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Abstract 27 

Despite the high historical losses attributed to flood events, Canadian flood mitigation efforts have 28 

been hindered by a dearth of current, accessible flood extent/risk models and maps. Such resources 29 

often entail large datasets and high computational requirements. This study presents a novel, 30 

computationally efficient flood inundation modelling framework (“InundatEd”) using the height 31 

above nearest drainage-based solution for Manning’s equation, implemented in a big-data discrete 32 

global grid systems-based architecture with a web-GIS platform. Specifically, this study aimed to 33 

develop, present, and validate InundatEd through binary classification comparisons to recently 34 

observed flood events. The framework is divided into multiple swappable modules including: GIS 35 

pre-processing; regional regression; inundation model; and web-GIS visualization. Extent testing 36 

and processing speed results indicate the value of a DGGS-based architecture alongside a simple 37 

conceptual inundation model and a dynamic user interface.  38 
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Introduction:  39 

Globally from 1994 to 2013 flood events accounted for 43% of recorded natural disasters 40 

(Centre for Research on the Epidemiology of Disasters, 2016). Flooding is responsible for one 41 

third of natural disaster costs in Europe (Albano, Sole, Adamowski, Perrone, & Inam, 2018), while 42 

in Canada mean annual losses of $1-2 billion (CAD) are attributed to flood disasters (Oubennaceur 43 

et al., 2019). A 2013 flood in southern Alberta, costing over 1.7 billion dollars (CAD) in insured 44 

property damages, is the most expensive natural disaster in Canadian history (Stevens & Hanschka, 45 

2014). Rapid economic development and urbanization during the last few decades – particularly 46 

urban development in close proximity to Canadian waters following population expansions of the 47 

1950s-1960s – have increased the amount of exposure and in-turn the economic damages of flood 48 

events (Robert et al., 2003), making the availability of accurate, timely, and detailed flood 49 

information a critical information need (Pal, 2002). 50 

 Mitigating the considerable economic impact of flood events; the design of effective 51 

emergency response measures; the sustainable management of watersheds and water resources; 52 

and flood risk management, including the process of public flood risk education,  have long been 53 

informed by the The practice of flood modelling, which aims to understand, quantify, and 54 

represent the characteristics and impacts of flood events across a range of spatial and temporal 55 

scales, has long informed the sustainable management of watersheds and water resources including 56 

flood risk management (Handmer, 1980; Stevens & Hanschka, 2014; Teng et al., 2017, 2019; 57 

Towe et al., 2020). Flood modelling research has increased in response to such factors as predicted 58 

climate change impacts (Wilby & Keenan, 2012) and advancements in computer,  GIS 59 

(Geographic Information Systems), and remote sensing technologies, among others (Kalyanapu, 60 

Shankar, Pardyjak, Judi, & Burian, 2011; Vojtek & Vojteková, 2016; Wang & Cheng, 2007).  61 

 Flood inundation modelling approaches can be broadly divided into three model classes: 62 

empirical; (Schumann et al., 2009; Smith, 1997); hydrodynamic; (Brunner, 2016, DHI, 2012); and 63 

simplified/conceptual. (L'homme et al., 2008, Néelz & Pender, 2010). Empirical methods entail 64 

direct observation through methods such as remote sensing, measurements, and surveying, and 65 

have since evolved into statistical methods informed by fitting relationships to empirical data. 66 

Hydrodynamic models, incorporating three subclasses (, viz; one-dimensional, (Brunner, 2016; 67 

DHI, 2003), two-dimensional (DHI, 2012; Moulinec et. al., ,2011), and three-dimensional 68 

(Prakash et. al., 2014; Vacondio et. al., 2011), consider fluid motion in terms of physical laws to 69 
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derive and solve equations. The third model class, simple conceptual, has become increasingly 70 

well-known in the contexts of large study areas, data scarcity, and/or stochastic modeling and 71 

encompasses the majority of recent developments in inundation modelling practices. (Teng et. al. 72 

2017). Relative to the typically complex hydrodynamic model class, simple conceptual models 73 

simplify the physical processes and are characterized by much shorter processing times (Teng et 74 

al., 2017, 2019). A class of model which uses the output of a more complex model as a means of 75 

calibrating a relatively simpler model is also gaining popularity (Oubennaceur et al., 2019). While 76 

each class has contributed substantially to the advancement of flood risk mapping and forecasting 77 

practices, a consistent barrier has been the trade-off  between computer processing time and model 78 

complexity (Neal, Dunne, Sampson, Smith, & Bates, 2018), especially with respect to two-79 

dimensional and three-dimensional hydrodynamic models, which entail specialized expertise to 80 

derive and apply physical and fluid motion laws, require adequate data to resolve equations, and 81 

the computational resources to process the equations. Neal et al. (2018) summarized the proposed 82 

solutions to such challenges as relating to 1) modifications to governing equations or 2) code 83 

parallelization, with the latter informing the method proposed in Oubennaceur et al. (2019). With 84 

respect to 2D/3D hydrodynamic model code parallelization, Vacondio et al. (2017) listed two 85 

approaches: classical (multi-treading or Open Multi-Processing and Message Passing Interface) 86 

and Graphics Processing Units (GPUs). The GPU-accelerated method has been shown to decrease 87 

execution times, while avoiding the use of supercomputers, for high-resolution, regional-scale 88 

flood simulations (e.g., Ferrari et al. (2020), Vacondio et al. (2017), Wang & Yang (2020), and 89 

Xing et al. (2019)). However, the GPU-accelerated method is still limited in terms of the hardware 90 

requirement (specialized graphics cards), the use of uniform and/or non-uniform grids (Vacondio 91 

et al. (2017)), and the need for specific, specialized modelling programs to handle the input data 92 

required to solve complex hydrodynamic equations. The ongoing development 93 

 94 

 Several studies have introduced generic modelling frameworks that aim to provide robust 95 

flood risk estimates with relatively little configuration. Winsemius et al. (2013) for example 96 

developed GLOFRIS, a global-scale flood risk modelling framework comprised of global forcing 97 

data, a global hydrological model, a flood routing model, and an inundation downscaling model. 98 

While capable of providing flood risk at virtually any location on earth, the modelling framework 99 

is fixed to the existing datasets and models used, which have significant uncertainty at the scales 100 
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considered. At a more local scale, Jamali et al. (2018) introduces a flexible flood inundation model 101 

that integrates a 1D hydraulic model with a simple GIS-based flood inundation approach. 102 

However, this loosely coupled approach still requires specification of a standalone hydraulic model 103 

for each location at which it is implemented. There has been a recent stream of research aiming to 104 

develop simple conceptual inundation models offersthat preserve both the generality of GLOFIS 105 

and the specificity of more local-scale models. Such simple conceptual inundation models offer 106 

another potential avenue to handle limitations such as computation requirements and data scarcity, 107 

allowing. In turn, areas and scales poorly served by standard hydrodynamic modeling, to 108 

modelling may be provided with up-to- date flood extent maps and provided with platforms with. 109 

Platforms through which the public can view and interact with the simulated floodsflood extent 110 

maps may also be developed (Tavares da Costa, 2019). One such simple conceptual inundation 111 

model is the flood model based on Height Above Nearest Drainage (HAND) (Liu et. al 2018). 112 

Zheng et al. (2018) estimated the River Channel Geometry and Rating Curve Estimation Using 113 

HAND which gained interest from the community, industry, and government agencies. Afshari et 114 

al. (20172018) showed that, while HAND-based flood predictions can overestimate flood depth, 115 

this method provides fast and computationally light flood simulations suitable for large scales and 116 

hyper-resolutions. Although simple conceptual models using such methods as linear binary 117 

classification and Geomorphic Flood Index (Samela et al., 2017, 2018) have been, and continue to 118 

be, developed, the combination of simple conceptual flood methods with big-data approaches 119 

remains largely uninvestigated (Tavares da Costa, 2019). 120 

 121 

 Recent advances in big data architectures may hold potential to retain enough model 122 

complexity to be useful while providing computational speedups that support widespread and 123 

system agnostic model development and deployment. There is an increasing need for examination 124 

of the potential of decision‐making through data-driven approaches in flood risk management and 125 

investigation of a suitable software architecture and associated cohort of methodologies (Towe et 126 

al., 2020).  127 

Discrete global grid systems (DGGS) are emerging as a data model for a digital earth 128 

framework (Craglia et al. 2012; Craglia et al., 2008). One of the more promising aspects of DGGS 129 

data models to handle big spatial data is their ability to integrate heterogeneous spatial data into a 130 

common spatial fabric. This structure is suitable for rapid model developments where models can 131 
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be split into unit processing regions. Furthermore, with the help of DGGS the model can be ported 132 

to a decentralized big-data processing system and many computations can be scaled for millions 133 

of unit regions. The Open Geospatial Consortium adopted a DGGS Abstract Specification in late 134 

