter method; the Pavlovskii Method; and the Yen Method (McAtee, 2012). More details 391 

about these methods are in the supplementary Section S2 of this paper.  392 

Thus the discharge Q(h) corresponding to inundation height can be computed by the Manning’s 393 

equation and given by: 394 

𝑄(ℎ) =
1

𝑛
𝑅

2

3𝐴𝑆
1

2   (6) 395 

where S is the slope of the river and n is the composite Manning’s roughness coefficient. Figure 396 

2c displays the sequence of methods outlined for the Catchment Integrated Manning’s Equation 397 

method. 398 

 399 

2.2.4 Stage 4: Upscaling and Data Conversion 400 

The proposed InundatEd inundation model simulates the flood-depth distributions for each 401 

catchment independently. This makes this model suitable to be ported to a DGGS-based data 402 

model and processing system. Following the GIS preprocessing, done in TauDEM as discussed in 403 

Section 2.2.1, the required data was converted to a DGGS representation, as outlined in Robertson 404 

et al., (2020). Supplementary Figure S2 for raster input data (S2a), polygon (vector) input data 405 

(S2b), and network (directional polyline vector) input data (S2c). For raster data (S2a), the 406 
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bounding box is used to extract a set of DGGS cells, and then for each DGGS cell’s centroid the 407 

raster value is extracted. To convert polygon data to a DGGS data model, we sample from its 408 

interior and its boundary separately using uniform sampling. Then each sample point is converted 409 

into DGGS cells based on its coordinates and stored into IDEAS data model by aggregating both 410 

sets of DGGS cells (Figure S2b). The same process for the border extraction is applied to the 411 

polylines and networks, however with network data the order of the cells is also stored as a flag to 412 

use in directional analysis (Figure S2c). Following conversion, the data was ported to a 40-node 413 

IBM Netezza Database for subsequent calculations. General, systematic limitations of the 414 

InundatEd IDEAS-based inundation model are discussed in Section 3.1. 415 

 416 

2.3 Web-GIS Interface 417 

The R/Shiny platform and the R-Studio development environment were used to design the user 418 

interface and server components of an online web application, allowing users to query and interact 419 

with the inundation model. Features of R specific to InundatEd’s modelling workflow were its 420 

support of the Hazus damage functions and its support for DGGS spatial data. Shown in Figure 421 

3a, the InundatEd user interface offers widgets for the following user inputs: address (text); 422 

discharge (slider); and return period (drop down), as well as tabs for viewing interactive graphs. 423 

The InundatEd user interface also features an interactive map which leverages the Leafgl R 424 

package (Appelhans & Fay, 2019) for seamless integration with the DGGS data model. Users may 425 

click on the map to obtain point-specific depth information.  426 

 427 

2.4 InundatEd Flood Information System – System Structure Summary 428 

Figure 3b displays the overall system structure and linkages for the InundatEd flood information 429 

system. GIS input data, as discussed in Section 2.2, were staged, pre-processed, and ported to the 430 

database. Data querying was used to compute ‘in-database’ inundation (flood depth) and related 431 

damages (methods outlined in Section 2.1) in response to user interface inputs to the R/Shiny UI. 432 

 433 

2.5 Flood Data Comparison and Model Testing 434 

2.5.0 Study Areas 435 
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As preliminary testing domains, we created flood inundation models for the Grand River Basin 436 

and Ottawa River Basin respectively, both located in Ontario, Canada. Each basin has experienced 437 

historical flooding and have implemented varying measures of flood control. Table 2 shows 438 

different salient characteristics of these catchments. For the purposes of graphing and discussion 439 

of station-specific period of record (number of years with a recorded annual maximum discharge) 440 

on theoretical vs estimated flood quantiles, two stations from each study watershed were selected, 441 

one each for high period of record and low period of record. For the Grand River watershed, 442 

stations 02GA003 and 02GA047 were selected for high and low period of record, respectively. 443 

For the Ottawa River watershed, stations 02KF006 and 02JE028 were selected, respectively.  444 