2017 and work is currently underway to develop standards for DGGS specification as a core 135 

geospatial data model (OGC, 2017). This is the first use of a DGGS for flood modelling we are 136 

aware of. 137 

The Integrated Discrete Environmental Analytics System (IDEAS) is a recently developed 138 

DGGS-based data model and modelling environment which implements a multi-resolution 139 

hexagon tiling data structure within a hybrid relational database environment (Robertson, 140 

Chaudhuri, Hojati, & Roberts,  2020). Notably, and in contrast to previous systems, the only 141 

special installation entailed by the DGGS-based data spatial model is a relational database. As 142 

such, DGGS-based data model can be ported to any software-hardware architecture as long as it 143 

supports a relational database system.  The system exploits the hardware capability of the database 144 

itself which can potentially incorporate the following: GPU(s), distributed storage, and a cloud 145 

database.  146 

In this paper we employ the IDEAS framework for the efficient computation, simulation, 147 

analysis, and mapping of flood events for risk mitigation in a Canadian context. As such, the 148 

novelty of this study is twofold: 1) the contribution of the new DGGS-based big spatial data model 149 

to the field of flood modelling, and 2) the presentation of a web-interface which lets users compute 150 

the inundation on the fly based on input discharge for select Canadian regions where flood risk 151 

maps are either not publicly available or do not exist. Moreover, the properties and structure of the 152 

DGGS-based spatial data model address a number of challenges and limitations faced by previous 153 

flood modelling approaches in the literature. For instance, it is modular, making it easy to switch 154 

between Regional Flood Frequency Analysis (RFFA-)-based, HAND-based, or alternative models 155 

without sacrificing the consistency of the framework. Likewise, the method by which Manning’s 156 

n is calculated can be easily interchanged. Another novel aspect of this framework is the 157 

incorporation of Land Use Land Cover data in the estimation of the roughness coefficient 158 

Manning’s n instead of a constant value or a channel-specific value of Manning’s n as is typically 159 

used (Afshari et al., 2017; Zheng et al., 2018). In terms of the tradeoff between model complexity 160 

and computation power, the IDEAS framework uses an integer-based addressing system which 161 

makes it orders of magnitude more efficient than that of other, more traditional spatial data models. 162 
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(i.e, raster, vector) (Mahdavi-Amiri et. al. 2015; Li & Stefanakis, 2020; Robertson et al., 2020). 163 

This, in turn, benefits any and all spatial computations associated with flood modelling. Finally, 164 

whereas most major spatial computations entail specialized software/code, in the DGGS-based 165 

method the spatial relationship is embedded in the spatial-data model itself. Thus, the spatial 166 

relationships need not be considered beyond the use of certain rules of the spatial-data model. The 167 

overall efficiency and versatility provided by a DGGS framework can benefit the field of flood 168 

risk mapping, which uses the spatial distribution of simulated floods to identify vulnerable 169 

locations.  170 

Access to flood risk maps can build the capacity of individuals to make informed and 171 

sustainable investment and residence decisions in an age of climate concern and environmental 172 

change (Albano et al., 2018). The current state of public knowledge of flooding risks is 173 

unsatisfactory, with an estimated 94% of 2300 Canadian respondents in highly flood-prone areas 174 

lacking awareness of the flood-related risks to themselves and their property, per a 2016 national 175 

survey (Calamai & Minano, 2017; Thistlethwaite, Henstra, Brown, & Scott, 2018; Thistlethwaite, 176 

Henstra, Peddle, & Scott, 2017). Calls for better transparency and access to reliable flood risk 177 

maps and data with which to improve public awareness and understanding of flood risks is in line 178 

with a contemporary trend toward more open and reproducible environmental models 179 

(Gebetsroither-Geringer, Stollnberger, & Peters-Anders, 2018). There is an opportunity to utilize 180 

big data architectures and recent developments in flood inundation modelling and risk assessment 181 

technologies to make flood risk information, based on best flood modelling practices, more 182 

accessible. 183 

The aim of this paper is threefold: 1) propose a simple conceptual inundation model 184 

implemented in big-data architecture; 2) test the model and its results through comparison to 185 

known extents of previous flood events; and 3) present the resultant flood maps via an open source, 186 

interactive web application. 187 

 188 

2. Methods 189 

 190 

2.1 Overview 191 

The modelling component of InundatEd incorporated four general stages: 1) GIS pre-processing; 192 

2) flood frequency analysis and regional regression; 3) the application of the catchment integrated 193 
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Manning’s Equation; 4) upscaling the model to a discrete global grid systems data model. Sections 194 

2.2.1 to 2.2.4 describe stages 1-4 respectively. 195 

 The second component of InundatEd’s development was the design of a Web-GIS 196 

interface, described in Section 2.3, which liaises with and between the big data architecture, the 197 

flood models’ outputs as defined by user inputs, and FEMA’s Hazus depth-damage functions 198 

(Nastev & Todorov, 2013) (Section S1). Section 2.4 subsequently links the Web-GIS interface 199 

conceptually to previous sections by providing a summary of InundatEd’s system structure and its 200 

operation. Finally, simulated flood extents using InundatEd’s methodology were compared to the 201 

extents of observed,  historical flood extent polygons within the Grand River watershed and the 202 

Ottawa River watershed, provided respectively by the Grand River Conservation Authority and 203 

Environment Canada. The comparison and testing process is described in Section 2.5. 204 

 205 

 206 

2.2. Modelling 207 

 208 

2.2.1 – Stage 1: GIS Pre-processing 209 

 210 

The following GIS input data were obtained from Natural Resources Canada for the Grand River 211 

and Ottawa River watersheds and cropped to their respective drainage areas of 6,800 square 212 

kilometres (Li et al., 2016) and 146,000 square kilometers (Nix, 1987): Digital Elevation Models 213 

(Canada Centre for Mapping and Earth Observation, 2015); river network vector shapefiles 214 

(Strategic Policy and Innovation Centre, 2019); and Land Use Land Cover (LULC) (Canada 215 

Centre for Remote Sensing, 2019). Figure 1 shows the input Digital Elevation Model with 216 

elevation values given in metres, and the dams and gauging stations used in this study. The 217 

resolution of the DEM and LULC data is 30m x 30m. The vertical accuracy of the DEM is 0.34 m 218 

± 6.22 m, i.e., 10 m at the 90% confidence level. (Beaulieu & Clavet, 2007). The vertical datum 219 

used is the Canadian Geodetic Vertical Datum of 2013 (CGVD2013). The stations used for station-220 

level discharge comparison are labeled in Figure 1. The uncertainty in the vertical dimension 221 

affects the slopes of individual pixels, the upslope contributing area, and can potentially affect the 222 

quality of extracted hydrologic features (Lee et al., 1992, 1996;  Liu, 1994; Ehlschlaeger and 223 

Shortridge, 1996).  Hunter and Goodchild (1997), while investigating the effect of simulated 224 

changes in elevation at different levels of spatial autocorrelation on slope and aspect calculations, 225 
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indicated the importance of a stochastic understanding of DEMs. The Monte Carlo method (Fisher 226 

1991) could potentially shed some light on this kind of uncertainty. However, in our case it was 227 

beyond the focus of our study and we considered the vertical uncertainty small enough to not affect 228 

our large-scale flood modeling simulations. The remaining GIS input data is shown in 229 

Supplementary Figure S1. Very small networks, independent of the higher-order channels, were 230 

deleted from both regions. ArcGIS Desktop’s Raster Calculator tool was used to burn the river 231 

network vector into the DEM to ensure the consistency of the river network between the dem 232 

delineated and observed. TauDEM (Terrain Analysis Using Digital Elevation Models) (Tarboton, 233 

2005), an open-source tool for hydrological terrain analysis, was then used to determine drainage 234 

directions and drainage accumulation  (Tarboton & Ames, 2004) within the watersheds of interest. 235 

Each watershed’s drainage network was then established in TauDEM by defining a minimum 236 

threshold of two square kilometres on the contributory area of each pixel for the Grand River 237 

watershed and ten square kilometres for the Ottawa River watershed. Separately, a value of 238 

Manning’s n was determined for each 30 x 30 metre pixel of the study areas based on land use/ 239 

land cover attributes (Comber & Wulder, 2019).Brunner, 2016). To this end, the input LULC 240 

classes (Canada Centre for Remote Sensing, 2019) within the study watersheds were mapped to 241 

the nearest class of the similar land cover classes documented in Chow (1959, Table 5-6) and 242 

Brunner (2016, Figure 3-19), from which the respective values of Manning’s n were used. Table 243 

1 provides the utilized input LULC classes, their respective description provided by NRCAN, and 244 

the employed n values. Height Above Nearest Drainage (HAND) (Rahmati, Kornejady, Samadi, 245 

Nobre, & Melesse, 2018; Garousi‐Nejad, Tarboton, Aboutalebi, & Torres‐Rua, 2019) was also 246 

calculated in TauDEM with reference to the DEM and derived drainage network. Figure 2a 247 

provides a visual overview of this stage of the modelling component.  248 

 249 

2.2.2. Stage 2: Regional Regression and Flood Frequency Analysis 250 

Perhaps one of the most popular methods of flood frequency analysis is the index flood 251 

approach - a regional regression model based on annual maximum discharge data (Dalrymple, 252 

1960; Hailegeorgis & Alfredsen 2017). A variant of the index flood approach, which entails flood 253 

frequency analysis, has been employed  to understand the characteristics of flood behavior at the 254 

global level (Smith et. al., 2014).  At regional scale Burn 1997 has discussed the catchment 255 

procedure essential to undertake the flood frequency analysis. Faulkner et. al. (2016) devised the 256 

procedure to estimate the design flood levels  using the available station data. Regional 257 
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hydrological frequency analysis at ungauged sites is also studied by few researchers (Desai and 258 

Ouarda 2021).  259 

The index flood approach was used to derive the discharges by return period at sub-260 

catchment outlets. The model includes two sections: a) a relationship between index flood and 261 

contributory upstream area for each hydrometric station and each subcatchment outlet (regional 262 

regression); and  b) a flood frequency analysis to estimate the quantile values of the departures, 263 

with a departure defined as discharge at given station divided by the index flood of that same 264 

station). The index flood approach entails the following assumptions: a) the flood quantiles at 265 

any hydrometric site can be segregated into two components – an index flood and regional 266 

growth curve (RGC); b) the index flood at a given location relates to the (sub)catchment 267 

characteristics via a power-scaling equation, either in a simpler case which considers only 268 

upstream contributory area or in a more complex case which incorporates land use/ land cover, 269 

soil, and climate information; and c) within a homogeneous region the departure/ratio between 270 

the index flood and discharge at hydrometric sites yields a single regional growth curve which 271 

can relate the discharge and return period (Hailegeorgis & Alfredsen, 2017).   272 

Per assumption a) (the flood quantiles at any hydrometric site can be segregated into two 273 

components – an index flood and regional growth curve (RGC)), the index flood at each 274 

hydrometric station is required. To this end, annual maximum discharge values (m³s-1) were 275 

extracted within R (R Core Team, 2019) at hydrometric stations maintained by Environment 276 

Canada within the Grand River and Ottawa River watersheds (HYDAT) (Hutchinson, 2016). 277 

Only stations with a period of record >= 10 years of annual maximum discharge (England et al. 278 

(2018); Faulkner, Warren, & Burn (2016)) were maintained (n = 32 and n = 54 respectively for 279 

the Grand River watershed and the Ottawa River watershed). The minimum, median, and 280 

maximum periods of record for the Grand River watershed were 12, 50, and 86 years, 281 

respectively. Periods of record for the Ottawa River watershed ranged from a minimum of 10 282 

years to a maximum of 58 years with a median of 36 years. A median annual maximum 283 

discharge value (Q̃) was then calculated for each hydrometric station. As discussed in 284 

Hailegeorgis & Alfredsen (2017), although the index flood is generally the sample mean of a set 285 

of annual maximum discharge values, index floods have also been evaluated based on the sample 286 

median (eg. Wilson et al., 2011) at the suggestion of Robson & Reed (1999).  Finally, the index 287 
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flood values (Q̃) were used to normalize the observed annual maximum discharge values (Q) at 288 

their respective station, resulting in a set of values designated as Qi, such that Qi = Q/ Q̃.   289 

With respect to regional regression and assumption b) of the index flood method, a 290 

generalized linear model was applied to relate log10 transformed Q̃ values to log10 transformed 291 

upstream area values at each hydrometric station. The generalized linear model assumed an 292 

ordinary least squares error distribution. The results of the generalized linear model for each 293 

watershed allowed for the calculation of previously unknown Q̃ values for each subcatchment 294 

outlet. In a more complex model (Fouad et. al. 2016), other catchment characteristics such as land 295 

use/land cover, geology, etc. could be used. However, in the case of the proposed model the 296 

correlations between the calculated and observed index floods, on the sole basis of discharge 297 

records and a linear model relating upstream area, were high as discussed in the Results section. 298 

Thus, the simpler method was used to estimate index floods and to relate index flood to 299 

contributory area at hydrometric stations and subcatchment outlets. Thus, the regional regression 300 

model derived a relationship between index flood (Q̃) and upstream contributory area for each 301 

hydrometric station s or sub-catchment outlet. The relationship between index flood at station i or 302 

at a subcatchment outlet (𝑄�̃�
)  (median of annual maximum discharge) and upstream contributory 303 

area (𝐴𝑠) is given by:  304 

�̃�𝑠 = 𝑎𝐴𝑠
𝑐  (1) 305 

where 𝑎 is the index flood discharge response at a unit catchment outlet (or at a hydrometric 306 

station) and 𝑐 is the scaling constant. We took the logarithm of Equation (1) on both sides - a 307 

procedure used in noted in Hailegeorgis & Alfredsen (2017) as used in Eaton, Church, & Ham 308 

(2002) - yielding a linear relationship which was solved using the Ordinary Least Squares approach 309 

(Haddad et al. (2011). 310 

With respect to assumption c) of the index flood method, which assumes that a regional 311 

growth curve can be applied to a homogenous area as outlined above, we attempted to fit a 312 

distribution to the ratio of the annual maximum discharge values at each station to the 313 

corresponding index flood. Hailegeorgis and Alfredsen (2017) discussed a regionalization 314 

procedure which ensures the homogeneity of the station-level data over any region. However, due 315 

to the limited availability of the discharge data we avoided such sub-sampling and carried out the 316 

index flood method at the entire watershed scale (Faulkner, Warren, & Burn 2016). This, however, 317 

has impacted the upper quantiles of the flood estimation when comparing to the station level data 318 
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(Section 3.1). TheA fundamental step of the analysis process is the selection of a suitable 319 

probability distribution model –, a common tool in hydrologic modelling studies (Langat et. The 320 

model should al., 2019; Singh, 2015)-for use in a watershed where the flow has been modified due 321 

to human impact – whether via development of built up areas, agriculture, road building, resource 322 

extraction activities such as forestry and mining, or flow abstraction in terms of dams and weirs is 323 

a fundamental step of the analysis process and must account for disturbance-related changes to the 324 

flow’s extreme value characteristics of in response to such factors as urbanization, agriculture, 325 

resource extraction, or the flowoperation of dams and weirs. Sometimes, natural hydrologic peaks, 326 

such as the spring freshet, are exacerbated by antecedent conditions such as large snowpacks and 327 

frozen soils, resulting in substantial flood events. While solutions to this problem have been 328 

proposed in the literature, artificial abstraction fundamentally changes the extreme value 329 

characteristics of the flow, thereby hindering the usability of most distributional forms (Kamal et. 330 

al. 2017).  331 

Many researchers have tried to address this problem by putting explicit assumptions on 332 

types of non-stationarity affecting the river discharge and are able to devise a closed mathematical 333 

formulation which enables the parametric distributions to handle such non-stationarity. However, 334 

such methods typically entail knowledge of the specific design return periods of individual flood 335 

prevention structures (Salas & Obeysekera, 2014), many of which are absent in our case. To 336 

circumvent this problem, we used a non-parametric approach for the regional growth curve (RGC), 337 

which requires no fundamental sample characteristics. Thus, modified flood records and limited 338 

information notwithstanding, flood frequency estimation is possible using the index flood 339 

approach. Per assumption c) of the index flood method, a log-spline non-parametric approach was 340 

taken to model a RGC (Stone, Hansen, Kooperberg, & Truong, 1997) for each study watershed. 341 