“Theoretical quantiles” are here defined as the quantiles generated by our model based on the 445 

logspline fit, which incorporates annual maximum discharge values from multiple stations across 446 

each study watershed (Section 2.2.2 and Figure 3). In contrast, “estimated quantiles” are here 447 

defined as the flood quantiles calculated simply by extracting the quantiles for the desired return 448 

periods from the raw annual maximum discharge values observed at the hydrometric station of 449 

interest. 450 

2.5.1. Ottawa River Watershed 451 

Four flood extent polygons (FEPs) provided by Natural Resources Canada (Natural Resources 452 

Canada, 2018, 2020) from the May-June 2019 flood season were used as “observed” floods to test 453 

the model outputs for the Ottawa River watershed. Each FEP represented a previously digitized 454 

floodwater extent at a specified date/time.  455 

A second criterion for selection was that the hydrometric station(s) intersected by the FEP 456 

provided discharge data for the FEP’s respective datetime. Two hydrometric stations which met 457 

both criteria were selected: 02KF005 and 02KB001. The following procedure was followed for 458 

each FEP using the corresponding hydrometric station (02KF005 or 02KB001), the station level 459 

index flood (Q̃, previously calculated during Section 2.2.2), and the observed discharge (Qobs). In 460 

both cases, the logspline fit for the Ottawa River watershed, previously generated during Section 461 

2.2.2, was also used. 462 

The observed discharge (Qobs) was divided by the corresponding hydrometric station’s 463 

index flood (Q̃) (Qi = Qobs / Q̃) The cumulative probability of Qi was then converted to a return 464 

period. 465 
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 466 

To generate each simulated flood for comparison to its observed counterpart, the methodology 467 

outlined in Sections 2.2.2 and 2.2.3 was repeated with the four new return periods appended to 468 

the original list of return periods in Section 2.2.2. Table 3 lists each FEP, the corresponding 469 

intersected hydrometric station, the period of record used for each station to calculate Q̃, the 470 

observed discharge, the resultant cumulative probability value, and the final return period used to 471 

generate each simulated flood.  472 

 473 

2.5.2. Grand River Watershed 474 

Regulatory floodplain extent data (the greater of RP=100 or discharge from Hurricane Hazel, 475 

“observed” flood extent) was obtained from the Grand River Conservation Authority (GRCA) 476 

(Grand River Conservation Authority, 2019). However, analysis revealed that, at most hydrometric 477 

stations in the Grand River watershed, the 100-year return period yielded higher discharge values 478 

relative to the “Hurricane Hazel” storm. Thus, the 100-year return period could be used.  The 479 

estimated flood extent for RP=100 was generated per sections 2.2.1-2.2.3. Table S1 provides a 480 

discharge comparison between the 100-year return period and the regulatory storm. 481 

 482 

2.5.3. Flood Extent Comparisons 483 

For both the Grand River watershed and the Ottawa River watershed, only those subcatchments 484 

in close proximity to the observed flood extent polygons were retained for visualization 485 

purposes. To this end, a criterion was applied to subcatchments in the Grand River watershed 486 

requiring an intersection with the observed flood polygon of >= 20% of the subcatchment’s area. 487 

For the Ottawa River watershed, due to the use of station-specific observed discharges, an 488 

additional criterion was applied: that a given subcatchment intersects with a network line with 489 

contributory upstream area >= 80% and contributory upstream area <= 120% of the observed 490 

upstream area of the hydrometric station (02KF005 or 02KB001). Table S2 provides by-491 

subcatchment areas of the observed flood extent polygons whose subcatchments were eliminated 492 

based on the 20% intersection threshold. Per Table S2, one excluded subcatchment (10505) had 493 

an intersection value >= 20%, attributable in part to the presence of a tributary along which it 494 

was not expected that the return period would be properly scaled but which intersected the 495 

subcatchment. Additionally, due to the pluvial nature of the flooding in that subcatchment, it was 496 
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once again expected that the return period as a function of the river discharge would not be 497 

properly scaled without the presence of a hydrometric station to provide discharge information.  498 

Binary classification metrics have been used to compare between observed and simulated 499 

floods in cases where the focus is on extent, not depth (eg Papaioannou et al., 2016; Wing et al., 500 

2017; Chicco & Jurman, 2020). A binary classification (or 2x2 contingency) method was used to 501 

compare the simulated flood extent rasters to the extents of their observed counterparts, whereby 502 

a confusion matrix was generated for each subcatchment. Multiple accuracy measures were 503 

calculated from the contingency tables to support the evaluation of the flood model, including: 504 

True Positive Rate (TPR). True Negative Rate (TNR), Accuracy, Matthews Correlation 505 

Coefficient (MCC) (Chicco & Jurman, 2020; Esfandiari et al., 2020; Rahmati et al., 2020), and 506 

the Critical Success Index (CSI) ( e.g., Papaioannou et al., 2016; Stephens & Bates, 2015). Both 507 

the CSI and the MCC have been used in the context of flood model validation. The Critical 508 

Success Index (CSI) is defined as: 509 

𝐶𝑆𝐼 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃
(7) 510 

The Matthews Correlation Coefficient (MCC) is defined as: 511 

𝑀𝐶𝐶 =  
𝑇𝑃 𝑥 𝑇𝑁−𝐹𝑃 𝑥 𝐹𝑁

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
  (8) 512 

such that TP = true positive, TN = true negative, FP = false positive, and FN = false negative. 513 

 514 

3. Results and Discussion 515 

3.1 Model Processes and DGGS  516 

Intermediate model outputs for the Grand River and Ottawa River watersheds - Height Above 517 

Nearest Drainage, delineated river networks, and Manning’s n- are displayed in Figure S3. 518 

Figure 4 visualizes results for the Grand River watershed and for the Ottawa River watershed for 519 

the following method components: calculation of hydrometric station upstream (contributory) 520 

area; index flood regression as represented by the correlation of logged index discharge and 521 

logged upstream area; and flood frequency as represented by discharge against a Gumbel 522 

transformed return period (years), for the stations respectively representative of high and low 523 
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observations. Figures 4a and 4b plot the log of calculated upstream area against the log of 524 

observed upstream area, yielding respective Pearson correlation coefficients of 0.99 and 0.63 for 525 

the Grand River and Ottawa River watersheds. The relatively weak correlation of the Ottawa 526 

River watershed arose primarily from the limited resolution (number of decimal places in lat-527 

long) of the station location information; incorrect reporting of station locations and/or their 528 

drainage area (Environment Canada reported the drainage area as 0 for multiple stations); and 529 

sometimes wrongly snapping stations to the tributaries rather than to the main river, particularly 530 

in cases involving a wide river channel or braided river. However, this does not affect the model 531 

itself, as we have used the station-specific drainage areas reported by Environment Canada to 532 

create the regional regression model. With respect to regional regression, Figure 4c visualizes the 533 

relationship between predicted index flood discharge and contributory upstream area, at 534 

individual hydrometric stations, for the Grand River and Ottawa River watersheds (R = 0.83 and 535 

0.95, respectively).The regional growth curves for both the Grand River watershed and the 536 

Ottawa River watershed are shown in Figure 4d. To compare the proposed approach of using 537 

log-spline distribution against a traditional parametric distribution we fitted a Generalized 538 

Extreme Value (GEV) distribution to the RGC (Supplementary Figure S4). With respect to the 539 

log-spline RGCs, AIC values of 1861.69 and 867.69 and (-2)(logliklihood) values of 1826.04 540 

and 809.26 were reported for the Grand River watershed and Ottawa River watershed 541 

respectively. The log-spline (-2)(logliklihood) values were lower than their GEV counterparts 542 