Specifically, the index flood values (Q̃) were used to normalize the observed annual maximum 342 

discharge values (Q) at their respective station (Qi = Q/ Q̃). The Qi values (n= 1487 and n = 1248 343 

for the Ottawa River watershed and the Grand River watershed, respectively) were then fitted to a 344 

logspline distribution for their respective watershed. The discharge quantiles (Qr) were extracted 345 

for the following return periods (T, years):  1.25, 1.5, 2.0, 2.33, 5, 10, 25, 50, 100, 200, and 500. 346 

The return periods were first converted to a cumulative distribution function: 347 

Finally, flood quantile estimations were calculated for each return period as shown below: 348 

𝑄𝑇
𝑖 = 𝑄�̃�𝑞𝑇 (2) 349 
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such that T is a specified return period in years;  𝑄𝑇
𝑖  is a quantile estimate of discharge for the 350 

specified return period T (years) at a specified station i (or a subcatchment outlet); 𝑄�̃�
 is the “index 351 

flood” at the same station i (or at the same sub-catchment outlet); i = 1,2,…,N where N =32 for 352 

the Grand River watershed or N= 54 for the Ottawa River watershed; and 𝑞𝑇 is the regional growth 353 

curve as described above. Figure 2b provides a visual accounting of the regional regression and 354 

flood frequency analysis methodology described in this section.  355 

Some of the limitations of this framework include the long-term flow records and 356 

homogenous stations required for the creation of regional regression models. A dearth of long-357 

term data affects flood magnitude computations specifically for the upper quantiles (5T rule, 358 

Section 3.1).  359 

 360 

2.2.3 Stage 3: Catchment Integrated Manning’s Equation 361 

Manning’s formula (Song et. al., 2017) is widely used to calculate the velocity and subsequently 362 

the discharge of any cross-section of an open channel. The Manning’s equation is given in SI units 363 

by: 364 

𝑄 =
1

𝑛
 𝑅ℎ

2

3  𝐴 𝑆
1

2   (3) 365 

such that Q is discharge in cubic metres per second, A represents the cross-sectional area, n is a 366 

roughness coefficient, Rh is the hydraulic radius, and S represents slope (fall over run) along the 367 

flow path. Despite its widespread use, robustness, and relative ease of use, Manning’s Equation 368 

has an inherent problem which comes from the uncertain orientation of cross-sections. To mitigate 369 

this problem, we integrated Manning’s Equation along the drainage lines within the catchment, 370 

accounting for the slope of each grid cell to yield bed area and derived the stage-discharge 371 

relationship. This strategy uses hydrological terrain analysis, discussed previously in Section 2.2.1, 372 

to determine the Height Above Nearest Drainage (HAND) of each pixel (Rodda, 2005; Rennó et 373 

al., 2008). The HAND method determines the height of every grid cell to the closest stream cell it 374 

drains to. In other words, each grid cell’s HAND estimation is the water height at which that cell 375 

is immersed. The inundation extent of a given water level can be controlled by choosing all the 376 

cells with a HAND less than or equal to the given level. The water depth at every cell can then be 377 

calculated as the water level minus the HAND value of the corresponding cell. The relevance of 378 

HAND to the field of flood modelling has been demonstrated in the literature (Rodda, 2005, Nobre 379 

et al., 2016). Its documented use notwithstanding, HAND’s potential applications to the depiction 380 
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of stream geometry information and to the investigation of stage-discharge connections have not 381 

been well investigated. Hydraulic methods of discharge calculation typically entail hydraulic 382 

parameters derived from the known geometry of a channel. The knowledge of a channel’s cross 383 

sectional design is a requirement for many one-dimensional flood routing models, for instance the 384 

one-dimensional St. Venant equation (Brunner, 2016). The Even though the use of DEM 385 

interpolated bathymetry, as used by our method, induces error in the modelling of flood inundation, 386 

it is a necessity in the absence of bathymetry data. There are several instances in literature (Sanders, 387 

2007) where the DEM interpolated bathymetry has been tested in place of actual bathymetry for 388 

hydrodynamic flood modelling. Furthermore, the requirement of the cross-section being 389 

perpendicular to the flow direction makes it an implicit problem and also dependent on the choice 390 

of cross-section position as well as the distance at which the points are taken on the cross-section. 391 

In the current practice of hand designing it makes it subjective and draws substantial uncertainty 392 

in the inundation simulation. Alternatively, HAND-based models do not explicitly solve the 393 

Manning’s equation at individual cross-section, but rather solve for a catchment averaged version 394 

of it, by considering a river as a summation of infinite cross-sections. As such, the inherent 395 

uncertainty is avoided. However, the simplistic HAND-based model struggles to simulate proper 396 

inundation extent in case of complex conditions such as meandering main channels and 397 

confluences (Afshari et. al. 2017). This model doesn’t capture the dynamic flow characteristics 398 

such as backwater effects created by flood mitigation structures. Furthermore, the large flood depth 399 

and low flow velocity in the natural rivers makes the river subcritical on many occasions, 400 

specifically for large floodplains where the water slows down significantly. This causes the 401 

backwater effect very far upstream of the flooding locations which is not simulated in HAND 402 

based methods. Therefore, users have to be cautious in such cases. 403 

The conceptual framework for implementing HAND to estimate the channel hydraulic 404 

properties and rating curve is as follows: for any reach at water level h, all the cells with a HAND 405 

value <  h compose the inundated zone F(h), which is a subarea of the reach catchment. The water 406 

depth at any cell in the inundated zone F(h) is the difference between the reach-average water level 407 

h and the HAND of that cell, HANDc, which can be represented as: depth = HANDc-h. Since a 408 

uniform reach-average water level h is applied to check the inundation of any cell within the 409 

catchment, the inundated zone F(h) refers to that reach level. The water surface area of any 410 
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inundated cell is equal to the area of the cell Ac. This case study uses 30 metre x 30 metre grid 411 

cells, thus in this case Ac = 900 m2. The channel bed area for each inundated cell is given by  412 

𝐴𝑠 = 𝐴𝑐√(1 + 𝑠𝑙𝑜𝑝𝑒2) (4) 413 

where slope is the surface slope of the inundated pixel expressed as rise over run or inverse tangent 414 

of the slope angle. This equation approximates the surface area of the grid cell as the area of the 415 

planar surface with surface slope, which intersects with the horizontal projected area of the grid 416 

cell. The flood volume of each inundated pixel at a water depth of h can be calculated as Vc (h)=Ac 417 

(h-HANDc). If the reach length L is known, the reach-averaged cross section area for each pixel is 418 

given by Ai=Vc/L. Similarly, the reach-averaged cross section wetted perimeter for each inundated 419 

pixel Pi(h)= As/L. Therefore, the hydraulic radius for each inundated pixel is given by Ri=Ai/Pi. 420 

Therefore, we can estimate the reach-averaged cross-section area 𝐴 = ∑𝑖 𝐴𝑖,∑ 𝐴𝑖𝑖 , perimeter 421 

𝑃 = ∑𝑖 𝑃𝑖,∑ 𝑃𝑖𝑖 , and hydraulic radius R= 𝐴/𝑃 for the entire flooded area.  We compared the 422 

composite Manning’s n (Chow, 1959; Flintham & Carling, 1992; Pillai, 1962; Tullis, 2012) from 423 

7 different methods: the Colebatch method; the Cox method; the Horton Method; the 424 

Krishnamurthy Method; the Lotter method; the Pavlovskii Method; and the Yen Method (McAtee, 425 

2012). More details about these methods are in the supplementary Section S2 of this paper.  426 