(1837.56 and 880.12) for both watersheds. For the Ottawa River watershed, the log-spline AIC 543 

value, 867.69, was also lower than that of its GEV counterpart (886.12).  Furthermore, the use of 544 

the log-spline distribution allows for a consistent method which can be applied readily across any 545 

watershed without careful calibration of the distribution function. Thus, the log-spline 546 

distribution was used for the regional growth curves. The lower values of the normalized 547 

discharge shown in Figure 4d for higher return periods (2-3) for the Ottawa River watershed 548 

suggest relatively more structural alterations within the watershed, for instance flood control and 549 

dams, than the Grand River watershed (Ottawa Riverkeeper, 2020). The Grand River watershed 550 

yielded relatively higher values of normalized discharge (>3) at higher return periods in Figure 551 

4d. Figure 5 shows the comparison of estimated flood quantiles against theoretical flood 552 

quantiles at an individual station from each study watershed. The stations - 02GA034 of the 553 

Grand River watershed and 02KF001 of the Ottawa River watershed (Figure 1)- were selected 554 
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due to their long “discharge counts”, referring to the number of years for which an annual 555 

maximum discharge was recorded at each station. Specifically, station 02GA034 (5a) yielded a 556 

discharge count of 101 and station 02KF001 (5b) yielded a discharge count of 84. Return periods 557 

(T, years) have been converted in terms of the Gumbel reduced variable as follows: 558 

𝐺𝑢𝑚𝑏𝑒𝑙 =  −𝑙𝑛 [𝑙𝑛 (
𝑇

𝑇−1
)] (9) 559 

The dotted lines on Figures 5a and 5b represent the 5T threshold - the return period limit beyond 560 

which flood simulations can not be reasonably estimated. The 5T threshold requires that, for the 561 

reasonable estimation of a quantile for a desired return period T, there be at least 5T years of data 562 

(Hailegeorgis & Alfredsen, 2017; Jacob et al., 1999). As expected,  the theoretical and estimated 563 

return periods are comparable for low return periods. However, and as shown in Figure 5,  the 564 

theoretical and estimated quantiles deviate at lower RP values than the 5T threshold for both 565 

stations. This disagreement between the theoretical and estimated quantiles recalls the assumption 566 

of homogeneity for each watershed (Burn, 1997) - estimations of higher return periods, considering 567 

the 5T rule, would require more observations. However, further sub-sampling the stations into 568 

regional homogeneous groups would have reduced the data quantity substantially for each group.  569 

 570 

3.2 Web-GIS Interface 571 

A pre-alpha version of the InundatEd app is available at https://spatial.wlu.ca/inundated/. Source 572 

code for the most recent version of InundatEd will be publicly available on GitHub (Spatial Lab, 573 

2020). The use of R/Shiny to develop InundatEd and its provision on GitHub encourages 574 

transparency, ongoing development, and response to user feedback and preferences.  575 

 576 

3.3 Model Testing 577 

 578 

Of the binary comparison results for the 7 composite Manning’s n methods listed in Section 2.2.3, 579 

the Krishnamurthy method yielded the highest median CSI values (Table S3 for the Grand River 580 

watershed and Table S4 for the Ottawa River watershed). As such, it was selected for further 581 

visualization and discussion.  582 

The following return periods (in years) were observed for FEPs intersecting hydrometric 583 

station 02KF005 in the Ottawa River watershed: 26.5, 16.52, and 25.96. Additionally, a return 584 

https://spatial.wlu.ca/inundated/
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period of 42.69 years was observed for a FEP intersecting hydrometric station 02KB001 in the 585 

Ottawa River watershed. The 100-year return period was tested for the Grand River watershed. 586 

Binary classification results for the Grand River watershed are shown in Figure 6 for four 587 

comparison metrics: Critical Success Index, Matthews Correlation Coefficient, True Positive Rate, 588 

and True Negative Rate. Figure 7 presents Critical Success Index and Matthews Correlation 589 

Coefficient results for the four Ottawa River watershed cases, with True Positive and True 590 

Negative results presented in Supplementary Figure S5. Table 4 lists the number of subcatchments 591 

evaluated, the median CSI, and the median MCC for each of the 5 test return periods. The median 592 

values of additional metrics are provided in Table S5. 593 

The median CSI values ranged from 0.581 to 0.849 (Table 4), with both of those values 594 

coming from the Ottawa River watershed (return periods 42.69 and 26.5, respectively). The 595 

median MCC values ranged from 0.743 (Ottawa RP 42.69) to 0.888 (Ottawa RP 26.5). The median 596 