Thus the discharge Q(h) corresponding to inundation height can be computed by the Manning’s 427 

equation and given by: 428 

𝑄(ℎ) =
1

𝑛
𝑅

2

3𝐴𝑆
1

2   (6) 429 

where S is the slope of the river and n is the composite Manning’s roughness coefficient. Figure 430 

2c displays the sequence of methods outlined for the Catchment Integrated Manning’s Equation 431 

method. 432 

 433 

2.2.4 Stage 4: Upscaling and Data Conversion 434 

The proposed InundatEd inundation model simulates the flood-depth distributions for each 435 

catchment independently. This makes this model suitable to be ported to a DGGS-based data 436 

model and processing system. Following the GIS preprocessing, done in TauDEM as discussed in 437 

Section 2.2.1, the required data was converted to a DGGS representation, as outlined in Robertson 438 

et al., (2020). Supplementary Figure S2 for raster input data (S2a), polygon (vector) input data 439 

(S2b), and network (directional polyline vector) input data (S2c). For raster data (S2a), the 440 



 

16 
 

bounding box is used to extract a set of DGGS cells, and then for each DGGS cell’s centroid the 441 

raster value is extracted. To convert polygon data to a DGGS data model, we sample from its 442 

interior and its boundary separately using uniform sampling. Then each sample point is converted 443 

into DGGS cells based on its coordinates and stored into IDEAS data model by aggregating both 444 

sets of DGGS cells (Figure S2b). The same process for the border extraction is applied to the 445 

polylines and networks, however with network data the order of the cells is also stored as a flag to 446 

use in directional analysis (Figure S2c). Following conversion, the data was ported to a 40-node 447 

IBM Netezza Database for subsequent calculations. General, systematic limitations of the 448 

InundatEd IDEAS-based inundation model are discussed in Section 3.1. 449 

 450 

2.3 Web-GIS Interface 451 

The R/Shiny platform and the R-Studio development environment were used to design the user 452 

interface and server components of an online web application, allowing users to query and interact 453 

with the inundation model. Features of R specific to InundatEd’s modelling workflow were its 454 

support of the Hazus damage functions and its support for DGGS spatial data. Shown in Figure 455 

3a, the InundatEd user interface offers widgets for the following user inputs: address (text); 456 

discharge (slider); and return period (drop down), as well as tabs for viewing interactive graphs. 457 

The InundatEd user interface also features an interactive map which leverages the Leafgl R 458 

package (Appelhans & Fay, 2019) for seamless integration with the DGGS data model. Users may 459 

click on the map to obtain point-specific depth information.  460 

 461 

2.4 InundatEd Flood Information System – System Structure Summary 462 

Figure 3b displays the overall system structure and linkages for the InundatEd flood information 463 

system. GIS input data, as discussed in Section 2.2, were staged, pre-processed, and ported to the 464 

database. Data querying was used to compute ‘in-database’ inundation (flood depth) and related 465 

damages (methods outlined in Section 2.1) in response to user interface inputs to the R/Shiny UI. 466 

 467 

2.5 Flood Data Comparison and Model Testing 468 

2.5.0 Study Areas 469 
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As preliminary testing domains, we created flood inundation models for the Grand River Basin 470 

and Ottawa River Basin respectively, both located in Ontario, Canada. Each basin has experienced 471 

historical flooding and have implemented varying measures of flood control. Table 2 shows 472 

different salient characteristics of these catchments. For the purposes of graphing and discussion 473 

of station-specific period of record (number of years with a recorded annual maximum discharge) 474 

on theoretical vs estimated flood quantiles, two stations from each study watershed were selected, 475 

one each for high period of record and low period of record. For the Grand River watershed, 476 

stations 02GA003 and 02GA047 were selected for high and low period of record, respectively. 477 

For the Ottawa River watershed, stations 02KF006 and 02JE028 were selected, respectively.  478 

“Theoretical quantiles” are here defined as the quantiles generated by our model based on the 479 

logspline fit, which incorporates annual maximum discharge values from multiple stations across 480 

each study watershed (Section 2.2.2 and Figure 3). In contrast, “estimated quantiles” are here 481 

defined as the flood quantiles calculated simply by extracting the quantiles for the desired return 482 

periods from the raw annual maximum discharge values observed at the hydrometric station of 483 

interest. 484 

2.5.1. Ottawa River Watershed 485 

Four flood extent polygons (FEPs) provided by Natural Resources Canada (Natural Resources 486 

Canada, 2018, 2020) from the May-June 2019 flood season were used as “observed” floods to test 487 

the model outputs for the Ottawa River watershed. Each FEP represented a previously digitized 488 

floodwater extent at a specified date/time.  489 

A second criterion for selection was that the hydrometric station(s) intersected by the FEP 490 

provided discharge data for the FEP’s respective datetime. Two hydrometric stations which met 491 

both criteria were selected: 02KF005 and 02KB001. The following procedure was followed for 492 

each FEP using the corresponding hydrometric station (02KF005 or 02KB001), the station level 493 

index flood (Q̃, previously calculated during Section 2.2.2), and the observed discharge (Qobs). In 494 

both cases, the logspline fit for the Ottawa River watershed, previously generated during Section 495 

2.2.2, was also used. 496 

The observed discharge (Qobs) was divided by the corresponding hydrometric station’s 497 

index flood (Q̃) (Qi = Qobs / Q̃) The cumulative probability of Qi was then converted to a return 498 

period. 499 
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 500 

To generate each simulated flood for comparison to its observed counterpart, the methodology 501 

outlined in Sections 2.2.2 and 2.2.3 was repeated with the four new return periods appended to 502 

the original list of return periods in Section 2.2.2. Table 3 lists each FEP, the corresponding 503 

intersected hydrometric station, the period of record used for each station to calculate Q̃, the 504 

observed discharge, the resultant cumulative probability value, and the final return period used to 505 

generate each simulated flood.  506 

 507 

2.5.2. Grand River Watershed 508 

Regulatory floodplain extent data (the greater of RP=100 or discharge from Hurricane Hazel, 509 

“observed” flood extent) was obtained from the Grand River Conservation Authority (GRCA) 510 

(Grand River Conservation Authority, 2019). However, analysis revealed that, at most hydrometric 511 

stations in the Grand River watershed, the 100-year return period yielded higher discharge values 512 

relative to the “Hurricane Hazel” storm. Thus, the 100-year return period could be used.  The 513 

estimated flood extent for RP=100 was generated per sections 2.2.1-2.2.3. Table S1 provides a 514 

discharge comparison between the 100-year return period and the regulatory storm. 515 

 516 

2.5.3. Flood Extent Comparisons 517 

For both the Grand River watershed and the Ottawa River watershed, only those subcatchments 518 

in close proximity to the observed flood extent polygons were retained for visualization 519 

purposes. To this end, a criterion was applied to subcatchments in the Grand River watershed 520 

requiring an intersection with the observed flood polygon of >= 20% of the subcatchment’s area. 521 

For the Ottawa River watershed, due to the use of station-specific observed discharges, an 522 

additional criterion was applied: that a given subcatchment intersects with a network line with 523 

contributory upstream area >= 80% and contributory upstream area <= 120% of the observed 524 

upstream area of the hydrometric station (02KF005 or 02KB001). Table S2 provides by-525 

subcatchment areas of the observed flood extent polygons whose subcatchments were eliminated 526 

based on the 20% intersection threshold. Per Table S2, one excluded subcatchment (10505) had 527 

an intersection value >= 20%, attributable in part to the presence of a tributary along which it 528 

was not expected that the return period would be properly scaled but which intersected the 529 

subcatchment. Additionally, due to the pluvial nature of the flooding in that subcatchment, it was 530 
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once again expected that the return period as a function of the river discharge would not be 531 

properly scaled without the presence of a hydrometric station to provide discharge information.  532 

Binary classification metrics have been used to compare between observed and simulated 533 

floods in cases where the focus is on extent, not depth (eg Papaioannou et al., 2016; Wing et al., 534 

2017; Chicco & Jurman, 2020). A binary classification (or 2x2 contingency) method was used to 535 

compare the simulated flood extent rasters to the extents of their observed counterparts, whereby 536 

a confusion matrix was generated for each subcatchment. Multiple accuracy measures were 537 

calculated from the contingency tables to support the evaluation of the flood model, including: 538 