CSI and MCC values for the Grand River watershed were 0.741 and 0.844, respectively. The 597 

results reported herein are comparable to, and in some cases exceed, previously published binary 598 

classification results. For instance, Wing et al. (2017) achieved CSI values of 0.552 and 0.504 for 599 

a 100-year return period flood model of the conterminous United States at a 30m resolution. With 600 

respect to the MCC, an urban flood model produced by Rahmati et al. (2020) provided an MCC 601 

value of 0.76 when compared to historical flood risk areas. Esfandiari et al. (2020) compared two 602 

flood simulations: a HAND-based flood model and a model which combined HAND and machine 603 

learning to observe flood extents, resulting in a range of MCC values from ~0.77 to ~0.85. It must 604 

be noted that direct comparisons between the works listed here and this study must be viewed with 605 

caution, due to differences in methodologies, assumptions, data sources, data availability, and 606 

return periods between the studies. 607 

Additionally, the median F1 score (Chicco & Jurman, 2020) for the Grand River watershed was 608 

0.85. The median F1 scores for Ottawa River watershed return periods 26.5, 16.52, 25.96, and 609 

42.69 were 0.96, 0.95, 0.95, and 0.94 respectively. Such results are approximately in line with 610 

Pinos & Timbe (2019), who achieved F1 values from 0.625 to 0.941 for 50-year RP floods using 611 

a variety of 2D dynamic models. Afshari (2017) achieved F1 values from 0.48 - 0.64 for the 10-612 

year, 100-year, and 500-year return periods when comparing a HAND-based simulation against a 613 

HEC-RAS 2D control. Lim & Brandt (2019) determined that low-resolution DEMs are capable of 614 

yielding relatively high comparison metrics (e.g. F1 values approximately >= 0.80) in situations 615 
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where Manning’s n varies widely over space. The connection between high values of Manning’s 616 

n and flood overestimation (false discovery) was also discussed. The Grand River watershed 617 

yielded a median False Discovery Rate (FDR) of 0.117, and the four Ottawa River watershed cases 618 

yielded respective median FDRs of 0.019, 0.01, 0.006, and 0.44 for the evaluated subcatchments. 619 

The moderately high FDR value of 0.44 for the 42.69-year return period and the observed 620 

overestimation of flood extent (discussed below) may be a result of high local Manning’s n values. 621 

In addition, the influences of flat terrain (Lim & Brandt, 2019)  and anabranch must be considered 622 

as it can disrupt the assumption of a single drainage direction for each pixel during sub-catchment 623 

delineation. Additional factors potentially influencing the overestimation are the problems 624 

inherent to HAND-based modeling, as discussed in section 2.2.3.  The topography of the area of 625 

the Ottawa River watershed wherein the extent comparisons were made is relatively flat with 626 

multiple anabranches and thus can lead to chaotic network delineation. Although attempts were 627 

made in this model to counter this impact and avoid slope values of 0 (the burning of the polyline 628 

network into the DEM, Section 2.2.1 and Figure 2a), the use of the Manning’s equation was still 629 

compromised in certain areas and likely had a negative impact on the resultant flood simulations.  630 

 631 

As noted in Lim & Brandt (2019), the reliability of the observed flood extent polygons also merits 632 

comment. In this case study, the observed FEPs for the Ottawa River watershed were originally 633 

digitized from remotely sensed data and thus carry forward the errors and uncertainties from prior 634 

processing. The Grand River watershed’s 100-year return period extent was also generated outside 635 

of this study and potentially carries multiple sources of error and uncertainty. However, evaluation 636 

of the exact extent to which errors present in the observed flood extent polygons could have 637 

impacted the binary classification results was not an objective of this study. 638 

Figure 8 visualizes the 100-year return period simulated flood for the Grand River 639 

watershed. Inset maps are provided which highlight one subcatchment with a high CSI (A, CSI= 640 

0.77) and two subcatchments with low CSIs (B, CSI =0.17 and 0.22). The simulated flood shown 641 

in Figure 8A compares very well to the extent of its observed counterpart, consistent with the 642 

relatively high CSI value. Notably, three hydrometric stations are located within the Figure 8A 643 

subcatchment: 02GA014, 02GA027, and 02GA016. Per the methods in Section 2.2.2, station 644 

02GA014 yielded a period of record of 54, 02GA027 yielded an insufficient (<10) period of record, 645 

and station 02GA016 yielded a period of record of 58. The presence of the two hydrometric 646 
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stations with considerable periods of record likely strengthened the regional regression of the area 647 

and contributed to the success of the simulated flood shown in Figure 8A. In contrast, within the 648 

low-CSI (0.17 and 0.22) subcatchments shown in Figure 8B, the simulation considerably 649 

overestimated the extent of the 100-year return period flood. The overestimation of the flood 650 

extents observed in Figure 8B can likely be attributed, at least in part, to the following: a) multiple 651 

upstream and downstream dams (Grand River Conservation Authority, 2000) and b) the channel 652 

meanders - as discussed previously, the simple HAND-based model employed here is not robust 653 

against channel complexities nor flow control structures such as dams. It must be recalled here that 654 

the modular nature of the InundatEd model allows for the “swapping” of various flood modelling 655 

methods, and thus could easily accommodate, for instance, shallow water equations. It is also 656 

possible to include such operations in future versions of the model by either modifying the DEM 657 

values to reflect flood control structures or by offsetting the discharge of the catchment based on 658 

structure storage.  659 

 660 

With respect to the Ottawa River watershed, Figure 9 highlights subcatchments whose comparison 661 

between observed and simulated flood extents yielded low (A: CSI= 0.13) , moderate (B: CSI = 662 

0.66 and D: CSI =0.65) and high (C: CSI = 0.87) CSI values.  663 

 664 

Figure 9A shows the simulated and observed flood extents for return period 25.69. Two main 665 

factors influencing the low CSI are readily apparent. The first is that the observed FEP appears 666 

“cut off”, not extending through most of the subcatchment. It is possible that the flood in the 667 

remainder of the sub-catchment was simply not digitized during the observed FEP’s generation, 668 

especially given the subcatchment’s position. However, of the area of the subcatchment intersected 669 

by the observed FEP, the simulated flood has considerably underestimated the observed flood 670 

extent. Figure 9B shows the extent comparison of the 42.69 -year return period in a subcatchment 671 

of moderate CSI (0.66). Figure 9C illustrates a subcatchment of high CSI (0.87), characterized by 672 

an overall underestimation in flood extent, barring a slight overestimation in one area. Figure 9D 673 

(CSI = 0.65) shows a mixture of overestimation and underestimation. 674 

Although the results for both the Grand River watershed and the Ottawa River watershed 675 

suggest substantial agreement between the respective observed and simulated flood extents, a 676 

number of considerations, including input data characteristics and metric bias, require that the 677 
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presented results be taken with caution and, in some cases, offer clear paths for improvement. With 678 

respect to input data, the simulated floods presented within this case study are limited by the initial 679 

use of a 30m x 30 DEM raster. As concluded by Papaioannou et al. (2016), floodplain modelling 680 

is sensitive to both the resolution of the input DEM and to the choice of modelling approach. 681 

Additionally, and as discussed in Section 2.2.3, there are some inherent limitations of the HAND-682 

based modeling approach. 683 

Overall, the results indicated that the current iteration of the InundatEd flood model was 684 

reasonably successful on the basis of moderate-high MCC values and direct comparisons. 685 

However, any weight assigned to this claim must, in addition to the previously discussed caveats, 686 

recall that only extent and not depth was compared between the observed and simulated floods. 687 

The use of the DGGS big-data architecture provides a promising foundation for further work, such 688 

as the incorporation of the impacts of flood control structures, on the InundatEd model.  689 