True Positive Rate (TPR). True Negative Rate (TNR), Accuracy, Matthews Correlation 539 

Coefficient (MCC) (Chicco & Jurman, 2020; Esfandiari et al., 2020; Rahmati et al., 2020), and 540 

the Critical Success Index (CSI) ( e.g., Papaioannou et al., 2016; Stephens & Bates, 2015). Both 541 

the CSI and the MCC have been used in the context of flood model validation. The Critical 542 

Success Index (CSI) is defined as: 543 

𝐶𝑆𝐼 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃
(7) 544 

The Matthews Correlation Coefficient (MCC) is defined as: 545 

𝑀𝐶𝐶 =  
𝑇𝑃 𝑥 𝑇𝑁−𝐹𝑃 𝑥 𝐹𝑁

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
  (8) 546 

such that TP = true positive, TN = true negative, FP = false positive, and FN = false negative. 547 

 548 

3. Results and Discussion 549 

3.1 Model Processes and DGGS  550 

Intermediate model outputs for the Grand River and Ottawa River watersheds - Height Above 551 

Nearest Drainage, delineated river networks, and Manning’s n- are displayed in Figure S3. 552 

Figure 4 visualizes results for the Grand River watershed and for the Ottawa River watershed for 553 

the following method components: calculation of hydrometric station upstream (contributory) 554 

area; index flood regression as represented by the correlation of logged index discharge and 555 

logged upstream area; and flood frequency as represented by discharge against a Gumbel 556 

transformed return period (years), for the stations respectively representative of high and low 557 



 

20 
 

observations. Figures 4a and 4b plot the log of calculated upstream area against the log of 558 

observed upstream area, yielding respective Pearson correlation coefficients of 0.99 and 0.63 for 559 

the Grand River and Ottawa River watersheds. The relatively weak correlation of the Ottawa 560 

River watershed arose primarily from the limited resolution (number of decimal places in lat-561 

long) of the station location information; incorrect reporting of station locations and/or their 562 

drainage area (Environment Canada reported the drainage area as 0 for multiple stations); and 563 

sometimes wrongly snapping stations to the tributaries rather than to the main river, particularly 564 

in cases involving a wide river channel or braided river. However, this does not affect the model 565 

itself, as we have used the station-specific drainage areas reported by Environment Canada to 566 

create the regional regression model. With respect to regional regression, Figure 4c visualizes the 567 

relationship between predicted index flood discharge and contributory upstream area, at 568 

individual hydrometric stations, for the Grand River and Ottawa River watersheds (R = 0.83 and 569 

0.95, respectively).The regional growth curves for both the Grand River watershed and the 570 

Ottawa River watershed are shown in Figure 4d. To compare the proposed approach of using 571 

log-spline distribution against a traditional parametric distribution we fitted a Generalized 572 

Extreme Value (GEV) distribution to the RGC (Supplementary Figure S4). With respect to the 573 

log-spline RGCs, AIC values of 1861.69 and 867.69 and (-2)(logliklihood) values of 1826.04 574 

and 809.26 were reported for the Grand River watershed and Ottawa River watershed 575 

respectively. The log-spline (-2)(logliklihood) values were lower than their GEV counterparts 576 

(1837.56 and 880.12) for both watersheds. For the Ottawa River watershed, the log-spline AIC 577 

value, 867.69, was also lower than that of its GEV counterpart (886.12).  Furthermore, the use of 578 

the log-spline distribution allows for a consistent method which can be applied readily across any 579 

watershed without careful calibration of the distribution function. Thus, the log-spline 580 

distribution was used for the regional growth curves. The lower values of the normalized 581 

discharge shown in Figure 4d for higher return periods (2-3) for the Ottawa River watershed 582 

suggest relatively more structural alterations within the watershed, for instance flood control and 583 

dams, than the Grand River watershed (Ottawa Riverkeeper, 2020). The Grand River watershed 584 

yielded relatively higher values of normalized discharge (>3) at higher return periods in Figure 585 

4d. Figure 5 shows the comparison of estimated flood quantiles against theoretical flood 586 

quantiles at an individual station from each study watershed. The stations - 02GA034 of the 587 

Grand River watershed and 02KF001 of the Ottawa River watershed (Figure 1)- were selected 588 
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due to their long “discharge counts”, referring to the number of years for which an annual 589 

maximum discharge was recorded at each station. Specifically, station 02GA034 (5a) yielded a 590 

discharge count of 101 and station 02KF001 (5b) yielded a discharge count of 84. Return periods 591 

(T, years) have been converted in terms of the Gumbel reduced variable as follows: 592 

𝐺𝑢𝑚𝑏𝑒𝑙 =  −𝑙𝑛 [𝑙𝑛 (
𝑇

𝑇−1
)] (9) 593 

The dotted lines on Figures 5a and 5b represent the 5T threshold - the return period limit beyond 594 

which flood simulations can not be reasonably estimated. The 5T threshold requires that, for the 595 

reasonable estimation of a quantile for a desired return period T, there be at least 5T years of data 596 

(Hailegeorgis & Alfredsen, 2017; Jacob et al., 1999). As expected,  the theoretical and estimated 597 

return periods are comparable for low return periods. However, and as shown in Figure 5,  the 598 

theoretical and estimated quantiles deviate at lower RP values than the 5T threshold for both 599 

stations. This disagreement between the theoretical and estimated quantiles recalls the assumption 600 

of homogeneity for each watershed (Burn, 1997) - estimations of higher return periods, considering 601 

the 5T rule, would require more observations. However, further sub-sampling the stations into 602 

regional homogeneous groups would have reduced the data quantity substantially for each group.  603 

 604 

3.2 Web-GIS Interface 605 

A pre-alpha version of the InundatEd app is available at https://spatial.wlu.ca/inundated/. Source 606 

code for the most recent version of InundatEd will be publicly available on GitHub (Spatial Lab, 607 

2020). The use of R/Shiny to develop InundatEd and its provision on GitHub encourages 608 

transparency, ongoing development, and response to user feedback and preferences.  609 

 610 

3.3 Model Testing 611 

 612 

Of the binary comparison results for the 7 composite Manning’s n methods listed in Section 2.2.3, 613 

the Krishnamurthy method yielded the highest median CSI values (Table S3 for the Grand River 614 

watershed and Table S4 for the Ottawa River watershed). As such, it was selected for further 615 

visualization and discussion.  616 

The following return periods (in years) were observed for FEPs intersecting hydrometric 617 

station 02KF005 in the Ottawa River watershed: 26.5, 16.52, and 25.96. Additionally, a return 618 

https://spatial.wlu.ca/inundated/
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period of 42.69 years was observed for a FEP intersecting hydrometric station 02KB001 in the 619 

Ottawa River watershed. The 100-year return period was tested for the Grand River watershed. 620 

Binary classification results for the Grand River watershed are shown in Figure 6 for four 621 

comparison metrics: Critical Success Index, Matthews Correlation Coefficient, True Positive Rate, 622 

and True Negative Rate. Figure 7 presents Critical Success Index and Matthews Correlation 623 

Coefficient results for the four Ottawa River watershed cases, with True Positive and True 624 

Negative results presented in Supplementary Figure S5. Table 4 lists the number of subcatchments 625 

evaluated, the median CSI, and the median MCC for each of the 5 test return periods. The median 626 

values of additional metrics are provided in Table S5. 627 

The median CSI values ranged from 0.581 to 0.849 (Table 4), with both of those values 628 

coming from the Ottawa River watershed (return periods 42.69 and 26.5, respectively). The 629 

median MCC values ranged from 0.743 (Ottawa RP 42.69) to 0.888 (Ottawa RP 26.5). The median 630 

CSI and MCC values for the Grand River watershed were 0.741 and 0.844, respectively. The 631 

results reported herein are comparable to, and in some cases exceed, previously published binary 632 

classification results. For instance, Wing et al. (2017) achieved CSI values of 0.552 and 0.504 for 633 

a 100-year return period flood model of the conterminous United States at a 30m resolution. 634 

WithFor instance, with respect to the MCC, an urban flood model produced by Rahmati et al. 635 