 690 

3.4 Model Performance 691 

 692 

Supplementary Figure S7 contrasts runtimes using the DGGS method against those using a  693 

traditional, raster-based method for sub-catchments within the Grand River Watershed (n= 306 for 694 

each method) during the generation of respective RP 100 flood maps. To account for the substantial 695 

difference between the DGGS runtime range and that of its raster counterpart, we added 4 seconds 696 

to DGGS runtime in Figure S7. The mean runtime using the DGGS method (0.23 seconds) was 697 

significantly lower than the mean runtime using the raster-based method (3.98 seconds) at both 698 

the 99% confidence intervals (p < 2.2e-16). Thus, the efficiency of the proposed inundation model 699 

-coupled with a big-data Discrete Global Grids Systems architecture- is demonstrated with respect 700 

to processing times with limited input data. As the IDEAS framework and the InundatEd flood 701 

modelling method continue to develop, processing time benchmarks could be established to track 702 

and evaluate the model’s robustness against increasing complexity (e.g., the integration of 703 

hydrological processing algorithms) and to facilitate comparisons with other inundation models. 704 

 705 

3.5 Conclusions 706 

 707 

We have tested a novel flood modelling and mapping system, implemented within a DGGS-based 708 

big data platform. In many parts of the world, including Canada, the widespread deployment of 709 
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detailed hydrodynamic models has been hindered by complexities and expenses regarding input 710 

data and computational resources, especially the dichotomy between processing time and model 711 

complexity. This research proposes a novel solution to these challenges. First, we demonstrated 712 

the development of a flood modelling framework in a Discrete Global Grid Systems (DGGS) data 713 

model and the presentation of the models’ outputs via an open-source R/Shiny interface robust 714 

against algorithm modifications and improvements. The DGGS data model efficiently integrates 715 

heterogeneous spatial data into a common framework, rapidly develops models, and can scale for 716 

thousands of unit processing regions through easy parallelization. Second, the use of the 717 

catchment-integrated Manning’s equation avoids high-uncertainty river cross-sections and 718 

produces physically justified flood inundation extents. Third, DGGS-powered analytics allow 719 

users to quickly visualize flood extents and depths for regions of interest, with reasonable 720 

alignment with observed flooding events. Finally, we believe our flood-inundation estimation 721 

method can address situations where good quality data is scarce and/or there are insufficient 722 

resources for a complex model. To apply the model in a real time environment we would need a 723 

discharge forecasting model or have real-time discharge data at the catchment outlet, which could 724 

be used to compute the flood inundation using the pre-computed stage-discharge relationship and 725 

inundation model.  726 

 727 

 728 
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List of tables: 1064 

 1065 

Table 1. Values of Manning’s n 1066 

NRCAN LULC Value NRCAN Description Manning’s n 

1 Temperate or sub-polar needleleaf forest 0.16 

2 Sub-polar taiga needleleaf forest 0.16 

5 Temperate or sub-polar broadleaf deciduous forest 0.16 

6 Mixed forest 0.16 

8 Temperate or sub-polar shrubland 0.1 

10 Temperate or sub-polar grassland 0.035 

12 Sub-polar or polar grassland-lichen-moss 0.035 

13 Sub-polar or polar barren-lichen-moss 0.03 

14 Wetland 0.1 

15 Cropland 0.035 

16 Barren lands 0.025 

17 Urban 0.08 

18 Water 0.04 
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 1079 

 1080 
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 1082 
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Table 2. Study Watershed Characteristics 1097 

Characteristic Grand River Watershed Ottawa River Watershed 

Drainage Area (km2) 6,800 (Li et al., 2016) 146,000 (Nix, 1987) 

Elevation range (masl) 173-535 (Lake Erie Source 

Protection Region Technical Team, 

2008) 

430 – 20 (Nix, 1987) 

Geologic characteristics Underlain by groundwater-rich, 

fractured, porous limestone 

bedrock; surface geology 

characterized by glacial till and 

moraine complexes (Liel et al., 

2016) 

Incorporates the geological 

subdivisions St. Lawrence 

Lowlands, Grenville Province, 

Superior Province, and Cobalt Plate 

within the region of the Canadian 

Shield (Environment and Climate 

Change Canada, 2019) 

Approximate Population size 985,000 (Grand River Conservation 

Authority, 2014) 

> 2,000,000  (Environment and 

Climate Change Canada, 2019) 

 

Land Use / Land Cover 43% agriculture; 26.92% range-

grass and pasture; 12% forests; 9.29 

% urban areas; 1.8% wetlands 

(Veale & Cooke, 2017) 

73% forested (Quebec); 85% mixed 

and deciduous forest, 15% boreal 

(middle-south and northern regions, 

respectively) (Environment and 

Climate Change Canada, 2019); 6% 

farmland; <2% developed 

(Werstuck & Coulibaly, 2017) 

Average Annual Precipitation (mm) 800-900 (Kaur et al., 2019) 840 (Werstuck & Coulibaly, 2017) 

Temperature 8-10 ° C average annual; moderate-

to-cool temperate (Kaur et al., 

2019) 

21 - -10 °C average daily (Werstuck 

& Coulibaly, 2017) 
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Table 3. Simulated Flood Generation – Ottawa River Watershed 

 
Observed Flood Extent 

Polygon 

Observed 

Date and 

Time 

(UTC) 

Intersected 

Hydrometric 

Station 

Station 

Period 

of 

Record 

(years) 

Index 

Flood 

(Q̃, 

m3s-1) 

Observed 

Discharge 

(m3s-1) 

Logspline 

fit 

observation 

count 

Cumulative 

Probability 

Value 

Return 

Period 

(years) 

FloodExtentPolygon_QC_ 

LowerOttawa_20190429_ 

230713.shp 

2019/04/29 

23:07:13 

02KF005 38 3400 5790 1487 0.962 26.5 

FloodExtentPolygon_QC_ 

LowerOttawa_20190507_ 

111329.shp 

2019/05/07 

11:13:29 

02KF005 38 3400 5350 1487 0.939 16.52 

FloodExtentPolygon_QC_ 

LowerOttawa_20190513_ 

225800.shp 

2019/05/13 

22:58:00 

02KF005 38 3400 5570 1487 0.961 25.96 

FloodExtentPolygon_QC_ 

CentralOttawa_20190503_ 

113004.shp 

2019/05/03 

11:30:04 

02KB001 52 258 477 1487 0.977 42.69 
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Table 4. Binary Comparison Results 

Watershed Return 

Period 

(years) 

Number of 

evaluated 

subcatchments 

Median CSI Median 

MCC 

Grand River 100 71 0.741 0.844 

Ottawa River 26.5 17 0.849 0.888 

Ottawa River 16.52 21 0.785 0.826 

Ottawa River 25.96 22 0.803 0.852 

Ottawa River 42.69 7 0.581 0.743 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

37 
 

List of Figures 

Figure 1. GIS Input Data – Grand River Watershed (a) and Ottawa River Watershed (b) 

Topography. The maps are created in ArcGIS with the basemaps provided by © ESRI.  

The stations that are used later in Figure 5 comparison are labeled in the plot.  
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Figure 2. Flood model flowchart illustrating three sub-phases of overall modelling methodology: 

a) GIS Pre-processing; b) Flood frequency analysis and regional regression; and c) HAND-

based solution of Manning's Equation 

 

 
 



 

39 
 

Figure 3. InundatEd User Interface (a) and System Diagram (b). The basemap is created in Leaflet 

using © OpenStreetMap contributors 2020. Distributed under a Creative Commons BY-SA 

License 
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Figure 4. Flood frequency and regional regression plots 
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Figure 5. Theoretical Versus Estimated Flood Quantiles 
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Figure 6. Binary Classification Results – Grand River Watershed 
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Figure 7. Binary Classification Results – Ottawa River Watershed 
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Figure 8. Simulated Flood and Insets – Grand River Watershed 100-Year Return Period 
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Figure 9. Observed and Simulated Flood Extents– Ottawa River Watershed 
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