(2020) provided an MCC value of 0.76 when compared to historical flood risk areas. Esfandiari et 636 

al. (2020) compared two flood simulations: a HAND-based flood model and a model which 637 

combined HAND and machine learning to observe flood extents, resulting in a range of MCC 638 

values from ~0.77 to ~0.85. Bates et al. (2021) achieved CSI values of 0.69 and 0.82 for a 100-639 

year return period flood model of the conterminous United States at a 30m resolution. It must be 640 

noted that direct comparisons between the works listed here and this study must be viewed with 641 

caution, due to differences in methodologies, assumptions, data sources, data availability, and 642 

return periods between the studies. Furthermore, the extent comparison scores are not necessarily 643 

objective measures of performance of the simulation model. They can vary depending on the 644 

severity of the flood, catchment characteristics, and quality of the benchmark data (Mason et. al. 645 

2009, Stephens et al., 2014, Wing et. al. 2021). 646 

Additionally, the median F1 score (Chicco & Jurman, 2020) for the Grand River watershed was 647 

0.85. The median F1 scores for Ottawa River watershed return periods 26.5, 16.52, 25.96, and 648 

42.69 were 0.96, 0.95, 0.95, and 0.94 respectively. Such results are approximately in line with 649 
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Pinos & Timbe (2019), who achieved F1 values from 0.625 to 0.941 for 50-year RP floods using 650 

a variety of 2D dynamic models. Afshari (20172018) achieved F1 values from 0.48 - 0.64 for the 651 

10-year, 100-year, and 500-year return periods when comparing a HAND-based simulation against 652 

a HEC-RAS 2D control. Lim & Brandt (2019) determined that low-resolution DEMs are capable 653 

of yielding relatively high comparison metrics (e.g. F1 values approximately >= 0.80) in situations 654 

where Manning’s n varies widely over space. The connection between high values of Manning’s 655 

n and flood overestimation (false discovery) was also discussed. The Grand River watershed 656 

yielded a median False Discovery Rate (FDR) of 0.117, and the four Ottawa River watershed cases 657 

yielded respective median FDRs of 0.019, 0.01, 0.006, and 0.44 for the evaluated subcatchments. 658 

The moderately high FDR value of 0.44 for the 42.69-year return period and the observed 659 

overestimation of flood extent (discussed below) may be a result of high local Manning’s n values. 660 

In addition, the influences of flat terrain (Lim & Brandt, 2019)  and anabranch must be considered 661 

as it can disrupt the assumption of a single drainage direction for each pixel during sub-catchment 662 

delineation. Additional factors potentially influencing the overestimation are the problems 663 

inherent to HAND-based modeling, as discussed in section 2.2.3.  The topography of the area of 664 

the Ottawa River watershed wherein the extent comparisons were made is relatively flat with 665 

multiple anabranches and thus can lead to chaotic network delineation. Although attempts were 666 

made in this model to counter this impact and avoid slope values of 0 (the burning of the polyline 667 

network into the DEM, Section 2.2.1 and Figure 2a), the use of the Manning’s equation was still 668 

compromised in certain areas and likely had a negative impact on the resultant flood simulations.  669 

 670 

As noted in Lim & Brandt (2019), the reliability of the observed flood extent polygons also merits 671 

comment. In this case study, the observed FEPs for the Ottawa River watershed were originally 672 

digitized from remotely sensed data and thus carry forward the errors and uncertainties from prior 673 

processing. The Grand River watershed’s 100-year return period extent was also generated outside 674 

of this study and potentially carries multiple sources of error and uncertainty. However, evaluation 675 

of the exact extent to which errors present in the observed flood extent polygons could have 676 

impacted the binary classification results was not an objective of this study. 677 

Figure 8 visualizes the 100-year return period simulated flood for the Grand River 678 

watershed. Inset maps are provided which highlight one subcatchment with a high CSI (A, CSI= 679 

0.77) and two subcatchments with low CSIs (B, CSI =0.17 and 0.22). The simulated flood shown 680 
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in Figure 8A compares very well to the extent of its observed counterpart, consistent with the 681 

relatively high CSI value. Notably, three hydrometric stations are located within the Figure 8A 682 

subcatchment: 02GA014, 02GA027, and 02GA016. Per the methods in Section 2.2.2, station 683 

02GA014 yielded a period of record of 54, 02GA027 yielded an insufficient (<10) period of record, 684 

and station 02GA016 yielded a period of record of 58. The presence of the two hydrometric 685 

stations with considerable periods of record likely strengthened the regional regression of the area 686 

and contributed to the success of the simulated flood shown in Figure 8A. In contrast, within the 687 

low-CSI (0.17 and 0.22) subcatchments shown in Figure 8B, the simulation considerably 688 

overestimated the extent of the 100-year return period flood. The overestimation of the flood 689 

extents observed in Figure 8B can likely be attributed, at least in part, to the following: a) multiple 690 

upstream and downstream dams (Grand River Conservation Authority, 2000) and b) the channel 691 

meanders - as discussed previously, the simple HAND-based model employed here is not robust 692 

against channel complexities nor flow control structures such as dams. It must be recalled here that 693 

the modular nature of the InundatEd model allows for the “swapping” of various flood modelling 694 

methods, and thus could easily accommodate, for instance, shallow water equations. It is also 695 

possible to include such operations in future versions of the model by either modifying the DEM 696 

values to reflect flood control structures or by offsetting the discharge of the catchment based on 697 

structure storage.  698 

 699 

With respect to the Ottawa River watershed, Figure 9 highlights subcatchments whose comparison 700 

between observed and simulated flood extents yielded low (A: CSI= 0.13) , moderate (B: CSI = 701 

0.66 and D: CSI =0.65) and high (C: CSI = 0.87) CSI values.  702 

 703 

Figure 9A shows the simulated and observed flood extents for return period 25.69. Two main 704 

factors influencing the low CSI are readily apparent. The first is that the observed FEP appears 705 

“cut off”, not extending through most of the subcatchment. It is possible that the flood in the 706 

remainder of the sub-catchment was simply not digitized during the observed FEP’s generation, 707 

especially given the subcatchment’s position. However, of the area of the subcatchment intersected 708 

by the observed FEP, the simulated flood has considerably underestimated the observed flood 709 

extent. Figure 9B shows the extent comparison of the 42.69 -year return period in a subcatchment 710 

of moderate CSI (0.66). Figure 9C illustrates a subcatchment of high CSI (0.87), characterized by 711 
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an overall underestimation in flood extent, barring a slight overestimation in one area. Figure 9D 712 

(CSI = 0.65) shows a mixture of overestimation and underestimation. 713 

Although the results for both the Grand River watershed and the Ottawa River watershed 714 

suggest substantial agreement between the respective observed and simulated flood extents, a 715 

number of considerations, including input data characteristics and metric bias, require that the 716 

presented results be taken with caution and, in some cases, offer clear paths for improvement. With 717 

respect to input data, the simulated floods presented within this case study are limited by the initial 718 

use of a 30m x 30 DEM raster. As concluded by Papaioannou et al. (2016), floodplain modelling 719 

is sensitive to both the resolution of the input DEM and to the choice of modelling approach. 720 

Additionally, and as discussed in Section 2.2.3, there are some inherent limitations of the HAND-721 

based modeling approach. 722 

Overall, the results indicated that the current iteration of the InundatEd flood model was 723 

reasonably successful on the basis of moderate-high MCC values and directindirect comparisons 724 

against the observed flooding extents. However, any weight assigned to this claim must, in addition 725 

to the previously discussed caveats, recall that only extent and not depth was compared between 726 

the observed and simulated floods. The use of the DGGS big-data architecture provides a 727 

promising foundation for further work, such as the incorporation of the impacts of flood control 728 

structures, on the InundatEd model.  729 

 730 

3.4 Model Performance 731 

 732 

Supplementary Figure S7 contrastsThere is a distinct contrast of runtimes usingbetween the DGGS 733 

method againstand those using a  traditional, raster-based method for sub-catchments within the 734 

Grand River Watershed (n= 306 for each method) during the generation of respective RP 100 flood 735 

maps. To account for the substantial difference between theThe DGGS runtime rangebased storing 736 

and thatprocessing method is an order of itsmagnitude faster than processing the HAND and 737 

catchment boundaries using raster counterpart, we added 4 seconds to DGGS runtime in Figure 738 

S7and vector format. The mean runtime using the DGGS method (0.23 seconds) was significantly 739 

lower than the mean runtime using the raster-based method (3.98 seconds) at both the 99% 740 

confidence intervals (p < 2.2e-16). Thus, the efficiency of the proposed inundation model -coupled 741 

with a big-data Discrete Global Grids Systems architecture- is demonstrated with respect to 742 

processing times with limited input data. As the IDEAS framework and the InundatEd flood 743 
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modelling method continue to develop, processing time benchmarks could be established to track 744 

and evaluate the model’s robustness against increasing complexity (e.g., the integration of 745 

hydrological processing algorithms) and to facilitate comparisons with other inundation models. 746 

 747 

3.5 Conclusions 748 

 749 

We have tested a novel flood modelling and mapping system, implemented within a DGGS-based 750 

big data platform. In many parts of the world, including Canada, the widespread deployment of 751 

detailed hydrodynamic models has been hindered by complexities and expenses regarding input 752 

data and computational resources, especially the dichotomy between processing time and model 753 

complexity. This research proposes a novel solution to these challenges. First, we demonstrated 754 

the development of a flood modelling framework in a Discrete Global Grid Systems (DGGS) data 755 

model and the presentation of the models’ outputs via an open-source R/Shiny interface robust 756 

against algorithm modifications and improvements. The DGGS data model efficiently integrates 757 

heterogeneous spatial data into a common framework, rapidly develops models, and can scale for 758 

thousands of unit processing regions through easy parallelization. Second, the use of the 759 

catchment-integrated Manning’s equation avoids high-uncertainty river cross-sections and 760 

produces physically justified flood inundation extents.Second, the computational framework has 761 

been implemented using a regional dataset over locations and at scales which have not been studied 762 

before. We successfully demonstrated the merit of the HAND-based inundation modelling to 763 

emulate the observed flooding extent for several historical and design floods. Third, DGGS-764 

powered analytics allow users to quickly visualize flood extents and depths for regions of interest, 765 

with reasonable alignment with observed flooding events. Finally, we believe our flood-inundation 766 

estimation method can address situations where good quality data is scarce and/or there are 767 

insufficient resources for a complex model. To apply the model in a real time environment we 768 

would need a discharge forecasting model or have real-time discharge data at the catchment outlet, 769 

which could be used to compute the flood inundation using the pre-computed stage-discharge 770 

relationship and inundation model.  771 

 772 

 773 

 774 
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 1199 

List of tables: 1200 

 1201 

Table 1. Values of Manning’s n 1202 

NRCAN LULC Value NRCAN Description Manning’s n 

1 Temperate or sub-polar needleleaf forest 0.16 

2 Sub-polar taiga needleleaf forest 0.16 

5 Temperate or sub-polar broadleaf deciduous forest 0.16 

6 Mixed forest 0.16 

8 Temperate or sub-polar shrubland 0.1 

10 Temperate or sub-polar grassland 0.035 

12 Sub-polar or polar grassland-lichen-moss 0.035 

13 Sub-polar or polar barren-lichen-moss 0.03 

14 Wetland 0.1 

15 Cropland 0.035 

16 Barren lands 0.025 

17 Urban 0.08 

18 Water 0.04 

 1203 

 1204 

 1205 

 1206 

 1207 

 1208 

 1209 

 1210 

 1211 
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 1212 

 1213 

 1214 

 1215 

 1216 

 1217 

 1218 

 1219 

 1220 

 1221 

 1222 

 1223 

 1224 

 1225 

 1226 

 1227 

 1228 

 1229 

 1230 

 1231 

 1232 

Table 2. Study Watershed Characteristics 1233 

Characteristic Grand River Watershed Ottawa River Watershed 

Drainage Area (km2) 6,800 (Li et al., 2016) 146,000 (Nix, 1987) 

Elevation range (masl) 173-535 (Lake Erie Source 

Protection Region Technical Team, 

2008) 

430 – 20 (Nix, 1987) 

Geologic characteristics Underlain by groundwater-rich, 

fractured, porous limestone 

bedrock; surface geology 

characterized by glacial till and 

moraine complexes (Liel et al., 

2016) 

Incorporates the geological 

subdivisions St. Lawrence 

Lowlands, Grenville Province, 

Superior Province, and Cobalt Plate 

within the region of the Canadian 

Shield (Environment and Climate 

Change Canada, 2019) 

Approximate Population size 985,000 (Grand River Conservation 

Authority, 2014) 

> 2,000,000  (Environment and 

Climate Change Canada, 2019) 

 

Land Use / Land Cover 43% agriculture; 26.92% range- 73% forested (Quebec); 85% mixed 
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grass and pasture; 12% forests; 9.29 

% urban areas; 1.8% wetlands 

(Veale & Cooke, 2017) 

and deciduous forest, 15% boreal 

(middle-south and northern regions, 

respectively) (Environment and 

Climate Change Canada, 2019); 6% 

farmland; <2% developed 

(Werstuck & Coulibaly, 2017) 

Average Annual Precipitation (mm) 800-900 (Kaur et al., 2019) 840 (Werstuck & Coulibaly, 2017) 

Temperature 8-10 ° C average annual; moderate-

to-cool temperate (Kaur et al., 

2019) 

21 - -10 °C average daily (Werstuck 

& Coulibaly, 2017) 

 1234 

 1235 

 1236 

 1237 
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Table 3. Simulated Flood Generation – Ottawa River Watershed 

 
Observed Flood Extent 

Polygon 

Observed 

Date and 

Time 

(UTC) 

Intersected 

Hydrometric 

Station 

Station 

Period 

of 

Record 

(years) 

Index 

Flood 

(Q̃, 

m3s-1) 

Observed 

Discharge 

(m3s-1) 

Logspline 

fit 

observation 

count 

Cumulative 

Probability 

Value 

Return 

Period 

(years) 

FloodExtentPolygon_QC_ 

LowerOttawa_20190429_ 

230713.shp 

2019/04/29 

23:07:13 

02KF005 38 3400 5790 1487 0.962 26.5 

FloodExtentPolygon_QC_ 

LowerOttawa_20190507_ 

111329.shp 

2019/05/07 

11:13:29 

02KF005 38 3400 5350 1487 0.939 16.52 

FloodExtentPolygon_QC_ 

LowerOttawa_20190513_ 

225800.shp 

2019/05/13 

22:58:00 

02KF005 38 3400 5570 1487 0.961 25.96 

FloodExtentPolygon_QC_ 

CentralOttawa_20190503_ 

113004.shp 

2019/05/03 

11:30:04 

02KB001 52 258 477 1487 0.977 42.69 
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Table 4. Binary Comparison Results 

Watershed Return 

Period 

(years) 

Number of 

evaluated 

subcatchments 

Median CSI Median 

MCC 

Grand River 100 71 0.741 0.844 

Ottawa River 26.5 17 0.849 0.888 

Ottawa River 16.52 21 0.785 0.826 

Ottawa River 25.96 22 0.803 0.852 

Ottawa River 42.69 7 0.581 0.743 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Formatted Table



 

41 
 

List of Figures 

Figure 1. GIS Input Data – Grand River Watershed (a) and Ottawa River Watershed (b) 

Topography. The maps are created in ArcGIS with the basemaps provided by © ESRI.  

The stations that are used later in Figure 5 comparison are labeled in the plot.  
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Figure 2. Flood model flowchart illustrating three sub-phases of overall modelling methodology: 

a) GIS Pre-processing; b) Flood frequency analysis and regional regression; and c) HAND-

based solution of Manning's Equation 
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Figure 3. InundatEd User Interface (a) and System Diagram (b). The basemap is created in Leaflet 

using © OpenStreetMap contributors 2020. Distributed under a Creative Commons BY-SA 

License 
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Figure 4. Flood frequency and regional regression plots 
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Figure 5. Theoretical Versus Estimated Flood Quantiles 
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Figure 6. Binary Classification Results – Grand River Watershed 
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Figure 7. Binary Classification Results – Ottawa River Watershed 
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Figure 8. Simulated Flood and Insets – Grand River Watershed 100-Year Return Period 
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Figure 9. Observed and Simulated Flood Extents– Ottawa River Watershed 
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